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a b s t r a c t

We introduce a method for computing homology groups and their generators of a 2D image, using a hier-
archical structure, i.e. irregular graph pyramid. Starting from an image, a hierarchy of the image is built
by two operations that preserve homology of each region. Instead of computing homology generators in
the base where the number of entities (cells) is large, we first reduce the number of cells by a graph pyr-
amid. Then homology generators are computed efficiently on the top level of the pyramid, since the num-
ber of cells is small. A top down process is then used to deduce homology generators in any level of the
pyramid, including the base level, i.e. the initial image. The produced generators fit on the object bound-
aries. A unique set of generators called the minimal set, is defined and its computation is discussed. We
show that the new method produces valid homology generators and present some experimental results.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Handling ‘structured geometric objects’ is important for many
applications related to geometric modeling, computational geome-
try, image analysis, etc. One has often to distinguish between dif-
ferent parts of an object, according to properties which are
relevant for the application. For image analysis, a region is a (struc-
tured) set of pixels or voxels, or more generally a (structured) set of
lower-level regions. At the lowest level of abstraction, such an ob-
ject is a subdivision,1 i.e. a partition of the object into cells of dimen-
sion 0,1,2,3, . . . (i.e. vertices, edges, faces, volumes, etc.) [1,2]. In
general, combinatorial structures (graphs, combinatorial maps, n-
G-maps, etc.) are used to describe objects subdivided into cells of dif-
ferent dimensions. The structure of the object is related to the
decomposition of the object into sub-objects and to the relations be-
tween these sub-objects: basically, topological information is related
to the cells and their adjacency or incidence relations. Further infor-
mation (embedding information) is associated to these sub-objects
and describes for instance their shapes (e.g. a point, respectively a
curve, a part of a surface, is associated with each vertex, respectively
each edge, each face), their textures or colors, or other information
depending on the application. A common problem is to characterize

structural (topological) properties of handled objects. Different topo-
logical invariants have been proposed, like Euler characteristics, ori-
entability, homology, etc. (see [3]).

Homology is a powerful topological invariant, which charac-
terizes an object by its ‘‘p-dimensional holes”. Intuitively the
0-dimensional holes can be seen as connected components, 1-
dimensional holes can be seen as tunnels and 2-dimensional
holes as cavities. For example, the torus in Fig. 1(a) contains
one 0-dimensional hole, two 1-dimensional holes (each of them
are an edge cycle) and one 2-dimensional hole (the cavity en-
closed by the entire surface of the torus). This notion of p-dimen-
sional hole is defined in any dimension. Another important
property of homology is that local calculations induce global
properties. In other words, homology is a tool to study spaces
and has been applied in image processing for 2D and 3D image
analysis [4,5]. Although in this paper, we use 2D binary images
to show the proof of concept, we do not encourage usage of
homology groups and generators to find connected components
in 2D images, since efficient approaches already exist [6]. How-
ever, these ‘classical’ approaches cannot be easily extended for
many problems that exist in higher dimensions, since our visual
intuition is inappropriate and topological reasoning becomes
important. Computational topology has been used in metallurgy
[7] to analyze 3D spatial structure of metals in an alloy and in
medical image processing [8] in analyzing blood vessels. In higher
dimensional problems (e.g. beating heart represented in 4D) the
importance of homology groups and generators becomes clear be-
cause of the nice and clean formulation which holds in any
dimension (number of connected components, tunnels, holes,
etc.). One can think of other applications, as a preprocessing step,
to speed up recognition of complex shapes in large image
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databases, e.g. images are first filtered based on their topological
invariants and afterward are matched using shapes, appearances,
etc.

The usage of homology groups and generators in image pro-
cessing is a new topic and is not widely spread. In this paper,
we present a new method for computing homology groups and
their generators using a hierarchical structure. This work was
introduced in [9] and is build by using two operations: contrac-
tion and removal. These two operations are used also in [10] to
incrementally compute homology groups and their generators of
2D closed surfaces, but a hierarchy is not build. In this paper,
the complexity of the method is detailed, which shows the inter-
est of our approach compared to Agoston’s classical method. The
current paper also considers the geometry of the produced gener-
ators, and defines and studies the concept of minimal generator
set.

The paper is structured as follows. Basic notions on homology
and irregular graph pyramids are recalled in Sections 2 and 3.
The proposed method to compute homology groups and their gen-
erators is presented in Section 4, the complexity is given and the
property of the resulting generators are detailed. Section 5 pre-
sents the concept of minimal generator set. Experimental results
on 2D images that compare the result of the new method with
Agoston’s one are found in Section 6.

2. Homology

In this part, the basic homology notions of chain, cycle, bound-
ary and homology generator are recalled. Interested readers can
find more details in [11].

The homology of a subdivided object X can be defined in an
algebraic way by studying incidence relations of its subdivision.
Within this context, a cell of dimension p is called a p-cell and
the notion of p-chain is defined as a sum

Pnb p-cells
i¼1 aici, where ci

are p-cells of X and ai are coefficients assigned to each cell in the
chain. Homology can be computed using any group A for the coef-
ficients ai. But, the theorem of universal coefficients [11] ensures
that all homological information can be obtained by choosing
A ¼ Z. It is also known [11] that for nD objects embedded in Rn,
homology information can be computed by simply considering
chains with moduli 2 coefficients (A ¼ Z=2Z). Note that in this
case, a cell that appears twice on a chain vanishes, because
c þ c ¼ 0 for any cell c when using moduli 2 coefficients (i.e. if a cell
appears even times we discard it otherwise we keep it). In the fol-
lowing, only chains with coefficients over Z=2Z will be considered.
Note that the notion of chain is purely formal and the cells that
compose a chain do not have to satisfy any property. For example,
on the simplicial complex illustrated on Fig. 1(b) the sums: a1 þ a4,
a3 and a2 þ a7 þ a4 are 1-chains.

For each dimension p ¼ 0; . . . ;n, where n ¼ dimðXÞ, the set of
p-chains forms an abelian group denoted Cp. The p-chain groups
can be put into a sequence, related by applications op describing
the boundary of p-chains as (p � 1)-chains:

Cn!
on Cn�1 !

on�1 � � �!o1 C0!
o0 0;

which satisfy opop�1ðcÞ ¼ 0 for any p-chain c, i.e. the boundary of a
cell is a null chain. This sequence of groups is called a free chain
complex.

The boundary of a p-chain reduced to a single cell is defined as
the sum of its incident (p � 1)-cells. The boundary of a general p-
chain is then defined by linearity as the sum of the boundaries of
each cell that appears in the chain, e.g. in Fig. 1(b),
oðf1 þ f2Þ ¼ oðf1Þ þ oðf2Þ ¼ ða1 þ a2 þ a7Þ þ ða7 þ a3 þ a6Þ ¼ a1 þ a2þ
a3 þ a6. Note that as mentioned before, chains are considered over
Z=2Z coefficients, i.e. any cell that appears twice vanishes.

For each dimension p, the set of p-chains which have a null
boundary are called p-cycles and are a subgroup of Cp, denoted
Zp, e.g. a1 þ a2 þ a7 and a7 þ a5 þ a4 þ a3 are 1-cycles. The set of
p-chains which bounds a p + 1-chain are called p-boundaries and
they are a subgroup of Cp, denoted Bp, e.g. a1 þ a2 þ a7 ¼ oðf1Þ and
a1 þ a6 þ a3 þ a2 ¼ oðf1 þ f2Þ are 1-boundaries.

According to the definition of a free chain complex, the bound-
ary of a boundary is the null chain. Hence, this implies that any
boundary is a cycle. Note that according to the definition of a free
chain complex, any 0-chain has a null boundary, hence every 0-
chain is a cycle.

The pth homology group, denoted Hp, is defined as the quotient
group Zp=Bp. Thus, elements of the homology groups Hp are equiv-
alence classes and two cycles z1 and z2 belong to the same equiv-
alence class if their difference is a boundary (i.e. z1 ¼ z2 þ b,
where b is a boundary). Such two cycles are called homologous,
e.g. let z1 ¼ a5 þ a4 þ a3 þ a7, z2 ¼ a5 þ a4 þ a6 and z3 ¼ a1þ
a2 þ a3 þ a6; z1 and z2 are homologous (z1 ¼ z2 þ oðf2Þ) but z1 and
z2 are not homologous to z3. Let Hp be a homology group generated
by q independent equivalence classes C1; . . . ;Cq, any set
fh1; . . . ; hq j h1 2 C1; . . . ;hq 2 Cqg is called a set of generators for
Hp. For example, either fz1g or fz2g can be chosen as a generator
of H1 for the object represented in Fig. 1(b).

Note that some of the notions mentioned before could be con-
fused with similar notions from graph theory. Table 1 associates
these homology notions with notions classically used in graph the-
ory. Note that a closed path of faces is a closed surface homeomor-
phic to a sphere.

3. Irregular graph pyramids

In this part, basic notions of pyramids, like receptive field, con-
traction kernel and equivalent contraction kernel, are introduced.
For more details see [12].

A pyramid (Fig. 2a) describes the contents of an image at multi-
ple levels of resolution. A high resolution input image is at the base
level. Successive levels reduce the size of the data by a reduction
factor k > 1:0. The reduction window relates one cell at the reduced
level with a set of cells in the level directly below. The contents of a
lower resolution cell are computed by means of a reduction function

Fig. 1. (a) A triangulation of the torus. (b) A simplicial complex made of 1 connected
component and containing one 1-dimensional hole.

Table 1
Translation of homology notions to graph theory

Homology theory Graph theory

0-Cell, 1-cell, 2-cell Vertex, edge, face
0-Chain, 1-chain, 2-

chain
Set of vertices, set of edges, set of faces

0-Cycle, 1-cycle, 2-cycle Set of vertices, closed path of edges, closed path of faces
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the input of which are the descriptions of the cells in the reduction
window. Two successive levels of a pyramid are related by the
reduction window and the reduction factor. Higher level descrip-
tions should be related to the original input data in the base of
the pyramid. This is done by the receptive field (RF) of a given pyra-
midal cell ci. The RF ðciÞ aggregates all cells (pixels) in the base level
of which ci is the ancestor.

Each level represents a partition of the pixel set into cells, i.e.
connected subsets of pixels. The construction of an irregular pyra-
mid is iteratively local [13]. On the base level (level 0) of an irreg-
ular pyramid the cells represent single pixels. A cell on level k + 1
(parent) is a union of neighboring cells on level k (children). This
union is controlled by so called contraction kernels (CK) [14], a
spanning forest which relates two successive levels of a pyramid.
Every parent computes its values independently of other cells on
the same level. Thus local independent (and parallel) processes
propagate information up and down and laterally in the pyramid.
Neighborhoods on level k + 1 are derived from neighborhoods on
level k. Higher level descriptions are related to the original input
by the equivalent contraction kernels (ECK). A level of the graph
pyramid consists of a pair ðGk;GkÞ of plane graphs Gk and its geo-
metric dual Gk (Fig. 2b). The planarity of graphs restricts us to use
only the 4-connectivity of the pixels. The vertices of Gk represent
the cells on level k and the edges of Gk represent the neighbor-
hood relations of the cells, depicted with square vertices and
dashed edges in Fig. 2b. The edges of Gk represent the borders
of the cells on level k, solid lines in Fig. 2b, including so called
pseudo edges needed to represent neighborhood relations to a
cell completely enclosed by another cell. Finally, the vertices of
Gk (circles in Fig. 2b), represent junctions of border segments of
Gk. The sequence ðGk;GkÞ, 0 6 k 6 h is called irregular (dual) graph
pyramid. For simplicity of the presentation the dual G is omitted
afterward.

4. Computing homology generators in a graph pyramid

There exists a general method for computing homology groups.
This method is based on the transformation of incidence matrices
[11] (which describe the boundary homomorphisms) into their re-
duced form called Smith normal form. Agoston proposes a general
algorithm, based on the use of a slightly modified Smith normal
form, for computing a set of generators of these groups [3]. Even
if Agoston’s algorithm is defined in any dimension, the main draw-
back of this method is directly linked to the complexity of the
reduction of an incidence matrix into its Smith normal form, which
is known to consume a huge amount of time and space. Another
well known problem is the possible appearance of huge integers
during the reduction of the matrix. A more complete discussion
about Smith normal algorithm complexity can be found in [15]. In-
deed, Agoston’s algorithm cannot directly be used for computing
homology generators and different kinds of optimisations have
been proposed.

Based on the work of [16,17], an optimisation for the computa-
tion of homology generators, based on the use of sparse matrices
and moduli operations has been proposed [18]. This method avoids
the possible appearance of huge integers. The authors also ob-
served an improvement of time complexity dropping from Oðn2Þ
to Oðn5=3Þ, where n is the number of cells of the subdivision.

An algorithm for computing the rank of homology groups, i.e. the
Betti numbers has been proposed in [19]. The main idea of this algo-
rithm is to reduce the number of cells of the initial object in order to
obtain a homologically equivalent object, made out of less cells. In
some special cases (orientable objects), Betti numbers can directly
be deduced from the resulting object. However, this method cannot
directly provide a set of generators. Based on the previously men-
tioned work, an algorithm for computing a minimal representation
of the boundary of a 3D voxel region, from which homology gener-
ators can directly be deduced has been defined in [10].

4.1. Description of the new method

The method we propose in this paper has the same philosophy
as the methods of Kaczynski and Damiand [20,21]: reducing the
number of cells of an object for computing homology. Moreover,
we keep all simplifications that are computed during the reduction
process by using a pyramid. In this way, homology generators can
be computed in the top level of the pyramid, and can be used to de-
duce generators of any level of the pyramid. In particular, we show
how generators of the higher level can be directly down-projected
on the desired level (using equivalent contraction kernels).

Starting from an initial image, we build an irregular graph pyr-
amid. We show in Section 4.2 that building pyramids by decima-
tion using contraction kernels [14] preserves homology of a
subdivided object. Indeed, homology of the initial image can be
computed in any level of the pyramid, and in particular in the
top level where the object is described with the smallest number
of cells.

Moreover, we use the notions of receptive field and equivalent
contraction kernel of a vertex and the notion of surviving edge
(see Sections 3 and 4.3), and show that the generators of homology
groups of any level of the pyramid can be deduced from those com-
puted on the highest level. Note that in special cases, the highest
level of the pyramid may be reduced to exactly a set of generators
of the initial image, as shown in [10].

Our method can be summarized by the following steps:

(1) Starting from a labeled image, a graph pyramid
fG0;G1; . . . ;Gkg is built using contraction kernels of vertices
of the primal, with the same label.

(2) Homology groups generators are computed for Gk.
(3) Homology generators of any level i can be deduced from

those of level i + 1 using the contraction kernels and surviv-
ing edges of the dual. In particular, we obtain the homology
generators of the initial image.

Fig. 2. (a) Pyramid concept, and (b) representation of the cells and their neighborhood relations by a pair of dual plane graphs at the level 0 and k of the pyramid.
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Note that homology generators of the lowest level can directly
be deduced from the highest level using the notion of equivalent
contraction kernel (arrow 30 in Fig. 3). Fig. 3 illustrates the general
method that we propose for computing homology generators of an
image.

4.2. Preserving homology on irregular graph pyramids

The algorithm described in [19] is based on operations of interior
face reduction that reduce the number of cells of the subdivision. The
main idea is to find a p-cell x and a (p + 1)-cell y, such that x is inci-
dent to y. Then x and y are removed and the boundary of the neigh-
boring p-cells that were adjacent to x are modified such that the new
boundary oðzÞ of cell z is defined as its initial boundary added with
the boundary of y. Indeed, if x is incident to exactly two p-cells y and
y0, the result of the corresponding interior face reduction can be seen
as the removal of x and the merging of y and y0. It is proved in [19]
that interior face reduction preserves homology.

Observing the dual graph, the operations of contraction and re-
moval that are used to build each level of the pyramid are interior
face reduction: two faces that are merged share a common edge
that is removed, and an edge is contracted if one of its endpoints
is incident to exactly two different edges, i.e. if it is incident to a
dual vertex of vertex degree less than 3. Thus, homology is pre-
served in every level of the pyramid.

4.3. Delineating generators

A 1D generator in Gk ¼ ðVk; EkÞ is a closed path connecting ver-
tices of Gk and surrounding at least one hole. Each vertex v 2 Gk is
the result of contracting a tree (contraction kernel CK) of Gk�1. Each
edge ðv1; v2Þ 2 Gk corresponds to a surviving edge ðw1;w2Þ 2 Gk�1

with w1 2 CKk�1ðv1Þ and w2 2 CKk�1ðv2Þ, i.e. an edge that has nei-
ther been contracted nor removed.2

Given a generator in Gk, mapping it to the level below is done by
identifying the surviving edges in Gk�1 corresponding to the gener-
ator edges in Gk and, where the generator is disconnected, adding
paths to fill in the gaps and reconnect. For every two consecutive
edges not having a common vertex in Gk�1 but having one in Gk,
the unique path connecting their disconnected endpoints in the
contraction kernel CK � Gk�1 of their shared vertex in Gk is added.

Because each path added in Gk�1 is entirely part of a contraction
kernel, with contraction being used in the dual only for boundary
simplification purposes, never connecting two different boundaries,
and because the building process preserves homology (see Section
4.2) the obtained generators will be homologous to the ones in Gk.

Reiterating this process of mapping the generator cycles of Gk

from k to k� 1; . . . to 0, cycles in G0 corresponding to the genera-
tors of the top level can be identified. By replacing the contraction
kernels, with the equivalent contraction kernels, using the same
methodology, the generator cycles of Gk can be directly mapped
to G0. For an example, see Fig. 4.

4.4. Complexity of the method

The global complexity of our method is the sum of the complex-
ity of the pyramid construction, Agoston’s method (on the top level
of the pyramid) and the down-projected (on level i).

(1) The complexity of the pyramid construction is in Oðp logðpÞÞ
with p the number of pixels.

(2) The homology group generators are computed by using Ago-
ston’s method in Oðn2

kÞwith nk the number of cells of the top
level of the pyramid.

(3) the down-projection of generators of level i from those of
level i + 1 is achieved in Oðniþ1Þ with niþ1 the number of cells
of level i + 1. As shown in Section 4.3, we can compute
directly generators of level i by down-projecting generators
of level k. Thus the complexity is in OðniÞwith ni the number
of cells of level i.

The global complexity of our method for level i is thus in
Oðp logðpÞ þ n2

k þ niÞ. By comparison, the classical Agoston method
is in Oðn2

i Þ.
We can conclude that the gain of our method increases as the

difference between nk and ni increases. Moreover, as shown in
experiments (see Section 6), in practical cases, nk is really smaller
than ni and the gain is important.

4.5. Controlling the geometry of the generators

When computing homology generators with Agoston’s method,
directly on the initial image, we cannot have any control of their
geometry. More precisely, the aspect of the obtained generators
is directly linked to the construction of incidence matrices, which
is determined by the scanning of each cell of the initial image
(see [18] for a first study of the influence of different parameters
on the geometry of generators).

We prove in this section that for 2D images, the presented
method provides a set of generators that always fit on the borders
of a region R. In the following, an edge on the border of a 2D region
is called a border edge.

First, we show that any 1-cycle in the top level of the pyramid
contains only border edges. Second, we show that the down-pro-
jection of a 1-cycle composed of border edges, is still a cycle com-
posed of border edges.

Property 1. Any 1-cycle in the top level of the pyramid computed
with the presented method contains only border edges.

Proof. On the top level, a region is represented by a unique 2D-cell.
Hence each edge of the top level is either a border edge or an edge
linking two different borders of R (we call it a pseudo edge).

Let z be a 1-cycle on the top level, if z contains any pseudo edge
e ¼ ðv1; v2Þ, where v1 and v2 are two vertices that stand on two
different borders b1 and b2 of R, then in order for z to be a 1-cycle
there exits another edge e0 ¼ ðv01; v02Þ–e between b2 and b1. Note
that e–e0 because e� e is a null 1-chain, and in such a case, e would
not belong to z. Therefore edges e and e0 divide R into at least two
2D-cells, which is not possible as any region on the top level is
made of only one cell. Hence, any 1-cycle on the top level of the
pyramid contains only border edges. h

Let us consider Fig. 5(b), which represents the top level of the
pyramid built from the initial image represented in Fig. 5(a). The
subdivision is made of one 2D-cell R1; four border edges
e1; e2; e3; e4; two pseudo edges e5; e6; and four vertices. Property 1
ensures that for this subdivision, any 1-cycle can be written as
a1e1 þ a2e2 þ a3e3 þ a4e4, where ai ¼ 0;1; i ¼ 1 . . . 4. Note that for

Fig. 3. Computing generators of homology groups using an image pyramid.

2 Not part of any simplification.
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example e1 þ e4 þ e5 is not a cycle. We need another edge to fulfill
the cycle, and in Fig. 5(b), the possible one is the edge �e5, so
e1 þ e4 þ e5 � e5 ¼ e1 þ e4 is the cycle without the pseudo edge e5.

Property 2. The delineation of a top level 1-cycle that lies only on
borders results in a 1-cycle in the bottom level that lies only on borders.

Proof. A 1D generator can be made out of more than one closed
path, in this case its down-projection is done separately for each
of them. The process of generator delineation (down-projection)
presented in Section 4.3 requires for each of its closed paths:

� identifying in the bottom level the surviving edges that corre-
spond to the given top level edges;

� adding paths connecting two identified edges, if their associated
edges from the top level share a vertex (if two identified edges
share a common vertex, no path is added).

The identified surviving edges are guaranteed to lie on borders
because of their one to one association to their corresponding top
level edges.

As presented in Section 4.3, each path added reconnects two
consecutive surviving edges, and is a sub-path of the equivalent
contraction kernel of the common vertex the two surviving edges
share in the top level. Because the equivalent contraction kernels
are trees, the added paths are unique [22].

Moreover, these paths lie on borders because:

� in the bottom level, for any two vertices of one border there are
exactly two paths that connect them and which are made only of
border edges;

� border edges are never removed (just contracted or surviving);

we can conclude that the unique path used to reconnect the verti-
ces of two consecutive surviving border edges is made only of bor-
der edges. h

5. Optimizations on the top level – the minimal generator set

We have shown in the previous section that our method pro-
vides a set of generators that always fit on the borders of the ob-

ject. As can bee seen in Section 6, the set of generators that fit on
the borders of an object is not uniquely defined. In this section,
we go one step further and show that any of these possible sets
of generators can be transformed such that each generator sur-
rounds exactly one hole; we call this set the minimal set of
generators.

Fig. 6 illustrates an object with 3 holes. Let a denote the outer bor-
der of the object, and let b, c and d denote the three closed curves cor-
responding to the borders of the three holes. Among others, fa; b; cg
and fbþ c; c þ d; dg are possible basis of H1; and fb; c; dg is the min-
imal one, as each generator surrounds exactly one hole.

A set of generators is called minimal if none of the generators
intersect, each surrounds exactly one hole, and all generators fit
on borders. A minimal set of generators does not contain the outer
border of the object (a in Fig. 6).

Definition 1. Two H1 generators are separate if they neither
intersect nor are in an inclusion relation.

Their interiors are disjoint. Note that the term separate has to be ex-
tended to higher dimensions as additional relations exist, e.g. in 3D,
imagine two closed curves (rings), like the rings of a chain. By the pre-
vious definition they would be separate even though they are not.

Property 3. If all H1 generators of a connected object in 2D are
separate, each one surrounds one hole.

Proof. All the generators of a connected object in 2D are located
within the object. Thus each H1 will surround a hole of the 2D
object. Since all the H1 are separate, based on the definition, these
generators do not intersect and their interior are disjoint. Therefore
all these generators are distinct. h

Let us call this set of generators independent.

Property 4. An independent set of generators fitting to the borders of
the object is minimal.

Proof. The set of borders of an object consists of the k borders sep-
arating the object from its k holes (b, c and d in Fig. 6), and the out-
side border (a in Fig. 6), separating the object from the background.
If the given set of generators is independent, the outside border
cannot be one of them, and there can be no intersection or overlap-
ping. The given generator set is made of the k borders surrounding
the k holes – which make up the minimal generator set. h

Fig. 4. Top-down delineation of a generator computed in G2.

Fig. 5. (a) Bottom level, and (b) top level of the pyramid.

a

b
c

d

Fig. 6. A 2D shape with 3 holes.
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Having an arbitrary set of generators it can be transformed to an
independent set by the following operations:

(1) shrinking: independently from all the others, each genera-
tor cycle is continuously transformed inside the object such
that its interior is reduced to 0, with holes blocking the
movement of the generator. Imagine a balloon with some
solid objects inside (representing the holes) from which
we draw out all the air;

(2) operating with generators: if fa1; . . . ; ang is a basis of a
group, replacing any element ai by ai þ kaj, with i–j and k
an integer, will generate a basis of the same group. Any basis
can be build from the minimal one. Looking at it the other
way around, consider a basis containing an element a that
surrounds k holes h1; . . . ;hk, k > 1 then there is another ele-
ment a0 in this basis that surrounds l holes h01; . . . ;h0l with
k > l P 1 and h01; . . . ;h0l � h1; . . . ;hk. By replacing the element
of the basis a by a� a0, we still have a basis, but now the new
element a� a0 surrounds only k� l < k holes. We can con-
clude that starting from any basis, we can always come up
with a new basis where each element surrounds only one
hole. Moreover, if we start with a basis where all the gener-
ators fit on borders, we obtain the minimal set. (Addition
and subtraction of shrunken generators can be done by add-
ing new edges and removing common ones.)

Note that for the 2D case, computing the minimal generator set
can be easily done by taking the borders separating the object from
the holes. In the top level of the pyramid these holes are sur-
rounded by self loops or by cycles with a reduced number of edges.
If using concepts like in [23], enumerating all these edges is done in
linear time in the number of border edges of the object in the re-
duced map. Extension to any dimension is planned.

6. Experiments on 2D images

We present and discuss initial experiments that have been per-
formed on 2D images. For each shape, we have computed homol-
ogy generators directly on the initial image, and on the top level
of the pyramid (with and without Agoston). Note that for visualisa-
tion purposes each edge of a 1D generator is shown by pixels inci-
dent to it.

Table 2 shows the number of 0D, 1D and 2D-cells on the initial
image and on the top level of the pyramid, for the shape presented
Figs. 7 and 8. One can observe that for each shape the total number
of cells is considerably reduced on the highest level of the pyramid.
Thus, the computation of homology generators can be done on
much smaller matrices on the top level instead of the initial image.
In Figs. 7 and 8, it can be seen that our new method provides a valid
set of generators in each case.

Moreover, using the classical method, we cannot have any con-
trol of the geometry of the generators computed. More precisely,
the aspect of the obtained generators is directly linked to the con-
struction of incidence matrices, which is determined by the scan-
ning of each cell of the initial image. The shape shown on Fig. 9
has been obtained by rotating Fig. 7. In Fig. 9(a), one can observe
that the aspect of the generators computed on the initial image
‘‘follows” the scanning of the cells (from top to bottom, and left
to right). The generators obtained in Fig. 9(b) always fit on the
boundaries of the image (see Section 4.5).

Table 2
The number of cells on the initial image and on the top of the pyramid

Initial image Top of the pyramid

0D-Cells 1D-Cells 2D-Cells 0D-Cells 1D-Cells 2D-Cells

Fig. 7 6036 11541 5503 7 10 1
Fig. 8 4905 9233 4325 11 17 3

Fig. 7. (a) The homology generators computed on the initial image. (b) The down-projected generators. (c) Minimal set.

Fig. 8. (a) The homology generators computed on the initial image. (b) The down-projected generator. (c) Minimal set.
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One can note that the sets of cycles obtained in Fig. 7(a) and (b)
do not surround the same (set of) 1D-holes of the shape S. Indeed,
these two sets are two different basis of the same group H1ðSÞ: let i,
v and c denote the equivalence class of cycles that surround respec-
tively the letters ‘I’, ‘V’, and ‘C’. The set of generators in Fig. 7(a) de-
scribe H1ðSÞ in the basis fi; v; cg whereas in Fig. 7(b), H1ðSÞ is
described in the basis fc; iþ vþ c; ig.

In Figs. 10 and 11 real world images are shown. We have first
segmented the images (e.g. one can choose the minimum spanning
tree based pyramid segmentation [24], and build generators on
these segmented images – for clarity of the presentation we used
a binary segmentation, Figs. 10(b) and 11(a)). Fig. 10(a) shows
the original image, Fig. 10(b) the used binary segmentation, and
Fig. 10(c) the brightened image with the obtained generators in
black.

In Fig. 11 white means 1-dimensional hole. The basis in Fig.
11(b)–(d) are different but they are basis of the same first homol-
ogy group. The generators shown in Figs. 11(c) and (d) are nicely
fitted on the borders of regions (1D-holes).

7. Conclusion

We have presented a new method for computing homology
groups of images and their generators, using irregular graph pyra-
mids. The homology generators are computed efficiently on the top
level of the pyramid, since the number of cells is small, and a top
down process (down-projection) delineates the homology genera-
tors of the initial image. Some preliminary results have been

Fig. 9. Influence of the scanning (compare with Fig. 7 (a) and (b)).

Fig. 10. (a) Original image. (b) Segmentation. (c) Down-projected generators (in black).

Fig. 11. (a) Segmented image. Generators overlaid on the original image. (b) The homology generators computed on the initial image. (c) The down-projected generator. (d)
Minimal set.
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shown for 2D binary images. The generators computed with this
new method fit on the boundaries of objects. The concept of min-
imal generator set is defined and studied.

In a future work, we plan to extend this method to 3D and nD
images, using the (already existing) structures of 3D and nD irreg-
ular pyramids. We also plan to use the minimal generator set and
the property that down-projected generators always fit on bound-
aries, and apply homology generators for object matching and ob-
ject tracking.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.imavis.2008.06.009.
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