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Abstract: 
This paper addresses vision-based people counting under the assumption of an oblique stationary 
camera setup without any usage of tracking. Our approach is based on motion detection and blob 
analysis. The estimation of the number of people in the scene is done by accumulating the 
estimation values of each blob. The blob specific estimation values are computed using four input 
values: the minimum and maximum number of people which may be present in the blob, the blob 
area and a predicted number number of people which is computed from the temporal change at the 
blob location. We have included shadow elimination using colour invariants which are obtained 
from the measurement of coloured object reflectance assuming a Gaussian colour model. The 
method was evaluated in single camera scenarios for various sequences taken in halls of shopping 
centres and railway stations. 
 
 

1 Introduction 

Surveillance of crowded scenarios and their analysis in terms of number of people is gaining 

importance, for example in shopping areas, public transport, etc. There are numerous approaches to 

the problem which are either vision or non-vision based. 

Non-vision based approaches are characterised by the fact that no camera devices are used and 

no image processing is performed. Such techniques use for example infrared sensors where passing 

people interrupt a beam or pressure sensors which sense the footsteps of people. These approaches 

have the advantage of being insensitive to some crucial environmental factors such as light but 

imply the constraint that their application is rather limited to count people at a clearly defined line, 

e. g. to count the passengers boarding and alighting a vehicle via doors. There are a few commercial 

companies which offer such products.  

                                            
1 This work has been carried out within the K plus Competence Center ADVANCED COMPUTER VISION and was 
funded from the K plus program. 

 
 



Vision based approaches vary significantly depending on the acquisition geometry. Methods 

using pure overhead cameras avoid the problem of occlusions but have a rather restricted view and 

are limited to count at narrow corridors and doors, similarly to non-vision based approaches.  

Due to the increased affordability of standard video surveillance systems the application of 

these systems has been enhanced during the recent years. Public places become more and more 

CCTV controlled and the utilisation of the installed infrastructure for added value applications as 

people counting is a logical effort. Hence, there is the challenging task to develop people counting 

algorithms which can cope with oblique camera setup and occlusions of people. Due to this fact 

most of the commercial products rely on overhead cameras where people do typically not occlude 

each other. 

Most vision-based people counting systems for oblique camera geometry rely on tracking. 

These methods have been studied intensively and have been proved to work reliably in scenes with 

limited people density [1], [2]. However, for scenarios where a high density of people leads to 

frequent occlusions, tracking is not reliable. In crowded scenes for examples at underground  

platforms, the tracking and counting performance depends strongly on the clothing and the 

movement of the people. 

There are few approaches for non-tracking-based people counting systems which make use of 

neural network estimators [3], [4]. Methods related to the latter, use significant features extracted by 

basic image processing which are fed into trained neural networks in order to yield an estimate of 

the number of people in the viewing area. The accuracy of those systems depends strongly on the 

training set of the neural network and on the choice of the feature set.  

This paper presents a people counting method which is based on motion blob analysis, shadow-

elimination, and the temporal change of the number of people residing at a certain image location. 

The method was successfully tested in single camera scenarios for various sequences taken in halls 

of shopping centres and railway stations. 

Beside the given overview of other approaches to people counting, this paper provides a 

detailed description of our people counting system (section 2) and the evaluation using sample 

video sequences (section 3).  

2 System Description 

Our approach aims at people counting under an oblique stationary single camera geometry and is 

based on the combination of motion detection and blob analysis rather than tracking. Omitting 



tracking provides the ability of faster processing because there is no need to compute hypothesis 

and/or features. 

People are modelled by the height H and shoulder width W. For both parameters minimum 

(Hmin, Wmin), maximum (Hmax, Wmax) and typical (Htyp, Wtyp) values are considered. Arms are 

neglected, since they cover only a small image area in contrast to torso and legs. We restrict our 

system to people who have their feet on the ground and who stand or walk in an upright manner. 

The scene is calibrated with a simple calibration scheme which provides the local scaling, i. e. pixel 

to object size ratio, for every pixel of the scene which refers to the ground plane. 

The following description of all processing steps is illustrated in Figure 1. 

 

1. Frame acquisition: It is assumed that frame capture is performed at regular time intervals 

which are typically at the range of 6 to 12 frames per second. 

 

2. Motion detection: Intensity profile analysis [5] is used to classify every pixel x of a single 

frame of time step n as moving, stationary or background pixel. Standard adaptive background 

and threshold models are computed on RGB-colour images. 

 

3. Shadow elimination: Since shadows can increase the blob size significantly, every stationary 

and moving pixel is checked whether it belongs to a shadow or not. Shadow detection is done 

pixel based using invariant colour properties which are obtained from the measurement of 

coloured object reflectance assuming a Gaussian colour model presented by Geusebroek [7]. 

Geusebroek showed that the first three coefficients Ê ,  and  of the second order 

development of the observed spectral energy distribution approximately can be linked to RGB-

components according to Equation 1.  
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Due to our target scenarios, we use colour invariants which were derived under the assumptions 

of equal energy, but uneven illumination of matte, dull surfaces. Such an irreducible set of 

fundamental colour invariants is determined by Equation 2 [7]. 



 
 

Figure 1: Principle of the estimation process 
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To increase performance we selected a single invariant (e. g. m=2, n=0) and computed the 

values of the invariant for every background pixel and for every pixel of the actual frame, i. e. 

 and  respectively. For every shadow pixel x which does not belong to 

a person, the absolute difference 

)(xC background
λλ )(xC image

λλ

)()( xCxC backgroundimage
λλλλ −  is small. Thus a shadow can be 

detected through thresholding. Hence, we eliminate every pixel which was classified as moving 

or stationary if it is part of the shadow. 

 

4. Connected Component Analysis: Subsequently, all non-shadow pixels which are classified as 

stationary or moving form blobs based on their connectedness. 

 

5. Blob filtering: Due to our very simple people model, blob selection through object size is 

performed rapidly. All blobs obtained from step 4 are selected based on the local scaling of the 

image position of the base line and the size of the bounding box. Blobs which are too small to 

contain a standing person of the minimum height are removed from any further analysis. Blobs 

which are too large to contain a single person of maximum height are marked. Blobs which 

meet the people model perfectly are assumed to contain exactly one person. 

 

6. Estimation of the number of people: Generally, blobs containing stationary and moving 

objects are processed in an identical manner. Assuming, N(n) denotes the estimate of the number 

of people in the scene at time step n and i indicates every single motion blob bi
(n). Then N(n) is 

computed by summing up the estimation values Ni
(n) of all blobs. Ni

(n) is computed based on two 

different kinds of inputs: (a) information from the corresponding blob bi
(n) and (b) information 

which is accumulated within the bounding box of bi
(n) from a sliding time window over the time 

steps n-k to n-1 during the system run. 

a. Information taken from every single blob bi
(n) of the frame of the actual time step n is used 

to compute a frame-based estimate Nf
i
 (n) and comprises 

i. Minimum number of people Nmin
i
 (n) which is present in blob bi

(n) 

ii. Maximum number of people Nmax
i
 (n) which is present in blob bi

(n) 

iii. Ratio Narea
i
 (n) between the area of blob bi

(n) and the area of an average sized person 

which is approximated by the corresponding rectangle wtypxhtyp at the blob position. 



If Narea
i
 (n)∈  [Nmin

i
 (n) , Nmax

i
 (n)] then Nf

i
 (n) = Narea

i
 (n). Otherwise Nf

i
 (n) is equal to the closest 

value of the interval [Nmin
i
 (n) , Nmax

i
 (n)]. 

b. In the case of temporarily occluded people, the blob area may shrink considerably and Ni
(n) 

will be decreased. Thus, the number of people within the bounding box of a blob bi
(n) during 

the previous time steps n-k to n-1, ( +Ζ∈k ) is taken into account. This is done by defining a 

map m(n) having the same size as the input frame according to . For 

every pixel x which is not part of a blob,  is set to 0. If pixel x is part of blob b
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i ANxs = . This setting ensures that the sum over the bounding box of any 

arbitrary rectangle region results in the number of people present in this region2. Naturally, 

the overall sum of is equal to N)()( xm n (n). The map  is transformed to a so-called 

integral image [6] and stored in a memory buffer. This structure provides rapid access to the 

number of people which are present in the bounding box of blob b

)()( xm n

i
(n) during the preceding 

frames. Within the sliding window a trend is indicated and yields a prediction value by 

extrapolation Npred
i
 (n) . 

Eventually, the estimates Nf
i
 (n) and Npred

i
 (n) are merged. If Nf

i
 (n) ≥ Npred

i
 (n)  then Ni

 (n) = Nf
i
 (n). 

If Nf
i
 (n) < Npred

i
 (n) then Ni

 (n) = Npred
i
 (n). 

 

3 Experiments 

We tested our method with video sequences captured in shopping malls and entrance halls of 

railway stations. We present the results of sample video sequences captured in a shopping mall 

(video 1) and the entrance hall (video 2) of the railway station Vienna West.  

All images were processed at the size 360x288 pixels using RGB-colour information for 

motion detection and shadow elimination. Video 1 contains 454 frames and video 2 contains 1767 

frames. 

The people density in video 1 is low to medium, i. e. persons in the scene appear often 

separated and occlusions by other persons occur rarely. The viewing angle in the scene is about 30 

degrees. The accuracy is computed numerically and shown in Figure 2. The system output is 

                                            
2 Note that the sum might be a fractional number. Assuming a scene where just one person is walking translationally across the 
scene. Then the sum over all pixels of the bounding box of the moving blob bi(n) computed for an earlier time step will be less than 1, 
e. g. 0.9, depending on the blob shape and the walking speed. 



identical to the real number of people for 75 percent of all frames. The accuracy of ±1 individual is 

provided for about 95 percent of the frames. Since all points of the evaluation plot are located close 

to the optimum line, the system output can be used as reliable estimate of the number of people in 

the sce

racy plot in Figure 2 shows, the system has the tendency to underestimate the 

numbe

aluation plot shows that the system can still provide good qualitative output of the 

people count. 

 

ne.  

In video 2 the range of the viewing angle from the camera to every point of the ground 

ranges from about 45 degrees at the bottom to 25 degrees at the upper part of the image. In contrast 

to the scene in video 1, occlusions occur frequently in the area near the escalator. People are often 

hidden. As the accu

r of people.  

The ev

     
Figure 2: Blobs, error distribution and evaluation plot of the sample video ‘Shopping Mall’ 

 

       
Figure 3: Blobs, error distribution and evaluation plot of the sample video ‘Entrance Hall’ 



4 Conclusion 

We have presented an integral system for people counting which makes use of basic blob analysis 

and shadow elimination based on colour invariants. The method has been proven to deliver a 

reliable estimate of the number of people in a complex scene by performing tests for various 

sequences taken in halls of shopping centres and railway stations. In future work, we will focus on 

modelling the shape description of the blob in order to refine the estimate by shape segmentation for 

blobs possibly containing multiple individuals. 
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