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Abstract. We explore marker-less tracking methods for the purpose of
evaluating the efficacy of facial re-constructive surgery on patients with
facial palsies. After experimenting with several optical flow methods, we
choose an approach that results in less than 2 pixels in tracking error for
15 markers tracked on the face. A novel method is presented that utilizes
the non-rigid deformation observed on facial skin tissue to visualize the
severity of facial paralysis. Results are given on a dataset that contains
three videos of an individual recorded using a standard definition camera
both before and after undergoing facial reconstructive surgery over a
period of three years.

Keywords: Optical Flow; Optical Strain; Facial Palsy; Facial Recon-
structive Surgery

1 Introduction

Accurately estimating and quantifying the extent of facial paralysis in patients
with facial palsy without the need of manually applied markers would be a
benefit to patients, researchers, and the medical community at large. In this
paper, we propose methods that can be used to measure the severity of facial
paralysis using non-invasive tracking methods and motion analysis tools.

The experimental flow is as follows: first, a patient is recorded in front of
a video camera mirror system [2] and is asked to perform several standardized
expressions multiple times (ex., lifting of eyebrows, smile, close eyes, frown, whis-
tle) [4]. Next, a dense optical flow method is used that tracks all points (pixels)
of the face over the entire length of the expressions. These optical flow vectors
are then used to calculate optical strain, a feature that is used for two purposes:
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(i) the magnitude of optical strain is utilized in order to detect key moments of
an expression (contract, peak, compression) [6]. Finding the these moments in
an expression allows strain maps to be calculated at the maximal point of facial
deformation, so a valid comparison can be done over time; (ii) strain maps are
used to represent and quantize the deformation of the soft-skin tissue on the
face, which is directly correlated with expansion and contraction of underlying
facial muscles that have been surgically altered.

Evaluating the efficacy of facial reconstructive surgery has been the main
goal of Frey et al. [2]. In their experimental setup, a patient is asked to sit
between two angled mirrors (∼ 90 ◦). Hand placed markers are applied to the
face and are tracked in 3-D as the patient performs expressions. In their setup,
the process of applying markers and tracking them takes roughly five hours. In
this paper, we use a video dataset from their collection and hope to expand on
their initial work firstly by eliminating the need for markers, thus significantly
reducing the time needed for data acquisition. Secondly, we suggest a method
that provides a denser correspondence and a more detailed visual representation
and quantization.

2 Background

When calculating optical strain there are typically two main approaches: either
(i) integrate the strain definition into the optical flow equations, or (ii) derive
strain directly from the flow vectors. The first approach requires the calculation
of high order derivatives, hence is sensitive to image noise. The second approach
allows us to post-process the flow vectors before calculating strain, possibly
reducing the effects of any errors incurred during the optical flow estimation.
We use the second approach in this paper.

2.1 Optical Flow

Optical flow is an established motion estimation technique that is based on the
brightness conservation principle [1]. In general, it assumes that the intesntity at
a point remains constant over a pair of frames, and that the pixel displacement
relatively smooth within a small image region. It is typically represented by the
following equation:

(∇I)Tp + It = 0 (1)

where I(x, y, t) represents the temporal image intensity function at point x and
y at time t, and ∇I represents the spatial and temporal gradient. The horizontal
and vertical motion vectors are represented by p = [p = dx/dt, q = dy/dt]T s.

Since large intervals over a single expression can often cause failure in track-
ing (due to the smoothness constraint), we implemented a vector linking (or
stitching) process that combines small, local pairs of small intervals (1-3 frames)
into larger pairs to expand over the entire sequence of frames. In section 3.1, we
discuss three seperate implementations of optical flow.



2.2 Optical Strain

The displacement of any deformable object projected on a 2-D plane can be
expressed by a vector u = [u, v]T . Assuming a small enough motion , a finite
strain tensor can be defined:

ε =
1

2
[∇u + (∇u)T ], (2)

which can be expanded to:
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where (εxx,εyy) are normal strain components and (εxy,εyx) are shear strain
components.

Since (u,v) are displacement vectors that over a continuous space, we ap-
proximate the strain components using the optical flow data (p,q):

p =
δx

δt
≈ ∆x

∆t
=

u

∆t
, u = p∆t, (4)
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where ∆t is the change in time between two image frames. Setting ∆t to a fixed
interval length, we can estimate the partial derivatives of (4) and (5):
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The second order derivatives are calculated using the central difference method.
Hence,

∂u
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2∆y
(9)

where (∆x,∆y) ≈ 2-3 pixels.

Finally, each of these values corresponding to low and large elastic moduli are
summed to generate the strain magnitude. Each value can also be normalized to
0-255 for a visual representation (strain map).



3 Experiment

In this section, we explore several potential uses of optical flow and optical strain
for the marker-less tracking and visualization of expressions for patients with fa-
cial palsies. Our dataset consists of three videos from the Medical University of
Vienna. Each video corresponds to a different year of the patient undergoing fa-
cial reconstructive surgery. The first video records the patient before the surgery
(1998), and the next two videos (1999 and 2000) were recorded post surgeries.
For each video, there are roughly 30 expression made. Expressions include rais-
ing the eyebrows, smiling, smiling and closing eyes, bunching lips together, and
frowning.

(a) (b) (c) (d)

(e)

Fig. 1: Example tracking results of point given in circle (a). In (b) - (d), results
for black flow (square) Ogale flow (triangle) and SIFT flow (star) at during two
’raise eyebrows’ expressions (frame numbers 30, 120, 150). In (e) the actual error
for all 15 points (see Fig. 2) is shown for every 20 frames.

3.1 Optical Flow and Tracking

In this paper, the primary purpose of optical flow is to calculate a dense corre-
spondence between pixels over video sequences that contain expressions, a task
that is important for the accurate calculation of strain maps. Hence, we explored
several implementations of optical flow, including Ogale flow [5], SIFT flow [3],



(a) (b) (c)

Fig. 2: Comparison of total flow displacement values between the left (solid blue
line) and right (dotted green line) sides of face, after re-constructive surgery over
3 years (using Black flow). The images (a), (b) and (c) are the starting frames
from each video and show the tracked points. The first row of graphs corresponds
to the raised eyebrows expression and the second row corresponds to the smile
expression.

and Black Flow [1]. To determine the best implementation choice, we inspected
the tracking performance over several expressions at specific points. The points
selected were the physical markers placed on the face, since these areas have
texture information which aids in optical flow estimation. An example sequence
containing the raised eyebrows expression can be seen in Fig. 1. This figure also
shows the total summed error that was calculated for the same expression every
20 frames, at all fifteen points given in Fig. 2.

To further analyze the tracking results of each flow algorithm on this se-
quence, we calculated the average error (see Table 1) for all fifteen points and
also for a subset of three select points near the right eye (see Fig. 2) where there
was large eye / eyebrow motion. A few observations were made: Ogale flow oc-
casionally showed sporadic tracking by jumping several pixels off and then back
again. Overall, it resulted in average error rates of 2 pixels (for fifteen points)
and 4.3 pixels (for three points). On the other hand, SIFT flow performed poorly
even with small non-rigid movements of the eyebrow, since such local motion was



dominated back the lack of motion in surrounding regions. It had average error
rates of 2.5 pixels (all points) and 6.1 pixels (three points). Black flow performed
the best of all three and led to the most consistent results, with average error
rates of 1.6 (all points) and 2.5 (three points).

Table 1: Average error (in pixels) for all 15 points tracked on face and a subset
of 3 points that have relatively large motion.

Flow Type All Points Three Points

Black Flow 1.67 2.58

SIFT Flow 2.01 4.35

Ogale FLow 2.55 6.14

Next, we show the tracking results using black flow for two expressions (raised
eyebrows, smile) for each year. For this, points on each side of the face were
tracked over two expressions and the displacements were summed to generate
total summed displacement. As expected, for both expressions, the difference be-
tween the total displacement observed for each half of the face is largely reduced
between 1998 and 1999, and even more between the 1998 and 2000 (see Fig. 2).
This indicates that optical flow is successfully capturing the motion caused from
the facial expressions. Next, we will use these flow vectors to calculate strain
magnitude and optical strain maps.

3.2 Optical Strain Maps

Since strain maps represent the non-rigid deformation observed on the face dur-
ing an expression, it is important that we capture the peak of the expression.
We automatically get this frame using an expression spotting algorithm [6]. In
summary, the algorithm utilizes the strain magnitude calculated over the entire
video sequence, and correlates spatio-temporal regions that contain high strain
values as segments containing expressions. It is particularly robust to expressions
that occur in small regions or one side of the face, making it ideal for patients
with facial palsy. The algorithm returns the frame number in a expression se-
quence that has the highest summed strain magnitude. These frames are then
used for calculating final strain maps. Fig. 3 shows the strain maps calculated
for all five expressions, over all three years. It is important to note here that
eye regions and mouth regions have been masked due to common flow failure in
these regions, due to self-occlusion (eyelids, inside mouth). For areas outside of
the masked regions, large intensity values correspond to regions of the patients
soft-skin tissue that have deformed significantly due to muscular contraction.

Quantization using Strain Difference Subtracting two strain maps from
different years but the same expression allows us to gain a representation of the



change in deformation, or the change in active regions of the face. As can be
observed in Fig. 4, the strain maps showing the difference between the years
1998 and 1999 suggest a large amount of improvement (first row), while the gain
between 1999 and 2000 (second row) appears to be less.

Fig. 3: Optical strain maps for five expressions, over three years. Strain maps
were generated between the start and peak of each expression. Intensity values
correspond to amount of deformation observed.

4 Conclusions

In this paper, we explore the use of marker-less tracking methods for the purpose
of evaluating the improvement gained from facial re-constructive surgery on
patients with facial palsies. We have explored several tracking methods that allow
us to create the dense correspondence necessary for strain map calculation and
have concluded the Black flow leads to the most consistent and reliable results,



with less than 2 pixel average tracking error. Using these optical flow fields,
we have proposed a method that quantizes the non-rigid deformation observed
on facial skin tissue into strain maps. Strain maps can then then be used to
highlight the (a)symmetries between each side of the face, while also providing a
useful measure of the changes at each point on the face over time, thus potentially
allowing surgeons to quickly evaluate the efficacy of facial reconstrutive surgeries.

Fig. 4: Quantization using strain map difference between years recorded, post
surgery. Each column contains one of the five expressions and shows the differ-
ence between strain map rows in Fig 3. The first row shows the change from
1998 and 1999, and the second row shows the change from 1999 to 2000.
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