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Abstract. Adopting the point-neighbourhood definition of topology,
which we think may in some cases help acquire a very good insight
of digital topologies, we unify the proof technique of the results on
4-connectedness and on 8-connectedness in ZZ2. We also show that there
is no topology compatible with 6-connectedness. We shortly comment on
potential further use of this approach.
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1 Introduction and Basic Definitions

The domain of a digital picture can be viewed as a subset of ZZ2, where ZZ
stands for the set of integers, together with some adjacency neighbourhood
structure [2, 7, 6] assigned to each point. Thus, for instance, we may talk on
8-adjacency neighbourhood structure (in shorthand, 8-structure) if each point
(x, y) ∈ ZZ2 is given the adjacency neighbourhood

(x − 1, y − 1) (x, y − 1) (x + 1, y + 1)
(x, y − 1) (x, y) (x, y + 1)

(x − 1, y + 1) (x + 1, y) (x + 1, y + 1)

In the sequel, let us assume as plausible that the adjacency neighbourhood struc-
ture is homogeneous (i.e., for each (x0, y0), the natural translation
(x, y) → (x + x0, y + y0) is an adjacency isomorphism) and symmetric with
respect to the point (x, y).
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We would like to demonstrate that the point-neighbourhood definition of
topology adopted here provides us with a good method for deciding when (if)
there is a topology compatible with adjacency. We will present different proofs
of previously known results (see [2, 6, 7, 9]) and slightly extend them.

We also assume that the adjacency neighbourhood never exceeds the 8-
neighbourhood, but note the result holds also for any larger neighbourhood.

In the following we give some elementary definitions. In section 2 we present
the different adjacency neighbourhood structures. Section 3 contains the main
results. Finally some conclusions are given in section 4.

1.1 Path-Connectedness in S
Suppose that ZZ2 is given a (homogeneous and symmetric) neighbourhood struc-
ture. In order to refer to this structure, let us call it S. Suppose that p, q are
points of ZZ2. By an S-path from p to q we understand a finite sequence of points
p = p1, p2, . . . , pn = q such that pi is a neighbour of pi−1 (1 < i ≤ n) in the
structure S. Let us call the points p, q S-related if there is an S-path from p to
q.

Let X be a subset of ZZ2. Since the relation of being S-related, for a given S,
is obviously an equivalence relation on X . This relation gives rise to a partition
of X into classes of S-related elements. Let us call each class of this equivalence
an S-component.

A natural question arises ([8, 2], etc.) if (when) the S-components can be ob-
tained as the components of a connectedness relation of a topology. Let us view
basic notions we need for pursuing this question. Out of several possible defi-
nitions of (classical) topology, the definition involving the point-neighbourhood
structure may best serve the purpose.

1.2 Topological Connectedness

Definition (Topological space): Let P be a set. Let us assign to each x ∈ P
a set U(x) of subsets of P which is subject to the following conditions:

(i) if U ∈ U(x), then x ∈ U ,

(ii) if U ∈ U(x) and U ⊂ V , then V ∈ U(x),

(iii) if U, V ∈ U(x), then U ∩ V ∈ U(x),

(iv) if U ∈ U(x), then there exists V ∈ U(x) such that, for each y ∈ V, U ∈
U(y).

The set P together with the assignment U(x), for each x ∈ P , is called a topo-
logical space. The sets U ∈ U(x) are called topological neighbourhoods of x.
We denote the assignment x → U(x) by t - the topology. So we can refer to the
couple (P, t), meaning the corresponding topological space.



It should be noted that this definition of topological space is equivalent to the
“base–for–open–sets” definition or to the “closure” definition. This can be easily
verified by a straightforward translation (see e. g. [1]). One should also observe
that it is the axiom (iv) which is usually responsible for inconveniences when
one looks for “suitable” topologies (this can be compensated by a possibility to
apply the topological result back into the real model).

Let (P, t) be a topological space defined in the sense of previous definition
(i. e. via point–neighbourhoods) and let X be a subset of P . We say that (X, t1)
is a topological subspace of (P, t) if, for each x ∈ X , the set U(x) ∩ X is the set
of all neighbourhoods of x in the topology t1. It can be seen easily that (X, t1)
is then a topological space in its own right. Moreover, if (P, t) is a topological
space and Y, V are subsets of P with Y ⊂ V , then if (Y, t1), (V, t2) are topological
subspaces of (P, t), then (Y, t1) is a topological subspace of (V, t2).

Definition (Topological connectedness): Let (P, t) be a topological space.
We say that (P, t) is disconnected if there are two disjoint sets R, S such that
R ∪ S = P and, moreover, for each r ∈ R and each s ∈ S the set R is a
neighbourhood of r and S is a neighbourhood of s. The space (P, t) is said to
be connected if it is not disconnected. Finally, a subset X of (P, t) is said to be
connected if the subspace (X, t1) of (P, t) is connected.

Obviously, a connected topological space may have plenty of disconnected
subspaces. For instance, the set (−∞, 0) ∪ (0, +∞) or the set {1, 2, 3, . . .} are
obviously disconnected subspaces of the space R of reals (resp. the topology
induced by one of the equivalent n-norms n = 1, 2,∞). Also, the set Q of all
rational numbers is also disconnected – we can write Q = Q1 ∪Q2, where Q1 =
{q ∈ Q | q <

√
2} and Q2 = {q ∈ Q | q >

√
2}. The last example shows that

the question on deciding about connectedness of a subspace may be sometimes
nontrivial.

2 Neighbourhood Structures on ZZ2

Definition (Compatibility): Let S denote a given adjacency structure on ZZ2

and let t be a topology on ZZ2. We say that t is compatible with S if for each
X, X ⊂ ZZ2, the set X is connected (with respect to t) if and only if X is S-
connected.

Let us employ the following definition (see also [3]). Let (P, t) be a topolog-
ical space. We say that (P, t) is locally finite if each point x ∈ P possesses the
finite neighbourhood U εU(x), i.e. |U | < ∞. Obviously, if (P, t) is locally finite
then each point x ∈ P possesses a smallest neighbourhood in t and this neigh-
bourhood is finite. This follows from the closedness of the neighbourhood under
the formation of intersections. An important fact in our considerations is this:
If U(x) is the smallest (topological) neighbourhood of x, then U(x) must also
be a neighbourhood of all points in U(x) . This immediately follows from the
point-neighbourhood definition of topology (the axiom (iv)).



We will now investigate all possible (homogeneous and symmetric) adjacency
neighbourhood structures in ZZ2 (see the figure below) and formulate results on
the compatible topologies. We will in turn take up the 0-adjacency, 2-adjacency,
4-adjacency, 6-adjacency and 8-adjacency.

(i)
� 0-adjacency (to each point (x, y) ∈ ZZ2 the only

point (x, y) is adjacent)

(ii)
� � � 2-adjacency (to each point (x, y) ∈ ZZ2 the

points (x − 1, y) and (x + 1, y) are adjacent)

(iii)
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4-adjacency (to each point (x, y) ∈ ZZ2 the
points (x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)
are adjacent)

(iv)
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6-adjacency (to each point (x, y) ∈ ZZ2 the
points (x− 1, y), (x + 1, y), (x, y − 1), (x, y + 1),
(x − 1, y − 1), (x + 1, y + 1) are adjacent)
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8-adjacency (to each point (x, y) ∈ ZZ2 the
points (x− 1, y), (x + 1, y), (x, y − 1), (x, y + 1),
(x − 1, y − 1), (x + 1, y + 1), (x − 1, y + 1),
(x + 1, y − 1) are adjacent).

Remark: The n-adjacencies, n is odd, are not homogeneous and 2-point con-
nections (1-adjacency) can be compared only with a trivial topology like the
discrete topology.

3 Compatible Topologies on ZZ2

Theorem 1: There is exactly one topology which is compatible with the
0-adjacency. This topology is the discrete topology on ZZ2.



Proof: The discrete topology making each point (x, y) ∈ ZZ2 a neighbourhood
of (x, y) is clearly compatible with 0-adjacency.

Theorem 2: There are infinitely many topologies which are compatible with
the 2-adjacency in ZZ2. Among those there are infinitely many, which are locally
finite.
Proof: For a fixed x ∈ ZZ, we obviously have a topology, tx, on the subspace
Tx = {(x, y) | y ∈ ZZ} which is compatible with the 2-adjacency on the set
Tx. Indeed, it suffices to take U(x) = {U ⊂ Tx | {(x, y)} ⊂ U} provided y is
odd, U(x) = {U ⊂ Tx | {(x, y − 1), (x, y), (x, y + 1)} ⊂ U} provided y is even.
Note that the above neighbourhoods contain two types as smallest and finite
neighbourhood (i.e. the 1-dimensional Marcus-Wyse topology).

Since the roles of odd and even numbers are obviously interchangeable and
since the adjacency connectedness (2-connectedness) of “different levels” do not
affect each other, we can take, for each x ∈ ZZ, one of the two topologies on
Tx, obtaining a topology that is compatible with 2-adjacency. Since we have
infinitely many combinations at our disposal, the result is proved.

Remark (not locally finite topologies): A question of separate purely topo-
logical curiosity may arise whether we can construct, for the 2-adjacency, a
topology which is compatible with the adjacency and which is not locally finite.
This seems to be possible – the standard ultrafilter construction can be applied
in this case or more easily the Frechet-filter of the infinite intervals {xεZZ |x ≥ z},
zεZZ. These topologies are, however, hardly relevant to digital pictures.

Let us now consider the 4-adjacency. The following result, which is due to
[9] and [6] is in force. We will show how one obtains this result in the point–
neighbourhood formalism. The little auxiliary results stated as Observations 3.1,
3.2 may be of certain value in their own right.

Theorem 3: There are 2 topologies which are compatible with the 4-adjacency
— the 2-dimensional Marcus-Wyse topologies τ [9]:

U ∈ τ ≡
{

U(x, y) : if x + y is even (resp. odd),
{(x, y)} : else,

with U(x, y) = {(x, y), (x, y − 1), (x, y + 1), (x + 1, y), (x − 1, y)}.

Proof: The result easily follows from the following two observations.

Observation 3.1: Each topology which is compatible with 4-adjacency is locally
finite. Moreover, if U(x, y) is the smallest neighbourhood of (x, y) in a topology
compatible with 4-adjacency, then

U(x, y) ⊆ {(x, y), (x, y − 1), (x, y + 1), (x + 1, y), (x − 1, y)}.

Proof: Let (x, y) ∈ ZZ2 and let us show that the point (x, y) must have a finite
neighbourhood.



Let X1 = {(x, y)} and X2 = {(u, v) ∈ ZZ2 | |x − u| + |y − v| ≥ 2},
see Fig. 1.
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Fig. 1. The two sets X1 = { } and X2 = {•}

Then both X1 and X2 are 4-connected but X1∪X2 is not. It follows that there is a
topological neighbourhood of (x, y) in any topology compatible with 4-adjacency
which is disjoint with X2. In other words, there is a topological neighbourhood,
U(x, y), such that U(x, y) ⊆ ZZ2 − X2. This is what we wanted to show.

Observation 3.2: Let (x, y) ∈ ZZ2 and let t be a topology compatible with
4-adjacency. Let U(x, y) be the smallest neighbourhood of (x, y) in t. Then ei-
ther U(x, y) = {(x, y)} or U(x, y) = {(x, y), (x, y − 1), (x, y + 1), (x + 1, y),
(x − 1, y)}.
Proof: By the previous observation, U(x, y) ⊆ {(x, y), (x, y − 1), (x, y + 1),
(x + 1, y), (x − 1, y)}. Suppose that U(x, y) 
= {(x, y)}. Then, without a loss
of generality, (x − 1, y) ∈ U(x, y). Suppose now that (x, y + 1) /∈ U(x, y) (again,
one argues analogously if there is another edge than (x, y+1) outside of U(x, y)).
Since the set {(x−1, y), (x, y+1)} is not 4-connected and the set {(x, y), (x, y+1)}
is 4-connected, we infer that the smallest neighbourhood of (x, y + 1), some set
U(x, y + 1), must not contain the point (x − 1, y) and must contain the point
(x, y). Consequently considering other edges analogously,

U(x, y) ∩ U(x, y + 1) = {(x, y)}.
But since U(x, y+1) is a topological neighbourhood, it must be also a topological
neighbourhood of the point (x, y). It follows that U(x, y) ∩ U(x, y + 1) must be
a topological neighbourhood of the point (x, y).
But U(x, y)∩U(x, y +1) = {(x, y)} which is a contradiction. This completes the
proof of Observation 3.2.

Let us return to the proof of Theorem 3. Let t be a topology which is com-
patible with the 4-adjacency. It is obvious that the singleton sets {(x, y)} cannot



constitute the neighbourhoods for all (x, y) ∈ ZZ2 (we would obtain the discrete
topology; the discrete topology is obviously not compatible with 4-adjacency).
It is also obvious that the sets

{(x, y), (x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}

cannot be the smallest neighbourhoods for all (x, y) ∈ ZZ2 (we would not have a
topology at all). Thus, in every topology compatible with 4-adjacency we must
have, for some points, both the singleton smallest neighbourhoods and the “star–
like” neighbourhoods. Having found the necessary conditions for a compatible
topology, the rest consists of an easy inductive argument already presented in
[9].

Choose, for instance, the point (0, 0). Then either the set U1(0, 0) = {(0, 0),
(−1, 0), (1, 0), (0, 1), (0,−1)} or the set U2(0, 0) = {(0, 0)} must be the smallest
neighbourhood of (0, 0).
In the former case, the smallest neighbourhoods of the points (−1, 0), (1, 0),
(0,−1), (0, 1) must necessarily be the singleton sets, the smallest neighbourhoods
of the points (−1,−1), (−1, 1), (1,−1), (1, 1) must be the “star” sets, and so
on. In the latter case, the smallest neighbourhoods of the points (−1, 0), (1, 0),
(0,−1), (0, 1) must be the “star” sets, the smallest neighbourhoods of the points
(−1,−1), (−1, 1), (1,−1), (1, 1) must be the singleton sets, and so on.
Consequently, there are only two topologies on ZZ2 which are compatible with the
4-adjacency – either the Marcus-Wyse topology or the topology obtained from
it by the shift (x, y) → (x, y+1). The Marcus-Wyse topology allows for a simple
description as also the present consideration shows: the smallest neighbourhood
of (x, y) is a singleton set provided x+y is even, and the smallest neighbourhood
of (x, y) is a star set provided x + y is odd.
The rest would consist in checking that, indeed, the Marcus-Wyse topology is
compatible with 4-adjacency. This is not difficult and has been done in detail in
[9]. The proof is complete.

Let us now consider the 6-adjacency (see the schema in the figure (iv)). In
this case the search for compatible topology would be in vain.

Theorem 4: There is no topology on ZZ2 which is compatible with the
6-adjacency.
Proof: Suppose that t is a topology compatible with the 6-adjacency. By the
very same reasoning we employed in Observations 3.1, 3.2 we can derive the
following results:

(i) The topology t is locally finite,

(ii) If (x, y) ∈ ZZ2, then the smallest neighbourhood of (x, y) in t is either the
singleton set {(x, y)} or the whole 6-star set

{(x, y), (x− 1, y), (x+ 1, y), (x, y− 1), (x, y + 1), (x− 1, y− 1), (x+ 1, y + 1)}.



There must be a point in ZZ2 with the proper 6-adjacency neighbourhood.
Let us denote it again by (x, y). It follows that the points (x + 1, y) and
(x + 1, y + 1) must have the singleton set neighbourhoods. This is absurd
since the set {(x+1, y), (x+1, y+1)} is 6-connected. The proof is complete.

The following corollary to the previous result can be viewed as another proof of
the result by Chassery [2] and L. Latecki [7].

Theorem 5: There is no topology on ZZ2 which is compatible with the
8-adjacency.
Proof: It is easily seen that if S1 and S2 are two adjacency relations on ZZ2 and
S2 is finer then S1, then the absence of a locally finite compatible topology for
S1 implies the absence of a locally finite compatible topology for S2. Since there
is no topology compatible with 6-adjacency, there is no topology compatible with
the 8-adjacency.

4 Conclusion

We have completed the tour over all possible “nice” adjacencies in ZZ2. Presum-
ably the next step is testing the suitability of the point–neighbourhood approach
is the examination of concrete (finite) configurations of points in ZZ2 and, of
course, the digital topologies in ZZn for n ≥ 3. We intend to pursue this else-
where. It should be observed, however, that it does not seem possible to analyze
ZZn with the help of viewing ZZn as a Cartesian product of ZZm for m smaller
than n. This can be graphically seen even for ZZ2. Indeed, none of the adjacencies
on ZZ2 with the exception of the discrete one is obtained as a “Cartesian prod-
uct” of adjacencies on ZZ. We may however obtain nontrivial (non-homogeneous)
adjacencies this way or, in other words, homogeneity may be a too restricting
property for digital topologies. In particular if the data stem from a projection
of a higher dimensional space (e.g. 3-dim) onto a lower dimension (e.g. 2-dim).
In the case of digital images, we may seek the topological properties of the 3-
dim objects in the 2-dim image rather than establishing adjacency across object
boundaries. Such occluding boundaries represent discontinuities of the image
function and adjacent pixels may correspond to 3-dim points of different objects
which are far apart in reality.
If, for instance, we take the 2-adjacency on ZZ and multiply it with each other,
we obtain an adjacency on ZZ2 which is the 4-adjacency on the points of the
type (even, even), the 2-adjacency on the points of the type (even, odd) and
(odd, even) – in the former case vertically and in the latter case horizontally,
and the 1-adjacency on the points of the type (odd, odd). Since the 2-adjacency
on ZZ allows for a compatible topology, so does our “mixed” adjacency on ZZ2,
which directly leads to the abstract cellular complexes of Kovalevsky [3, 4].

This survey is part of an ongoing research project with two primary goals to
extend the results to higher dimensions and to irregular adjacency neighbourhood
structures [5].
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sensrepräsentation, Ph.D.-Thesis, Hamburg, 1992.
7. L. Latecki: Topological connectedness and 8-connectedness in digital pictures, Com-

puter Vision, Graphics and Image Processing: Image Understanding 57, 261–262,
1993.

8. A.Rosenfeld: Digital topology, Am.Math.Monthly 86, 621–630, 1979.
9. F.Wyse and D.Marcus et al.: Solution to Problem 5712, Am.Math.Monthly 77,

1119, 1970.




