
Computer Vision Winter Workshop 2009, Adrian Ion and Walter G. Kropatsch (eds.)
Eibiswald, Austria, February 4–6
Publisher: PRIP, Vienna University of Technology, Austria

Combining an Optical Flow Feature Detector with Graph-Based Segmentation

Martin Stubenschrott, Walter G. Kropatsch, and Yll Haxhimusa

Pattern Recognition and Image Processing Group∗

Faculty of Informatics
Vienna University of Technology, Austria
{stuben,krw,yll}@prip.tuwien.ac.at

nt
re
d
re
s
nt
p
n
nd
r

lls

e
-
e
e
d

he
e

g-
e
f

g-
n-
n
th

-
it

b
.
p

n
-

3-

bal
is

ure

o-
s

a.
n,
an

d
i-
ork
n
er
-
n.

o-
en-
ed,

f
c

r-
or
th

ill

o
-
m
lls

h-

.

Abstract Object tracking is the complex task of following
given objects in a video stream. In this work we prese
an algorithm that combines an optical flow based featu
tracker with image color segmentation. The goal is to buil
a feature model and reconstruct feature points when they a
lost due to occlusion or tracking errors. The feature point
are tracked from frame to frame. Additionally, we segme
each frame with the graph-based segmentation method. O
tical flow and segmentation are then combined to track a
object in a video scene. By using this strategy, occlusion a
slight rotation or deformation can be handled. The tracke
is evaluated on an artificial video sequence of moving ba
and on real-world sequences of a moving person.

1 Introduction

Image segmentation [7, 17, 10, 11] and optical flow [12, 2,
8] are two very common tasks in computer vision. Imag
segmentation partitions an image into visually distinct re
gion, usually by using color and/or texture cues. Finding th
optical flow of two images can be interpreted as finding th
most probable pixel position of the first frame in the secon
frame. This is just the opposite of image segmentation: T
more unique part of the image is, the better it can be match
in the next frame.

Combination of motion measurement with image se
mentation can result in better analysis of motion. Th
knowledge of spatial partition can improve the reliability o
motion-based segmentation [9, 18]. Temporal tracking of
a spatial partition of an image, from the motion-based se
mentation, is easily done if spatial regions are tracked i
dividually [9]. Thus, optical flow and image segmentatio
complement each other: Optical flow has problems wi
homogeneous regions, which can be handled well by im
age segmentation. However, segmentation has problem w
fuzzy borders which can be handled by the optical flow.

This paper provides a framework for a feature-based o
ject tracker which is improved by segmentation information
Features are tracked from one frame to the next with an o
tical flow algorithm. While the actual optical flow can work
quite well without segmentation, segmentation informatio
helps following the entire object instead of just a few sin

∗ Partially supported by the Austrian Science Fund under grant S910
N13 and FWF-P18716-N13.
-

d

h

-

-

gle feature points of it, i.e. segmentation servers as a glo
structure. On the other hand, segmentation information
essential, when we need to reconstruct some lost feat
points.

Combination of these two basic image processing alg
rithms is not new. Indeed one motivation for this work wa
the work of Michael G. Ross [19]. It uses flow informa-
tion to provide better segmentation results and vice vers
While this paper combines optical flow and segmentatio
it is rather focused on improving segmentation results th
the object tracking. Jeongho Shin et al. [21] proposed an
optical-flow based feature tracker algorithm which coul
track non-rigid objects in real world scenes. Their exper
ments showed that a feature based object tracker can w
well, however they did not take segmentation informatio
into account. Therefore their tracked ’objects’ are rath
tracked points, our work tries to track a fully outlined ob
ject i.e. the features are kept together by the segmentatio

1.1 Object tracking methods

Current object tracking approaches can be roughly categ
rized into five main classes depending on the target repres
tation [5]: Model-based, appearance-based, contour-bas
feature-based and hybrid methods.

Model-based object tracking needs a priori knowledge o
the objects’ shape. This can work well for very specifi
tasks, but is not extendible for general scenes.

Appearance-basedtechniques track objects by the appea
ance of the connected region, which may include col
or texture information. This approach has problems wi
deformations, occlusion or rotation of the object.

Contour-based methods usually track only the outline of
the object, which reduces computational load, but st
has similar problems asappearance-basedmethods.

Feature-based tracking uses features of a video object t
track part of if. The problem of this approach is group
ing these features together to determine which of the
belong to the same object. Our proposed algorithm fa
into this tracking class.

As usual, there is not a strict border between these tec
niques, and therefore [5] denotes ahybrid-basedapproach
as the fifth large group of current object tracking methods

mailto:stuben@prip.tuwien.ac.at,krw@prip.tuwien.ac.at,yll@prip.tuwien.ac.at

Combining an Optical Flow Feature Detector with Graph-Based Segmentation

ith
ke
a
a-
ur
of
it

s

in

r,

er
y

-

io

ur
tly
e
ry

ch

g

x-
)
is
h

e
m
c

)

es
as

be

d

e

e-
st-

m-

h-

on
n-

lit-

-
t-

-

e
a
,

The goal of this work is to examine different ways how
an optical-flow based feature tracker can be combined w
segmentation. The result should be a good object trac
with high-level segmentation. We have put an effort on
basic outlier detection which discards wrongly detected fe
ture points. Those need to be reconstructed in a lost feat
point restoration process. An occlusion detection is part
the goals, which finds an even fully occluded object, once
appears again.

This paper is structured as follows. In Section2 we show
a short description, how the segmentation algorithm work
In Section3, we give an overview of the optical flow calcu-
lation. These two techniques are combined into a tracker
Section4 The tracker is later evaluated in Section5 with an
artificial and with a real-world video sequence.

2 Segmentation

The purpose of segmentation is to cluster visually simila
neighboring regions together. It is quite difficult, if not im-
possible, to find one ’perfect’ segmentation which is neith
too coarse, nor too fine for all applications. A recent surve
on different segmentation methods can be found in [25].

The segmentation is done with the Felzen
szwalb&Huttenlocher segmentation (FH) algorithm [7]
which belongs to the class of graph-based segmentat
algorithms. Its runtime efficiency isO(n log n) for n
image pixels. A sample segmentation can be seen in Fig
2b. Each segment is colored randomly and transparen
overlayed over the original image. In this example, th
person at the bottom-right of the image is segmented ve
well, but there are some minor patches on the floor, whi
should not be there in a ’perfect’ segmentation.

Graph-based techniques use a graphG = (V,E) with
vertices vi ∈ V representing pixels of an image, and
(vi, vj) ∈ E representing the edges between neighborin
pixels. Each edge has a weightw((vi, vj)), which mea-
sures the (dis-)similarity between neighboring image pi
els. This weight is usually obtained by the color (intesity
differences between pixels. In our case the Euclidean d
tance of the red, green and blue color values is used. T
idea is to create connected componentsC1, . . . , Ck which
consist of edges with low weights (=look similar) and hav
high weights (=strong boundaries) to other connected co
ponents. Felzenszwalb and Huttenlocher therefore introdu
three concepts:

• Internal difference of a componentC ⊆ V

Int(C) = max
e∈MST (C,E)

w(e)

Int(C) is the largest weight within a component (MST
denotes the minimum spanning tree of this component

• Difference between two componentsC1, C2 ⊆ V

Dif(C1, C2) = min
v1∈C1,v2∈C2,(v1,v2)∈E

w((v1, v2))

Dif is the minimum weight edge connectingC1 andC2

or∞ if there is no such edge
r

e

.

n

e

-
e

-
e

• Minimum Internal Difference of two components
C1, C2 ⊆ V

MInt(C1, C2) = min(Int(C1)+τ(C1), Int(C2)+τ(C2))

τ(Ci) is a threshold function whose value decreas
as the component gets larger. Usually it is defined
τ(Ci) = k

|Ci| , wherek is a constant factor, and|Ci| the
size of the component in pixels.

Using these concepts the segmentation algorithm can
defined as shown in Algorithm1.

Algorithm 1 – Graph-based Segmentation

Input: Image graphG = (V,E), andk

1: Sort edgese ∈ E by non-decreasing edge weight an
put them inE′.

2: Each vertexvi is in its own componentCvi
. /* Start

with an initial segmentation */.
3: repeat
4: vi andvj are the vertices, which are connected by th

edgee′ ∈ E′ with the smallest weight.
5: if vi andvj are already in the same componentthen
6: Continue
7: else
8: Merge the two componentsvi and vj , iff

MInt(Cvi
, Cvj

) ≥ Dif(Cvi
, Cvj

).
9: E′ ← E′ \ e.

10: end if
11: until E′ = ∅ /* Building bigger segments */.

Output: SegmentsC.

While this algorithm works well for artificial images, for
real world examples with noise and other small artifacts, r
sults can be greatly improved by some simple pre- and po
processing steps. Usually images are

• preprocessed by a Gaussian filter, which smooths the i
age to remove artifacts, especially on the borders, and

• postprocessed by merging small components to its neig
boring component. The minimum component sizem can
be adjusted.

Even though we have used this particular segmentati
algorithm, the method that we propose in this paper is ge
eral enought and any segmentation algorithms from the
erature can be used.

3 Optical Flow

Optical flow was defined by Horn& Schunck as the distribu
tion of apparent velocities of movement of brightness pa
terns in an image [12]. While this method can provide a
high density of velocity vectors by minimizing aglobal en-
ergy function, it is very vulnerable to noise. In our exper
iments, we have used thelocal Lucas& Kanade (LK) [15]
method since it can handle noise much better.

Instead of calculating a flow for the whole image like th
Horn& Schunck algorithm does, this method calculates
pixel displacement vector for a single pixel. More formally

Martin Stubenschrott, Walter G. Kropatsch, and Yll Haxhimusa

r-

y))2

-

n
of

is
d

-

xt
.

h
ize
led

y

n

is,
ss

e

an
r
n
ure
ct

-

ig

are
re

Frame

Tracking Object

Evaluation
next frame

i+1t

it{O
bj

ec
t T

ra
ck

in
g

features within
the ROI

ROI with features

Region(s) of Interest Features

Image Segmentation Optical Flow

Image Segmentation

Selection of Region(s) of Interest

Feature Point Extraction

Frame 1t

Frame 0t

{Initialization

Figure 1: Workflow of the tracking Algorithm2.
for a given pixelu in an imageI, we find the corresponding
locationv = u + d in the new imageJ . d is the displace-
ment vector, which can be calculated by minimizing the e
ror function:

ε(d) = ε(dx, dy) =
ux+ωx∑

x=ux−ωx

uy+ωy∑
y=uy−ωy

(I(x, y)−J(x+dx, y+d

ωx andωy are integers which define the size of the integra
tion window, where the flow vectors are calculated.

Image pyramid are suitable representaion for 2D motio
estimation, since they bring a trade-off between speed
computation and quality of results [24]. In this paper we
choose, a pyramidal implementation [3] of LK algorithm.
More exactly, a regular image pyramid, where each level
1/4 of the size of its previous level. Therefore the pyrami
with 4 levels of an imageI of size640 × 480 consists of5
imagesI0, I1, I2, I3 andI4 with sizes640×480, 320×240,
160× 120, 80× 60 and40× 30, respectively.

The error function is first calculated for the highest pyra
mid level Lh (the level at the top of pyramid, in our case
h = 4). The result serves as an initial guess for the ne
lower levelLh−1, where the calculation is performed again
This is iterated until we reach the finest levelL0 of the image
(the bottom of the pyramid). Using a pyramidal approac
has the advantage that the actual integration window s
can be kept quite small, and larger motions can be hand
well.

The actual calculation for each pyramid level is done b
calculating a spatial gradient matrixG of the image deriva-
tivesIx andIy. Now the perfect optical flow vector for this
level dL of G is calculated in an iterative Newton-Raphso
fashion. For the exact mathematical formulation, see [3].

Note that all computations are done on subpixel bas
which yields better results over time. The image brightne
for subpixels is calculated using bilinear interpolation.

4 The tracking algorithm

In Section2 we have shown the image segmentation with th
FH algorithm. Section3 covered the calculation of feature
points from one frame to the other with the LK optical flow
algorithm.

In this section we combine these techniques to create
object tracker. The principal idea is to track many (in ou
experiments500 is chosen as a good compromise betwee
speed and robustness) feature points and to build a feat
model which detects the main direction of the moving obje
and corrects outliers.

The full algorithm can be summarized as shown in Algo
rithm 2(Fig.1 and2).

4.1 Feature point selection

In step3, the Algorithm 2 tries to extract ’good’ feature
points, which are easily tracked. These points have b
eigenvalues in theG matrix according to [20] (G is the
spatial gradient matrix of the image derivativesIx andIy).
Since, the segmentation process selects regions which
usually quite uniform, and therefore good feature points a

Combining an Optical Flow Feature Detector with Graph-Based Segmentation

(a
)

T
he

fir
st

im
ag

e
(f

ro
mW

a
lk

3
.m

p
g

)
(b

)
F

ul
ls

eg
m

en
ta

tio
n

(c
)

T
he

us
er

se
le

ct
s

on
e

or
m

or
e

se
gm

en
ts

(d
)

T
he

se
le

ct
ed

ob
je

ct
is

be
in

g
tr

ac
ke

d
(3

0
fr

am
es

la
te

r)

F
ig

ur
e

2:
A

st
ep

by
st

ep
ex

am
pl

e
of

th
e

A
lg

or
ith

m2.

n-

d

to

at
ck-
nts
e,
ed
is

ain

i-

x
h
It
u-
Algorithm 2 – Feature-based Tracker with Image Segme
tation
Input: Video streamV = {t0, t1, . . . }

1: Segment the first framet0 with Algorithm 1, resulting
in a setS of m regions.

2: Selectn segmentsS1, . . . , Sn ⊆ S within the interested
object (1 ≤ n ≤ m). /* The user selects segments to
be tracked */

3: Computef feature pointsF1, . . . , Ff ⊆ F within the
selected segments. /* see Section4.1for details */.

4: i← 0
5: repeat
6: i← i + 1
7: Calculate the optical flow for all feature points with

LK [15] feature tracker /* see Section4.2*/.
8: Perform validity checks for new feature points an

estimate wrongly detected feature points.
9: Categorize feature points into setsFg for good fea-

ture points,Fe for estimated feature points andFl for
lost feature points (Fg,Fe,Fl ⊆ F ;Fg ∪ Fe ∪ Fl ≡
F).

10: Reconstruct lost feature points /* see Section4.3*/.
11: Segment the new frame (ti+1), and useFg, to find

segments which are part of the tracking object.
12: until V = ∅
Output: Tracked region(s).

rare inside the region. Let us assume we foundx good fea-
ture points, then we choosemaxF − x additional feature
points randomly inside the region.maxF is the maximum
number of feature points (in our experiments this is set
500).

Note that we need to avoid choosing points which lie
the border between the tracked segment(s) and the ba
ground (all other segments not beeing tracked). These poi
would likely be tracked on the background in the next fram
therefore we need feature points which are clearly locat
within the object and not at the border(s). We ensure th
by eroding the active segmentation with a3 × 3 cross-style
structuring element. We use this eroded mask to constr
new feature point positions.

4.2 Feature point calculation

Before doing any new feature point calculation, we est
mate new positionPnew(i) of feature pointFi with Pnew =
Pold + med(k) wheremed(k) is the medium direction of
the lastk frames:

med(k) =

t=old−k∑
t=old

Pt − Pt−1

k

In our experiments it is shown thatk = 2 (i.e. the direction
of the last2 frames) was enough, as higher values fork can-
not cope with fast direction changes. Also more comple
estimation formulas like using weighting newer frames wit
a higher factor are tried, without achieving better results.
seems, the estimation of new feature positions is not cr
cial, since the pyramidal implementation of the optical flow

Martin Stubenschrott, Walter G. Kropatsch, and Yll Haxhimusa

-

s

e

lu
ta

tu

i
l.

to
g

.
,
e
c

-
e

o

ch

m

re

te

-
c

as

it
n
ck
s
:

si-
ion
th

d

e-

if-
ti-
w
-

is
e
d-
e
th
r-

ing
rs,

,

en-
nd
g-
s-

e

algorithm can cope with larger motions anyway.
All good feature point positions ofFg at frame position

told are fed into the LK feature tracker, and we get new po
sitions of those good feature points of the last frame.

For anestimatedfeature pointFe, we try to find a frame
in the laste frames where this feature point was marked a
good. The optical flow vector is calculated from this old
frame to the current. This turned out to be a highly effectiv
way to handle occlusion of the feature point. Settinge to
higher values has the advantage that long periods of occ
sion can be handled well, but has a much higher compu
tional cost. In our experiments we sete to 20 as a trade-off
between speed and robustness.

For all feature points ofFg andFe we get new feature
point positions with our optical flow calculations. Not all of
these new positions can be used, therefore some new fea
points are rejected. The rules of rejection are:

• Each feature point has an associated error value which
basically the color difference of the old and the new pixe
If this error is over a certain thresholdτF , it is rejected.

• The median direction (direction vectors are rounded
the nearest integer for the median value) for all remainin
good points is calculated. All points which differ more
thanτM percent from the median direction are rejected
LargerτM values can cope better with non-rigid objects
but are more affected by optical flow errors. We chos
20% as our threshold (but again, this depends on the a
tual application).

Each feature pointFi has a counter attached, which is incre
mented each time the point is not found or rejected in th
new frame. IfFi was found however, the counter is reset t
0. Depending on the value of this counter,Fi can be:

• Moved to setFg if it is reset to0

• Moved to the set of estimated pointsFe, if it reached1

• Moved to the set of lost pointsFl, if it reachede. There-
fore we try to find an estimated point maximume frames,
otherwise we need to create a new feature point whi
can be better tracked (see Section4.3).

4.3 Feature point restoration

Whenever feature points are declared lost, they are not i
mediately restored, but only when|Fl| > |F|

l . l > 0 is a
factor which defines how many points must be lost befo
reconstructing feature points.l = 4 (which is our experi-
mental setting) means, the full restoration process is star
when25% of all feature points are lost.

The algorithm for finding suitable feature points is ex
actly the same as in the original feature point selection (Se
tion 4.1).

5 Evaluation

The implementation and evaluation of the system w
done under Linux in C++, using the excellent OpenCV1

1http://www.intel.com/technology/computing/opencv/
-
-

re

s

-

-

d

-

image processing toolkit. On a 2.8Ghz Intel Pentium 4,
usually ran with1 − 2 frames per second, depending o
frame size, number of features and the number of look-ba
framese. Some example videos which show the capabilitie
(and problems) of our tracker can be downloaded from
http://www.prip.tuwien.ac.at/Research/
twist/software.php

5.1 Input

The input to the system is a video with a fixed camera po
tion. However, since the tracking system uses segmentat
instead of background subtraction, it can usually cope wi
slightly moving cameras as well.

The tracked object may also be partly or fully occlude
for some time, although currently just fore frames. If it is
longer occluded, it is lost and cannot be automatically d
tected anymore.

Preferably, the object should rigid, because otherwise d
ferent parts of an object may have completely different op
cal flows. Since we combine segmentation with optical flo
information, it is often also possible to track non-rigid ob
jects like people accurately.

5.2 Output

After segmentation of the tracked object, visualization
shown directly on the input video. The segmentation of th
object is overlayed with a transparent color and a boun
ing box of the object is drawn around it. Moreover, also th
bounding box of an available ground truth data is drawn wi
a different color, so the observer can quickly see the diffe
ence of the expected and our bounding box. For debugg
purposes, we also draw the feature points in different colo
depending whether they belong toFg, Fe orFl (Figure3).

5.3 Parameters used

During our tests, the following parameters were used:

• FH algorithm:

– α = 0.5 (Gaussian smoothing parameter),

– k = 300,

– Minimum component sizem: 20.

• LK optical flow algorithm:

– window size:ωx = ωy = 5,

– pyramidal implementation: regular pyramid,4 levels.

• Tracking algorithm:

– Threholds:τF : 100,τM : 20%,

– Erosion:3× 3 cross style structuring element, 3 runs

– Number of feature points: 500,

– Look-back framese: 20.

The use of good parameters for the segmentation is ess
tial. Sometimes, an object melted with the background, a
it was impossible to perform a tracking operation. Chan
ing α, k or m sometimes helped here, but not always. U
ing different segmentation techniques will lead to the sam

http://www.prip.tuwien.ac.at/Research/twist/software.php
http://www.prip.tuwien.ac.at/Research/twist/software.php

Combining an Optical Flow Feature Detector with Graph-Based Segmentation

Figure 3: The tracked (partly occluded) ball in the MUSCLE benchmark. Green are found feature points, blue estimated feature points and
red lost feature points. The orange color shows our segmented tracking object with its green bounding box. The red bounding box is from the
ground truth data and incorrect, since it does not honor the occlusion of the object.

c
ta

d

nd
t
es

h-
os
r
o
n

ec

s.
e
e
re
e
y
ly
n

-
e

p-
lly

-
ry

e
b-

r
-

ct

v-
er,
v-
ted
re-
-
on
o-
m,

fea-
e

le
he
.
d
d.

e.
t
o
nd.
m-
problems. Using other visual ques, like shape of the obje
maight help in overcoming these problems with segmen
tion.

The optical flow and tracking algorithm parameters di
not really have much effect when they were altered.

5.4 Results

Freely available video sequences with annotated grou
truth data are very hard to find, but the CAVIAR projec
has real world videos with hand selected bounding box
for each frame in XML format2.

We also evaluated the tracker on the MUSCLE Brenc
mark3. These videos have ground truth annotated vide
of moving circles. While segmentation is much easier fo
these videos because they are artificial without any noise
soft gradients, it can be quite difficult to handle occlusio
for these blobs.

We compared the annotated bounding boxes of an obj
with our results and got the following evaluation criteria:

• Overlap -
Simple comparison by overlapping bounding boxe
While more accurate calculation of overlap of th
segmented region with ground truth data would b
favorable, none of the ground truth data provided mo
information than simple bounding boxes. In the cas
of the MUSCLE benchmark, one could approximatel
calculate the circles from the bounding boxes, not on
would this be inaccurate, but it wouldn’t take occlusio
into account either.

Also the exact overlap values for the MUSCLE bench
mark would be identical for our experiments. In the cas
of a circle with radiusr = 20, but our segmentation in-
correctly segments a smaller circle withr = 18 within
the ground truth circle.

Exact overlap is:

Oc =
182 · π
202 · π

= 0.81

2The videos and the XML files for the ground truth can be
downloaded from: http://groups.inf.ed.ac.uk/vision/
CAVIAR/CAVIARDATA1/

3http://muscle.prip.tuwien.ac.at/data
description/ACV1/ACV TRACKINGBENCHMARK.HTML/
t
-

r

t

For the bounding boxes, the overlap is:

Ob =
(18 · 2)2

(20 · 2)2
= 0.81

• Percentage of successfully tracked frames-
This measurement just uses a threshold of the overla
ping percentage to classify if the object was successfu
tracked or not in a frame. It was chosen as low as25%.
This may sound like a very low threshold, but as we com
pare the overlapping area of the bounding boxes, it is ve
common to have40% overlapping bounding boxes which
still look well tracked. Of course this threshold can b
changed, if you need more confidence for a tracked o
ject.

In Table 1 we have summarized some results fo
the CAVIAR benchmark. The results vary, and ob
jects with strong borders like inBrowse1.mpg could be
tracked very well. On the other side, the tracking obje
of OneStopMoveNoEnter1cor.mpg or Walk2.mpg
was completely lost after some time and could not be reco
ered. This however, was not caused by the feature track
but by bad segmentation results. Often, not only the mo
ing person but also parts of the background were segmen
as one connected region. This did not just lead to bad
sults for theoverlapstatistics, but when we needed to re
construct lost feature points, they were sometimes taken
the background. Therefore, for real world scenes our pr
posed tracker would need a better segmentation algorith
or at least a mechanism to make sure, that reconstructed
ture points are not taken on the background but within th
tracking object.

In the MUSCLE benchmarks, the results are better (Tab
2), as the segmentation was not a real problem here. T
ball could usually be fully tracked throughout the video (Fig
3). However, the ground truth files were not that exact an
contained bounding boxes of the ball even if it was occlude
Therefore theSuccessfully trackedcolumn is not always at
100%, even if the ball is successfully tracked in each fram

The overlapcolumn shows an average overlap of abou
70%. We expected higher values, since this artificial vide
has a high contrast between the balls and the backgrou
The FH segmentation does not segment the ball as one co

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://muscle.prip.tuwien.ac.at/data_description/ACV1/ACV_TRACKINGBENCHMARK.HTML/
http://muscle.prip.tuwien.ac.at/data_description/ACV1/ACV_TRACKINGBENCHMARK.HTML/

Martin Stubenschrott, Walter G. Kropatsch, and Yll Haxhimusa

Filename ObjID Frames Succ. Tracked Overlap
Browse1.mpg 1 1–200 90.12% 70.26%
OneLeaveShop1cor.mpg 0 1–90 97.78% 85.51%
OneStopMoveEnter2cor.mpg 0 1–300 99.00% 54.26%
OneStopMoveNoEnter1cor.mpg 4 1300–1664 37.36% 30.43%
Walk2.mpg 0 1–50 26.00% 15.90%
Walk3.mpg 0 50–185 100.00% 80.21%

Table 1: Tracking performance for the CAVIAR benchmark.

o-

a-
ec
-

th
in
ul
e-
H
e
a

n-
e
u
tio

n
s

l
t
-
c
d
ly
b

e

n

d

ponent but puts the contour of the ball into an own comp
nent (Fig.4), which causes problems.

Figure 4: The FH [7] algorithm yields three components for the
ball, while one component would be preferable.

6 Outlook and Conclusion

We could see that combining an optical flow based fe
ture tracker with a segmentation can lead to a usable obj
tracker. The most important aspect of this work was build
ing and maintaining the feature model. This was done wi
three sets for found, estimated and lost feature points. Us
this model, also dealing with occlusion was quite successf

However, there are still some problems and improv
ments, which are beyond the scope of this work. The F
segmentation algorithm does not really work well if ther
is no strong border between object. And even if there is
strong border like in the MUSCLE benchmark, the segme
tation results could be better. However, on the other sid
it could serve quite a usable segmentation for many inp
videos, so there must be some proof that other segmenta
algorithms really work that much better.

Another field for improvement is the feature restoratio
process. It works well as long as the segmentation proce
does not segment the background as part of the object.

A third improvement would be to eliminate the manua
process of initially selecting a tracking object. In the curren
implementation this is done by clicking into the desired ob
ject, future implementations could use background subtra
tion or other techniques to make the tracker fully automate

Apart from these problems, the tracker works reasonab
well and even handles deformations and rotation of the o
ject to a certain degree.

References

[1] Edward H. Adelson and James R. Bergen.
Spatiotemporal Energy Models for the Perception of
Motion. J. of the Optical Society of America A, 2(2):284–299,
1985.

[2] S. S. Beauchemin and J.L. Barron. The computation
of optical flow. ACM, 27(3):433–467, 1995.
t

g
.

,
t
n

s

-
.

-

[3] Jean-Yves Bouguet. Pyramidal Implementation of th
Lucas Kanade Feature Tracker - Description of the
Algorithm. Part of OpenCV Documentation, 2003.

[4] P.J. Burt, T.H. Hong, and A. Rosenfeld. Segmentatio
and estimation of image region properties through
cooperative hierarchical computation.SMC,
11(12):802–809, December 1981.

[5] A. Cavallaro, O. Steiger, and T. Ebrahimi. Tracking
Video Objects in Cluttered Background.Circuits and

Systems for Video Technology, IEEE Transactions on,
15(4):575–584, 2005.

[6] P. Felzenszwalb and D. Huttenlocher. Efficiently
computing a good segmentation, 1998. DARPA
Image Understanding Workshop.

[7] Pedro F. Felzenszwalb and Daniel P. Huttenlocher.
Efficient Graph-Based Image Segmentation.
International Journal of Computer Vision, 59(2):167–181,
2004.

[8] David J. Fleet and Yair Weiss.Optical Flow Estimation.,
chapter 15, pages 239–258. N.Paragios, Y. Chen, an
O. Faugeras, 2005.

[9] Mark Gelgon and Patrick Bouthemy. A region-level
motion-based graph representation and labeling for
tracking a spatial image partition.Pattern Recognition,
33(4):725–740, 1999.

[10] Yll Haxhimusa and Walter G. Kropatsch. Hierarchy
of Partitions with Dual Graph Contraction. In
B. Milaelis and G. Krell, editors,DAGM-Symposium 2003,
volume 2781 ofLecture notes in computer science, pages
338–345, Germany, 2003. Springer.

[11] Yll Haxhimusa and Walter G. Kropatsch.
Segmentation Graph Hierarchies. In Ana Fred, Terry
Caelli, Robert P.W. Duin, Aurelio Campilho, and Dick
de Ridder, editors,Proceedings of Joint International

Workshops on Structural, Syntactic, and Statistical Pattern

Recognition S+SSPR 2004, volume 3138 ofLNCS, pages
343–351, Lisbon, Portugal, 2004. Springer, Berlin
Heidelberg, New York.

[12] Berthold K.P. Horn and Brian G. Schunck.
Determining Optical Flow. Technical report, MIT,
Cambridge, MA, USA, 1980.

[13] Jean-Michel Jolion and Azriel Rosenfeld.A Pyramid

Framework for Early Vision: Multiresolutional Computer Vision.
Springer, 1993.

[14] S. W. Lee and K. Wohn. Tracking moving objects by
a robot-held camera using a pyramid-based image
processor. InProc. USPS Advanced Technology Conference,
pages 517–544, May 1988.

Combining an Optical Flow Feature Detector with Graph-Based Segmentation

Filename ObjectID Frames Successfully Tracked Overlap
CASE1300001.AVI 2 2–1200 100.00% 80.06%
CASE1400002.AVI 3 2–510 99.41% 73.47%
CASE1400003.AVI 7 2–650 93.07% 67.79%
CASE1600004.AVI 13 2–1357 98.49% 59.89%
CASE1600005.AVI 44 2–1000 99.90% 62.01%
CASE1600005.AVI 45 2–450 100.00% 61.70%

Table 2: Tracking performance for the MUSCLE benchmark.

[15] B.D. Lucas and T. Kanade. An Iterative Image
Registration Technique with an Application to Stereo
Vision. In IJCAI81, pages 674–679, 1981.

[16] S-R. Maeng and K.Wohn. Real-time estimation of 2-d
motion for object tracking. InProc. SPIE Symposium on

Intelligent Robots and Computer Vision VIII: Systems and

Applications, Nov. 1989.
[17] R. Marfil, L. Molina-Tanco, A. Bandera, J. A.

Rodriguez, and F. Sandoval. Pyramid Segmentation
Algorithms Revisited.Pattern Recognition,
39(8):1430–1451, August 2006.

[18] Etienne Memin and Patrick Perez. Hierarchical
estimation and segmentation of dense motion fields.
International Journal of Computer Vision, 46(2):129155,
2002.

[19] Michael G. Ross.Exploiting Texture-Motion Duality in

Optical Flow and Image Segmentation. Massachusetts
Institute of Technology, Master Thesis, Cambridge,
MA, USA, April 2000.

[20] Jianbo Shi and Carlo Tomasi. Good Features to
Track. InIEEE Conference on Computer Vision and Pattern

Recognition (CVPR’94), Seattle, June 1994.
[21] Jeongho Shin, Sangjin Kim, Sangkyu Kang,

Seong-Won Lee, Joonki Paik, Besma Abidi, and
Mongi Abidi. Optical Flow-Based Real-Time Object
Tracking using Non-Prior Training Active Feature
Model. ELSEVIER Real-Time Imaging, 11:204–218, June
2005.

[22] E. Simoncelli and E. Adelson. Computing Optical
Flow Distributions using Spatio-Temporal Filters.
Technical report, M.I.T. Media Lab Vision and
Modeling, Technical Report 165, 1991.

[23] Yiwei Wang, John F. Doherty, and Robert E. Van
Dyck. Moving Object Tracking in Video. InAIPR ’00:

Proceedings of the 29th Applied Imagery Pattern Recognition

Workshop, page 95, Washington, DC, USA, 2000. IEEE
Computer Society.

[24] K. Wohn and S-R. Maeng. Pyramid-based estimation
of 2-d motion for object tracking. InProc. IEEE intl.

Workshop on Intell. Robots and Systems, pages 687–693, July
1990.

[25] Hui Zhang, Jason E. Fritts, and Sally A. Goldman.
Image segmentation evaluation: A survey of
unsupervised methods.Computer Vision and Image

Understanding, 110:260–280, 2008.

	Introduction
	Object tracking methods

	Segmentation
	Optical Flow
	The tracking algorithm
	Feature point selection
	Feature point calculation
	Feature point restoration

	Evaluation
	Input
	Output
	Parameters used
	Results

	Outlook and Conclusion
	References

