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Controlling Geometry of Homology Generators
Abstract Homology groups and their generators of a 2D
image are computed using a hierarchical structure i.e. irreg-
ular graph pyramid. In this paper we show that the gener-
ators of the first homology groups of a 2D image, computed
with this pyramid based method always fit on the boundaries
of the regions.

1 Introduction
A region/object is a (structured) set of pixels or voxels, or
more generally a (structured) set of lower-level regions. At
the lowest level of abstraction, such an object is a subdivi-
sion, i.e. a partition of the object into cells of dimensions
0, 1, 2, 3 ... (i.e. vertices, edges, faces, volumes ...) [13].
In general, combinatorial structures (graphs, combinatorial
maps, nG-maps etc.) are used to describe objects subdi-
vided into cells of different dimensions. The structure of
the object is related to the decomposition of the object into
sub-objects, and to the relations between these sub-objects:
basically, topological information is related to the cells and
their adjacency or incidence relations. Further information
(embedding information) is associated to these sub-objects,
and describes for instance their shapes (e.g. a point, respec-
tively a curve, a part of a surface, is associated with each
vertex, respectively each edge, each face), their textures or
colors, or other information depending on the application.
A common problem is to characterize structural (topologi-
cal) properties of handled objects. Different topological in-
variants have been proposed like Euler characteristics, ori-
entability, homology... (see [1]).

Homology is a powerful topological invariant, which
characterizes an object by its ”p−dimensional holes”. Intu-
itively 0−dimensional holes can be seen as connected com-
ponents, 1−dimensional holes can be seen as tunnels and
2−dimensional holes as cavities. Unfortunately, there are
no English notions for higher dimensional holes. This no-
tion of p−dimensional hole is defined in any dimension. In
Fig.1(a) an example of the torus is shown, which contains
one 0−dimensional hole, two 1−dimensional holes (each of
them are an edge cycle) and one 2−dimensional hole (the
cavity enclosed by the entire surface of the torus). Plainly,
homology is a tool to study digital spaces, and has been ap-
plied for 2D and 3D image analysis [2]. Usage of homology
groups and generators is a new topic and has been recently
— CONFIDENTIAL REVIEW COPY 0010 —
used in image processing. Although in this paper we use
2D images to show some nice properties of using homol-
ogy groups and their generators in studying images, we do
not encourage usage of homology groups and generators to
find connected components in 2D image, since efficient ap-
proaches already exist [19]. However, these ’classical’ ap-
proaches cannot be easily extended for many problems that
exist in higher dimensions, since our visual intuition is in-
appropriate and topological reasoning becomes important.
Computational topology has been used in metallurgy [9] to
analyze 3D spatial structure of metals in an alloy and in
medical image processing [17] in analyzing blood vessels.
In higher dimensional problems (e.g. beating heart repre-
sented in 4D) the importance of homology groups and gen-
erators becomes clear in analyzing objects (their number of
connected components, tunnels, holes, etc) in these spaces,
because of the nice and clean formulations which hold in
any dimension.

Moreover, if Betti numbers (rank of homology groups)
provide the number of ”p-dimensional” holes, a set of gen-
erators allows to locate them. In [18], it is shown that differ-
ent parameters influence the geometry of the generators i.e.
a generator can surround a ”p-hole” more or less closely. A
new method for computing homology groups and their gen-
erators is introduced in [5]. It uses a hierarchical structure
based on a graph pyramid which is build by using two oper-
ations: contraction and removal. The main goal of this paper
is to show that the generators build by the method in [5] is
on the boundaries of the regions. We show this property
by experimenting using 2D images and conjecture that this
properties will hold also for higher dimensional data.

The paper is structured as follows. Basic notions of ho-
mology and irregular graph pyramids are recalled in Sec-
tion 2 and 3. The new method to compute homology groups
and their generators is presented in detail in Section 4. We
finally show some experimental results on 2D images in Sec-
tion 6.

2 Homology
In this part, the basic homology notions of chain, cycle,
boundary and homology generator are recalled, interested
readers can find more details in [16].

The homology of a subdivided object X can be defined
in an algebraic way by studying incidence relations of its
1
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Figure 1: (a) : a triangulation of the torus. (b) : a simplicial complex made of 1 connected component and containing one 1−dimensional
hole.
subdivision. Within this context, a cell of dimension p is
called a p−cell and the notion of p−chain is defined as a
sum

∑nb p−cells
i=1 αici, where ci are p−cells of X and αi

are coefficients assigned to each cell in the chain. Homol-
ogy can be computed using any group A for the coefficients
αi. Anyway, the theorem of universal coefficients [16] en-
sures that all homological information is obtain by choosing
A = Z. It is also known [16] that for nD objects embedded
in RD the homology information can be computed consid-
ering simply chains with moduli 2 coefficients (A = Z/2Z).
Note that is this case, a cell that appears twice on a chain
vanishes, because c + c = 0 for any cell c when using mod-
uli 2 coefficients. On the following, only chains with coeffi-
cients over Z/2Z will be considered.

Note that the notion of chain is purely formal and the cells
that compose a chain do not have to satisfy any property. For
example, on the simplicial complex illustrated on Fig.1(b)
the sums: a1 + a4, a3 and a2 + a7 + a4 are 1−chains.

For each dimension p = 0, . . . , n, where n = dim(X),
the set of p−chains forms an abelian group denoted Cp.
The p−chain groups can be put into a sequence, related
by applications ∂p describing the boundary of p−chains as
(p− 1)−chains:

Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0,

which satisfy ∂p∂p−1(c) = 0 for any p−chain c, p = 1..n.
This sequence of groups is called a free chain complex.

The boundary of a p−chain reduced to a single cell is
defined as the sum of its incident (p−1)−cells. The bound-
ary of a general p−chain is then defined by linearity as
the sum of the boundaries of each cell that appears in the
chain e.g. in Fig.1(b), ∂(f1 + f2) = ∂(f1) + ∂(f2) =
(a1 + a2 + a7) + (a7 + a3 + a6) = a1 + a2 + a3 + a6.
Note that as mentioned before, chains are considered over
Z/2Z coefficients, any cell that appears twice vanishes.

For each dimension p = 0 . . . n, the set of p-chains which
have a null boundary are called p-cycles and are a subgroup
of Cp, denoted Zp e.g. a1+a2+a7 and a7+a5+a4+a3 are
1−cycles. The set of p-chains which bound a p+1-chain are
called p-boundaries and they are a subgroup of Cp, denoted
Bp e.g. a1 + a2 + a7 = ∂(f1) and a1 + a6 + a3 + a2 =
∂(f1 + f2) are 1−boundaries.

According to the definition of a free chain complex, the
boundary of a boundary is the null chain. Hence, this implies
that any boundary is a cycle. Note that according to the
2

definition of a free chain complex, any 0−chain has a null
boundary, hence every 0−chain is a cycle.

The pth homology group, for p = 0 . . . n, denoted Hp,
is defined as the quotient group Zp/Bp. Thus, elements of
the homology groups Hp are equivalence classes and two
cycles z1 and z2 belong to the same equivalence class if their
difference is a boundary ( i.e. z1 = z2 + b, where b is a
boundary). Such two cycles are called homologous e.g. let
z1 = a5+a4+a3+a7, z2 = a5+a4+a6 and z3 = a1+a2+
a3 ; z1 and z2 are homologous (z1 = z2 + ∂(f2)) but z1 and
z2 are not homologous to z3. Let Hp be an homology group
generated by q independent equivalence classes C1, · · · , Cq,
any set {h1, · · · , hq | h1 ∈ C1, · · · , hq ∈ Cq} is called a
set of generators for Hp. For example, either {z1}, {z2} can
be chosen as a generator of H1 for the object represented in
Fig.1(b).

Note that some notions mentioned above can be confus-
ing with similar notions in the graph theory field. Tab.1 asso-
ciates these homology with notions classically used in graph
theory.

3 Irregular Graph Pyramids
In this part, basic notions of pyramids like receptive field,
contraction kernel, and equivalent contraction kernel are in-
troduced, for more details see [8].

A pyramid (Fig. 2(a) describes the contents of an image at
multiple levels of resolution. A high resolution input image
is at the base level. Successive levels reduce the size of the
data by reduction factor λ > 1.0. The Reduction window
relates one cell at the reduced level with a set of cells in
the level directly below. The contents of a lower resolution
cell is computed by means of a reduction function the input
of which are the descriptions of the cells in the reduction
window. Higher level descriptions should be related to the
original input data in the base of the pyramid. This is done
by the receptive field (RF) of a given pyramidal cell ci. The
RF(ci) aggregates all cells (pixels) in the base level of which
ci is the ancestor.

Each level represents a partition of the pixel set into cells,
i.e. connected subsets of pixels. The construction of an ir-
regular pyramid is iteratively local [15]. On the base level
(level 0) of an irregular pyramid the cells represent single
pixels and the neighborhood of the cells is defined by the
4(8)-connectivity of the pixels. A cell on level k + 1 (par-
ent) is a union of some neighboring cells on level k (chil-
— CONFIDENTIAL REVIEW COPY 0010 —
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Table 1: Translation of homology notions in the graph field.
Homology theory Graph theory

0-cell, 1-cell, 2-cell vertex, edge, face
0-chain, 1-chain, 2-chain set of vertices, set of edges, set of faces
0-cycle, 1-cycle, 2-cycle set of vertices, closed path of edges, closed path of faces

0

1

h

reduction window

ci

RF(ci)

(G0, G0)

Gk

Gk

a) Discrete levels b) Image to dual graphs

Figure 2: (a) pyramid concept, and (b) representation of the cells and their neighborhood relations by a dual pair of plane graphs at the level
0 and k of the pyramid.
dren). This union is controlled by so called contraction ker-
nels (CK) [14], a spanning forest which relate two succes-
sive level of a pyramid. Every parent computes its values
independently of other cells on the same level. Thus local
independent (and parallel) processes propagate information
up and down and laterally in the pyramid. Neighborhoods
on level k + 1 are derived from neighborhoods on level k.
Higher level description are related to the original input by
the equivalent contraction kernels (ECK). A level of the
graph pyramid consists of a pair (Gk, Gk) of plane graphs
Gk and its geometric dual Gk (Fig. 2(b). The vertices of Gk

represent the cells on level k and the edges of Gk represent
the neighborhood relations of the cells, depicted with square
vertices and dashed edges in Fig. 2(b). The edges of Gk

represent the borders of the cells on level k, solid lines in
Fig. 2(b), including so called pseudo edges needed to repre-
sent neighborhood relations to a cell completely enclosed by
another cell. Finally, the vertices of Gk (circles in Fig. 2(b)),
represent junctions of border segments of Gk. The sequence
(Gk, Gk), 0 ≤ k ≤ h is called irregular (dual) graph pyra-
mid For simplicity of the presentation the dual G is omitted
afterward.

4 Computing Homology Generators
There exists a general method for computing homology
groups. This method is based on the transformation of
incidence matrices [16] (i.e. which describe the boundary
homomorphisms) into their reduced form called Smith
normal form. Agoston proposes a general algorithm, based
on the use of slightly modified Smith normal form, for
computing a set of generators of these groups [1]. Even if
Agoston’s algorithm is defined in any dimension, the main
drawback of this method is directly linked to the complexity
of the reduction of an incidence matrix into its Smith
normal form, which is known to consume a huge amount
of time and space. Another well known problem is the
possible appearance of huge integers during the reduction
of the matrix. A more complete discussion about Smith
normal algorithm complexity can be found in [12]. Indeed,
Agoston’s algorithm cannot directly be used for computing
— CONFIDENTIAL REVIEW COPY 0010 —
homology generators and different kinds of optimisations
have been proposed.

Based on the work of [4] and [20], an optimisation for
the computation of homology generators, based on the
use of sparse matrices and moduli operations has been
proposed [18]. In particular, this method avoids the possible
appearance of huge integers. The authors also observed an
improvement of time complexity dropping from O(n2) to
O(n5/3), where n is the number of cells of the subdivision.

An algorithm for computing the rank of homology groups
i.e. the Betti numbers have been proposed in [11]. The main
idea of this algorithm is to reduce the number of cells of an
initial object in order to obtain an homologically equivalent
object, made of less cells. In some special cases (orientable
objects), Betti numbers can directly be deduced from the
resulting object. However, this method cannot directly pro-
vide a set of generators. Based on this work, an algorithm
for computing a minimal representation of the boundary of
a 3D voxel region, from which homology generators can di-
rectly be deduced have been defined in [3].

4.1 Generator Computation using Pyramids (GCP)
The GCP method proposed in [5] follows the same idea as
the methods of Kaczynski and Damiand [10, 6]: reducing
the number of cells of an object for computing homology.
Moreover, we keep all simplifications that are computed dur-
ing the reduction process by using the pyramid. In this way,
homology generators can be computed at the top level of the
pyramid, and can be used to deduce generators of any lower
level of the pyramid. The generators of the higher level can
be directly down-projected on the desired level (using equiv-
alent contraction kernels).

Starting from an initial image, an irregular graph pyramid
is build. This method is valid as long as the algorithm used
for the construction of the pyramid preserves homology. In
particular, it is shown in [5] that the decimation by contrac-
tion kernels, described in section 3, preserves homology.
Indeed, homology of the initial image can thus be computed
in any level of the pyramid, and in particular on the top level
3
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Controlling Geometry of Homology Generators
where the object is described with the smallest number of
cells.

The GCP method is summarized into the following steps:

1 Starting from labeled image, a graph pyramid
{G0, G1, . . . , Gk} is built using contraction kernels
of cells with the same label.

2 Homology groups generators are computed for Gk, using
Agoston’s method.

3 Homology generators of any level i can be deduced from
those of level i + 1 using the contraction kernels. In par-
ticular, we obtain the homology generators of the initial
image.

Fig.3 illustrates the general method that we propose for
computing homology generators of an image.

5 Controlling the Geometry of the
Generators

When computing homology generators with Agoston’s
method, directly on the initial image, we cannot have any
control of their geometry. More precisely, the aspect of the
obtained generators is directly linked to the construction of
incidence matrices, which is determined by the scanning
of each cell of the initial image (see [18] for a first study
of the influence of different parameters on the geometry of
generators).

We prove in this section that for 2D images, the GCP
method provides a set of generators that always fit on some
boundaries of a region R. In the following, an edge on the
boundary of a region is called a boundary edge.

First, we show that any 1−cycle in the top level of the
pyramid computed with GCP method contains only bound-
ary edges. Second, we show that the down-projection of a
1−cycle composed of boundary edges, is still a cycle com-
posed of boundary edges.

Property 1 Any 1−cycle in the top level of the pyramid
computed with GCP method contains only boundary edges

Proof: On the top level, a region is represented by a unique
2D cell. Hence each edge of the top level is either a bound-
ary edge or links two boundaries of R (we call it a pseudo
edge).

Let z be a 1−cycle on the top level, if z contains any
pseudo edge e = (v1, v2), where v1 and v2 are two ver-
tices that stand on two different boundaries of R, then R is
made of at least two 2D-cells, which is not possible as any
region on the top level is made of only one cell. Hence,
any 1−cycle on the top level of the pyramid contains only
boundary edges.
�

Let us consider Fig. 4(b), which represents the top level
of the pyramid built from the initial image represented in
Fig. 4(a). The subdivision is made of one 2D-cell R1; four
boundary edges e1, e2, e3, e4; two pseudo edges e5, e6; and
4

(a)

e1 e2 e3
e4

e5

e6

(b)

Figure 4: (a) Bottom level, and (b) top level of the pyramid.

four vertices. The property 1 ensures that for this subdivi-
sion, any 1−cycle can be written as α1e1 + α2e2 + α3e3 +
α4e4, where αi = 0, 1, i = 1 . . . 4.

Property 2 The delineation of a top level 1−cycle that lies
only on boundaries results in a 1−cycle in the bottom level
that lies only on boundaries.

Proof:
The process of generator delineation (down-projection)

presented in [5] requires identifying in the bottom level the
surviving edges that correspond to the given top level edges
and where the generator cycles are disconnected, adding
paths to reconnect.

The identified surviving edges are guaranteed to lie on
boundaries because of their one to one association to their
corresponding top level edges.

As presented in [5], each path added reconnects two con-
secutive surviving edges, and is a sub-path of the equivalent
contraction kernel of the common vertex the two surviving
edges share in the top level. Because

• for any two vertices in any tree, there is a unique path
connecting them [21],

• for any two vertices on the boundary (disconnected end-
vertices of the two surviving edges) there are two paths
that connect them and which are made only of boundary
edges, and

• boundary edges are never removed [5] (just contracted or
surviving),

we can conclude that the unique path used to reconnect
the vertices of two consecutive surviving boundary edges is
made only of boundary edges. �

6 Experiments on 2D Images
We present and discuss some experiments that have been
performed on 2D images. We compute homology genera-
tors, for each region in two different ways: directly on the
initial image (bottom level), and on the top level of the pyra-
mid build on this image.

One can note that the set of cycles obtained in Fig.5(a)
and Fig.5(b) do not surround the same (set of) 1D−holes of
the shape S. Indeed, these two sets are two different basis of
the same group H1(S): let a, b and c denote the equivalence
class of cycles that surround respectively the left eye, the
right eye, and the mouth. The set of generators in Fig.5(a)
— CONFIDENTIAL REVIEW COPY 0010 —
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1

2

3 3′

4

Figure 3: Computing generators of homology groups using an image pyramid.
(a)

(b)

Figure 5: Generators overlayed on the image (a): the homology
generators computed on the initial image, (b): GCP generators.

describe H1(S) in the basis {a+b, c, a}whereas in Fig.5(b),
H1(S) is described in the basis {a, a + b + c, b}. Note that
in this figure we have put one generators (shown in black)
per image.

In Fig.6 and Fig.7 some real world images are shown. We
have first segmented the images (e.g. one can choose the
minimum spanning tree based pyramid segmentation [7]).
In principle one can build generators on these segmented im-
ages, but for clarity of this presentation we used binary seg-
mentation (Fig.6(a) and 7(a)). In these binary images white
means 1−dimensional hole. Note that for visualization pur-
poses we show with the gray color an island in Fig.6(a) that
is not a 1−dimensional hole since it is not enclosed by the
black region. The basis in Fig.6(b) and in Fig.6(c) are dif-
ferent but they are basis of the same first homology group.
The same holds for images Fig.7(b) and Fig.7(c).

The GCP generators shown in Fig.6(c) and Fig.7(b) are
nicely fitted on the boundaries of regions (1D−holes). Note
that the generators in Fig.6(b),6(c) and Fig.5(a),5(b) are
shown with red and overlayed on the original image.
— CONFIDENTIAL REVIEW COPY 0010 —
7 Conclusion

The GCP method for computing homology groups and their
generators of images, using irregular graph pyramids has
the nice property that the build generators always fit on the
boundaries of the regions in 2D images. Homology genera-
tors are computed efficiently on the top level of the pyramid,
since the number of cells is small, and a top down process
(down-projection) delineates the homology generators of the
initial image. Some results have been shown for 2D binary
images.

In future work, we plan to study geometrical properties
of homology generators computed with the GCP method for
3D images. In particular, we expect similar properties for
homology generators of dimensions 1 and 2 (i.e. tunnels
and cavities). We also plan to use these ’geometrically con-
trolled’ generators for object matching.
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Figure 6: (a): segmented image. Generators overlayed on the
original image (b): the homology generators computed on the ini-
tial image, (c): GCP generators.
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Figure 7: (a): segmented image. Generators overlayed on the
original image (b): the homology generators computed on the ini-
tial image, (c): GCP generators.
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