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Abstract. Real-time 3D pose estimation from monocular image se-
quences is a challenging research topic. Although current methods are
able to recover 3D pose, they are severely challenged by the computa-
tional cost. To address this problem, we propose a tracking and 3D pose
estimation method supported by three main pillars: a pyramidal struc-
ture, an aspect graph and the checkpoints. Once initialized the systems
performs a top-down tracking. At a high level it detects the position of
the object and segments its time-space trajectory. This stage increases
the stability and the robustness for the tracking process. Our main ob-
jective is the 3D pose estimation, the pose is estimated only in relevant
events of the segmented trajectory, which reduces the computational ef-
fort required. In order to obtain the 3D pose estimation in the complete
trajectory, an interpolation method, based on the aspect graph describing
the structure of the object’s surface, can be used to roughly estimate the
poses between two relevant events. This early version of the method has
been developed to work with a specific type of polyhedron with strong
edges, texture and differentiated faces, a die.
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1 Introduction

The proliferation of high speed videos, high-end computers and the need for
automated video analysis have generated an increasing interest in visual track-
ing and pose estimation algorithms. This paper addresses the challenging prob-
lem of real-time tracking and 3D pose estimation. Selecting the right features
for tracking plays a critical role [3]. Nowadays, the illumination changes, the
partial occlusion and the matching errors are simple to achieve with localized
features [7]. However, computation of descriptors that are invariant across large
view changes is usually expensive [14]. To overcome this weakness, the state of
the art feature descriptors, detect and match points in successive images, in a
non-recursive way, [10], [1], [8]. SIFT [8] is known to be a strong, but computa-
tionally expensive feature descriptor and on the contrary Ferns [10] classification

? Thanks to Doctoral College on Computational Perception (Vienna University of
Technology, Austria) for funding.



2 Fuensanta Torres and Walter G. Kropatsch

is fast, but requires large amounts of memory. Therefore, our work investigates
the applicability of a new markerless tracking method based on the checkpoints.
Checkpoints are a small group of 3D points, which preserve a structure. These
are robust to illumination changes, computationally cheap and do not require
large amount of memory. Moreover, they are 3D points. Therefore, once initial-
ized it can obtain the 3D pose directly, without the need to back-project the 2D
locations to obtain the 3D pose.
Since we know exactly where the checkpoints are, we apply a top-down tracking
that is conducted by encoding the current frame into a hierarchical structure, a
pyramid, which reduces the search cost and allow large view changes. The use of
a hierarchical approach for tracking have been widely used in the literature [15],
[5], [9]. The main drawback of theses approaches have been the high computa-
tional cost to build a pyramid per frame. To overcome this weakness, we can
use the computational power and increasing programmability of the graphics
processing unit (GPU) present in modern graphics hardware that provides great
scope for acceleration of computer vision algorithms which can be parallelized
[13].
In order to reduce the computational effort our method divides in relevant (frame
with only one visible face of the die) and normal events (with two or three visible
faces) the time-space trajectory of the object. The changes between two relevant
events are handle by the aspect graph [12], [11].
The rest of the paper is organized as follows: Sec.2 describes the different struc-
tures and processes of this approach. Sec. 3 presents the top-down tracking and
3D pose estimation method. The experimental results revealing the efficacy of
the method are shown in Section 4. Finally, the paper concludes along with
discussions and future work in Section 5.

2 Definitions

We begin by providing some necessary definitions.

2.1 Checkpoints

Checkpoints are a small group of flexible points, which can be controlled by
the saliency of the visible part of the object model. They require to distinguish
between the background and the foreground of the object. This early version of
the method is based on a strong foreground-background contrast, the background
and the foreground points are differentiated by their gray values.
Let S= (It, It+1..., It+k) be an image sequence. The initial estimation of a group
of checkpoints location in time t (x1t= (x11t , x12t , x13t , x14t and x15t )) can be
found by giving some correspondences between 3D points in the object model
and their projections in It [7]. Checkpoints are projected into the current image
x1′t+1 frame and the corresponding pixel values checked whether they belong to
the object or the background. Based on the result the correction is estimated
that brings the object back to a location where the checkpoints are appropriately
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placed in the image x1t+1 . The correction (C= (s or/and T or/and R)) is the
uniform scale (s), the translation (T) and the rotation (R) to get x1t+1 from
x1′t+1 in the current frame It+1. For this purpose, considering a circular target,
five checkpoints (x1′t+1), which preserve the order, placed as shown Fig. 1 a),
x11, x12, x14, x15 in the background and x13 in center of the object, in the
foreground, are enough to detect the translation and the scale error. However,
to estimate the rotation error, at least two groups of checkpoints are needed (x1t
and x2t) (Fig. 1 b)).
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Fig. 1. Predicting and correcting translations and rotations of checkpoints.

2.2 Prediction-Estimation-Correction

This section defines the Prediction-Estimation-Correction method (PEC) of the
checkpoints positions. Let It be the current frame and xt be the checkpoints lo-
cations in time t. Using a motion model, here is used the 3D affine motion model,
the checkpoints are predicted forward for one frame, x′

t+1. First, it checks if x′1
t+1,

x′2
t+1, x′4

t+1, x′5
t+1 are placed in the background(0) and x′3

t+1 in the foreground(1)
of the image, otherwise the prediction is incorrect. When an error have been de-
tected, it estimates the location where the checkpoints are appropriately placed
in the image x′

t+1. The estimation method is based on a table with the possible
cases of prediction errors and their respective estimation (Tab. 1). The table
has been built considering all the possible movements of the prediction with
respect to the real projection and their optimal improvement. Moreover, its ef-
ficacy has been demonstrated in the experimental results. In the table there are
five columns (x′1, x′2, x′3, x′4, x′5), which represent one group of checkpoints
illustrated in Fig. 1 a) and the last column (x”) is the translation or the scale
needed to get the estimated appropiate position from x’.
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The zeros in the table mean that the value of
x′i is close to the background, the one appears
when it is more similar to the foreground and the
* means that this checkpoint does not have any
effect in the estimation. For instance, the case of
Fig. 1 a) corresponds to the eighth row in Tab.
1, x′1, x′3, x′4 are equal to 1 while x′2 and x′5

are equal to 0. Therefore, the estimation(x”) is a
translation of the prediction to the left. The di-
rection and the sense of the arrows describe the
translations for correction. The correction step
finds the relationship between the estimated po-
sition of all groups (x′′1, x′′2 ...x′′i) of the cur-
rent frame and their prediction (x′1, x′2 ...x′i).

Table 1

values at prediction
x′1 x′2 x′3 x′4 x′5 x′′

0 0 ∗ 0 1 ↘
0 0 ∗ 1 0 ↙
0 0 ∗ 1 1 ↓
0 1 ∗ 0 0 ↗
0 1 ∗ 0 1 →
0 1 ∗ 1 1 ↘
1 0 ∗ 0 0 ↖
1 0 ∗ 1 0 ←
1 0 ∗ 1 1 ↙
1 1 ∗ 0 0 ↑
1 1 ∗ 0 1 ↗
1 1 ∗ 1 0 ↖
0 0 1 0 0 s
1 1 1 1 1 1/s

This least-squares problem in the 3D space is solved by using Horn [4], which
returns the uniform scale factor (s), the rotation matrix (R3x3) and the transla-
tion vector (T3x1) needed to get the correction (x) from the prediction (x’)(eq. 1)

x = (s ·R3x3 + T3x1) · x′; (1)

2.3 Recall of the Maximum pyramid

The structure of a regular pyramid can be described as an array hierarchy in
which each level lt is at least defined by a set of nodes Nl. A node of a regular
pyramid can be determined by its position (i, j, l) in the hierarchy, being l the
level of the pyramid and (i, j) its (x, y) coordinates within the level. On the base
level of the pyramid, the nodes are the pixels of the input image. Each pyramid
level is recursively obtained by processing the level below. The children-parent
relationships are fixed and for each node in level l+1, there is a reduction window
of children at level l. We have selected a 2x2/4 pyramid [2]. To detect bright spots
in images we use the Maximum pyramid, which uses the maximum as reduction
function. The top of the pyramid receives the maximum gray value of the base
image. There is a closed chain of links between the maximum in the base and the
top. This can effectively be used to find its location top-down. Small non-maxima
holes disappear quickly [6].

2.4 Aspect graph

An aspect is the appearance of an object from a specific view point. Objects of
one aspect may differ by continuous deformations but they all have the same
topology. The appearance change from one aspect to another aspect may be that
a new surface patch becomes visible or that another one disappears. The aspect



Top-Down Tracking and Estimating 3D Pose of a Die 5

graph is a graph with a node for every aspect and edges connecting adjacent
aspects. Therefore, it allows us to know the relationship between each aspect
(Fig. 2).

3 Top-down tracking and Pose Estimation

The novel approach for target localization and 3D pose estimation is described
in this section. The first step of tracking is to obtain a hierarchical representation
of the current frame. In order to decrease the computational cost, we assume
that the object does not move very much from one frame to the next one as
well as their backgrounds are quite similar. Having the pyramid for the previous
frame, it subtracts two consecutive frames to update in this pyramid only the
information corresponding to their differences. Once the pyramid is available, the
system performs the top-down tracking method (Fig. 3). This method segments
the time-space trajectory of the object. It recovers the object position in all
the frames, which increases the stability and the robustness for the tracking
process. Although, the pose estimation is obtained only in the relevant events.
We can use an interpolation method, based on the aspect graph, between two
pose estimations to roughly estimate the pose in the intermediate frames. The
top-down process is the following:

1. Target localization: works at the top level of the pyramid ltT . In this level
the target region has approximately homogeneous color. It selects the nodes
with this color, where the object is placed N t

lT
.

2. Trajectory Segmentation: Each node below to the target object in the top
level N t

lT
is linked to its children. This top-down process continues until the

method estimates if the current frame is a relevant or a normal event. In
the case of a normal event, the object position is estimated. Otherwise, it
determines its 3D pose estimation.

Fig. 2. a) Different viewing angles. b) As-
pect graph of a die.

Fig. 3. Illustration of the Top-down
tracking and pose estimation algorithm
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3.1 Object position

It works with normal events and at the first level where the number of nodes
of the target is bigger than a given threshold. It is chosen in such a way that
the completed target region has approximately homogeneous color, which is a
compromise between homogeneous color in ROItli and precision in the PEC
method. If the threshold raises, the precision increases but the homogeneity in
the color decreases. At the highest level where ROItli < threshold, a group of
checkpoints (x1t,l) and the PEC method are used to to estimate the position of
the object in the current frame.

3.2 Pose estimation

This method works with relevant events. Two groups of checkpoints (x1t,0 and
x2t,0) and the PEC method are used at the base level to estimate the 3D pose.

4 Experiments

In this section we demonstrate the effectiveness of our approach using a video
sequence S= (It, It+1..., It+k) of a die. Figs. 5 a) and 5 b) have the same nine
frames of the video sequence (I1, I2..., I9). They show the prediction of the
checkpoints’s positions (green points) and the result of the PEC method (red
points).
The object position method (Sec. 3.1) allows abrupt displacements and large
view changes (Fig. 5 a)). Although, it does not detect rotation changes and its
prediction is not very accurate, as can be seen in Tab. 2. This shows the biggest
error in pixels between the estimated position of the center point of the die
and its real position in the base level. We calculated the biggest error in the
prediction and also in the correction in the frames I1, I10, I20, I30, I40, I50.
Otherwise, the isolated pose estimation method (Sec. 3.2) is not robust to large
view changes and translations (Fig. 5 b)). But this refinement step increases the
accuracy of the method. As shown in Tab. 2 the errors are smaller than 5 after
of the PEC method, except in the case of I50, where the die is lost.

Table 2. Errors in pixels at the base level with two methods

object position method (Sec. 3.1)

Frame Prediction error Correction error

I1 8.6 4.4
I10 12.6 12.6
I20 13 10
I30 10 13.1
I40 14.5 19
I50 10.5 8

pose estimation method (Sec. 3.2)

Frame Prediction error Correction error

I1 6.9 1.5
I10 9 1
I20 13.29 0
I30 5.5 2.7
I40 11 5
I50 28.9 42.3(lost)
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We have observed that the size of the target in ROI at the different levels
of the pyramid strongly depends of the number of visible faces of the die in
the current frame. Fig. 4 shows a graph with the size of the die in ROI for
the different frames of a video sequence at a given level. As can be seen in the
minimum values of the graph there are frames with only one visible face and in
the maximum values there are views with three visible faces. Our current method
to segment the time-space trajectory fails in some cases, which strongly depend
on the position of the die in the frame (related to the shift variance problem of
non overlapping pyramids). We are working to overcome this weakness.
Finally, the strengths of our method have been proven with different experiments:

– Robustness to illumination changes: We changed the illumination in the
training sequence Fig. 6 a). As can be seen in the bottom row the checkpoints
handle a very abrupt lighting changes.

– Insensitivity to large view changes: Thanks to the object position method
(Sec. 3.1), the algorithm can handle large view changes and it also updates
the motion model. Fig. 6 b) shows in the top row the frames It, It+12, It+13

and It+14 of a video sequence. As can be seen in the bottom row, it localizes
the die in the frame It+12 and updates the motion model. Therefore, the
prediction in the frame It+14 is quite accurate.

– Computationally Cheap: Once initialized, the pyramid of the current frame
It+1 is the same pyramid as the previous frame It, where only the differ-
ences between It+1 and It have been updated. Fig. 7 shows two consecutive
frames and their differences on the top row, while the row below shows the
differences at the higher level(l1). In this particular example, the dimensions
of It and It+1 are equal to 640x480= 307200 pixels, there are 5020 nodes
different at the base level (l0), 17 at l1, 10 at l2 , 2 at l3 and 0 in the rest of
levels.

-

6

55 10 15 20 25 30 35 40 45

40

45

50

55

60

Fig. 4. Size of the target in ROI for each frame of a video sequence
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I1 I2 I3 I1 I2 I3

I4 I5 I6 I4 I5 I6

I7 I8 I9 I7 I8 I9

a) Object position b) Pose estimation
Fig. 5. Prediction and correction of checkpoints.

It It+1 It+2 It It+12 It+13 It+14

a) Robustness to illumination changes. b) Insensitivity to large view changes.
Fig. 6. Experiments to prove the strengths of our method.

5 Conclusions and Future work

This paper has proposed a novel approach to track and to estimate the 3D
pose of a die. We have developed a markerless 3D tracking, which extracts the
checkpoints with a top-down method and matches them across images, in a
recursive way. This is robust to changes illumination, computationally cheap
and do not require large amount of memory. In order to reduce the search cost
and allow large view changes, the method is based on the Maximum Pyramid.
Moreover, the time-space trajectory of the object was divided into relevant and
normal events, that reduces the computational effort and allows us to focus only
on those relevant frames of the video stream. The 3D pose was estimated only
in the relevant events. Although, the target was localized in all the events to
increase the stability and the robustness for the tracking process. Finally, in
order to obtain the 3D pose estimation in the complete trajectory, the future
work will be an interpolation method, based on the aspect graph describing
the structure of the object’s surface, can be used to roughly estimate the poses
between two relevant events [11].
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It It+1 It+1 - It

Fig. 7. Two consecutive frames and their differences at the base level (l0) and at l1 respectively.
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