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Abstract

The concept of “nearness”, which has been dealt with as soon as one started
studying digital images, finds one of its rigorous forms in the notion of proximity
space. It is this notion, together with ‘nearness preserving mappings”, that we
investigate in this paper. We first review basic examples as they naturally occur
in digital topologies, making also brief comparison studies with other concepts in
digital geometry. After this we characterize proximally continuous mappings in
metric spaces. Finally, we show by example that the ‘proximite complexity” of a
finite covering in a ditigal picture may be too high to be adequately depicted in
a finite topological space. This combinatorial result indicates another conceptual
advantage of proximities over topologies.

1 Introduction

Recently there have been quite an intense investigation of topological structures in image
processing, mostly in connection with the analysis of connectivity and the operation of
thinning (see e.g. [2, 4, 9, 13], etc.). An interesting attempt to introduce richer structures
than those of topology, and replacing thus ‘local” continuity properties by a global notion
of nearness, has been done in [12] where the authors contemplated the so called semi—
proximity spaces as a theoretical tool in the image processing studies. In this paper we
want to go on in a similar vain by shedding light on certain questions which implicitely
announced themselves in the paper [12], and by complementing the results of [12] with
some new findings.(Our investigation here is relatively technical. The reader is supposed
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to be acquainted with the motivation for investigating digital topology and thus for the
selection of the problems we pursue. Reading the papers [8, 12, 18] would certainly
be instrumental as it was for the authors. We hope, however, that our exposition is
reasonably selfcontained.)

The paper is organized as follows: In section 2 proximity spaces are introduced and
related to topological spaces, in particular to the discrete topology introduced by Marcus
and Wyse. Section 3 investigates the proximities in metrical spaces. In section 4 we
discuss the problem whether nearness of finite partitions implies a finite topology on the
index set. The conclusion summarizes the paper.

2 Proximity spaces
(in relation to topologies and metrics)

We shall deal with proximity spaces as implicitely defined by Riesz [16] and intensely
pursued by several authors ([3, 5, 6, 14]). Our definition is a modified version of the
definition by E. Cech [3].

Definition 1 (Proximity Space) A pair (X, n) is called a proximity space if X is a set
and m is a binary relation on the power set of X, exp X, which is subject to the following
requirements (A, B,C, D, E € exp X, the symbol A nont B means that A ™ B is false):

(i) (AUB) 7 C = AxC or BrC,
(i) Ar B=A#0 and B # 10,
(iii)) ANB#0 = Ar B,

(i) An B= Br A,

(v) if {a}nonmB, then there is a set A such that a € A and, moreover, {a}nonm (X —A)
and Anonm B.

The axioms of a proximity space reflect the properties we observe when we consider
the common—sense nearness. It should be noted that the only less plausible axiom of
proximity — the axiom (v) — guarantees that a proximity induce a topology (the semi-
proximities of [12] induce only closure spaces). There is an important link of proximity
spaces and topological spaces. Here is the precise formulation of this fact (the proof can
be found in [3] but it is routine and can be easily done.

Theorem 1 (Proximity Space, Topological Space)

(i) Let (X,7) be a prozimity space. Let A = {x € X| {2} © A}. Then (X,7) is a
topological space.



(i) Let (X,”) be a topological space, where™ means the topological closure on exp X. Let
Anm B< ANB#0. Then (X,7) is a prozimity space.

Thus, by the previous result, we can associate topologies to proximities. However,
many proximities on X may induce the same topology on X (and, vice versa, a topology
may give rise to several proximities which induce it). For the reader’s intuition, let us
note that e. g. the following two proximities p;, p» on an infinite set X define the same
(discrete) topology: A p; B< AN B # 0, A py, B < either AN B # () or both the sets A
and B are infinite.

It is possible to adopt the notion of proximity as primary and view the notion of
topology as secondary. One of the reasons for doing it is that the topology describes only
the local character of points in a picture (or, if we want, the proximity of points and sets).
But if we are to treat geometrical qualities of a picture — a situation which typically arises
in image processing — it is the proximity of sets which matters most. E.g. in the case of
scanned text documents the characters are the connected components of the black pixels
of the thresholded image. The pixel sets of adjacent characters of words are closer to each
other than between the words.

Thus, besides the concrete reason obvious from the study of thinning and shape de-
formation [12], the general reason for investigating the proximity relation lies in its fun-
damental role in all kinds of geometrically oriented considerations.

In view of Theorem 1 and the investigation of connectedness in digital images [20],
the following proximity in Z? is worth recording. Recall that if [r,s] € Z2, then by the
4-neighbourhood of [r, s] we mean the set {[r,s],[r £1,s],[r,s + 1]}.

Definition 2 (Marcus—Wyse proximity) Let Z* denote the subset of R* consisting of
all points with the integer coordinates. Let A C Z% B C Z2. Let us write A ™ B if either
ANB # 0 or there exists a point p = [r,s] € AUB such that the following assertion holds
true:

(i) r+ s is an odd number,
(i1) if p € A, then the j—neighbourhood of p intersects B,

(iii) if p € B, then the j-neighbourhood of p intersects A.

The result of [20] (see also [11]) can be now reformulated proximity-wise. Following
[12], let us agree to say that a set S in a proximity space (P, ) is connected if S cannot
be written in the way S = AU B, where A, B are two nonproximal sets (i.e. A nonm B).

Theorem 2 The graph-theoretic connectedness in Z? induced by the 4-neighbourhood
adjacency relation coincides with the prorimite connectedness induced by the Marcus- Wyse
prorimity.

Let us consider a metric space, (M, p).Then (M, p) can be viewed as a topological
space with the closure A = {x € M | p(x, A) = 0}. In this way the metric space (M, p)
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induces a “topological” proximity, 7, defined as follows: A m, B & AN B # (. But
(M, p) also induces a metric proximity, m,,. Write, for two subsets A and B, p(A, B) =

= qunbf Bp(a, b) and set A m,, B < p(A,B) = 0. It is easily seen that if A m; B, then
acA,be

A 7, B but not necessarily the other way round. If, for instance, A is the graph in R?
of the function f(z) = T and B is the z—axis in R?, then A m, B with respect to the
Euclidean metric, but not A m; B.

For a reader not especially trained in topology, let us explicitely clarify why (and when)
the latter phenomen (of the difference of m, and 7,,,) may occur. Recall that a metric space
M is called compact ([3, 5], etc.) if each sequence in M allows for a convergent subsequence
in M. As known, a subset P of R" endowed with the Euclidean metric (taken form R™)
is compact if and only if it is closed and bounded.

Theorem 3 Let (M, p) be a compact metric space. Then w1, = 7y, i.e. in compact metric
spaces the topological prorimity agrees with the metric prorimity.

Proof : Suppose that A, B C M. It only remains to show that if A 7, B, then A 7, B,
the other implication is always valid. Let A 7,, B. We are to show that AN B # (. The
relation A 7, B means p(A, B) = 0. It follows that for each n € N we can find points
a, € A, b, € B such that p(a,,b,) < % By compactness, there is a subsequence, a,, , of
{a,} which converges to some element a € M, and there is a subsequence, b,, of {b,, }
which converges to some b € M. Obviously, a = b and therefore the sequences {a,,} and
{b,,} converge to a common element a(= b). Since a € A and b € B and since a = b, we
see that AN B # (. This completes the proof. [ |

The morphisms in the category of proximity spaces are the proximally continuous
mappings.

Definition 3 (proximally continuous mapping) Let (X, ), (Xa,m) be prozimity
spaces. A mapping f: X1 — X is called proximally continuous if the following implication

1S true:
If A,B C Xy and A m B, then f(A) my f(B).

Thus, proximally continuous mappings are those mappings which preserve proximity.
It is easily seen that a proximally continuous mapping is automatically continuous when
understood as a mapping between the respective topological spaces induced by proximi-
ties. A continuous mapping does not have to be proximally continuous even if we consider
it with respect to the metric proximity.

Example: Consider the function f(z) = z?: (0,+00) — (0,+00). This mapping is
obviously continuous but not proximally continuous. Indeed, let p, be such a sequence
that (p, +35)>—p2 > 1. Let A={p, |[n€ N} and B={p,++ |n€ N}. Then Ar, B
but f(A)nonm, f(B).



3 Metric proximities

In this paragraph we are going to prove that the metric proximity of a space determines,
up to a metric equivalence, the metric of the space. This relatively deep result has found
applications in a number of geometric problems (see e. g. [5] for relevant comments).
This result can be expressed in terms of ‘small” (=countable) subsets of the metric space
in question and therefore it may have bearing on digital geometry. Also, we see that
metric considerations of digital pictures ([17, 18, 19]) have a proximity character (i.e. can
be expressed in proximity terms).

Let us take up the proof of the result. We provide transparent proof based on ele-
mentary reasonings only. We also point out other features of metric spaces relevant to
proximity. Recall first two standard definitions.

Definition 4 Let (M, p) be a metric space and let {a,} be a sequence in M. We say that
{an} is a Cauchy sequence if for each € > 0 there is ng € N such that p(y,,x,) < €
provided n > ng,m > ny. We say that a sequence(z,)nen in M is metrically discrete
(of order ) if for any n,m € N we have p(x,, x,) > €.

The following proposition is essential in our argument. It may be interesting in its own
right. Before we formulate it, let us agree to call the set B,(a) = {b € M | p(a,b) < r}
the r-ball around a.

Proposition 1 (Sequence principle in metric spaces) FEach sequence in a metric space
contains either a Cauchy sequence or a metrically discrete subsequence.

Proof : Take a sequence in a metric space and form the collection of all 1 -balls centered
at each of its points. If each of these balls contains only finitely many points of the se-
quence, we can easily construct a subsequence of the given sequence which is metrically
discrete of order 1. It not, there is a 1-ball around a point of the sequence which con-
tains infinitely many points of the sequence. Take these points and form the collection
of all %—balls centered at these points. If each of these %—balls contains only finitely many
points, we can easily construct a metrically discrete subsequence of order % If not, there
is a point such that the %—ball around it contains infinitely many points. Going on this
way inductively, either the procedure stops at the n-th step and we have an %—discrete
subsequence, or we obviously obtain a Cauchy subsequence of the given sequence. [ |

We shall need one more metric notion. Let us recall it together with proximal conti-
nuity in metric space.

Definition 5 Let (M, p1), (Ma, p2) be metric spaces. Let f: My — My be a mapping.
In accord with our general definition, we say that f is proximally continuous if the
following property is fulfilled:

If P and Q are subsets of My such that p;(P, Q) = 0, then po(f(P), f(Q)) = 0.

We say that f is metrically continuous if for any £ > 0 there exists 6 > 0 such that
whenever py(x,y) < 9, then pa(f(x), f(y)) < e.



Let us now formulate and prove the main result of this paragraph. In the effort to make
the proof accessible for nonspecialists in topology, we use only elementary reasonings. The
novelty seems to be the utilization of the sequence principle as established in Prop. 1.

Theorem 4 A mapping between metric spaces is proximally continuous if and only if it
1s metrically continuous.

A consequence: If two metrics on a set induce the same proximity, they have to be
(metrically) equivalent.

Proof : A metrically continuous mapping between metric spaces is obviously proximally
continuous. Let us take up the nontrivial implication of the theorem.

Let f: My — M> be proximally continuous. Suppose f is not metrically continuous.
It means that for some ¢ > 0 there exists sequences (a,)neny and (b,)nen in M; so that
p1(ay,b,) — 0 whereas po(f(ay), f(bn)) > €. Let us look at the sequence (f(ay))nen. If
it contains a Cauchy subsequence, then there is an infinite subset of this sequence which
is all contained in an g-ball. Let us denote this subsequence by (an,)ren. Then the sets
(an,: k € N) and (b, : k € N) are obviously $-apart (the triangular inequality), which is
absurd. If there is a Cauchy subsequence of (f(b,))nen, we can apply an analogous rea-
soning. Suppose that neither of the former two cases implies. By the sequence principle,
we can easily construct metrically discrete subsequences (f(an,))keny and (f(bn,))ken of
f(an)nen and f(bn)nen, respectively. For simplicity, let us denote them again by f(an)nen
and f(bn)nEN

Let us assume that these sequences are metrically discrete of order a.. Define r =
s min{e, o} and form the collection of all the r-balls centered at f(a,)nen. Note that each
of them contains at most one of the elements f(b,)nen. Let us now proceed inductively.
Put n, = 1. Take ny € N, ny, > 1 such that

ne > h if f(b,) belongs to the r-ball centered at f(a,), and

ng > k if the r-ball centered at f(ay) contains f(b),
(if neither h or k exists, we simply take ny = n; + 1). By induction, given n; < ny <
.- < ny, take n;yy € N, n; 11 > n; such that

niy1 > h if f(b,) belongs to the r-ball centered at f(a,,), and

niy1 > k if the r-ball centered at f(ay) contains f(b,,).
Note that, by our construction, if j € {ng|k € N}, then f(b;) does not belong to any of
the r-balls centered in f(a,, ). The sets f(an,)ren and f(b,,)ren are therefore apart of the
order r. Write A = {ay, tren, B = {bn, }ken. The pi1(A, B) =0 but pi(f(A), f(B)) > r.
This means that f is not proximally continuous - a contradiction. This completes the
proof. [ |

The main consequence of the latter theorem (and its proof) as far as the potential
application in image processing goes brings the next theorem. It does not seem to be
explicitely formulated in the literature but right this formulation may have relevant bear-
ing on the digital images studies — it reduces proximities of general sets to proximities
of small (=countable, digitally accessible) sets. (Recall that a set is said to be countable



if it has the smallest possible infinite cardinality, i.e. if it has the cardinality of natural
numbers.)

Theorem 5 Let py, po be two metrics on a set M. If p1(A, B) =0 < pa(A,B) =0 for
all countable subsets of M, then the metrics py, po are equivalent. In other words, if the
proximities given by py and py agree when restricted to countable subsets of M, then p;
and py are metrically indistinguishable.

4 Near and far sets in a finite partition
— could ‘nearness” be controlled by a finite
topology?

Each picture can be viewed as a partition of the underlying set into a finite family of
sets. The main point in understanding the partition is specifying which sets are ‘near”
(proximal) and which are ‘far” (non-proximal). In this paragraph we exhibit an example
which shows that the proximal relation of sets in a finite partition may be too complex to
be described with the help of notion of finite topology. This relates in a natural way our
investigation here with topological studies in image processing (see [13, 8, 11, 18, 10, 20],
etc.). (Recall that by a finite partition of a set S we mean a mutually disjoint collection

{Sk (k=1,2,...,n)} of non-empty subsets of S such that USk =5.)

k=1
Let us now introduce an auxiliary notion.

Definition 6 Let (X, ) be the metric proximity space of the metric space (M, p). Let
P ={S: | k=1,2,...,n} be a partition of X. Let us say that P is controlled by
topology if there is a topology t on the set T = {1,2,...,n} such that Sy © Sy if and
only if the set {k,(} is topologically connected as a topological subspace of T

If each partitioncould be topologically controlled, which seems conceivable at first
sight, we would find ourselves in an advantages situation in view of the understanding of
finite topologies (see e.g. [18] and [10]). However, it is not necessarily the case. We will
illustrate it by an example. Before, observe that we can restrict ourselves to open sets of
the partition if we allow for a small degree of overlapping ( in practice, we have to allow
for it anyhow in view of the imperfection of our measurement).

Proposition 2 Let (M, p) be a metric space. Let {S | k =1,2,...,n} be a partition of
M. Then there is an €, € > 0 such that the following statement holds true: If Ty = {x €
M | p(x,Sk) <e},k=1,2,...,n, then each Ty, is an open subset of M, and T, N Ty # ()
if and only if Sy 7, Sy.

Proof: All T}, k= 1,...,n are obviously open. Further, consider all couples S, S, such
that Sj nonm, Sy. Since there are only finitely many couples with this property, there is
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a sufficiently small ¢, £ > 0 such that T}, N7y, = () for all couples of T}, T, corresponding
to the couples S, Sy considered. Since we have Sy 7, Sy for the remaining couples, we
infer from the definition of metric proximity that the corresponding neighbourhood sets
Ty, Ty fulfil T, N T, # (. The proof is complete. [ ]

We see from the above proposition, that we can simply construct the counterexample
on the disjointness — intersection basis of an open covering.

Example: Let M C R?, M = {(z,y) | 0
10,0 < y < 10}. Let A, = {(z,y) € M
M,y < 5}, Ay = {(z,y) € M | 4 < y < 8},
Ay ={(z,y) e M |0 <2 <6,7T<y}, Ay ={(z,y) €
M | 4 < 2,7 < y}. Then the proximity of the sets
Ay, Ay, Az, A4 cannot be topologically controlled. In-
deed, considering the couples of the sets which are dis-
joint (resp. which overlap), we see that the topological
space on {1,2,3,4} which would control the covering
would have to have precisely the following subsets con-
nected: {1,2},{2,3},{2,4} and {3,4}. But the main
result of [13] says that this is impossible.

5 Conclusions

We suggest that the notion of proximity of sets might be a useful tool for theoretical
studies in image processing. We have made some initial steps towards justifying this
opinion. We have exhibited basic examples and we linked them with previous topological
investigations (for instance, with the Marcus-Wyse topologies). Then we analysed more
thoroughly the metric proximities. As a main result we showed that the metric proximity
of small sets determines in a way the metric of the underlying space. The interpretation
of this result reads, roughly, that if we can verify which sequences of points in a metric
space are proximal and which are not, we can in a certain sense reconstruct the metric. In
the end we showed that a topological result known from the investigation of 8-adjacency
relation in Z? disproves a conjecture about ‘topologizing” proximities in a partition.
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