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Abstract. We present a framework for segmentation
of human teeth contours in dental radiographs. As
all humans share the same tooth structure, but show
variation in size and morphology, these variations
can be modelled using statistical methods. Therefore
we propose “Active Shape Models” (ASM) as seg-
mentation approach. ASM are flexible, statistically
based models which iteratively move toward struc-
tures in images similar to those on which they were
trained in advance and consist of a set of correspond-
ing landmarks. Each landmark represents a part
of the tooth’s boundary to be located. The training
phase of our proposed framework incorporates noise
removal, manual segmentation of training images,
solving the correspondence problem, aligning the set
of training images, and capturing its statistics. For
image interpretation, the model of the tooth is placed
into the target image. The model parameters are then
iteratively adjusted to move the landmarks closer to
the contour of the tooth to be segmented. Constraints
are applied so that the overall tooth shape to be seg-
mented cannot deform more than the teeth seen in the
corresponding training set. Our proposed framework
is evaluated using a set of intra-oral dental radio-
graphs containing 60 molars and 70 premolars from
24 patients (22 female, 2 male), taken over a period
of ten years.

1. Introduction

The Department of Oral Surgery of the Bernhard
Gottlieb University Clinic for Dentistry (BGUCD)
at the Medical University Vienna (MUV) performs
more than 25001 oral surgery procedures every year.
Priorities of the surgical timetable are autotransplan-
tations (“auto” from the Greek meaning for “self”),
where the tooth to be transplanted is taken from the
same person. In order to determine within the pre-
grafting state, which tooth suits best as a donor, and
to predict the risk that the grafted tooth will get
lost within the post-grafting state, measurements at
the dental radiographs of the relevant tooth are per-
formed. As up to now no software exists, which is
capable of performing these measurements, they are
done manually (see Fig. 1).

Different approaches for segmenting teeth within
dental radiograms have been presented in scientific
literature so far. In [33], Nomir and Abdel-Mottaleb
make use of integral projection. Barboza et al. adopt
in [2, 3] a semi-automatic algorithm based on Image
Foresting Transform (IFT). The IFT (introduced by
Falcão et al. in [17]) defines a robust minimum-cost
path in a graph given a set of seed pixels which are
the roots of a forest in which the region growth starts.

1The number of oral surgery procedures is taken from the
homepage of the Department of Oral Surgery.
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(a) maxillary molar (b) mandibular molar

Fig. 1: Examples of performing manual measure-
ments on dental radiographs containing molars in the
upper jaw (“Maxilla”) and lower jaw (“Mandible”).

The method recommended by Lin et al. in [25]
consists of four stages: image enhancement using an
adaptive power law transformation, singularity anal-
ysis using local Hölder exponent, tooth recognition
using Otsu’s threshold, connected component anal-
ysis, and tooth delineation using morphological op-
erations. Morphological operations are also used by
Said, Nassar, and Fahmy in [38].

The teeth segmentation pipeline proposed by Fre-
jlichowski and Wanat in [18] consists of three stages:
it starts with a morphological opening in order to re-
duce the noise and to create larger areas of similar
intensity range. Afterwards, entropy filtering is ap-
plied to detect edges of similar areas. Finally, an iter-
ative watershed region growing constrained by ridge
information (see [6] for more details) is done.

Chen and Jain contribute two approaches: In [5]
they use Gaussian mixture models (GMM), while
in [4] generalized fast marching methods (GFMM)
are used. GFMM are special cases of level sets and
were introduced by Sethian in [40].

By looking at the papers published so far, it can
be concluded that the vast majority uses graph-based
and/or morphology-based methods. A drawback that
all these methods have in common is that due to
noise and artefacts within the image, the segmenta-
tion results may not show any similarities to shapes
of human teeth at all. This motivates our usage
of “Active Shape Models” (ASM) as segmentation
approach. ASM, introduced by Cootes and Taylor
in [9], are flexible, statistically based models, which
iteratively move toward structures in images simi-
lar to those on which they were trained in advance.
Their application to medical images is shown e. g.
in [1, 8, 11, 19, 21, 22, 34, 36, 41, 44].

Overview and contribution. Within this paper we
present our proposed teeth segmentation framework
consisting of noise reduction, building ASM for mo-
lars and premolars using corresponding landmarks
on training images, and searching for teeth in tar-
get images. Our framework can be used either with
MATLAB R© or GNU Octave.

Within Sec. 2, the medical basics concerning hu-
man teeth are presented in a compact manner. Sec. 3
explains our proposed teeth segmentation framework
in detail, while the achieved results are presented and
discussed in Sec. 4. In Sec. 5, we sum up the conclu-
sions we achieved and address future enhancements.

2. Anatomy of human teeth

According to the definition given by Marcovitch
in [27], human teeth are mineralised organs im-
planted in the jaw, where their visible parts emerge
from the bone. The human dentition consists of 20
primary teeth and 32 permanent teeth, which can be
classified in incisors, canines, premolars, and molars.
Each human tooth has a crown and a root portion.
The root portion of the human tooth is implanted
into the alveolar jawbone through the periodontal lig-
ament, also called periodontal membrane, and the
gum (“Gingiva”), as Nelson explains in [31]. The
segmentation is done at this transition between the
tooth and its surrounding gingivial tissue, which has
a size of 2-4 mm, according to Newman et al. in [32].

3. Teeth Segmentation Framework

ASM consists of a sequence of landmarks, each
representing corresponding points between similar
shapes. During training, a model for molars and pre-
molars is built using the statistics of landmark points
within a set of training images. For image interpre-
tation, the model of the tooth to be segmented, is
placed into the target tooth image. The tooth model
parameters are then iteratively adjusted to move the
landmarks closer to the contour of the tooth to be seg-
mented. Constraints are applied so that the overall
tooth shape cannot deform more than the teeth seen
in the corresponding training set.

3.1. Training phase

The training phase of our proposed teeth segmen-
tation framework incorporates five steps: removing
the impulsive noise, manual segmentation of training
images, solving the correspondence problem, align-
ing the training images, and capturing its statistics.
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Impulsive Noise Reduction. The dental radio-
graphs we use for training our proposed teeth seg-
mentation framework are analogue X-ray films that
were scanned by means of a charge-coupled device
(CCD) based X-ray image scanner. This conversion
introduces impulsive noise, which appears as random
patterns of light and dark pixels (“Salt-and-pepper
noise”). Median filtering is used in digital image
processing, because it preserves edges while remov-
ing impulsive noise. Lin states in [26] that his pro-
posed Adaptive Centre Weighted Median (ACWM)
filter “outperforms eight well-accepted alternative
median-based filters in terms of both noise suppres-
sion and detail preservation. It also provides excel-
lent robustness at various percentages of impulsive
noise.” Therefore we use his proposed ACWM filter
in order to reduce the impulsive noise in our training
images.

Segmentation of Training Images. To speed up
the manual segmentation of the training images, we
utilise an interactive graph-based image segmenta-
tion technique called “Intelligent Scissors”, proposed
by Mortensen and Barrett in [29, 30]. The under-
lying mechanism for Intelligent Scissors is the “Live-
Wire” path selection tool. The Live-Wire tool allows
the user to interactively select the optimal boundary
from a source pixel to a target pixel. To minimise
user interaction, seed points are generated automati-
cally along the current active boundary segment via
“boundary cooling”. Boundary cooling occurs, when
a section of the current portion of the boundary has
not changed recently and consequently “freezes”, de-
positing new seed points, while continuing the opti-
mal boundary expansion.

Solving the Correspondence Problem. After the
manual segmentation of the teeth contours, a prob-
lem arises when a set of sample points has to be cho-
sen that is placed exactly at corresponding locations
within the training set. This problem is known as
“correspondence problem”, and is discussed e. g. by
Kotcheff and Taylor in [24] and Davies et al. in [15].
One way of solving the correspondence problem is
using anatomical landmarks. Kotcheff and Taylor
point out in [24] that this manual process is slow, in-
troduces an operator bias and – especially in medi-
cal applications – requires expert knowledge of the
anatomical structures being dealt with. These prob-
lems motivate our search for a method that is capable
of solving the correspondence problem without any
user intervention.

We use the approach proposed by Davies et al.
in [15, 16], which incorporates the Minimum De-
scription Length (MDL) principle (introduced by
Rissanen in [37]), for finding pseudo-landmarks au-
tomatically within our ns manually segmented train-
ing images.

Aligning a Set of Training Images. In order to be
able to compare training shapes containing an equal
number of pseudo-landmarks, it is important that the
shapes are represented in the same coordinate frame,
as Cootes et al. point out in [12]. Therefore, the
shapes have to be aligned with respect to a set of
axes, in order to remove any kind of variation, which
could be attributable to the allowed global transfor-
mation. We solve this problem by minimising a
sum of squared differences between corresponding
pseudo-landmarks on different shapes, which corre-
sponds to a Generalised Procrustes Analysis (GPA)
as proposed by Gower in [20], and define xi as vector
containing nlm pseudo-landmarks of the i-th tooth in
the training set X such that

xi = (xi1, xi2, . . . ,xik, . . . , xinlm
,

yi1, yi2, . . . ,yik, . . . , yinlm
)T .

(1)

When two shapes xi and xj have to be aligned
(xi, xj ∈ X), GPA determines a linear transforma-
tion of the landmarks in xj to best conform to the
landmarks in xi. More formally, GPA aligns two
shapes by choosing a rotation θ, a scale s, and a trans-
lation t = (tx, ty)

T , mapping xj onto xi, so that the
resulting dissimilarity measure

D =

nlm∑

k=1

(([xik
yik

]
−M(s, θ)[xjk]− t

)

( [xik
yik

]
−M(s, θ)[xjk]− t

)T
) (2)

is minimised, where

M(s, θ)

[
xjk
yjk

]
=

(
xjkax − yjkay
xjkay + yjkax

)
, (3)

ax = s cosθ,

ay = s sinθ.
(4)

Computing the derivatives of D shown in Eq. 2 wrt.
tx, ty, ax, ay leads us to A, a set of four linear equa-
tions, such that

A =




B1 −B2 nlm 0
B2 B1 0 nlm
B3 0 B1 B2

0 B3 −B2 B1







tx
ty
ax
ay


 =




C1

C2

C3

C4


 ,

(5)
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where

B1 =

nlm∑

k=1

xik, B2 =

nlm∑

k=1

yik, B3 =

nlm∑

k=1

(x2ik + y2ik),

C1 =

nlm∑

k=1

xjk, C3 =

nlm∑

k=1

(xikxjk + yikyjk),

C2 =

nlm∑

k=1

yjk, C4 =

nlm∑

k=1

(xikyjk − yikxjk).

(6)

As long as the set of four linear equations shown in
Eq. 2 has a non-singular matrix (det(A) 6= 0), it can
be solved using standard matrix methods resulting in
a single unique solution for tx, ty, ax, ay. We use
an iterative approach for aligning all training shapes
within X . It consists of four steps:

1. ∀x ∈ X: align xi with current x̄.

2. re-calculate x̄ using Eq. 7.

3. align current x̄with initial x̄, set current |x̄| = 1.

4. dx̄ = current x̄ − previous x̄.

Our iterative approach is repeated until dx̄ drops un-
der a predefined threshold or the maximum number
of iterations is reached.

Capturing the Training Images Statistics. After
alignment, all training images are centred and share
a common coordinate frame. But one problem re-
mains: each landmark within the training set forms a
cloud of corresponding points in a 2nlm-dimensional
space. To simplify this problem, we apply Principal
Component Analysis (PCA) on the aligned shapes in
order to reduce their dimensionality. Therefore we
calculate the mean shape vector x̄ such that

x̄ =
1

ns

ns∑

i=1

xi (7)

and determine the covariance matrix S such that

S =
1

ns

ns∑

i=1

(xi − x̄)(xi − x̄)T . (8)

Now PCA can be applied on S, resulting in pk
(k = 1, 2, . . . , 2nlm) eigenvectors of S such that

Spk = λkpk, (9)

where λk is the kth corresponding eigenvalue of S
(sorted so that λk ≥ λk+1).

In order to reduce the dimensionality of the data,
the number of eigenvectors (and their corresponding
eigenvalues) has to be reduced. Using the fact ad-
dressed by Johnson and Wichern in [23] that the vari-
ance explained by each eigenvector is equal to the
corresponding eigenvalue, the total variance σ2 is the
sum of all eigenvalues, λT such that

σ2 =

2nlm∑

k=1

λk. (10)

We choose t, the number of eigenvalues to retain,
such that

t∑

i=1

λi ≥ fvσ2, (11)

where fv defines the proportion of the total vari-
ance of the training shapes that shall be explained
(e. g. 95.45%, which is equivalent to ±2σ standard
deviation of σ2).

When new shapes are created using the statistics
captured above, it is worth noticing that precautions
have to be taken in order to ensure that they are sim-
ilar to the shapes already present within the training
data. Cootes et al. name this in [12] as “creating new
allowable shapes” or “producing plausible shapes”
that lie within the Allowable Shape Domain (ASD)
of the training data. Any shape within the ASD can
be approximated by taking x̄ and adding a linear
combination of the first t eigenvectors multiplied by
a vector of weights such that

xnew ≈ x̄+ Ptbt, (12)

where Pt = (p1; p2; . . . ; pt) is a matrix of the
first t eigenvectors, and bt = (b1, b2, . . . , bt)

T a t-
dimensional vector of weights.

3.2. Image Interpretation

Having generated ASM for molars and premolars,
we can use them to segment examples of teeth within
dental radiographs. This involves - after removing
the impulsive noise from the target image, which
is done using our proposed ACWM filter - finding
shape, scale, and pose parameters which cause the
tooth model to coincide with the structures of inter-
est in the dental radiograph containing the tooth to
be segmented. According to the definition given by
Cootes et al. in [12], an instance of the tooth model
is given by

X = M(s, θ)[x] +Xc, (13)
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Fig. 2: Part of a model boundary created by connect-
ing the model points (landmarks) approximating to
the edge of an image object (Fig. courtesy of [12]).

where M(s, θ)[x] is a scaling by s and a ro-
tation by θ as defined in Eq. 3, and Xc incorpo-
rates the position of the centre of the correspond-
ing tooth model in the image frame such that Xc =
(xc1, xc2, . . . , xcns , yc1, yc2, . . . , ycns)

T . We use an
iterative approach for refining the shape, scale, and
pose parameters in order to give a better match to the
tooth to be segmented. It consists of three steps:

1. Examine a region around each landmark to cal-
culate the displacements in order to move the
landmarks closer to the boundary of the tooth.

2. Use these proposed displacements to calculate
adjustments to the shape, scale, and pose para-
meters of the tooth model.

3. Update the tooth model parameters. By enforc-
ing limits on the shape parameters, global shape
constraints can be applied ensuring that the cur-
rent instance of the tooth model cannot deform
more than the teeth seen in the corresponding
training set.

Our iterative approach is repeated until either the
Sum of Squared Errors (SSE) between the current
and the previous instance of the model drops under
a predefined threshold or the maximum number of
iterations is reached.

Move landmarks closer to the boundary. To start
the segmentation process, the user has to place an es-
timation of the mean shape vector x̄ within the den-
tal radiograph containing the tooth to be segmented,
which leads to an initial situation similar to the one
shown in Fig. 2. As the pseudo-landmarks within an
ASM represent the boundaries of image objects, they
have to be moved towards the contour of the tooth to
be segmented in order to give a better match within

Fig. 3: Suggested movement dX of a model point
along a normal to the boundary proportional to the

edge strength (Fig. courtesy of [12]).

the next iteration. In the examples Cootes et al. men-
tion in [12], they use an adjustment perpendicular
to the model boundary toward the strongest image
edge, with a magnitude proportional to the strength
of the edge, as illustrated in Fig. 3. This approach re-
sults in a vector of adjustments, dX , such that dX =
(dX1, dX2, . . . , dXnlm

, dY1, dY2, . . . , dYnlm
)T .

Calculate adjustments of model parameters. Ad-
justing the scale and pose parameters of the tooth
model means moving the landmarks from their cur-
rent locations X to the suggested better locations
X+dX . If we assume thatX , the current instance of
the tooth model, is centred at Xc with orientation θ
and scale s, a set of residual adjustments dx in the lo-
cal tooth model coordinate frame can be achieved by
finding a translation dXc, a rotation dθ, and a scaling
factor 1 + ds, which best map the landmarks from X
to X + dX using Eq. 2-6 such that

X + dX = M(s(1 + ds), (θ + dθ))[x+ dx]

+ (Xc + dXc).
(14)

Inserting Eq. 13 in Eq. 14, eliminating the term
Xc, and moving the term dXc to the left results in

M(s, θ)[x] + dX − dXc =

M(s(1 + ds), (θ + dθ))[x+ dx],
(15)

and since M−1(s, θ)[. . .] = M(s−1,−θ)[. . .] holds,
we obtain

dx = M((s(1 + ds))−1,−(θ + dθ))[y]− x, (16)

where y = M(s, θ)[x] + dX − dXc. It can be con-
cluded that these adjustments to pose and scale pa-
rameters will never be optimal, leaving residual ad-
justments which can only be satisfied by deforming
the shape parameters.
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However, it has to be ensured that the tooth model
only deforms into shapes consistent with the train-
ing set. In order to apply these shape constraints, we
transform dx into the parameter space of the model
(“tangent space”). This transformation is needed, be-
cause dissimilarities between two shapes are not eu-
clidean within the parameter space and therefore can-
not be isometrically embedded in a euclidean space,
as Wilson et al. point out in [45]. The mapping to
tangent space results in db, the changes in model pa-
rameters required to adjust the landmarks as closely
to dx as allowed. Using Eq. 12, we wish to find db
such that

x+ dx ≈ x̄+ Pt(bt + db). (17)

Substracting Eq. 12 from Eq. 17 gives

dx ≈ Ptdb. (18)

As the columns of Pt are orthonormal, we are able
to calculate P Tt = P−1t using the Moore-Penrose
pseudo-inverse ([28, 35]), and finally achieve

db ≈ P Tt dx. (19)

Update the model parameters. Eq. 16 allows us to
calculate changes and adjustments dXc, dθ, and ds,
to the scale and pose parameters. Applying Eq. 19,
we achieve the updates to the shape parameters db, to
adjust the landmarks as closely to dx as allowed. We
apply these changes and adjustments in an iterative
scheme, such that

Xc = Xc + wtdXc,

θ = θ + wθdθ,

s = s(1 + wsds),

bt = bt +Wbdb,

(20)

where wt, wθ, and ws are scalar weights, whileWb is
a diagonal matrix of weights consisting of one weight
for each mode, where we choose each weight such
that it is proportional to the standard deviation of the
variance of its corresponding shape parameter. This
allows faster adjustments in modes showing larger
shape variations, as Cootes et al. propose in [12].
In order to ensure that the tooth model only deforms
into shapes consistent with its training set, we place
limits on the values of bt such that we consider a new
shape unacceptable, if the Mahalonobis distance Dm

from x̄ is greater than Dmax, such that

Dm =

√√√√
t∑

k=1

(
b2t
λk

)
> Dmax. (21)

In such a case, bt has to be rescaled in order to pro-
duce a plausible shape using

b′t = bt

(
Dmax

Dm

)
. (22)

Finally, after the scale, pose and shape parameters
have been updated, and limits applied where neces-
sary, we move the landmarks from their current loca-
tions to the suggested better locations.

4. Results and Discussion

As the development of the segmentation frame-
work that we propose in Sec. 3 is still ongoing due
to erroneous results we achieve after calculating the
adjustments of the model parameters, we present the
results that we obtained so far. The results are evalu-
ated using a set of intra-oral dental radiographs con-
taining 60 molars and 70 premolars from 24 pa-
tients (22 female, 2 male), taken over a period of
ten years [39], which were scanned using a resolu-
tion of 300 dots per inch (dpi) and stored as JPEG-
compressed images with a bit depth of 8 bits.

(a) (b)

(c) (d)

Fig. 4: Dental radiograph of a premolar. The red
highlighted areas are zoomed in order to show the
amount of impulsive noise present before (a, b) and

after filtering (c, d).

Impulsive Noise Reduction. Fig. 4 shows the re-
sults of applying impulsive noise reduction using
our proposed ACWM filter with five adaptive centre
weights and a median filter incorporating a 5-by-5
neighbourhood on a dental radiograph of a premolar.
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To evaluate the performance of our ACWM filter,
we calculate the mean structural similarity (MSSIM)
between the original and the de-noised dental ra-
diograph. The results we achieve can be found in
Tab. 1. The definition and a detailed explanation of
MSSIM are given by Wang et al. in [43]. We expect
our ACWM filter to perform comparable on molars
and premolars (null hypothesis, H0). Running a two-
tailed Welch t-test with α = 0.05 on our achieved
MSSIM values gives p = 2.287−06. Therefore we
reason that the performance of our proposed ACWM
filter is significantly lower on molars. Whether this is
due to the different anatomical structure or if another
filter parametrisation would have given better results
was not evaluated further.

MSSIM
Min. Median Mean Max.
[1] [1] [1] [1]

Molar 0.5619 0.7247 0.7414 0.9059
Premolar 0.5973 0.8332 0.8181 0.9267

Tab. 1: Comparison of the MSSIM values we achieve
applying our proposed ACWM filtering procedure.

Fig. 5: Screenshot captured during segmentation of a
premolar. The segmentation was started at the tip of
the premolar and moved upwards in counter-clock-
wise direction. The green part of the boundary con-
sists of seed points that are already “frozen”, while
the red part shows the current active boundary seg-

ment proposed by the Live-Wire tool.

Segmentation of Training Images. We use the
implementation of the Live-Wire tool published by
Hamarneh2 et al. in [7] for segmenting the teeth
needed to train our proposed teeth segmentation
framework. Fig. 5 shows a screenshot captured dur-
ing manual segmentation of a premolar.

Solving the Correspondence Problem. We use the
MDL implementation published by Thodberg in [42]
for solving the correspondence problem. We achieve
a sequence of nlm pseudo-landmarks placed at cor-
responding positions within the ns training shapes,
whose arc lengths along the contour are normalised
to run from zero to one and whose centres of origin
are moved to their respective centres of gravity.

nlm, [1] nIter, [1] D, [1]

Molar
64 3 2.265-06

128 3 2.257-06

256 3 2.265-06

Premolar
64 2 2.429-06

128 2 2.545-06

256 2 2.515-06

Tab. 2: Comparison of the alignment iterations and
the dissimilarity measure D we achieve after apply-

ing our proposed shape alignment procedure.

(a) Molars, before alignment (b) Molars, after alignment

(c) Premolars, before alignment (d) Premolars, after alignment

Fig. 6: 60 molar and 70 premolar shapes (with 64
landmarks each) before (left) and after (right) apply-

ing our proposed shape alignment procedure.

2Hamarneh’s Live-Wire implementation for MATLAB R© is
available for download at http://tinyurl.com/osdkr5h/.
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Aligning a Set of Training Images. The alignment
of the images needed for training our proposed teeth
segmentation framework is done using the GPA ap-
proach discussed in Sec. 3. It can be concluded by
looking at the results we achieve in Tab. 2 and Fig. 6
that our approach is not only fast (it does not need
more than three iterations), but also produces accu-
rately aligned shapes (D ≤ 2.75−06).

λk
nlm = 64, nlm = 128, nlm = 256,

[%] [%] [%]
1 57.338 57.375 57.391
2 15.348 15.305 15.281
3 8.666 8.675 8.674
4 6.651 6.677 6.666
5 3.184 3.172 3.174
6 1.727 1.720 1.721
7 1.470 1.469 1.475
8 0.830 0.826 0.825
9 0.683 0.688 0.691∑
λk 95.897 95.907 95.898

(a) Molars

λk
nlm = 64, nlm = 128, nlm = 256,

[%] [%] [%]
1 43.111 43.026 43.082
2 27.793 27.804 27.757
3 8.316 8.373 8.366
4 4.374 4.371 4.363
5 2.978 2.975 2.969
6 2.665 2.674 2.675
7 1.824 1.825 1.830
8 1.683 1.669 1.667
9 1.094 1.090 1.089
10 0.858 0.857 0.858
11 0.626 0.624 0.627
12 0.573 0.578 0.577∑
λk 95.895 95.866 95.861

(b) Premolars

Tab. 3: Percentage of the variance explained by each
λk in order to reach 95.45% of the total variance of
the captured statistics of 60 molar shapes (above) and
70 premolar shapes (below) containing 64, 128, and

256 pseudo-landmarks.

Capturing the Training Images Statistics. In order
to reduce the dimensionality of our training shapes,
we capture the image statistics using PCA, as dis-
cussed in Sec. 3.

It can be concluded by looking at the results in
Tab. 3 that we achieve a huge data compression,
as we just need nine eigenvectors in order to reach
95.45% of the total variance of the captured statis-
tics for molars. For premolars, we need only twelve
eigenvectors (and their corresponding eigenvalues).

5. Conclusion and Future Work

We presented a framework for segmentation of hu-
man teeth contours in dental radiographs using ASM
as segmentation approach. We showed the neces-
sary steps to build an ASM (removing the impul-
sive noise, manual segmentation of training images,
solving the correspondence problem, aligning the set
of training images, and capturing its statistics). Us-
ing our set of dental radiographs containing 60 mo-
lars and 70 premolars, we achieved a MSSIM of
0.7414 for molars and 0.8181 for premolars using
our proposed ACWM filter. We searched for 64, 128,
and 256 corresponding pseudo-landmarks within the
manually segmented training images. Aligning them
using our proposed GPA approach took three itera-
tions at maximum and produced accurately aligned
shapes (D ≤ 2.75−06). Finally, we were able to re-
duce the dimensionality of our training images by ap-
plying PCA, which resulted in nine remaining eigen-
vectors for molars and twelve for premolars, in order
to reach 95.45% of the total variance of the captured
statistics.

For image interpretation, we explained in a the-
oretical manner how to find shape, scale, and pose
parameters, which cause an ASM to coincide with
the structures of interest in the dental radiograph con-
taining the tooth to be segmented, as this part of our
framework is still in development. Finishing this task
has top priority on our list of additions that are fore-
seen in the future. As soon as image interpretation
is working as expected, we plan to incorporate the
statistics of local grey levels in regions around each
pseudo-landmark. More details regarding local grey
levels can be found in [10, 14]. We also consider
to enhance our ASM implementation with a multi-
resolution approach using image pyramids similar to
the one described by Cootes et al. in [13].

Acknowledgements

We would like to thank Dr. Georg D. Strbac from
the Department of Oral Surgery of the BGUCD at
the MUV for providing the set of dental radiographs
used within this paper.

18



References
[1] P. D. Allen, J. Graham, D. J. J. Farnell, E. J. Harri-

son, R. Jacobs, K. Nicopolou-Karayianni, C. Lindh,
P. F. van der Stelt, K. Horner, , and H. Devlin.
A Generalized Inverse for Matrices. IEEE Trans-
actions on Information Technology in Biomedicine,
11(6):601–610, November 2007. 2

[2] E. B. Barboza and A. N. Marana. A Multibiomet-
ric Approach in a Semi Automatic Dental Recogni-
tion Using DIFT Technique and Dental Shape Fea-
tures. In H. Lopes and N. Hirata, editors, Workshop
of Theses and Dissertations (WTD) within the 25th

Conference on Graphics, Patterns and Images (SIB-
GRAPI ’12), pages 13–18. SBC, August 2012. 1

[3] E. B. Barboza, A. N. Marana, and D. T. Oliveira.
Semiautomatic Dental Recognition Using a Graph–
Based Segmentation Algorithm and Teeth Shapes
Featuress. In A. K. Jain, A. Ross, S. Prabhakar, and
J. Kim, editors, Proceedings of the 5th IAPR Inter-
national Conference on Biometrics (ICB ’12), pages
348–353. IEEE Press, March/April 2012. 1

[4] H. Chen. Automatic Forensic Identification based
on Dental Radiographs. PhD thesis, Michigan State
University, East Lansing, MI, USA, 2007. 2

[5] H. Chen and A. K. Jain. Dental Biometrics: Align-
ment and Matching of Dental Radiographs. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 27(8):1319–1326, August 2005. 2

[6] L. Chen, M. Jiang, and J. Chen. Image Segmenta-
tion Using Iterative Watersheding Plus Ridge Detec-
tion. In Proceedings of the 16th IEEE International
Conference on Image Processing (ICIP ’09), pages
4033–4036. IEEE Press, November 2009. 2

[7] A. Chodorowski, U. Mattsson, M. Langille, and
G. Hamarneh. Color Lesion Boundary Detection
using Live Wire. In Proceedings of SPIE Medi-
cal Imaging 2005: Image Processing, volume 5747,
pages 1589–1596. SPIE, April 2005. 7

[8] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. The
Use of Active Shape Models for Locating Structures
in Medical Images. Image and Vision Computing,
12(6):355–365, July 1994. 2

[9] T. F. Cootes and C. J. Taylor. Active Shape Mod-
els – “Smart Snakes”. In Proceedings of the 3rd

British Machine Vision Conference (BMVC ’92),
pages 266–275. Springer-Verlag, September 1992. 2

[10] T. F. Cootes and C. J. Taylor. Active Shape Model
Search Using Local Grey–Level Models – A Quan-
titative Evaluation. In Proceedings of the 4th British
Machine Vision Conference (BMVC ’93), pages
639–648. BMVA Press, September 1993. 8

[11] T. F. Cootes and C. J. Taylor. Statistical Models of
Appearance for Medical Image Analysis and Com-
puter Vision. In Proceedings of SPIE Medical Imag-
ing 2001: Image Processing, volume 4322, pages
236–248. SPIE, February 2001. 2

[12] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Gra-
ham. Active Shape Models – Their Training and Ap-
plication. Computer Vision and Image Understand-
ing, 61(1):38–59, January 1995. 3, 4, 5, 6

[13] T. F. Cootes, C. J. Taylor, and A. Lanitis. Multi–
Resolution Search with Active Shape Models. In
Proceedings of the 12th IAPR International Confer-
ence on Pattern Recognition (ICPR ’94), volume 1,
pages 610–612. IEEE Press, October 1994. 8

[14] T. F. Cootes, C. J. Taylor, A. Lanitis, D. H. Cooper,
and J. Graham. Building and Using Flexible Mod-
els Incorporating Grey–Level Information. In Pro-
ceedings of the 4th International Conference on
Computer Vision (ICCV ’93), pages 242–246. IEEE
Press, May 1993. 8

[15] R. H. Davies, T. F. Cootes, and C. J. Taylor. A
Minimum Description Length Approach to Statis-
tical Shape Modelling. In Proceedings of the 17th

International Conference on Information Process-
ing in Medical Imaging (IPMI ’01), pages 50–63.
Springer-Verlag, June 2001. 3

[16] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Wa-
terton, and C. J. Taylor. A minimum description
length approach to statistical shape modelling. IEEE
Transactions on Medical Imaging, 21(5):525–537,
May 2002. 3

[17] A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo.
The Image Foresting Transform: Theory, Algo-
rithms, and Applications. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(1):19–
29, January 2004. 1

[18] D. Frejlichowski and R. Wanat. Extraction of Teeth
Shapes from Orthopantomograms for Forensic Hu-
man Identification. In P. Real, D. Diaz-Pernil,
H. Molina-Abril, A. Berciano, and W. G. Kropatsch,
editors, Computer Analysis of Images and Patterns,
volume 6855 of Lecture Notes in Computer Science,
pages 65–72. Springer-Verlag, 2011. 2

[19] B. van. Ginneken, M. B. Stegmann, and M. Loog.
Segmentation of anatomical structures in chest ra-
diographs using supervised methods: a comparative
study on a public database. Medical Image Analysis,
10(1):19–40, February 2006. 2

[20] J. C. Gower. Generalized Procrustes Analysis. Psy-
chometrika, 40(1):33–51, March 1975. 3

[21] T. J. Hutton, S. Cunningham, and P. Hammond. An
evaluation of Active Shape Models for the automatic
identification of cephalometric landmarks. Euro-
pean Journal of Orthodontics, 22(5):499–508, Oc-
tober 2000. 2

[22] T. J. Hutton, P. Hammond, and J. C. Davenport. Ac-
tive Shape Models for Customised Prosthesis De-
sign. In Proceedings of the 7th Joint European
Conference on Artificial Intelligence in Medicine
and Medical Decision Making (AIMDM ’99), LNAI
1620, pages 448–452. Springer, June 1999. 2

19



[23] R. A. Johnson and D. W. Wichern. Applied Multi-
variate Statistical Analysis. Prentice Hall, 6th edi-
tion, March 2007. 4

[24] A. C. W. Kotcheff and C. J. Taylor. Automatic Con-
struction of Eigenshape Models by Direct Optimiza-
tion. Medical Image Analysis, 2(4):303–314, De-
cember 1998. 3

[25] P. L. Lin, P. Y. Huang, P. W. Huang, H. C. Hsu, and
C. C. Chen. Teeth Segmentation of Dental Periapical
Radiographs Based on Local Singularity Analysis.
Computer Methods and Programs in Biomedicine,
113(2):433–445, February 2014. 2

[26] T.-C. Lin. A new Adaptive Centre Weighted Median
Filter for Suppressing Impulsive Noise in Images.
Information Sciences, 177(4):1073–1087, February
2007. 3

[27] H. Marcovitch. Black’s Medical Dictionary. A&C
Black Publishers, 42nd edition, September 2009. 2

[28] E. H. Moore. On the Reciprocal of the General Alge-
braic Matrix. Bulletin of the American Mathematical
Society, 9(26):394–395, September 1920. 6

[29] E. N. Mortensen and W. A. Barrett. Intelligent Scis-
sors for Image Composition. In Proceedings of
the 22nd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’95), pages
191–198. ACM, December 1995. 3

[30] E. N. Mortensen and W. A. Barrett. Interactive Seg-
mentation with Intelligent Scissors. Graphical Mod-
els and Image Processing, 60(5):349–384, Septem-
ber 1998. 3

[31] S. J. Nelson. Wheeler’s Dental Anatomy, Physiology
and Occlusion. Saunders, 9th edition, June 2009. 2

[32] M. G. Newman, H. Takei, F. A. Carranza, and P. R.
Klokkevold. Carranza’s Clinical Periodontology.
Saunders, 10th edition, July 2006. 2

[33] O. Nomir and M. Abdel-Mottaleb. A System for
Human Identification From X–ray Dental Radio-
graphs. Pattern Recognition, 38(8):1295–1305, Au-
gust 2005. 1

[34] A. D. Parker, A. Hill, C. J. Taylor, T. F. Cootes, X. Y.
Jin, and D. G. Gibson. Application of point distri-
bution models to the automated analysis of echocar-
diograms. In Proceedings of the 21st International
Conference on Computers in Cardiology (CinC ’94),
pages 25–28. IEEE Press, September 1994. 2

[35] R. Penrose. A Generalized Inverse for Matrices.
Proceedings of the Cambridge Philosophical Soci-
ety, 51(3):406–413, July 1955. 6

[36] A. L. Redhead, A. C. W. Kotcheff, C. J. Taylor, M. L.
Porter, and D. W. L. Hukins. An Automated Method
for Assessing Routine Radiographs of Patients with
Total Hip Replacements. Proceedings of the Insti-
tution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, 211(2):145–154, January
1997. 2

[37] J. Rissanen. Modeling by shortest data description.
Automatica, 14(5):465–471, September 1978. 3

[38] E. H. Said, D. E. M. Nassar, and G. Fahmy. Teeth
Segmentation in Digitized Dental X–Ray Films Us-
ing Mathematical Morphology. IEEE Transactions
on Information Forensics and Security, 1(2):178–
189, June 2006. 2

[39] B. Schwinner. Vertical Bone Height and Apex
Growth of Autografted Teeth. Master’s thesis, Medi-
cal University Vienna, Bernhard Gottlieb University
Clinic for Dentistry, Department of Oral and Max-
illofacial Surgery, May 2007. 6

[40] J. A. Sethian. A Fast Marching Level Set Method
for Monotonically Advancing Fronts. Proceedings
of the National Academy of Sciences of the United
States of America, 93(4):1591–1595, February 1996.
2

[41] S. Solloway, C. E. Hutchinson, J. C. Waterton, and
C. J. Taylor. The use of Active Shape Models for
making thickness measurements of articular carti-
lage from MR images. Magnetic Resonance in
Medicine, 37(6):943–952, June 1997. 2

[42] H. H. Thodberg. Minimum Description Length
Shape and Appearance Models. In Proceedings of
the 18th International Conference on Information
Processing in Medical Imaging (IPMI ’03), pages
51–62. Springer-Verlag, July 2003. 7

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Si-
moncelli. Image Quality Assessment: From Er-
ror Visibility to Structural Similarity. IEEE Trans-
actions on Image Processing, 13(4):600–612, April
2004. 7

[44] P. A. Widhalm. Automatic Assessment of the Knee
Alignment Angles on Full-limb Radiographs. Mas-
ter’s thesis, Vienna University of Technology, Insti-
tute of Computer Aided Automation, Pattern Recog-
nition and Image Processing Group, October 2008.
2

[45] R. C. Wilson, E. R. Hancock, E. Pekalska, and
R. P. W. Duin. Spherical and Hyperbolic Embed-
dings of Data. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 36(11):2255–2269,
November 2014. 6

20


	Towards Segmentation of Human Teeth Contours in Dental Radiographs Using Active Shape Models Michael Sprinzl, Walter G. Kropatsch, Robert Sablatnig, Georg Langs

