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Abstract. We propose a novel method for the detection of vibrations
caused by trains in an optical fiber buried nearby the railway track.
Using optical time-domain reflectometry vibrations in the ground caused
by different sources can be detected with high accuracy in time and
space. While several algorithms have been proposed in the literature for
train tracking using OTDR signals they have not been tested on longer
recordings. The presented method learns the characteristic pattern in the
Fourier domain using a support vector machine (SVM) and it becomes
more robust to any kind of noise and artifacts in the signal. The point-
based causal train tracking has two stages to minimize the influence of
false classifications of the vibration detection. Our technical contribution
is the evaluation of the presented algorithm based on two hour long
recording and demonstration of open problems for commercial usage.

1 Introduction

Railway safety is an important task, as millions of people and cargo being trans-
ported every day. Conventional tracking is often achieved by bidirectional com-
munication between train and track equipment. Other systems need detectors
to be installed next to the railway and they deliver a signal when a train passes
through the detector. In this paper we investigate a different technique, by the
use of an optical time-domain reflectometry (OTDR) instrument. It injects a
series of light pulses into a fiber cable and measures the scattered or reflected
light (Rayleigh backscatter) at the same end of the cable. The refractive index
change due to pressure change on the cable is the major cause for scattering,
which can be measured with a positional resolution down to 0.5 m [1]. The inter-
ested reader on different type of OTDR devices and their physical principle is
referred to the survey of Bao and Chen [1]. OTDR devices can be used to detect
break points in fiber cable (e.g. underwater cable reparation), for intrusion detec-
tion [3,6,10,13] or even for rock slide detection [2].

Vibrations of train movements nearby the railway track can be monitored
using an OTDR device, where in most cases fiber cables are already installed
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for communication purposes. The OTDR is an active measurement device as it
injects light pulses into the fiber cable. The optical fiber at the railway track
can be considered as passive, since trains do not need to communicate with the
OTDR device. Several methods for train tracking using OTDR signals have been
proposed in the literature [12,20]. However, these algorithms were not evaluated
for longer recordings with many trains crossing. We will review the existing lit-
erature and describe the problem in detail in the following section. All the algo-
rithmic details, as well as a discussion of the accuracy of the proposed method
will be given in the later sections. We will further provide an outlook for future
work and improvements.

2 Problem Description and Related Work

Our datasets were acquired with an OTDR device [8] and stored as a matrix,
where each row is the measurements of the optical cable characteristics measured
with one laser pulse. The dimension of the matrix is determined by the number
of cable segments and the duration of the recording. The fiber cable consist of a
fixed number of segments in each recording and a segment has a length of 0.68 m.
The monitored section has two parallel railway tracks, includes a number of stops
and a shunting yard. Figure 1 visualizes both input datasets. Although in this
contribution the data along the complete time axis are available, the detection
and tracking have been implemented for online processing using only a given
chunk of measurements at a time.

Given the raw OTDR measurements m(x, t) we want to detect and track
trains, i.e. for each train that passes through the monitored stretch of railway
tracks we want to automatically detect tuples with positions and times denoting
the positions of the train at a given time. The quality of the tracking algorithm
is then measured based on two main criteria: correct detection of all the trains
passing the monitored track and the accuracy of the individual tracks. The rest of
this section will be devoted to the discussion of the algorithms for OTDR signal
processing and related motion tracking that can be found in the literature.

2.1 Signal Processing in OTDR

OTDR signals have been used in many different fields and many different signal
processing techniques have been applied to these signals. In the following we
provide an overview of the literature available.

For intrusion detection averaging methods were used [3,6], where the latest
measurement is subtracted from the average. Averaging methods are accurate
enough for intrusion detection where the position of the optical fiber can be
chosen such that an event causes a large signal. For train vibration detection
these methods proved not to be accurate enough due to the highly varying signal
to noise ratio (SNR).

Qin et al. [14] introduced wavelet denoising in Φ-OTDR signal processing
by thresholding the wavelet coefficients. They point out, that wavelet denoising
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Fig. 1. The left side shows the input datasets, where each second of measurement is
aggregated into one pixel. The pixel intensity is the energy of frequency coefficients
between 50 and 150 Hz. The left-top data were taken with 4 kHz and the left-bottom
were taken with 2 kHz. The right side shows the detection and tracking, where each
tracked object is encoded with a different color. For clarification we labeled a tracked
car, a shunting train and two of the stations. The two datasets were recorded with one
minute offset to change the parameters of the recording device (Color figure online).

allows to remove noise that is present across all the frequencies while other
frequently used methods (e.g. moving average) often only remove high frequency
content from the signal. Wavelet denoising was applied by Peng et al. for pipeline
intrusion detection [13] and for train detection [12]. To obtain locations of rising
and falling edge of train signals normalized sliding variance was applied.

Using a spectral decomposition of the signal different authors have tried to
distinguish between different events detected in OTDR signals. Kong et al. [9]
have presented a method to detect events in OTDR signals based on Short-time
Fourier Transformation (STFT) and correlation matching. Wu et al. [22] pre-
sented a method based on phase space matrix construction, eigenvalue decompo-
sition and neural network classification to process signals from Φ-OTDR signals.
Timofeev et al. [21] applied Gaussian Mixture Model (GMM) with Support
Vector Machine (SVM) kernel to distinguish between different events (e.g. a
walking man, a truck moving) in signals acquired with C-OTDR device. The
(GMM-SVM) method was introduced by You et al. [24] for speaker recognition.
The feature values they use are built using Linear-Frequency Spaced Filter-
bank Cepstrum Coefficients (LFCC) from 200 to 3000 Hz. Timofeev [19] applied
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(GMM-SVM) also to detect activities (e.g. soil digging with excavator or working
with crowbar) nearby the railway track in signals from C-OTDR devices.

We propose a Fourier transformation based method, as our tests have shown
that it is possible to extract features to distinguish between vibration and back-
ground signals even with low SNR. Other methods such as wavelet denoising
and averaging methods have been considered for our problem, but these need
thresholds, which may vary under different circumstances. We found GMM not
suitable for our problem since the two clusters for background and vibration
signals do not have the shape of a Gaussian distribution. It is important to
point out that we normalize the Fourier coefficients before classification, there-
fore the energy of the signal is not relevant for the classification. We have seen
considerable variance of the energy of the signal present in the different cable
segments.

2.2 Motion Tracking

This section gives an overview on motion tracking between image frames based
on the survey of Yilmaz et al. [23] and we discuss the possibilities of point-
tracking, kernel-tracking and silhouette-tracking for our purpose. Point-tracking
relies on an external mechanism that detects objects in every frame. Determin-
istic methods solve the correspondence between consecutive frames by defining
a cost between tracked points. Minimization of the cost can be formulated as
a combinatorial problem [5,15–17]. Stochastic methods, e.g. Kalman filter [7],
solve the correspondence by taking the measurement and model uncertainties
into account. A Kalman filter can be only applied for one object, multiple objects
need multiple Kalman filters.

Kernel-tracking e.g. mean-shift clustering proposed by Comaniciu and Meer
[4] or KLT tracker proposed by Shi and Tomasi [18] are based on maximizing or
comparing the similarity of appearance between consecutive frames by defining
a feature vector for each tracked object or region. The proposed feature vectors
extracted in this contribution are not reliable enough to apply kernel-tracking.

Silhouette-tracking is based on tracking objects e.g. hands by a complex
descriptor of the region. Train signals acquired by an OTDR device after clas-
sification form in ideal case rectangular signals and do not require complex
descriptors. Signal edges can be detected and a point-tracking mechanism can be
adapted. It is essential to handle entry and exit of objects as trains are entering
and leaving the measurement range. Multiple data association must be handled
also, as multiple trains can appear in one time frame.

3 Algorithm

In the following we will describe our algorithm for train tracking, which is carried
out in two main steps. In the first step, the beginning and end points of trains
for a given second of time in the raw data are detected. In the second step
these points are used for extracting attributes from trains i.e. position, speed
and length for the given second.
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3.1 Point Detection

The first step of the point detection is to classify points in time and space
where vibration is present in the cable. To extract feature values for classifica-
tion, Fourier transformation is used. For each cable segment we compute the
Fourier transform for each second to receive a high dimensional feature vector
di,j(k), where i denotes the cable segment, j denotes the position in time (in sec-
onds) and k denotes the frequency channel of the Fourier transform. The applied
transformation can be seen as a sparse Short-Time Fourier transformation on
the complete signal. It is important to note that, even for cable segments which
provide a noisy signal, the Fourier transform has a typical pattern when vibra-
tions of a train are present, see Fig. 2, therefore detection can be also applied on
segments with low SNR.

Fig. 2. The top-left and top-right images are part of raw input signals, where the top-
left has high SNR and top-right has low SNR. From both signals two one second signals
have been selected, one for train signal (encoded with red) and one for background sig-
nal (encoded with blue). The corresponding FFTs of the selected signals are visualized
with the same color in the bottom images, where it can be seen that vibration can be
detected even in signals with low SNR (Color figure online)

Using all Fourier coefficients as feature vectors would be expensive and
many coefficients would be redundant or carry no information about the sig-
nal, therefore feature vector reduction is performed by scalar quantization. Each
Fourier coefficient is assigned to a distinct bin and the reduced feature vec-
tor contains the normalized sum of the corresponding coefficients for each bin,
where the normalization divider is the sum of all coefficients and the bins are
linearly spaced. Principal Component Analysis (PCA) is then used to further
reduce the feature vector. The reduced feature vectors are classified using a
Support Vector Machine (SVM). The SVM was trained to make binary deci-
sions between background-signal and vibration-signal using a Radial Basis Func-
tion (RBF) kernel. By an abuse of mathematical notation we can write the
complete event detection process as the composition of the following steps:
ri,j = SVM ◦PCA ◦QUANT ◦F . The complexity of the detection is linear in
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both time (seconds) and space (number of segments), while due to Fourier trans-
formation it has logarithmic complexity with respect to the sampling rate of the
OTDR device.

The classification for each second of the original measurements results in
a vector of binary classification ri,j , where i denotes the cable segment and
j denotes the position in time (in seconds). For a given second in time, the
classifications of the last 10 s are summed along the time axis resulting in a
vector describing the number of positive classifications in one cable segment
within the time window. On this vector Gaussian filtering is performed along
the space axis. Thresholding this vector leads to a filtered binary classification
along space for a given second. Finally, the beginning (rising) and end (falling)
points of trains are detected by taking the first derivative of the filtered results.
Figure 3 visualizes the filtering steps.

3.2 Motion Tracking

Motion tracking is solved between two consecutive seconds as an optimization
problem. The tracking is modeled in two stages. First, the beginning and end
points of trains are tracked. These points can disappear when a train stops or
when the trajectory of two trains are overlapping, therefore a second stage is
defined for train tracking. Point tracking and train tracking are both solved as
an optimization problem, where the following vertex sets are defined:

– Vnp represents the new points detected after filtering of the classification
results. This vertex set is redefined every second.

– Vtp represents the tracked points. Insertion and deletion in this set can be
done in each second after solving the optimization problem.

– Vtt represents the tracked trains. Insertion and deletion in this set can be done
in each second after solving the optimization problem.

For tracking in the two stages the following complete weighted undirected bipar-
tite graphs are defined:

– Gp(Vp, Ep, wp), where Vp = Vnp ∪ Vtp, Ep = {{vnp, vtp} : vnp ∈ Vnp, vtp ∈ Vtp}
– Gt(Vt, Et, wt), where Vt = Vtp ∪ Vtt, Et = {{vtp, vtt} : vtp ∈ Vtp, vtt ∈ Vtt}.

To set up the optimization problems we define the following functions for vertices
in the defined vertex sets:

– u(v) ∈ {−1,+1} for v ∈ Vnp ∪ Vtp, determines if a point is rising (beginning
of train) or falling (end of train).

– p(v) ∈ {0, ...,K} for v ∈ Vnp ∪Vtp ∪Vtt, denotes the position (segment), where
K is the number of segments.

– ctp(v) ∈ [0, 1] for v ∈ Vtp, denotes the confidence of a tracked point, which is
computed from the weighted sum of valid observations in time, the weights
are forming a normalized exponential probability distribution function.

– ctt(v) ∈ [0, 1] for v ∈ Vtt, denotes the confidence of a tracked train, which is
computed from weighted average of tracked point confidence observations. It
also takes into account the number of rising/falling points.
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– stp(v) ∈ R
+ for v ∈ Vtp, determines velocity of tracked point, which is com-

puted from the slope of the position of the last 10 s.
– stt(v) ∈ R

+ for v ∈ Vtt, determines velocity of tracked train, which is computed
from weighted average of tracked point velocity observations.

– ΔT (v) ∈ N
+ for v ∈ Vtt, denotes the number of seconds since last update of

tracked train.
– Δ(v1, v2) = p(v1) − p(v2) v1, v2 ∈ Vnp ∪ Vtp ∪ Vtt, is a function that computes

the distance between two vertices in the same graph.
– ΔE(v) = p(v)+s(v) v ∈ Vtp, is a function that computes the expected distance

between the current and the next position of the tracked point.
– σGp

(v) gives the set of all incident edges for a vertex v ∈ Vp in graph Gp.
– σGt

(v) gives the set of all incident edges for a vertex v ∈ Vt in graph Gt.

The weights for the edges ep ∈ Ep and et ∈ Et are computed as:

– wp(ep) = wp({vnp, vtp}) = ce(vtp) ∗ 1
1+|Δ(vnp,vtp)−ΔE(vtp)| ∈ [0, 1], which

denotes the weight of an edge in Gp, where ep = {vnp, vtp} ∈ Ep.
– wt(et) = wt({vtp, vtt}) = cp(vtt) ∗ ce(vtp) ∗ (a + ( 1

ΔT (vtt)∗|Δ(vte,vtt)| )) ∈ [0, 2],
which denotes the weight of an edge in Gt, where et = {vtp, vtt} ∈ Et and
a = 1 if both tracked point and tracked train moves in the same direction.

For the two graphs two separate Binary Integer Programs (BIP) are defined,
where the objective functions are maximized. For each edge e in one of the two
defined graphs we associate a binary variable xe. For e ∈ Ep, the variable xe

is set to 1 if the corresponding new point is associated with the tracked point.
Similarly, for e ∈ Et, the variable xe is set to 1 if the corresponding tracked
point is associated with the tracked train.

Point tracking

max
∑

e∈Ep

wp(e)xe s.t. (1)

∑

e∈σGp (v)

xe ≤ 1 ∀v ∈ Vp (2)

xeu(vnp) = xeu(vtp)

∀e = {vnp, vtp} ∈ Ep

(3)

xe sgn(stp(vtp)) = xe sgn(Δ(vnp, vtp))

∀e = {vnp, vtp} ∈ Ep

(4)

xe ∈ {0, 1} ∀e ∈ Ep (5)

Train tracking

max
∑

e∈Et

wt(e)xe s.t. (6)

∑

e∈σGt
(vtp)

xe ≤ 1 ∀vtp ∈ Vtp (7)

xecte(vtp) ≥ 0.5xe

∀e = {vtp, vtt} ∈ Et

(8)

xeΔ(vtp, vtt) ≤ 1500

∀e = {vtp, vtt} ∈ Et

(9)

xe ∈ {0, 1} ∀e ∈ Et. (10)

In the following we will discuss the roles of the constraints in the linear
programs. Constraint 2 ensures that each tracked point and each new-point can
have only one association. Constraint 3 ensures that rising and falling points
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Table 1. Cross-validation of train tracking with ground truth.

Train (ID) 23468 29515 2330 73 23488 Avg Min Max

LOOCV (meter) 38.24 4.89 37.76 64.92 48.11 38.78 4.89 64.92

cannot be associated. Constraint 4 ensures that the sign of Δ(e) and the tracked
point velocity must be the same. Constraint 7 ensures that each tracked point
can only be association with one tracked train, but multiple tracked points can be
assigned to a tracked train. This serves as a noise filter, since points can appear
from classification noise and no new trains should be constructed. False-positive
edges often have a confidence lower than 0.5, therefore constraint 8 ensures that
tracked points only with confidence higher than 0.5 are considered. Constraint
9 ensures that tracked points with large distance cannot be associated.

The BIPs are solved with greedy heuristics and the result is a list of tracked
trains, each with the following attributes: position, confidence, velocity and
length. The complexity of the greedy solution is derived from the complexity
of the sorting algorithm in terms of the number of edge weights within the
graph. The visualization in Fig. 3 shows an example of the tracking algorithm.
The length of a train is computed by the standard deviation of tracked point
position observations. Entry and exit of objects are handled as:

– new points vnp ∈ Vnp without association are promoted to vertex set Vtp,
– if a tracked point vtp ∈ Vtp has no association, an empty-edge is assigned to

decrease confidence,
– if a tracked point vtp ∈ Vtp reaches the confidence zero, it is removed from

vertex set Vtp,
– tracked points vtp ∈ Vtp without association are promoted to vertex set Vtt,
– if a tracked train vtt ∈ Vtp has no association and the position is close either to

the beginning or the end of the measurement range, it is removed from vertex
set Vtt ∈ Vtt.

4 Evaluation

In the first step, parameters of the classification were investigated. We have
received two datasets for the research with a total of around 169 million samples.
For training and testing input data 10000 background and 10000 train samples
were annotated by hand within the first dataset. To ensure non-overlapping sam-
ples, training data was taken from the first half of the dataset and testing data
were taken from the second half of the dataset. Accuracy of the SVM classifier
has been computed as (TP+TN)/(TP+TN+FP+FN). Frequency intervals from
1, 25, 50, 75, 100 to 200, 300, ..., 900, 1000 with bin count 5, 10, ..., 35, 40
were considered. Table 2 shows that as the beginning of the frequency interval
increases, the number of TP decreases. Low frequency vibrations are present in a
wider vicinity of a moving train than its high frequency vibrations. Leaving out
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Fig. 3. The detection of begin/end points is visualized on the left side. The left-bottom
image shows a 10 s window of the classification result. The left-top image shows the
result of summation along the time axis as a one dimensional signal representing the
count of positive classifications. The left-middle image shows the Gaussian filtering
along the space axis. On the same image the filled section shows where threshold is
exceeded, as well as the corresponding point detection, where green is the rising edge
and red is the falling edge. On the left-bottom image the blue lines are the middle of
trains and red lines are the head and tail of trains. The image on the right shows the
train tracking graphs when the trajectories of two trains are crossing each other. Points
(Vtp) are noted as P , the subscript represents rising/falling. Trains (Vtt) are noted as
T , the subscript has no effect on the algorithm. Arrows represent the direction of points
and trains. After time 1789 the points in the middle are not detectable any more and
their confidence is starting to decrease, which is encoded as the alpha channel in the
visualization. When their confidence is lower than 0.5, they are not associated to the
trains and the confidence of the trains are decreasing also. In the middle of the image,
the points change direction and new points are inserted to the set of tracked points.
When the confidence of these points reaches 0.5, they are associated to the trains. At
the top of the image, the points in the middle are tracked again and the confidence of
the trains reaches 100 % again. (Color figure online)

low frequency bins from classification allows to locate trains with higher posi-
tional accuracy. The decline in accuracy without quantization shows that the
implicit averaging of quantization is important. Reduction using PCA slightly
decreases accuracy, but Table 2 shows a positive impact on the processing speed
and using two eigenvectors the data can be reconstructed 87 %. Table 2 also
shows that applying PCA directly to the Fourier transform is slower than using
quantization first. The speed of the SVM classification is not only depending on
the number of feature values, but also on the number of support vectors. The
speed tests of the Python implementation were executed on a single core of an
Intel(R) E5-1620 v3 CPU and the processing speed for one second data from
both datasets were processed in around 2 s. We concluded from visual evalua-
tion that false positive classifications have more negative impact on the point
detection than false negatives.



Train Detection and Tracking in OTDR Signals 329

Table 2. Accuracy and speed results of different parameters, where SVM was used for
classification. FFT was executed on 5000 samples/segment. We show for each frequency
interval the highest accuracy results. Note that quantization includes normalization.

Accuracy TN FP FN TP FFT Quant PCA SVM Frequency Bins Reduction

% Count ns/segment Hz Count Type

99.61 9970 30 47 9953 110.5 2.3 0.0 20.5 25-995 10 None

99.60 9970 30 50 9950 111.1 2.5 0.1 15.6 25-995 10 PCA

99.58 9969 31 53 9947 108.7 2.5 0.0 51.0 1-701 25 None

99.50 9967 33 66 9934 108.2 2.3 0.1 27.8 1-701 25 PCA

99.42 9972 28 88 9912 126.1 2.5 0.0 47.9 50-500 10 None

97.82 9981 19 417 9583 123.7 2.2 0.0 55.6 75-500 10 None

97.67 9974 26 440 9560 109.4 7.8 0.0 4647 1-701 700 None

97.28 9951 49 494 9506 111.0 8.1 3.6 139.1 1-701 700 PCA

The tracking algorithm was evaluated using cross-validation with ground
truth data, see also [11]. Leave-one-out cross-validation (LOOCV) was used
where a time offset was computed from n − 1 trains and using this offset an
absolute average of distances was computed as the validation value. From Table 1
the conclusion was made that the absolute average difference of the tracking is
38.78 m. Figure 1 shows the detection and tracking results. We find important to
point out that all trains were found and tracked correctly. The detection algo-
rithm was not trained to distinguish between cars and trains, therefore a car was
tracked by the motion tracking algorithm. The data shown in Fig. 1 include the
rail section of a shunting-yard at around kilometer 11 and tracking of trains are
not satisfactory at that location. The average processing speed of the tracking
algorithm for each second of data was around 10 ns.

5 Conclusion

In this paper a novel method was proposed to extract feature vectors from OTDR
signals to distinguish between background-signal and vibration-signal. The algo-
rithm is not dependent on the signal energy but classifies only based on the
shape of the spectral distribution. From the given datasets train-signals were
classified with an accuracy larger than 98 %. The algorithm is designed to work
in real-time and processes raw data of one second in each step. Due to filtering of
the classification the algorithm has a delay of 5 s in the current implementation.

Based on the classification a tracking algorithm has been presented that is
able to automatically detect and track trains with an average of 38.8 m. To
our knowledge this is the first algorithm that is reliably able to track trains
automatically with crossings over a long period of time. In our data trains are
tracked reliably up to a section with a shunting yard. The overlapping trains in
that section lead to errors in the tracking algorithm therefore these cases have
to be investigated in more detail. We plan to improve robustness of the tracking
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method by including spatio-temporal features and eliminating parameters for
train beginning/end detection, furthermore we plan to investigate if the tracking
model can be simplified by tracking the center of trains in a single-stage manner.
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