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ABSTRACT

We investigate the problem of generation of new images and their corresponding disparity maps at
vantage positions intermediate to a set of given stereo views. Linear interpolation is applied to generate
the candidate views and disparity maps. Based on the input images, these candidate views contain a
varying degree of occlusion. We present and compare two separate methods to fill these holes. We
evaluate our methods using the Middlebury stereo dataset. Through our experiments, we show that
both the methods we propose produce high quality images with higher PSNR and SSIM compared to

state-of-the-art methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For a fully immersive 3D viewing experience, autostereo-
scopic 3D displays offer an ideal solution. They enable multiple
viewers to perceive 3D without the burden of external wear-
ables. These displays are typically grouped into two-view, two
or multiview with fixed viewing zones or head/pupil tracked
and super multiview, Dodgson (2005), Urey et al. (2011). We
focus here on multiview displays. These systems work with the
input and output of multiple streams of content. This problem
has long been a matter of interest, one of the earliest works of
literature on the topic being by Lippmann (1908). State-of-the-
art displays incorporate optical elements such as lenticular ar-
rays or parallax barriers in front of, for instance, a liquid-crystal
display panel in order to send the image information to distinct
directions the so-called 3D viewing zones. This is facilitated
through the transmission of multiple stereo views. Here, we
explore methods to reduce the number of stereo data streams
being simultaneously transmitted.

The key idea we investigate is the generation of views from
new vantage points. Specifically, we consider the problem of
interpolation of stereo views, given their corresponding dispar-
ity maps, to produce multiple intermediate views. For each new
vantage point, a new image and its corresponding new disparity
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map are to be generated. The main challenge here is the gen-
eration of occlusion (hole) free views. There are mainly two
reasons for the occurrence of occlusions. First, new positions
may appear in the view that were occluded in the original stereo
views. Secondly, these may be a by-product of lack of dispar-
ity information in the original disparity maps for instance due to
the illumination conditions in the original images. We elaborate
on two methods to generate occlusion-free images.

To generate the initial intermediate views, we use linear inter-
polation. This creates a primary image and disparity map at the
new vantage point. To hide the occlusions in the disparity map,
the variance of the disparity values surrounding each occlusion
is computed, based on which a foreground or a background
value is assigned. For the color image, first we convert it from
the RGB color space to the CIELAB (LAB) color space, Hunter
(1948). The LAB color space separates out the luminance from
the chrominance and is perceptually uniform. We then apply
the variance check on the LAB layers separately. This method,
though performs better during evaluation for some datasets (as
shown in Section 4.2), is not so successful with images with
textured backgrounds. To improve this, we replace the holes
with patches from the original input images.

The key contribution of our work is the demonstration of the
application of patch based methods for occlusion filling in view
synthesis. Also, it is simple to implement with only two main
steps, but provides higher peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) values. The PSNR values mea-
sure the quality of the reconstructed image, while the SSIM
gives a good indication of the similarity between the images.



We evaluate our methods on the Middlebury Stereo Database
Scharstein and Pal (2007).

The rest of the paper is structured as follows: In Section 2,
we look at similar recent work in the area of view synthesis. We
describe the generation of the new view and disparity map in
Section 3 and the method to fill out the occlusions in Section 4.
This is followed by the experimental evaluation in Section 5
and our findings and conclusions in Section 6.

2. Related literature

One of the early works on the topic of view synthesis applies
image morphing to adjacent images to create a new image for
an in-between viewpoint, Chen and Williams (1993). Here, the
camera transformation and image range data is used to auto-
matically determine the correspondence between two or more
images. Linear interpolation is applied to generate new pixel
coordinates for the new viewpoint as a replacement for the co-
ordinates given by the perspective viewing matrix. Holes are
filled out using the background colors or by using more source
images to generate the view.

A seminal work on the topic of view interpolation in videos
is described by Zitnick et al. (2004). To capture the data, eight
cameras are set up around a dynamic scene spanning a 1D arc
of about 30°. Each image is first smoothed and then segmented
based on neighboring color values. An initial disparity space
distribution is computed for each segment in each camera by
matching points in neighboring images. The disparities are re-
fined by projecting the pixels from one image to the next to
check for consistency. Typically, pixels that occur along the
border boundary of objects will receive contributions from both
the foreground and background. This is called the mixed pixel
problem. Using the original values during image-based ren-
dering will result in visible artifacts. This is resolved by com-
puting matting information within a neighborhood of four pix-
els from all depth discontinuities. Within these neighborhoods,
foreground and background colors along with opacities (alpha
values) are computed using Bayesian image matting. Similar
work using multiple input images for virtual viewpoint replay
in soccer games is investigated by Inamoto and Saito (2007)
where the background and correspondences among the images
are found manually and projective geometry is applied for in-
terpolation of the views.

As an improvement to the work by Zitnick et al. (2004), im-
age based 3D warping is employed by Smolic et al. (2008).
Layer separation is performed by looking for depth disconti-
nuities. Then, samples of the original 2D views are projected
into 3D space and forward projected into an intermediate view.
Holes are filled using median filters or by simply applying back-
ground disparities. The work in Manap and Soraghan (2011)
uses a similar approach and investigates the separation of the
depth map into multiple layers using an image histogram dis-
tribution. The novel view is synthesised at each layer indepen-
dently. The pixel interpolation is performed by masking each
particular layer and finally blending the layers together.

Jain et al. (2011) follow a four step process towards view
interpolation. The initial view is first generated using interpola-
tion. The generated view and disparity map and image are then
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Fig. 1. ’Babyl’ dataset from Middlebury Stereo Database. (a)-(b) Left
stereo view and disparity map (c)-(d) Right stereo view and disparity map

refined by applying morphological operations. Occlusions are
filled in the disparity map by looking at the variance in win-
dows around the missing pixels. For the image, in each hole
region, a k-means segmentation is applied to get color clusters.
The color is assigned based on the smallest median distance to
each cluster. This paper provides numerical results for the new
views in terms of peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) values for experiments performed
on the Middlebury Stereo Database. Ramachandran and Rupp
(2012) reduce the complexity of this method by introducing
non-integer interpolation and simplifying the occlusion filling
in color images by only considering whether the hole occurs
in the foreground or in the background. Our algorithm is an
improvement over these works and we provide our improved
PSNR and SSIM values in Section 5.

3. Initial view generation

Given a set of stereo views (S, Sg) and their correspond-
ing disparity maps (Dy, Dg) with M rows and N columns, here
shown in Figure 1, two candidate intermediate views and dis-
parity maps are generated. Since we are taking into account
rectified views here, the displacement of the pixels from the left
to the right stereo view are in a horizontal line. The position of
the virtual camera for the new vantage point is at a such that
0 < @ < 1. As a first step, we apply linear interpolation to
the images and disparity maps and generate a set of candidate
images. These are improved by applying bilinear interpolation
to points where the displacement of the pixels are not integer
valued. For more details on this, please refer to the work by
Ramachandran and Rupp (2012). The equations below describe
the method for the left image for each point (i, n):
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Fig. 2. Results from Section 3(a) Generated intermediate view (b) Disparity
map of the intermediate view (c) - (d)Zoomed in occlusion in view and
disparity map
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And for the right candidate image,
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where & denotes the non-integer factor. The candidate views
(T, Tg) are then merged as in Jain et al. (2011). The mixed
pixel problem is solved by retaining pixels with greater dispar-
ity as these indicate foreground values and hence are not likely
to be occluded. The intermediate image and disparity map for
the dataset Baby1 are shown in Figure 2.

4. Occlusion filling

From Figure 2, it is seen that the procedure described in Sec-
tion 3 result in the occurrence of occlusions (for instance, the
black section between the baby’s head and left arm, shown in )
in the generated images and disparity maps. We describe below
methods to place pixels into these holes.

4.1. Occlusions in disparity maps

We modify the method described in Jain et al. (2011) to fill
out the occlusions in the disparity map. As a first step, the ex-
isting disparity values are normalized to lie in the range [0, 1].
This is necessary so that the cost function to be used later gives
a more accurate evaluation. We apply normalization using fea-
ture scaling for this:

DM — min(DM)

NDM = -
max(DM) — min(DM)

@)

Next, a window w with N X N block of pixels is chosen
around each hole. In addition to the central hole, this block
may contain actual disparity information or may be filled only
with other holes. A minimal threshold is set such that the block
is expanded till it accommodates disparity information. A his-
togram with B bins and the variance o2, of the available dispar-
ity information for the window w is calculated. The following
cost function is then computed:

I(b;) = Bo’b; + % 1<i<B, ®)
where b; is the ith bin of the histogram, § is a tuning param-
eter and c(b;) is the number of elements in the bin b;. If the
first term of the cost function in Equation (8) is higher than the
second, it is an indication that the overall disparity variation is
low in w. Hence, the lowest disparity of the neighboring values
indicating the background is chosen to be assigned to the hole.
Otherwise, if the second term of the cost function exceeds the
first, the mode is chosen which is the most commonly occur-
ring disparity value. For our experiments, we empirically set
the values to be N = 120, B = 10 and 8 = 1000. The value of N
is suited to cover most hole sizes that might occur in an image
of size 1110 x 1240, as in the Middlebury dataset. The term
B is chosen in such a way that the variance o2, does not sig-
nificantly reduce the first term of the cost function. If initially
more than 75% of w are holes, then w is expanded to be of size
(N + A) X (N + A) where we choose A to be 12. The results of
this step are shown in Figure 4(d).

4.2. Occlusions in color images

To fill in the holes in the color images, as a first step, the
image is changed from the RGB to the LAB color space. Sep-
arating out the luminance and chrominance helps to segregate
the layers with brightness and shadow information (L) versus
the layers with color information (A, B).
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Fig. 3. Results from Section 4.2.1(a) Generated view using method (b)
Zoomed in occlusion region

4.2.1. Variance based occlusion filling

Each component of the LAB image is separately processed.
The basic steps of the occlusion filling process remain the same
as that for the disparity map. The intensity values are normal-
ized and the same cost function is applied. The key difference is
in how the values are chosen to fill the holes. For each hole x,,,,,
when the first term of the cost function is higher than the sec-
ond, the average of the neighboring pixels from the surrounding
window w is set. Here, since we are dealing with colors, the
minimal value makes no sense. Otherwise, when the second
term of the cost function is higher, as with the disparity map,
the mode is chosen. The result is shown in Figure 3(a).

As can be seen from Table 1, the numerical values show an
improvement over the work by Jain et al. (2011). This method
proves effective in instances where the occlusions are small or
when the occluded regions are not heavily textured. However,
as seen in Figure 3(b), using the method above for filling in oc-
clusions results in washed over patches of color. All informa-
tion about the texture is lost. In instances where stereo images
have shadowy regions, bigger occlusions occur in the disparity
maps. Correspondingly, using the available disparity informa-
tion for creation of new views creates large occlusions in the
synthesized views. Application of this method does not prove
effective in these instances. We fix this with the method in the
following section.

4.2.2. Filling hole patches

As opposed to filling each hole individually, here, we look
at the filling of holes patch wise. To this end, as a first step,
we convert the L component into a binary image, Figure 4(a).
For each hole x,,,, the eight adjacent neighbours are examined.
Iteratively, this process is continued until a patch P is identified.
We set a threshold to the size of the patches that are considered
here. When the patch size is very small, the quality of the image
is not largely affected by the lack of texture information. This
is demonstrated in Section 5.

For each P, the corresponding disparities from the displaced
initial views are taken into account. We apply the same princi-
ple of taking the minimal of these disparities for each point in
the patch. These values are applied to identify the correspond-
ing patches (Pr, Pg) in the candidate views (T, Tg). As seen
in Section 3, there are holes (xp,, xp,) in both these views. We
use this information to choose from which patch the colors are

(b)

()

Fig. 4. Results from Section 4.2.1(a) Binary generated image with holes (b)
Image with occlusions filled out (c) Zoomed in occlusion region (d) Gener-
ated disparity map from Section 4.1

filled as shown in Equation (9).

P
po)fa
Pyr

where # indicates the number of non-hole pixels present in the
patch. We choose the patch from the candidate view which has
lesser number of holes. This patch is then placed in the hole.
This process is repeated until all the holes have been filled up.
The final result is shown in Figure 4(b). Figure 4(c) shows that
the same occlusion patch seen in Section 4.2.1 has been filled
with the background texture information.

5 #XPL < #.XPR (9)

; #xp, < #xp,

5. Experimental evaluation

The proposed method was tested on the 27 datasets from
the Middlebury Stereo Database. These datasets contain seven
views of the same scene and disparity maps of the views 1 and
5. Using view 1 and view 5 and the corresponding disparity
maps, the intermediate views and disparity maps for the posi-
tions in between, views 2, 3 and 4, with @ = 0.25, « = 0.5
and @ = 0.75 respectively, were generated. These values are
indicated in Table 2.

Experiments were conducted to investigate the best thresh-
old for the size of the patch. It was observed over multiple
datasets that the PSNR values consistently went up with de-
creasing patch size. The results are shown in Figure 5.

We compare the PSNR and SSIM values of the gen-
erated views to the results from Jain et al. (2011) which
are described at http://videoprocessing.ucsd.edu/
~ankitkj/research/viewsynthesis. The average PSNR
and SSIM values are shown in Table 3. The average values of



Middlebury | Method in Jain et al. | Method in Method proposed
Dataset (2011) Ramachandran and
Rupp (2012)

PSNR(dB) | SSIM | PSNR(dB) | SSIM | PSNR(dB) | SSIM
Aloe 28.79 0.919 27.69 0.884 29.29 0.922
Babyl 33.21 0.953 32.95 0.941 34.24 0.948
Clothl 35.00 0.965 33.37 0.937 36.06 0.971
Lampshadel 31.60 0.961 31.15 0.959 32.00 0.962
Moebius 33.35 0.946 32.72 0.931 33.83 0.939
Plastic 37.91 0.983 37.99 0.980 37.93 0.976

Table 1. Comparison of PSNR and SSIM values of variance based occlusion filled images with method by Jain et al. (2011) and Ramachandran and Rupp

(2012) for @ = 0.5.

Middlebury PSNR(dB) SSIM
Dataset View 2 | View 3 | View 4 | View 2 | View 3 | View 4
Aloe 29.52 | 29.64 | 29.69 | 0.920 | 0.925 | 0.916
Art 31.95 | 30.42 | 31.76 | 0.938 | 0.935 | 0.936
Babyl 33.57 | 34.45 | 34.17 | 0.941 | 0.950 | 0.943
Books 29.95 | 30.65 | 30.51 | 0.929 | 0.935 | 0.937
Cloth1 3548 | 36.14 | 35.20 | 0.966 | 0.971 | 0.964
Dolls 32.70 | 31.86 | 32.83 | 0.944 | 0.944 | 0.944
Flowerpots | 21.29 | 25.11 | 21.33 | 0.919 | 0.942 | 0.923
Lampshadel | 34.83 | 35.26 | 32.71 | 0.963 | 0.966 | 0.962
Midd1 31.79 | 32.00 | 32.37 | 0.946 | 0.949 | 0.947
Moebius 34.07 | 33.76 | 34.01 | 0.936 | 0.942 | 0.939
Plastic 36.79 | 37.82 | 38.78 | 0.975 | 0.977 | 0.979
Rocksl 28.27 | 32.61 | 27.51 | 0.932 | 0.939 | 0.930
Woodl 37.18 | 38.11 | 35.14 | 0.939 | 0.944 | 0.929

Table 2. PSNR and SSIM values for views with ¢« = 0.25, « = 0.5 and
a =0.75.

Fig. 5. A plot of the variation of the patch size with the PSNR for different
datasets

(b)
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Fig. 6. (a)-(b) Left disparity maps for datasets Lampshadel and Plastic
(¢)-(d) Left image and disparity map for dataset Flowerpots

the work by Jain et al. (2011) are slightly higher than those in-
dicated on the website because here we recalculated them log-
arthmically.

The datasets Lampshadel and Plastic are very good exam-
ples of when the holes in the original disparity maps play a key
factor for filling in the occlusions. To illustrate, we show the
left disparity maps of these datasets in Figure 6. There are con-
tinuous hole regions in the Lampshadel disparity map, shown
by the black region. As can be seen from our values in Table 1
and Table 3, for Plastic, the variance based method provide rela-
tively better PSNR values than the patch based methods, while
for Lampshadel, the patch based method proves better. The
Plastic dataset is a good example for when this method works
best: because the objects have minimal surface texture and the
scene is illuminated such that there are minimal shadows.

The methods described above would fail when the original
images contain huge patches of shadows, there is a complete
lack of disparity information in the original disparity map, and
hence the corresponding patch cannot be identified. This is il-



Middlebury | Method in Jain et al. | Method proposed
Dataset (2011)

PSNR(dB) | SSIM | PSNR(dB) | SSIM

Aloe 28.82 0.920 29.62 0.920
Art 31.69 0.949 31.43 0.936
Babyl 33.59 0.955 34.08 0.945
Books 30.18 0.931 30.38 0.934
Cloth1 35.14 0.965 35.62 0.967
Dolls 31.66 0.949 32.48 0.944
Flowerpots 22.17 0.919 22.97 0.928
Lampshadel 31.55 0.962 34.40 0.963
Middl 30.80 0.946 32.06 0.947
Moebius 33.46 0.946 33.95 0.939
Plastic 37.98 0.984 37.87 0.977
Rocksl 26.39 0.903 30.08 0.934
Woodl 36.31 0.941 36.98 0.937

Table 3. Comparison of average PSNR and SSIM values with method in
Jain et al. (2011).

lustrated in Figure 6 with the dataset Flowerpots. We obtain
an average PSNR of 22.97 and SSIM of 0.928 (as compared
to 22.17 and 0.919 by Jain et al. (2011)), which is far lower in
comparison to other datasets.

The entire code for this work was developed in Matlab. To
measure the time it takes, we ran the code on an Ubuntu ma-
chine with an Intel i7 processor and 4 GB of RAM, using one
core. The average time to run for the 27 datasets was 8 sec-
onds. This is significantly less than the 12 seconds required by
Jain et al. (2011).

6. Conclusions

We present here an efficient and effective method for the syn-
thesis of images and disparity maps at new intermediate vantage
points to reduce the stream of input data to 3D autostereoscopic
displays. We explore two different ways of filling in occlusion
regions in the new view. Both these methods prove to have
higher PSNR and SSIM values than existing comparable meth-
ods. The key consideration in the choice of methods should
be how much percentage of the original disparity maps are oc-
cluded.

Looking forward, we would like to extend this method to
non-rectified video streams. To this end, porting the code to a
compiled language would make for realistic run times.
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