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This paper addresses the problem of the evaluation of people counting systems. The relation 

between the real people number and the output of the people counting system is used to motivate the 

computation of the maximum number of people as a scenario and geometry specific quantity which 

supports the evaluation of the system output. Based on the camera field-of-view we determine the 

maximum number of detectable people using a basic people model. The maximum number of people 

is computed for an overhead camera and for an arbitrary oblique camera orientation which is the 

typical geometry of standard surveillance applications. 

 

1 Introduction 

Vision-based real-time people counting comprises all techniques which are able to extract the 

number of people which are present in an observed area of the real world and which satisfy certain 

constraints of accuracy and performance. This paper emphasizes the idea that scenario- and 

geometry specific quantities can rise the accuracy of conventional people counting applications. 

Recent research in people counting can be divided into techniques using neural-based crowd 

estimation ([1], [2], [3]) and methods which are based on blob detection and blob tracking ([4], [5], 

[6]). Both approaches are rather different from each other. The former employ simple image 

processing techniques for the extraction of significant features and feed those into a trained neural 

network to obtain an estimation value of the people in the scene. The accuracy of those systems 

depends strongly on the training set of the neural network and on the choice of the feature set. 

Typical elements of the feature set are the length of the edges and the background area ([1], [2]). 

People counting by blob tracking is currently an option of systems which are mainly aimed to 

classify objects and their activities by analyzing their shapes and their trajectories. Those systems 



are based on the capability to separate an object from the background. In scenarios where people are 

crowded, those systems have a poor accuracy since precise object extraction is hardly possible [5]. 

 

2 Output Accuracy 

The output accuracy of a people counting application is evaluated by the relation between the 

true number of people Nreal and the mean output of the people counting system Nout. Examples for 

those relations are illustrated in Figure 1. The straight line between the origin and the point (nmax, 

nmax) is the ideal case, of course. The diagram illustrates that an overall error in percent is no 

reasonable measure. Obviously, an error of 30 percent near nmax can cause a people number which 

even exceeds the maximum value. Curve a shows the optimum case of a people counting system 

which yields always the correct number. Curves b and c show possible variations.  

 
Figure 1: Typical relations between mean output and real people number obtained from people counting systems: 
Every line represents a relation between the mean output of a people counting system and the real number of people in 
the viewing area. 

 

Figure 1 incorporates two constraints which can be used for the evaluation of  current people 

counting techniques: 

1. If there are no people in the viewed area, the people counting system must yield zero. 

2. For every viewing area, there is a maximum number of people nmax who can gather there. The 

counting system must never exceed this value. 

 

Constraint 1 is trivial and motivated naturally. Most current visual surveillance systems do 

provide information to human operators concerning the occurence of people within an area. 

Thereby, the decision whether no person or at least one is present, has a high priority and is of 

particular importance in security applications. 



Constraint 2 includes the requirement that the maximum number of people nmax of a scenario 

must be known. Of course, the number is closely related to the chosen people model. The use of this 

essential number in people counting applications has not been published so far. 

2.1 Neural-based crowd estimation 

 Constraint 1 is a critical point for people counting methods based on neural network estimators. 

They can hardly cope with this constraint since the image processing for feature extraction does not 

classify edges or blobs at all. Thus, they are sensible to other objects than people, shadows and 

ambient illumination changes. E. g., in [2], the evaluation of the proposed methods was not 

performed in respect to this condition. The maximum number of people in the scene is used 

implicitly in the training set. Good training data are spread over the whole range of possible 

numbers of people. Thus nmax is implicitly used during training, when images with the maximum 

density are fed into the training algorithm. But  generally, there is no proof that nmax can not be 

exceeded by performing the estimation algorithm for images not in the training set.  

2.2 Blob techniques 

The capability of blob techniques to fulfill both constraints depends on the reliability and 

robustness of the realized blob detection and blob classification. Since blobs are analyzed based on 

their size and their shape [5], blob techniques have the general capability to separate humans from 

other objects. Thus, it is expectable that they fulfill constraint 1 more likely than neural network 

estimators. Similarly, constraint 2, the maximum number of people nmax must not be exceeded 

which can be evaluated by counting the blobs and comparing it to the theoretical value. 

2.3 Parametric human body model 

The computation of the maximum number assumes the definition of a person model. Figure 2 

illustrates the people model which is used in this paper. 

 

 
Figure 2: People model: Dimensions used in the computation of nmax: H=tallness, W=shoulder width, T=chest depth, 

D=head diameter, hh=head height, hl=leg length, a=arm length, αa=angle between body and head 



3 Computation of the maximum number of people 

The size of a rectangular area of the  video sensor is assumed with SW x SB pixels (the 

dimension of a pixel element is sW x sT). This area might be the whole sensor area, but can also 

cover only a smaller part like a bounding box of a blob. First, we do this for the special geometry of 

an overhead camera and generalize it later to an arbitrary oblique camera orientation. 

3.1 Overhead geometry 

This section demonstrates how the minimum number of pixels of the sensor and the 

maximum number of people can be estimated. All movements of the arms and the legs require more 

space for a person and reduce the overall number of people. Hence, the motion of arms and legs is 

neglected. 

As Figure 3 illustrates, assuming that there is no sudden vertical movement (e. g. jumping) of 

a person the actual distance between the closest point of a person and the camera sensor is simply 

the difference between h and Hmax. ϑ{W,B} are the viewing angles of the lens of the camera parallel to 

the side lengths of the sensor. S{W,B} denotes the size of the sensor. 
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BW and BT are the projection lengths of the shoulder width W and the chest depth T respectively. 

Both lengths determine the bounding box of the projected upper body within the image plane. The 

minimum size of that person, approximated as a rectangle, is evaluated according to the basic 

projection equations [7]. f denotes the focal length. 
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If the object distance is much greater than the focal length, the denominator is approximately equal 

to the object distance. 
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Those lengths are converted into pixel dimensions using equations (6) and (7). The use of the 

maximum value of both side lengths ensures a minimum number of pixels (Equation (8)). In image 

analysis the sampling interval should be less than or equal to half of the smallest interesting detail in 



the image in both dimensions [8]. This means that the required number of pixels representing an 

object must be doubled (in one dimension) due to the sampling theorem. 

 
Figure 3: Camera orientation of an overhead scenario: The geometry is determined by two geometrical parameters, h 
and ϑ. 
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The desired value of the maximum number of people in an overhead scenario follows as a ratio of 

the rectangular sensor area and the minimum area of a single person. 
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3.2 Oblique geometry 

The variety of the spatial conditions of actual realities in potential locations like waiting areas of 

supermarkets and banking halls makes it difficult to make any preconsiderations of the components. 

In contrast to a vertical camera orientation, the distance to the separate persons may vary.  

Thus the required resolution is primarily determined by a person observed at the maximum  

distance L which is determined by the scene geometry. Substituting L instead of h-H into equations 

(3) and (4), the resulting value is the estimated maximum. 

 

Equations (5), (6) and (7) allow the computation of the minimum size of a person onto the sensor. 

 



 
Figure 4: Oblique camera orientation: Monitoring a queue 

⎥
⎥

⎤
⎢
⎢

⎡
=

Ls

fWoblique
W

n
 max

.
.2     (9) 

⎥
⎥

⎤
⎢
⎢

⎡
=

Ls

fToblique
T

n
 max

.
.2     (10) 

T is the chest depth, s is the size of the video sensor and L is the maximum length of the queue 

shown in Figure 4. Replacing Tmin by the corresponding minimum values for shoulder width and 

tallness equation (9) yields the minimum size of a projected person. Thus, the maximum number of 

people within the rectangular area of the sensor SW x SB is computed according to equation (11). 
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4 Experimental Results 

We implemented a motion detection algorithm based on an adaptive background and threshold 

model. The application of intensity profile analysis as proposed in [9] allows the detection of 

stationary and transient objects. The blob information was generated by morphological operations. 

The parameters of the people model (Figure 2) were used to classify the stationary and transient 

blobs into two classes: people and other objects. The relevant parameters of the people model were 

set to H=100...210 cm and W=30...80 cm. All blobs which have the appropriate size were counted 

for the overall people number. No blob analysis or correlation between successive frames was done. 

 

This algorithm was applied to two test videos recorded at an oblique camera geometry in a railway 

station in Vienna. Figures 5a and 5b show two snapshots where the people density is very low and 

where constraint 1 is evaluated. The abscissa indicates the frame number of the video sequence 



while the ordinate gives the overall people number. Figure 5b illustrates that the person in the lower 

part of the scene does not fulfill the people model and is therefore not detected as human.  

 

    
Figure 5: Detection of people at low densities: (a) Proper detection of two people, (b) critical case where a person in 

the foreground is not detected properly 

 
Figure 6 shows the application of the algorithm for higher people densities. The bounding boxes 

illustrate that the algorithm is not able to distinguish people which occlude each other properly. This 

is not surprising since no blob analysis was performed. The maximum number of people which can 

be found within such a blob is computed using equation (11). This value is used as a reference value 

for an estimator of the people number in this blob. 

 

 
 
Figure 6: Blob detection: The sizes of the bounding boxes of blobs 1 and 2 indicate that more than a single person is 

contained. Equation (11) allows the computation of the maximum number of people for every single blob. 

 
The camera was calibrated by measuring the bounding box in pixels of an object of known 

dimension placed at the nearest and farest point of the viewing area. The computation of the size of 

each detected blob SW x SB was interpolated linearly. Similarly, length L of equations (9) and (10) 

was linearly approximated from the total depth of the viewing area. 



5 Conclusions 

We described how the two current approaches of automatic people counting algorithm deal with our 

suggested constraints for the evaluation process. Based on the camera field-of-view and a basic 

people model, it was shown how the maximum number of detectable people is computed for 

overhead and oblique camera orientations. 
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