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Abstract.
Real-time 3D pose estimation from monocular im-

age sequences is a challenging research topic. Al-
though current methods are able to recover 3D pose,
they require a high computational cost to process
high-resolution images in a video sequence at high
frame-rates. To address that problem, we introduce
the new concept of check-points. They are the mini-
mum number of points needed to detect a 3D object
motion. Our method tracks the 2D projections of the
check-points over a 2D maximum pyramid. To han-
dle large displacements of the object, our approach
evaluates the projection of the check-points at high-
est levels of the pyramid. Moreover, it refines the
pose localization by utilizing the check-points at low-
est levels of the hierarchy. We show that just check-
ing a few cells per frame, our method estimates the
3D pose of the tracked object. This early version
of the method works with a specific type of object a
3D cube, with six well distinguished faces and which
salient features in all the faces are dots, a die.

1. Introduction

Tracking and pose estimation of an object in a
video sequence means continuously identifying all
six degrees of freedom that define the object position
and orientation relative to the camera. This is used
in robotic applications, augmented reality systems,
human computer interaction, automatic surveillance,
etc.
After more than thirty years of research, real-time
tracking for high-resolution images in an video se-
quence at high frame-rates is still a challenging re-
search topic.
Here we focus on model-based 3D tracking using a
single camera [11]. Model-based tracking methods
use the prior knowledge of the shape and the appear-
ance of the tracked object. The link between percep-

tion and the prior knowledge improves the robust-
ness and performance of the method. We can di-
vide the current tracking techniques into three main
categories: the marker-based techniques, the nat-
ural feature-based approaches and the tracking-by-
detection methods.
Tracking-by-detection methods identify and match
points in successive images, in a non-recursive way
[15], [1], [12]. These are strong methods. However,
they analyze the whole frame to detect the features,
which is computationally expensive.
The marker-based techniques and the natural feature-
based methods match individual features across im-
ages, in a recursive way, which means that they use
the last calculated position as an estimate for the cur-
rent position. The marker-based techniques use ei-
ther point fiducial or planar markers ([2], [8]). They
are fast, robust and accurate [11]. Their main draw-
back is the difficulty to introduce these marks in all
the environments.
The natural feature-based methods use the surface
properties present in the nature. The natural features
are either the edges (strong gradients or straight line
segments) [20], [5] or the information provided by
pixels inside the object (optical flow, template match-
ing or interest point correspondences) [7], [18].
Inspired by [13] we propose a top-down tracking
method. ”A top-down method incorporates the prior
knowledge about the objects in the lowlevel image
processing” [13]. In particular, our algorithm uses
the prior knowledge about the 3D shape in order to
find the check-points. The check-points are the mini-
mum set of 3D points around a salient feature, which
detects and estimates the changes in the object move-
ment (we assume a textured object with continuous
and smooth motion). Once we have the check-points
of the object, the tracking method requires a low
computational cost.
Furthermore, our algorithm is based on a pyrami-



dal representation which allows large view changes.
The use of a hierarchical approach for tracking has
been widely used in the literature [4], [19], [9], [14].
Contrary to these methods, we implement a top-
down feature extraction instead of a bottom-up pro-
cess [10], which is less time consuming. Neverthe-
less, the main drawback of these approaches have
been the high computational cost to build a pyramid
per frame. To overcome this weakness, we can use
the increasing programmability and computational
power of the graphics processing unit (GPU) present
in modern graphics hardware. It provides great scope
for acceleration of computer vision algorithms which
can be parallelized [16].

The rest of the paper is organized as follows: Sec.2
describes the different structures and processes of
this approach. Sec. 3 presents the top-down 3D
tracking and pose estimation method. The experi-
mental results revealing the efficacy of the method
are shown in Section 4. Finally, the paper concludes
along with discussions and future work in Section 5.

2. Definitions

In this section we define the new concepts of
maximum pyramid and check-points. Moreover, we
describe in detail our recursive predictor-corrector
tracking algorithm.

2.1. Maximum pyramid

A regular pyramid is a hierarchy (Fig. 1). Each
level λ contains an array of cells. A cell of a reg-
ular pyramid is determined by its position (i, j, λ)
in the hierarchy, (i, j) are its coordinates within the
level λ. The cells on λ= Ø (base level) are either di-
rectly the pixels of the input image or the result of
any local computation, like filters, on the image. We
obtain each pyramid level recursively by processing
the level below.
The reduction window gives us the children-parent
relationships. Each cell in level λ +1 has a reduction
window of N×N children at level λ.
We can extend the parent-child relationship, defined
by the reduction window, until the base level. The
receptive field (RF) of a cell is the set of its linked
pixels on the base level. The RF defines the embed-
ding of a cell on the original image.
We use the reduction function to compute the value
of each parent from the set of values of its children.
The maximum pyramid uses the maximum as reduc-
tion function. Every cell stores the maximum gray

value of its receptive field. And all the gray values in
the receptive field of a cell are equal or smaller than
the gray value of this one. The top of the pyramid
receives the maximum gray value of the base image.
The ratio between the number of cells at level λ and
the number of cells at level λ+1 is the reduction fac-
tor (q).
The reduction factor and the reduction window
(N×N/q) define a regular pyramid [3].

Figure 1. Example of a 4×4/2 maximum pyramid

Let Dλ be a simply connected non-maximum re-
gion (pixels with higher gray values surround the re-
gion) at level λ of an one-dimensional N/2 pyramid.
Dλcan survive until the level λ + 1 if the receptive
field of at least one cell at this level is completely
inside of this region. We can construct Dλ+1 by
erosion (morphological operation) of Dλ. The ero-
sion applies a structuring element to Dλ. In this case
the structuring element is the reduction window (W=
|N |) (Erosion of Dλ by W is denoted Dλ 	 W ).
Furthermore, a sub-sampling reduces the number of
cells at λ+ 1 from λ by the reduction factor 2. Sub-
sampling with a factor of 2 corresponds to choosing
every second cell (Sub-sampling X by a factor q is
denoted X ↓ q):

Dλ+1 = (Dλ 	W ) ↓ 2 (1)

Using (1) and replacing all the factors by their
sizes (dλ is the size of Dλ):

dλ+1 =
dλ −N + 1

2
(2)

Theorem 1 (1D non-maximum region) Let Dλ be
a simply connected non-maximum region at level λ of



an one-dimensional N/2 maximum pyramid. The size
(dλ) of Dλ, is exponentially decreasing by the reduc-
tion factor 2 as the level λ grows to higher pyramid
levels:

dλ =
d0 + (N − 1)

2λ
− (N − 1) (3)

Proof: We prove the theorem by induction. The size
of the non-maximum region at the base level is cor-
rect: d0 = d0+(N−1)

20
− (N − 1) = d0. We assume

that (3) is true for λ = α. Using the recursion (2) we
derive the formula for λ+ 1:

dλ+1 =
dλ −N + 1

2
(4)

=
(d0+(N−1)

2λ
− (N − 1))−N + 1

2
(5)

=
d0 + (N − 1)

2λ+1
− N − 1 +N − 1

2
(6)

=
d0 + (N − 1)

2λ+1
− (N − 1) (7)

�
In a similar way, letBλ be a connected maximum-

region (pixels with lower gray values surround the
region) at level λ of a N/2 pyramid. Bλ can survive
until the level λ+1 if the receptive field of one cell at
this level has at least one child inside of this region.
We can construct Bλ+1 by the dilation of Bλ. The
structuring element is the reduction window W. As
mentioned before, a sub-sampling reduces the num-
ber of cells at λ + 1 from λ by the reduction factor
2:

Bλ+1 = (Bλ ⊕W ) ↓ 2 (8)

Using (8) and replacing all the factors by their sizes
(bλ is the size of Bλ):

bλ+1 =
bλ +N − 1

2
(9)

Theorem 2 (1D maximum region) Let Bλ be a
connected bright region at level λ of an one-
dimensional N/2 maximum pyramid. The size (bλ)
of Bλ, is exponentially decreasing by the reduction
factor 2 as the level λ grows to higher pyramid lev-
els:

bλ =
b0 − (N − 1)

2λ
+ (N − 1) (10)

Proof: Proof. We proof the theorem by induction.
First, the size of the maximum-region at the base
level is correct: b0 = b0−(N−1)

20
+ (N − 1) = b0.

We assume that (10) is true for λ = α. Using the
recursion (9) we derive the formula for α+ 1:

bλ+1 =
bλ +N − 1

2
(11)

=
( b0−(N−1)

2λ
+ (N − 1)) +N − 1

2
(12)

=
b0 − (N − 1)

2λ+1
+
N − 1 +N − 1

2
(13)

=
b0 − (N − 1)

2λ+1
+ (N − 1) (14)

�
Fig. 2 illustrates the appearance of a bright region

(Theorem 2) at different levels of a 4/2 maximum
pyramid. When we have a maximum-region of size
bλ=6, bλ+1 will be either 5 or 4. bλ+1 depends on
the alignment of W in Bλ. If bλ is odd, bλ+1 does
not depend of the alignment of W in Bλ because
Bλ appears in the same number of reduction win-
dows independently of the alignment. When bλ=3,
bλ+1,+2,+3...=3. Furthermore, maxima-regions con-
verge to size 3 cells being smaller or larger than 3.

We can extend the results of the theorems above
to any dimension by the cross product. For in-
stance, considering a 4×4/2 maximum pyramid and
bλ=6×6, bλ+1 will be equal to 4×4, 4×5, 5×4 or
5×5.

Figure 2. Appearance of the maximum-region at different
levels of the 4/2 maximum pyramid. The direction and the
sense of the arrows indicate the evolution of Bλ to Bλ+1

2.2. Check-points

Check-points are the minimum set of 3D points
around a salient feature (the dots or the whole die),



which detects and estimates the changes in the object
movement. We assume a textured object with con-
tinuous and smooth motion. We consider translation,
rotation and uniform scaling transformations.

Four points around of one dot detect any possible
translation and uniform scaling transformations.
And one point inside alerts us when we lose the
object (Fig. 3).

Figure 3. Check-points

However, we need at least two groups of check-
points to detect a rotation change with a circular
shape (Fig. 4).

Figure 4. Predicted check-points (x) and the correct posi-
tions of these check-points (*)

2.3. Prediction-Estimation-Correction

This section defines the Prediction-Estimation-
Correction method (PEC). We track the check-points
with a prediction-correction method. The procedure
is as follows. A motion model (the 3D affine mo-
tion model) predicts forward the check-points. We

project the predicted check-points positions into the
current frame. First, it checks whether a, b, d and
e are outside of the saliency and c is inside. Other-
wise, the prediction is incorrect. Tab. 1 considers
all the possible errors and estimates their correction
vectors. In the table, the zero means that the check-
point is outsize of the saliency and the one appears
when it is inside. The ”-” means that this check-point
does not have any effect on the calculated correction
vector. The direction and the sense of the arrows de-
scribe the correction vector. For instance, the case of
Fig. 5 corresponds to the box in Tab. 1, a, c, d are
equal to 1 while b and e are equal to 0. Therefore,
we translate the prediction to the left.

Figure 5. Translation error

Table 1

values at prediction
a b c d e v
0 0 − 0 1 ↘
0 0 − 1 0 ↙
0 0 − 1 1 ↓
0 1 − 0 0 ↗
0 1 − 0 1 →
0 1 − 1 1 ↘
1 0 − 0 0 ↖
1 0 − 1 0 ←
1 0 − 1 1 ↙
1 1 − 0 0 ↑
1 1 − 0 1 ↗
1 1 − 1 0 ↖
0 0 1 0 0 s
1 1 1 1 1 1/s

Finally, the correction step calculates the relation-
ship between the predicted and the estimated check-
points’s positions. This least-squares problem in the
3D space is solved by using Horn [6]. Horn re-
turns the uniform scale factor (s), the rotation matrix
(R3x3) and the translation vector (T3x1) needed to get
the correction (x) from the prediction (x’)( 15).

x = (s ·R3×3 + T3×1) · x′; (15)



3. Top-down tracking and Pose Estimation
method

Our method tracks a die and estimates its 3D pose
in a monocular video sequence. This is a model-
based and top-down tracking method. We have a 3D
model of the tracked die, this model is just the coor-
dinates of its corners and the positions of its check-
points in each face. Moreover, our approach uses the
maximum pyramid to do a top-down feature extrac-
tion.
The method can be divided in three stages: The first
step is the localization of the die. The second stage
operates in the 2D space, it extracts the position. Fi-
nally, the third step operates in the 3D space, which
estimates the 3D pose (Fig. 6).
Target localization: We use Theorem 2 to find the
necessary height of the pyramid. If we know approx-
imately the size of the die in the current frame, we
can find the top-level where the whole die has a size
at most of 6 cells. At this level the whole die has ap-
proximately homogeneous color. The method selects
the cells where the object is placed. Hence the die is
localized.
Object position: We go top-down along the pyramid
until a level where the number of cells of the die is at
least 20 (we use Theorem 2 to find this level). In this
level, our approach estimates the position of the die
with the PEC method and one group of checkpoints.
Then we refine the position by going top-down in the
hierarchy until the dots appear on the level (obtain
this level with Theorem 3).
3D pose estimation: Finally, the method refines the
3D pose of the die by using two groups of check-
points and the PEC method.

Figure 6. Illustration of the Top-down tracking and 3D
pose estimation algorithm

4. Testing and results

All experiments are carried out with a 4×4/2 max-
imum pyramid.
Tab. 2 shows the experiments with two different im-
ages of a die: a die whose face area is 1600 pixels
(40×40 pixels) (Fig. 7) and a higher resolution im-
age with face area 96100 pixels (310 ×310 pixels).

λ0 λ1 λ2

λ3 λ4 λ5

Fig. 7. Maximum pyramid of a die (face area 40×40)

Tab. 2 shows the side length of the die (σ) and the
diameter of its dots (δ) at every level of the pyramid.
ε is the error between the theoretical (10), (3) and the
experimental results, εσλ=|σλ − bλ| and εδλ =|δλ −
dλ|. The biggest error is εσλ=0.69 pixels and εσλ=
1.37 pixels in the lower and in the higher resolution
image respectively.

Furthermore, the face size of the high resolution
die decreases from 96100 pixels (310×310 pixels) at
the base level to 24649 pixels (157×157 pixels) at the
level 1 which is a 74.35%. The reduction of the die’s
size allows to use smaller correction vectors which
accelerate the PEC method.
For the rest of our experiments we use a monocular
video sequence of a die. Figs. 8 and 9 have the same
nine frames (I1, I2..., I9) of the video sequence. They
show the prediction (green points) and the correction
(red-points) of the check-points’s positions at the lev-
els 0 and 3 respectively of the maximum pyramid.

The diagram below (Fig. 10) shows the error be-
tween the obtained and the real y-coordinate of the
center point of the die for 22 frames. The blue line
is the real y-coordinate and the red points are the re-
sults of our method. The average error for 50 frames
(until the die stops) is 0.58 pixels.
Finally, the strengths of our method is proven with

different experiments:

• Robustness to illumination changes: We



Table 2. Maximum pyramid and the errors in pixels from
the theoretical results

face area 40×40 pixels
Level λ σλ εσλ δλ εδλ
0 40 0 8 0
1 21 0.5 3 0.5
2 12 0.25 0 0
3 8 0.37 0 0
4 6 0.69 0 0
5 4 0.16 0 0

high resolution image (310×310 pixels)
Level λ σλ εσλ δλ εδλ
0 310 0 60 0
1 157 0.5 28 0.5
2 81 1.25 12 0.75
3 40 1.37 4 0.87
4 23 0.81 0 0
5 13 0.4 0 0
6 8 0.2 0 0
7 6 0.6 0 0

I1 I2 I3

I4 I5 I6

I7 I8 I9

Fig. 8. PEC method at level 3 of the maximum pyramid
(object position)

Figure 10. Center-point trajectory (y-coordinate)

changed the illumination in the training se-

I1 I2 I3

I4 I5 I6

I7 I8 I9

Fig. 9. PEC method at level 0 of the maximum pyramid
(3D pose estimation)

quence Fig. 11. As can be seen in the bottom
row the checkpoints handle a very abrupt light-
ing changes.

It It+1 It+2

Fig. 11. Robustness to illumination changes

• Insensitivity to large view changes: The evalua-
tion of the check-points at highest levels of the
pyramid can handle large view changes. More-
over, it also updates the motion model. Fig. 12
shows in the top row the frames It, It+12, It+13

and It+14 of a video sequence. As can be seen in
the bottom row, it localizes the die in the frame
It+12 and updates the motion model. Therefore,
the prediction in the frame It+14 is more accu-
rate than in frame It+13.

• Computationally Cheap: The pyramid of the
current frame It+1 is the same pyramid as the
previous frame It, where only the differences
between It+1 and It have been updated. Fig. 13
shows two consecutive frames and their differ-
ences on the top row, while the row below shows
the differences at level 1 of the maximum pyra-
mid. In this particular example, the dimensions



It It+12 It+13 It+14

Fig. 12. Insensitivity to large view changes

of It and It+1 are equal to 640x480= 307200
pixels, there are 5020 different cells at the base
level 0, 17 at level 1, 10 at level 2 , 2 at level 3
and 0 in the rest of levels.

It It+1 It+1 - It

Fig. 13. Computationally Cheap.

5. Conclusion

This paper has proposed a method for 3D track-
ing high-resolution images in a video sequence at
high frame-rates. It extends the process employed
in our SSPR paper [17]. As in the previous ver-
sion, this is a marker-less 3D tracking. It checks the
cells where the 2D projections of the check-points
should be and calculates the prediction error with a
top-down method. The main novelty of this proposal
is that, instead of searching an optimal level along
of the pyramid to test the check-points, it now uses
the properties of the maximum pyramid to know the
sizes of the salient features at all levels of the pyra-
mid. The method is robust to illumination and large
view changes, computationally cheap and does not
require large amount of memory. To demonstrate
the new concept we have chosen a die because of its
simple structure: six well distinguished faces and 21
dark dots. Future developments of our method will
extract automatically the check-points from any pos-
sible salient feature shape.
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