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Abstract. The objective of semantic segmentation in microscopic images is to 
extract the cellular, nuclear or tissue components. This problem is challenging 
due to the large variations of features of these components (size, shape, 
orientation or texture). In this paper we present an automatic technique to 
robustly delimit the epithelial area (crypts) in microscopic images taken from 
colon tissues sections marked with cytokeratin-8. The epithelial area is 
highlighted using the anisotropic diffusion pyramid and segmented using 
MSER+. The crypts separation and lumen detection is performed by imposing 
topological constraints about the epithelial layer distribution within the tissue 
and the round-like shape of the crypt. The evaluation of the proposed method is 
made by comparing the results with ground-truth segmentations. 

Keywords: Crypt segmentation, Anisotropic diffusion pyramid, MSER, 
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analysis. 

1 Introduction 

In diagnostic pathology, the pathologists give a diagnostic after a set of biological 
samples (tissues stained with different markers) are viewed and many specific 
features of the objects of interest (size, shape, colour or texture) have been analysed. 
This time consuming and tedious process is an important part in clinical medicine but 
also in biomedical research and can be enhanced by providing the 
pathologists/biologists with quantitative data extracted from the images. 

To overcome also the possible subjectivity caused by different visual 
interpretations of different pathologists, image processing techniques are used to 
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allow large scale statistical evaluation in addition to classical eye screening 
evaluation.  

Image segmentation of microscopic images is a hard task due to several elements 
of variability noticed in the image dataset like size and arrangement of the crypts 
inside the tissue sections, intensity levels of both background and cells from either 
stroma or crypts, as well as a relatively high background compared to the objects of 
interest. 

In this paper we focus on analysing the tissue components like crypts, lumen and 
stroma, without dealing directly with the small objects like nuclei and cells (Fig. 1a). 
A rough description and a short overview of the problems to be solved are presented 
bellow; each step of the proposed method will present more details and justifications: 
- some images are slightly underexposed due to weak local biological response. 
- some image portions don’t contain useful information. 
- the crypt appears like a “donut” (or 2D projection of a torus) with many small 
‘holes’ and a central black area inside (lumen). 

- the lumen is a black area with different sizes surrounded by the epithelial layer. 
- the “donut” has a non-homogeneous organization due to the dark regions smaller 
than the lumen. 

- the pixels within a crypt correspond to three main components: background, dark 
regions and the noisy pixels, weak biological binding response and strong response 
(highest values). 

- the stroma separates the crypts; situations of touching/very close crypts can appear. 
- no relevant information or cells exist between touching/very close crypts. 
- the number of crypts may be used in computing distribution statistics. 
 

This paper is organized as follows. The last part of this section points out the goal 
of this study. The images are enhanced in Section 2 and the epithelial area is 
highlighted using the anisotropic diffusion pyramid (Section 3.1) and segmented by 
MSER+ (Section 3.2). In Section 4.1 the false positive results are reanalysed for 
crypts separation and the lumens are detected in 4.2. The results are evaluated and 
discussed in Section 5 while the conclusions are elaborated in Section 6. 

1.1 State of the Art 

The detection of histological structures like gland or crypt has been addressed in 
many studies. In [1] a threshold is used to identify the gland seeds which are grown to 
obtain the nuclei chain. In [2] the pixel labelling to different classes is performed 
using a clustering approach based on the textural properties. In [3] the high level 
information is preferred against the local one in segmenting the colon glands from 
hematoxylin-and-eosin stained images. An object-graphs approach is described where 
the relationship between the primitive objects (nucleus and lumen) is considered. In 
[4] the prostate cancer malignancy is automatically graded (Gleason system) after the 
prostate glands are detected. 

Many image analysis techniques were successfully used in medical image 
processing. In [5] the mammographic images are hierarchically decomposed into 
different resolutions and segmented by analyzing the coarser resolutions while in [6] 



the multiresolution wavelet analysis is used for texture classification. A Gaussian 
multiresolution segmentation technique is combined in [7] with the expectation 
maximization (EM) algorithm to overcome the drawbacks of the EM algorithm. 

The maximally stable extremal region is mostly used in situation where a single 
threshold is difficult or impossible to select. A general analysis of this segmentation 
approach is described in [8] and an application in medical images can be found in [9]. 

1.2 Aim of the Study 

The basic functional unit of the small intestine is the crypt (crypt of Lieberkühn) 
[10] and it comprises two main structures of interest: the lumen and the epithelial 
layer (Fig. 1a). The epithelial layer contains epithelial cells and surrounds the empty 
area called lumen. The stroma is a heterogeneous compartment between crypts and 
contains the extra cellular matrix (ECM), fibroblasts, macrophages, vessels etc. 

Depending on the marker used on tissues, different components/proteins can be 
highlighted. To separate the epithelial layer, immunofluorescence staining is 
performed in paraffin embedded sections with the anti-cytokeratin 8 (CK-8) antibody 
and a fluorochrome-labelled secondary antibody [11]. The CK-8 is used because it 
reacts with cytokeratins, proteins found only in the cytoskeleton of epithelial cells. In 
Fig. 1a, b) the bright area is the binding result between the CK-8 and the epithelial 
components; the small dark regions are caused by the epithelial nuclei and their lack 
of cytokeratins. 

This work provides specific techniques (Fig. 2) to automatically segment and 
measure the crypts (epithelial areas) from fluorescence images of colorectal tissue 
sections. We used 8 bit greyscale images (Fig. 1a) showing cytokeratins from 
epithelial layer; they were acquired using the automated TissueFAXSTM slide scanner 
(TissueGnostics GmbH, Austria). 
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Fig. 1. a) Fluorescence greyscale image showing crypts stained 
with anti-cytokeratin 8 from colon tissue section. b) The enhanced 
image by histogram processing; the bright regions indicate the 
crypts and the inside black regions are the lumens. c) The image 
from the 4th level of the ADP, up sampled for better visualization. 
 



 
 

 
Fig. 2. Overview scheme of the proposed technique. 

The main motivation for segmenting crypts is to provide the pathologists with 
quantitative data regarding the epithelial area (crypts boundaries) and epithelium-to-
stroma ratios. These ratios may provide important information for the assessment of 
cancer in colon or other organs [12]. Automatic segmentation is much faster than 
visual analysis and does not suffer from typical human analysis disadvantages like 
subjectivity and fatigue of the evaluator. Samples from more patients can be 
evaluated, thus providing data which is more relevant from a statistical point of view. 

2 Image enhancement 

The CK-8 images are slightly underexposed due to tissue variability and local 
weak binding of the fluorescence marker. The image contrast can be enhanced such 
that the separation between the crypts and the stroma is better highlighted. Histogram 
equalization [13] is used because it maximizes the image contrast by transforming the 
values in an intensity image so that the intensities are better distributed on the image 
histogram. 

Let I  denote the input grey scale image. There are many situations in which some 
image portions don’t contain useful information (Fig. 5a), i.e., they have low 
intensities due to the lack of CK-8 signal. Only the set of pixels with higher intensities 
than a certain threshold are considered in the histogram enhancement process, since 
they are the result of binding between the CK-8 and epithelial cells: 
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where )(Otsu ⋅thr  computes the threshold for an image using Otsu’s method [14], c  is 
fixed to 5.0  in our experiments and the function )hist_enh(⋅  performs the histogram 
equalization. This technique allows the enhancement of the objects of interest, but 
keeps the low intensity levels for the background (Fig. 1b). 

3 Crypt outer borders detection 

The borders detection process must ignore the gaps within crypts. The low level 
cues (pixels, small areas) don’t provide enough information to separate the regions 
having a particular meaning [15]. A way must be found to keep only the important 
information and to remove the unnecessary details. In order to detect these regions, 
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the role of local information (pixel grey values or gradient) is very important but not 
sufficient; also global information like the region’s size and relation with the other 
region types must be included [15]. 

In [16] the morphological closing operator is used in a multi-resolution structure; 
the gaps between nuclei are filled by relating the structure element size to the size of 
the gaps. This gives good results for images with nuclei, but in our case elements 
within the stroma near the crypts may be merged by the closing operator. Since an 
accurate delimitation of the epithelial area is required, the anisotropic filtering is 
applied to homogenize the crypt regions, fill the inside holes while preserving the 
(weak) epithelial-stroma edge information. 

3.1 Anisotropic Diffusion Pyramid 

If we use the conventional spatial filters, the edges will be blurred up to losing 
completely necessary information for crypt assessment. Anisotropic diffusion is a non-
linear filtering method, which improves the image quality significantly while 
preserving the important boundary information. The image is smoothed by applying a 
diffusion process whose diffusion tensor acts mainly along the preferred direction [17], 
[18]. This coherence-enhancing filtering uses the structure tensor of the initial image 
(in our case the result of the histogram equalization) and a diffusion tensor D. This 
processes is given by an equation of type: 
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where f  is the evolving image, t denotes the diffusion time and D is the diffusion 
tensor.  

The preferred local orientations are obtained by computing the eigenvectors of the 
structure tensor (‘second-moment matrix’) ρJ  [18]. The local contrast along these 
directions is given by the corresponding eigenvalues ( 1µ  and 2µ ). The diffusion 
tensor D of the anisotropic diffusion uses the same eigenvectors as the structure tensor 

ρJ  but its eigenvalues 21, λλ  and the entries of D are computed in as follows [18]: 
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where 10 1 << c  and 02 >c . 
 

Let Tζ  denote the anisotropic diffusion process and T  the total diffusion time. 
The anisotropic diffusion pyramid (ADP) [19] Π  consists of L  levels. The first level 
is the histogram enhance image enhI=Π1  (width 1392=w  and height 1024=h ) and 
each level 1>  is given by 
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where the 4↓  denotes the sub-sampling process which reduce the image size by four 
times (halving the w and h, a scale pyramid with one octave between scale).  

Using the ADP, the edge sharpening properties of anisotropic diffusion can be 
exploited together with the performance of the multiresolution hierarchical process. 
The anisotropic diffusion smooths the objects’ interior and removes the dark holes. 
The gaps are continually filled by going to the coarser levels of the pyramid. 

A resolution level must be selected from this coarse-to-fine representation such 
that the crypts area is accurately delineated and all gaps filled. From experimental 
tests resulted that the 4th level ( 174=w , 128=h ) (critical level) is the maximum 
level of the pyramid which offers the minimum details to extract relevant information 
(Fig. 1c and Fig. 5b). 

3.2 MSER for Epithelial Area Detection 

In Fig. 1c and Fig. 5b the bright round areas represent the epithelial regions and the 
interstitial details were spread out between crypts. Due to the anisotropic diffusion, 
the pixels intensities in the middle of the “donut” decreased because of the small 
holes. Although the histogram equalization has been applied for image contrast 
enhancement, the global or adaptive threshold will not offer stable results. 

All thresholds are checked and the connected components are extracted judging 
their change in area in the maximally stable extremal region (MSER) algorithm [20]. 
The MSERs are regions that are either darker (MSER-) or brighter (MSER+) than 
their surroundings and are stable according to a stability criterion across a range of 
thresholds on the intensity function.  

A threshold application on the 4th level of ADP gives the binary image tB . The 
regions in the binary images became smaller by ranging the threshold form 1 to 256 
(for 8 bit images). Let )( t

iRΨ  defines the stability based on the area change of region 
t
iR  from the image tB  obtained with threshold t : 
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where ∆  ( 15=∆  in our experiments) is the stability range parameter and ⋅  gives the 

region area. The regions ∆−
′
t
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∆+
′′

∆−
′ ⊃⊃ t

i
t
i

t
i RRR . A region t

iR  is MSER+ if it has the following properties: 
- extremal, i.e., all pixels inside the connected region are strictly brighter than the 

surrounding ones. 
- stable, i.e., its area changes only slightly with the change of the threshold t  

(across 1*2 +∆  thresholds). 



- maximally stable, i.e., )( t
iRΨ  has a local minimum at t . 

The advantage of using the MSER is given by the lack of a global or adaptive 
threshold. All thresholds are tested and the stability of the connected components 
evaluated. If multiple stable thresholds exist then a set of nested regions is obtained 
per object. In this case the output of the MSER detector is not a binary image.  

The round dark channel within the ‘donut’ causes the MSER to produce more than 
one stable region per crypt, but they are nested. Since we are interested in only one 
region per crypt, the final binary result is obtained by considering the union of all 
MSERs. 
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where T  is the set of thresholds values for which a MSER has been found and tΜ  
contains the MSERs for the threshold t . 

This approach has been chosen also for its preference for round regions [8] given 
by the affine-invariant property [20]. The regions in Fig. 1c and Fig. 5b are 
homogeneous regions with distinctive boundaries; high detection accuracy especially 
in these situations has also been concluded in [21]. 

In case of using the pyramid in image segmentation, the proper reconstruction of 
the regions found on the top levels must be done by analysing the finer lower levels of 
the hierarchy where more details are present. In our anisotropic diffusion pyramid this 
is not required due to the anisotropic filtering which preserves (and even enhance) the 
boundaries between the epithelial areas and stroma. 

The borders of the MSERs+ delimit the epithelial areas and actually represent the 
outer border of the crypt (the green curves in Fig. 3a). The segmentation produces 
false positive (FP) results in which two close crypts are detected as a single region 
(regions A and B in Fig. 3a); the crypts in this situation are rechecked and split in 
Section 4.1. 

 

 
Fig. 3. a) The green curves delimit the epithelial regions and the red lines split the FP results 

with two close crypts. b) The crypts and the lumens boundaries are depicted in green. In case of 
two touching crypts the blue line connects the lumens’ centroids and the red lines separate the 
crypts by connecting the two concave points with the middle of the centroids line. 

b) a) 

A 
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4 Crypts separation and lumen detection 

The anisotropic filtration can shrink or even totally fill the lumen; in these cases 
the MSER- is not able to give good results and MSER+ is unstable. Before 
performing the lumen detection, the touching crypts segmented as a single region in 
Section 3.2 are split by considering their geometrical features. 

4.1. Crypts separation 

The split of the crypts from a FP result (e.g., regions A, B in Fig. 3a) is made by 
considering the round-like shape, the size and the concavities near the separation area. 
The FP results are concave regions and the concavities of these regions give critical 
information about how the crypts can be separated. 

For each region iG  obtained by MSER+, the convex hull i
convexG  can be 

computed. Considering the round shape of the crypt we expect that ii
convex GG = . This 

is true for the true positive results but for the FP results the difference between the 
convex hull and the concave region 0≠− ii

convex GG  offers two regions 1C  and 2C  
on both sides of the crypts (depicted with blue in Fig. 4a). These concavities can be 
approximated with two triangles and their apexes indicate the entrance into the thin 
separation area between the two crypts. The separation line is determined by the 
points 11

CpC ∈  and 22
CpC ∈  such that the distance ),(

11 CC ppd  is minimum (pink 
line in Fig. 4a. This is a rough separation used for detecting the proper lumen per 
crypt. 

 
 

4.2. Lumen detection 

The lack of cytokeratins in the cell nuclei produces the dark regions considerable 
smaller than the lumen. Three intensity classes exist within a found region (from 
Section 3.2) corresponding to the background and the noisy pixels (lowest intensities), 
weak cytokeratins binding and strong cytokeratins binding. These classes are detected 
using the k-means clustering [13]. The cluster with the lowest values contains the 
pixels from the lumen and the small dark holes corresponding to the nuclei (Fig. 4b). 
The proper region Lr  for lumen is selected by considering its size bigger than the 
nuclei: 

b) a) 

Fig. 4. a) The pink line approximately 
separates the crypts. b) The cluster with 
the lowest values contains the lumens 
(green regions connected by the blue line) 
and the white regions; the separation line 
connects the middle of this line with the 
two concave points.  

Nuclei  positions 
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where )A(⋅  returns de area of a region, N denotes the number of regions from the 
lowest cluster and mina  is the minimum area of a lumen region. The Fig. 4b shows 
the regions from the lowest cluster (white) and the selected regions as lumen (green). 

The set of pixels on which k-means is applied is very important. E.g., in [3], the 
hematoxylin-and-eosin images are used for glands detection. The pixels are first 
quantized into a number of clusters and the cluster corresponding to epithelial layer is 
further processed in the proposed technique. In our case, even though the image was 
enhanced so that the intensities are better distributed on the image, the k-mean 
clustering of the entire image doesn’t guarantee good results. Instead, the pixels from 
the small regions found in Section 3.2, which cover one or two crypts, are 
successfully classified into the proper three clusters. 

Even though the exact crypt delineation is not needed (more arguments in Section 
5), the separation line can be better approximated by considering the band width of 
the crypts. By connecting the middle of the centroids line with the concave points 
found in Section 4.1, a better crypt separation is obtained (Fig. 4b, Fig. 3b). Having 
better crypt segmentation might enable computing new statistics per crypt once 
additional markers are used, i.e., percentage of proliferating cells per crypt when 
staining with a proliferation marker (Ki67). 

5 Results 

The main issue is to segment the epithelial layer by detecting the area covered by 
crypts; in the case of two touching/very close crypts the outer boundaries detected in 
3.2 delimit the epithelial cells. An exact segmentation of the pixels within this area is 
not really necessary, but the number of crypts must be accurately found since it may 
be used in computing statistics about crypts distribution within colon tissue. We tested 
the proposed segmentation technique on different datasets of images from CK-8 
labelled tissue sections; some results are show in Fig. 3b, Fig. 5a and Fig. 6. 
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Fig. 5. a) The crypts and the lumens boundaries are depicted in green; the red lines separate the 
touching crypts. b) The image from the 4th level of the ADP, up sampled for better 
visualization. 

 
A more rigorous evaluation must be done by comparing the results against the 

ground truth segmentations. Since a database with reference segmentations for this 
type of images does not yet exist, a human expert has been asked to manually create a 
set of ground truth segmentations (GTS). The performance of the algorithm is 
established by determining how far the obtained segmentation is from the GTS. 

The measures precision (P), recall (R) and accuracy (A) [22] are widely used to 
characterize the agreement between the region boundaries of two segmentations 
because they are sensitive to over- and under-segmentation. These measures are 
defined using the true positive (TP), true negative (TN), FP and false negative (FN). 
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The following results have been obtained by comparing the segmentation of more 
than 450 crypts: 952.0=P , 944.0=R  and 947.0=A . The results confirmed that the 
proposed method could efficiently segment the epithelial area with a high accuracy. 
Since this evaluation is influenced by the accuracy of the crypt boundaries drawn by 
the expert, a more suitable approach to properly quantify the performance of the 
algorithm is still a challenge. 
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Fig. 6. The crypts and the lumens 
boundaries are depicted in green; the red 
lines separate the touching crypts. 
In a) the bright spots (regions A and B) 
were correctly included in the crypt 
region. 
In b) region C indicates an artefact 
overlapping the crypts but eliminated due 
to ADP. Region D is a case FP 
segmentation. 



6 Conclusions 

A new automatic technique for robust crypt segmentation based on anisotropic 
pyramid and stable regions is presented in this paper. The ADP is used to highlight 
the crypt positions and the MSER algorithm segments the critical level where only the 
important information persisted. The k-means clustering is used to identify the lumens 
and the geometrical information is used to split the touching crypts. 

The developed segmentation method allows automated assessment of crypts in 
microscopic images from colorectal tissue sections. Areas of epithelium and stroma 
are properly identified across a statistically relevant image dataset. The developed 
technique can be used to assess the areas of epithelium and stroma and their ratios in 
large tissues sections. The information provided by these measurements allows a 
better understanding of epithelium-stroma interactions in colon tissue, as well as to 
confirm the existing qualitative knowledge with new quantitative measurements. 

This technique uses a coarser-to-fine approach and can be easily extended on any 
image with epithelial area from different tissues types (e.g., prostate, breast or lung) 
but also in any other field in which the objects of interest have the features considered 
in designing this method. This study will be continued by analysing the topological 
properties of the graph associated to the tissues components. Considerable effort will 
be spent to obtain a database with ground-truth segmentations and to find rigorous 
evaluation criteria of the results. 
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