
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

19th Computer Vision Winter Workshop — CONFIDENTIAL REVIEW COPY 0000 —

Canonical Encoding of the Combinatorial Pyramid

Fuensanta Torres and Walter G. Kropatsch

PRIP, Vienna University of Technology, Austria
{fuensanta, krw}@prip.tuwien.ac.at
Abstract This paper presents a novel framework to en-
code a combinatorial pyramid. A combinatorial pyramid
is a hierarchy of successively reduced combinatorial maps.
Important properties of the combinatorial pyramids such as
topology preservation, the process global and local features
within the same data structure, etc. made them useful for
image processing and pattern recognition tasks. Their ad-
vantages have been widely proved in the literature. Never-
theless, the main disadvantage of this approach is the high
rate of memory requirement. A combinatorial map of an im-
age maybe stored in an array of size approximately equal to
four times the number of pixels of the image. Furthermore,
every level of the combinatorial pyramid stores a different
combinatorial map. In respond to this problem a canoni-
cal encoding of the combinatorial pyramid is provided. It
consists of a single array where its elements are ordered
with respect to the construction history of the pyramid. In
this manner the memory consumptions are equal to the size
of the initial combinatorial map and do not depend on the
number of pyramid’s levels. In addition, this canonical en-
coding allows the whole reconstruction of the pyramid in
both directions: from the base to the top level and from the
top to the base level, without additional information.

1 Introduction
A 2D combinatorial map [11, 15] defines a data structure
to encode the subdivision of the plane in different regions.
It has more advantages compared to the traditional Region
Adjacency Graphs (RAG):

• The combinatorial maps represent topological informa-
tion (multi-adjacency or inclusion relations). Unlike the
RAG, where two topologically different images could be
represented by the same RAG.

• They can be extended to higher dimensions (nD).

• They allow efficient algorithms to retrieve information
and modify the partition.

The combinatorial pyramid [4] is a stack of successively
reduced combinatorial maps. Such structure takes advan-
tages of the combinatorial maps as well as benefits from ad-
ditional properties:

• The combinatorial pyramids preserve topology.
— CONFIDENTIAL REVIEW COPY 0000 —
• They process global and local features within the same
data structure.

Nowadays, the combinatorial maps and the combinato-
rial pyramids are applied for various tasks such as image
segmentation [1, 8], map matching [9, 14, 13, 17], 3D mesh
representation [10], etc. These structures require high mem-
ory consumptions, and this requirement is exacerbated by
the pyramid -the pyramid structure stores one combinatorial
map at each level of its hierarchy.
In the literature exits several methods to reduce the memory
consumptions [12, 16, 5].
Goffe et al [12] segment the initial image -they pre-process
the initial image. They find the combinatorial map for this
segmented image -it is the top level of the pyramid. And
they progressively create the lower levels of the hierarchy
by increasing the size of the combinatorial maps.
[16] and [5] define the implicit encoding of the 2-
dimensional and n-dimensional combinatorial pyramid,
respectively. For the 2D implicit encoding, Brun et al [5]
store the combinatorial map of the initial image and two
functions which describe the construction history -one
function specifies the type of operation done over each
element of the initial combinatorial map and the other
function defines the highest level of the pyramid until which
the element survives.

The canonical encoding of the combinatorial pyramid
stores the whole pyramid and its construction history
in the same memory than the combinatorial map of the
initial image. The operation applied to each element of
the initial combinatorial map is implicitly encoded in the
representation; and the highest level until which the element
survive are implicitly encoded in the order of the elements.
In this manner the memory consumptions are equal to the
initial combinatorial map and do not depend on the number
of levels of the pyramid, as previous works. It allows the
construction of the pyramid from the top to the base level
without additional information. Meanwhile Goffe et al [12]
need additional information (parent/child relations).

The remaining of this paper is organized as follows: Ba-
sic definitions on combinatorial maps and combinatorial
pyramids are recalled in sections 2 and 3. Section 4 de-
scribes our contribution -the canonical encoding of the com-
binatorial pyramid. The experimental results proving the
theoretical concept of the canonical encoding are described
in Section 5. Finally, conclusions and future work are un-
1
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Canonical Encoding of the Combinatorial Pyramid
Figure 1: Combinatorial map example.

Table 1: Combinatorial Map (G=(D,α,σ)) of Fig. 1.
darts (d) 1 2 3 4 5 6 7 8 9 10
α 2 1 4 3 6 5 8 7 10 9
σ 3 5 1 7 2 10 9 6 4 8

folded at Section 6.

2 Recalls on Combinatorial Maps
Definition 1. 2D Combinatorial Map: A 2D combinato-
rial map encodes the subdivision of the plane in different
regions. It represents the inclusion and adjacency relations
between the regions. This principle enables to fully describe
the topology of the plane partition [11, 15]. The 2D combi-
natorial map (G) is defined by a triplet G=(D, α, σ), where:

• D is a finite set of darts.

• α is an involution on the set D.

• σ is a permutation on the set D.

An additional explanations of the definition above: The
edges (paths connecting two vertices) are divided into
two half edges called darts. α is an one-to-one mapping
between consecutive darts forming the same edge, such
that α(α(d))=d). σ is a mapping between consecutive darts
around the same vertex while turning counterclockwise.

Example. 2D Combinatorial Map: Fig. 1 and Tab. 1
give an example of a 2D combinatorial map. Where:

• D = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }.

• α(4) = 3.

• σ(4) = 7.

3 Recalls on Combinatorial Pyramids
Definition 2. Combinatorial Pyramid: A combinatorial
pyramid is a stack of successively reduced combinatorial
maps (Fig. 2). The size of the combinatorial maps is
successively reduced by contractions and removals. The
2

Figure 2: Combinatorial pyramid example.

contraction and the removal kernels specify a set of darts,
which will be contracted and removed, respectively, between
two consecutive levels (as previously described [7]). Given
an initial combinatorial map G0=(D,α,σ) and the sequence
of kernels (k1, k2, k3,..., kn) we can build the stack of
successively reduced combinatorial maps G1, G2,..., Gn.
The combinatorial maps at all the levels preserve the
topology of the initial combinatorial map [3, 6].

Example. Combinatorial Pyramid: Fig. 2 gives an ex-
ample of a combinatorial pyramid. Where:

• G0 (the base level in the pyramid) is equal to the combi-
natorial map of Fig. 1.

• We reduce the number of darts in G0 by the removal ker-
nel k1 = {9, 10} and we obtain G1.

• We apply on G1 the contraction kernel k2 = {7, 8} and
we get the top level (G2) of the pyramid.

4 Folding and Unfolding the Pyramid
The aim of this section is to explain the canonical encoding
of the combinatorial pyramid.

4.1 Folding the Pyramid
The operations used to build a pyramid are the removal and
contraction operations. The kernels K (as described in Sec.
3) selects the darts which will be removed or contracted.
The removal and contraction involve 6 dependent darts
(Fig. 3): d, α(d), f= σ−1(d), g= σ(d), h= σ−1(α(d)), i=
σ(α(d)). Special cases are the empty self-loop and the
pending edge where σ(d) = α(d) and σ(α(d)) = α(d),
respectively.
We need additional definitions in order to be able to define
the contraction and removal operations [2]:

Definition 3. σ∗ is the σ orbit, which defines all the darts
belonging to the same vertex.
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Figure 3: Dependent Darts in the operations.

NOTE: σ−1(d)= σn(d) with n= min{i | σi(d) = d};
where n is the number of successive applications of σ on the
dart d.

Definition 4. α∗ is the α orbit, which defines the pair of
darts belonging to the same edge.

Definition 5. Empty Self loop: A pair of darts are an empty
self loop, iff σ(d) = α(d) for d ∈ α∗.

Definition 6. Pending edge: A pair of darts are a pending
edge, iff σ(α(d)) = α(d) for d ∈ α∗.

Definition 7. Removal Operation [2]: We remove a pair
of darts α∗(d) from G=(D,α,σ), D′= D \α∗(d). And in
addition, we modify the permutation σ and we obtain σ′.
The values of σ′ for the all the d’ ∈ D′ are:

• if α∗(d) is not an empty self loop (σ(d) = α(d)) and
neither a pending edge (σ(α(d)) = α(d)):

σ′(σ−1(d)) = σ(d) (1)

σ′(σ−1(α(d))) = σ(α(d)) (2)

• if α∗(d) is an empty self loop (σ(d) = α(d)):

σ′(σ−1(d)) = σ(α(d)) (3)

• For the rest of darts, which are not included in the cases
above:

∀d′ ∈ D \ {σ−1(d), σ−1(α(d))}σ′(d′) = σ(d′) (4)

Parts disappearing from G are saved as left over of the
removal (LoR). LoR is a quadruplet {p, q, r, s} ∈D 4, where
p= d, q= α(d) r=σ(d) and s=σ(α(d)).

Proposition 1.

1. The triplet (D′, α, σ′) form a valid combinatorial
map(G’).

2. In an empty self-loop:

r = q (5)

3. In a pending edge:

s = q (6)
Proof. (1) The proof that G′ is a valid combinatorial map
without α∗(d) can be found in [2]

Proof. (2) r = σ(d), q = α(d)⇒ σ(d)= α(d) is an empty
self-loop.

Proof. (3) s = σ(α(d)), q = α(d) ⇒ σ(α(d))= α(d) is a
pending edge.

Definition 8. Contraction Operation [2]:
We remove a pair of darts α∗(d) from G=(D,α,σ), D′ =

D \α∗(d). And in addition, we modify the permutation σ
and we obtain σ′. The values of σ′ for the all the d’ ∈ D′
are:

• if α∗(d) is not an empty self loop (σ(d) = α(d)) and
neither a pending edge (σ(α(d)) = α(d)):

σ′(σ−1(d)) = σ(α(d)) (7)

σ′(σ−1(α(d))) = σ(d) (8)

• if α∗(d) is a pending edge (σ(α(d)) = α(d)):

σ′(σ−1(d)) = σ(d) (9)

• For the rest of darts, which are not included in the cases
above:

∀d′ ∈ D \ {σ−1(d), σ−1(α(d))}σ′(d′) = σ(d′) (10)

Parts disappearing from G are saved as left over of the
contraction (LoC). LoC is a quadruplet {p, q, r, s} ∈ D 4,
where p= d, q= α(d) r=σ(d) and s=σ(α(d)).

Proposition 2.

1. The triplet (D′, α, σ′) form a valid combinatorial
map(G’).

2. In an empty self-loop:

r = q (11)

3. In a pending edge:

s = q (12)

Proof. (1) The proof that G′ is a valid combinatorial map
without α∗(d) can be found in [2]

Proof. (2) r = σ(d), q = α(d)⇒ σ(d)= α(d) is an empty
self-loop.

Proof. (3) s = σ(α(d)), q = α(d) ⇒ σ(α(d))= α(d) is a
pending edge.

Tab. 2 summarize the contraction and removal opera-
tions.

Example. Remove Empty Self-Loop: Fig. 4 gives
an example of an empty self-loop removal. It shows the
combinatorial map before the removal (Fig. 4 on the left)
and after the removal (Fig. 4 on the right). Where we can
see that the value of σ′(3) changes according to Tab. 2,
σ′(σ−1(d)) := σ(α(d)) (eq. 3) (σ(3)=d, σ′(3)=1).
3
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Canonical Encoding of the Combinatorial Pyramid
Table 2: Removal and Contraction operations.
case REDUCE (d, α(d))
pending edge if σ(α(d)) = α(d) then

σ′(σ−1(d)) := σ(d) (eq. 9)
empty-self-loop if σ(d) = α(d) then

σ′(σ−1(d)) := σ(α(d)) (eq. 3)
remove σ′(σ−1(d)) := σ(d) (eq. 1)

σ′(σ−1(α(d))) := σ(α(d)) (eq. 2)
contract σ′(σ−1(d)) := σ(α(d)) (eq. 7)

σ′(σ−1(α(d))) := σ(d) (eq. 8)

Figure 4: Remove Empty-Self-Loop(d,α(d)).

Definition 9. The canonical encoding: The canonical en-
coding of the combinatorial pyramid is an ordered sequence
of darts which fully encodes the combinatorial map G at any
level and its construction history. The darts are encoded by
even and odd integers; in a way that the involution α could
be implicitly encoded by eq. 13.

α(d) =

{
d+ 1 if d odd
d− 1 if d even (13)

The pyramid is built by a sequence of contraction and
removal operations. Each one producing a smaller com-
binatorial map and the quadruplet of the Lo (Left over).
The canonical encoding reorder the darts of the Lo in the
chronological order. The surviving darts constitute the ac-
tive part of the canonical encoding. Meanwhile, the ordered
Lo constitute the passive part.

We assume that we have executed n operations in total,
then we have n Lo (Tab. 3). The Π function (Π: D → E)
(eq. 14, 15) gives the new order of this darts in the pas-
sive part of the canonical encoding. The unique identifier of
each pt and qt is assigned to its position in the passive part,
therefore we only need to store Π (rt) and Π (st) (such that
E 1=Π (r1), E 2=Π (s1), etc.).

Π(pt) = 2t− 1 (14)

Π(qt) = 2t (15)

Table 3: Left over table.
t Left over (Lo)
1 p1, q1, r1, s1
2 p2, q2, r2, s2
3 p3, q3, r3, s3
4 p4, q4, r4, s4

n pn, qn, rn, sn
4

Property. Canonical Encoding (Folding the pyramid):
The canonical encoding of the combinatorial pyramid en-
codes the whole pyramid with the same memory as in the
base level -it does not increase with the height of the pyra-
mid. Traditional methods (also called explicit encoding)
store the initial combinatorial map at the base level; but they
also need additional memory every new level -they store a
new combinatorial map per level. The implicit encoding [5]
also needs additional memory every new level to describe
the construction history of the pyramid.

4.2 Unfolding the Pyramid
In order to retrieve the initial combinatorial map (G0) from
the combinatorial map at any level, the darts in the passive
part are moving to the active part. In the folding previous
to the unfolding operation, the darts have been ordered with
respect to the construction history. Therefore, we only have
to shift the boundary between the active and the passive part;
and to apply -re-insertion or de-contraction.

Definition 10. Re-insertion Operation: We add the
LoR(t)={p, q, r, s} to G′=(D′,α,σ′), D′′= D′ ∪ {p, q}. And
in addition, we modify the permutation σ′ and we obtain
σ′′. The values of σ′′ for the all the d” ∈ D′′ are:

• if r 6= q(eq. 5) and s 6= q (eq. 6):

σ′′(σ′−1(r)) := p (16)

σ′′(σ′−1(s)) := q (17)

• if r = q (eq. 5):

σ′′(σ′−1(s)) := p (18)

• For the rest of darts, which are not included in the cases
above:

∀d′′ ∈ D′′ \ {σ′−1(p), σ′−1(q)}σ′′(d′′) = σ′(d′′) (19)

The values of α′′ for the all the d” ∈ D′′ are:

∀d′′ ∈ D′′ \ {p, q}α′′(d′′) = α′(d′′) (20)

{p, q} ∈ LoR(t)′′α′′(p) = q;α′′(q) = p (21)

Proposition 3.

1. The triplet (D′′, α′′, σ′′) form a valid combinatorial
map(G”).

2. G”(Def. 10)= G (Def. 7).

Proof. (1)

• D′′= D′ ∪{p, q} is a finite set of darts.

• ∀d′′ ∈ D′⇒ α′′ (d′′)= α′ (d′′) (eq. 20) is an involution.

• ∀d′′ /∈ D′ ⇒ d′′ = p ∈ LoR and α′′ (d′′) = q ∈ LoR
⇒ q = α′′(p) (eq. 21) is an involution.
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• ∀d′′ such that σ′(d′′) 6= r and σ′(d′′) 6= s⇒ σ′′ (d′′)=
σ′ (d′′) (eq. 19) is a permutation.

• if σ′(d′′) = r and r 6= q (eq. 5) and s 6= q (eq. 6)
⇒ σ′′(d′′) = p (eq. 16) and σ′′(p) = r (Def. 7) is a
permutation.

• if σ′(d′′) = s and r 6= q (eq. 5) and s 6= q (eq. 6)
⇒ σ′′(d′′) = q (eq. 17) and σ′′(q) = s (Def. 7) is a
permutation.

• if σ′(d′′) = s and r = q (eq. 5)⇒ σ′′(d′′) = p (eq. 18)
and σ′′(q) = s (Def. 7) is a permutation.

Proof. (2)

• if r 6= q (eq. 5) and s 6= q (eq. 6):

Given σ′′(σ′−1(r)) := p (eq. 16). We have
r = σ′(σ−1(p)) (eq. 1) thus:
σ′′(σ′−1(σ′(σ−1(d))) = σ′′((σ−1(p))) := p

Given σ′′(σ′−1(s)) := q (eq. 17). We have
s = σ′(σ−1(q)) (eq. 2) thus:
σ′′(σ′−1(σ′(σ−1(q)))) = σ′′(σ−1(q)) := q

• if r = q (eq. 5):

Given σ′′(σ′−1(s)) := p (eq. 18). We have
s = σ′(σ−1(p)) (eq. 3) thus:
σ′′(σ′−1(σ′(σ−1(p)))) = σ′′(σ−1(p)) := p

• ∀d′′ ∈ D′′ \{σ′−1(r), σ′−1(s)} σ′′(d′′) = σ′(d′′) (eq.
19). We have ∀d′ ∈ D \{σ−1(d), σ−1(α(d))} σ′(d′) =
σ(d′) (eq. 4) thus:
σ′′(d′′) = σ(d′′)

Definition 11. De-contraction Operation: We add the
LoC(t)={p, q, r, s} toG′=(D′,α, σ′),D′′=D′ ∪ {p, q}. And
in addition, we modify the permutation σ′ and we obtain σ′′.
The values of σ′′ for the all the d” ∈ D′′ are:

• if r 6= q (eq. 11) and s 6= q (eq. 12):

σ′′(σ′−1(r)) := q (22)

σ′′(σ′−1(s)) := p (23)

• if s = q (eq. 12):

σ′′(σ′−1(r)) := p (24)

• For the rest of darts, which are not included in the cases
above:

∀d′′ ∈ D \ {σ′−1(p), σ′−1(q)}σ′′(d′′) = σ′(d′′) (25)
The values of α′′ for the all the d” ∈ D′′ are:

∀d′′ ∈ D′′ \ {p, q}α′′(d′′) = α′(d′′) (26)

{p, q} ∈ LoC(t)′′α′′(p) = q;α′′(q) = p (27)

Proposition 4.

1. The triplet (D′′, α′′, σ′′) form a valid combinatorial
map(G”).

2. G”(Def. 11)= G (Def. 8).

Proof. (1)

• D′′= D′ ∪{p, q} is a finite set of darts.

• ∀d′′ ∈ D′ ⇒ α′′ (d′′)= α′ (d′′) (eq. 26) is an involution.

• ∀d′′ /∈ D′ ⇒ d′′ = p ∈ LoC and α′′ (d′′) = q ∈ LoC
⇒ q = α′′(p) (eq. 27) is an involution.

• ∀d′′ such that σ′(d′′) 6= r and σ′(d′′) 6= s⇒ σ′′ (d′′)=
σ′ (d′′) (eq. 25) is a permutation.

• if σ′(d′′) = r and r 6= q (eq. 11) and s 6= q (eq. 12)
⇒ σ′′(d′′) = p (eq. 23) and σ′′(p) = r (Def. 8) is a
permutation.

• if σ′(d′′) = s and r 6= q (eq. 11) and s 6= q (eq. 12)
⇒ σ′′(d′′) = q (eq. 22) and σ′′(q) = s (Def. 8) is a
permutation.

• if σ′(d′′) = r and s = q (eq. 12)⇒ σ′′(d′′) = p (eq. 24)
and σ′′(q) = s (Def. 8) is a permutation.

Proof. (2)

• if r 6= q (eq. 11) and s 6= q (eq. 12):

Given σ′′(σ′−1(r)) := q (eq. 22). We have
r = σ′(σ−1(q)) (eq. 8) thus:
σ′′(σ′−1(σ′(σ−1(q)))) = σ′′(σ−1(q)) := q

Given σ′′(σ′−1(s)) := p (eq. 23). We have
s = σ′(σ−1(p)) (eq. 7) thus:
σ′′(σ′−1(σ′(σ−1(p)))) = σ′′(σ−1(p)) := p

• if s = q (eq. 12):

Given σ′′(σ′−1(r)) := p (eq. 24). We have
σ′(σ−1(p)) = r (eq. 9).
σ′′(σ′−1(σ′(σ−1(p)))) = σ′′(σ−1(p)) := p

• ∀d′′ ∈ D \{σ′−1(d), σ′−1(α(d))} σ′′(d′′) = σ′(d′′)
(eq. 25). We have ∀d′ ∈ D \{σ−1(d), σ−1(α(d))}
σ′(d′) = σ(d′) (eq. 10) thus:
σ′′(d′′) = σ(d′′)
5
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Table 4: Re-insert and De-contract operations.
case EXPAND (p, q)

if s = q then
σ′′(σ′−1(r)) := p (eq. 24)

if r = q then
σ′′(σ′−1(s)) := p (eq. 18)

re-insert if σ′(q) 6∈ σ′∗(σ′(p))
-conditions or σ′(p) 6∈ σ′∗(σ′(q))

if σ′∗(p) = σ′∗(q)
-operations σ′′(σ′−1(s)) := q (eq. 16)

σ′′(σ′−1(s)) := q (eq. 17)
de-contract if σ′(q) ∈ σ′∗(σ′(p))
-conditions or σ′(p) ∈ σ′∗(σ′(q))
-operations σ′′(σ′−1(r)) := q (eq. 22)

σ′′(σ′−1(s)) := p (eq. 23)

Figure 5: Re-Insert Empty-Self-Loop(d, α(d)).

Tab. 4 summarizes the re-insertions and de-contractions.
It gives the conditions to recognize whether the pair of
darts were previously either removed (re-insert conditions)
or contracted (de-contract conditions) in the folding proce-
dure.

Example. Re-Insert Empty-Self-Loop: Fig. 5 gives an
example of an empty self-loop re-insertion. It shows the
combinatorial map before the re-insertion (Fig. 5 on the
left) and after the re-insertion (Fig. 5 on the right). Where
we can see that the value of σ′′(3) changes according to
Tab. 4, σ′′(σ′−1(σ′(α(d)))) := d (eq. 18) (σ′(3) = 1,
σ′′(3) = d).

Property. Canonical Encoding (Unfolding the pyra-
mid): Given the canonical encoding of the combinatorial
pyramid at any level, the initial combinatorial map (G0) can
be retrieved -without extra information. Traditional meth-
ods store the parent/child relations to be able to unfold the
pyramid. In the canonical encoding, we detect if we should
either re-insert or de-contract the pair of darts, of the passive
part, according with Tab. 4. And we apply the corresponding
operation either re-insertion or de-contraction.

5 Proof of concepts
Application(Connected component labeling). The canon-
ical encoding of the combinatorial pyramid has been used
for connected components labeling. At the base level G0,
a pair of darts (d, α(d)) connects a pixel of the initial
image with its 4-neighbors. Each dart stores the color of
its related pixel. In the connected component application,
6

Figure 6: Input Image.

the contraction kernels are composed of darts all having the
same color. The contraction may create redundant edges,
which constitutes the removal kernels.

Example(Connected components labeling). Fig. 6
is the input image of the combinatorial pyramid. Fig. 7
shows the first level of the pyramid, where the pixels which
have all their related darts in the passive part have black
color. Fig. 8 shows the combinatorial map at the top level
of the pyramid. Each connected component is contracted
to a single vertex. The combinatorial map encodes the
inclusion and adjacency relations among these connected
components. It fully describes the topology of the plane
partition.

Property(Memory requirements). A combinatorial
map with |D| darts maybe stored in one array of dimensions
equal to |D| × log2(D) bits (assuming that the unique
identifier of each dart (d) is assigned to its position in the
array, we only need to store σ(d)). If the reduction factor
between any two levels of the pyramid is K. The number of
darts at one level of the pyramid Gl is |D|

kl . Therefore, the
bits used to store the pyramid explicitly is log2(D)

∑n
l=0

|D|
kl . It also needs in addition the parent/child relations to

unfold the pyramid. The implicit encoding [16, 5] requires
the storage of the combinatorial map at the base level and
one integer for each pair darts. The bits used to store the
implicit encoding is |D| log2(D) + 1

2 |D| (log2(n)). The
canonical implementation requires only the storage of the
combinatorial map at the base level |D| × log2(D) bits.

6 Conclusions and Future work
In the present work, we propose a canonical encoding of a
combinatorial pyramid. This new structure stores the whole
combinatorial pyramid and its construction history in the
same memory as the initial combinatorial map. We use the
order of the darts to encode the information about the pyra-
mid structure. It allows the full reconstruction of the pyra-
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Figure 7: Darts at the first level(D1).

Figure 8: Combinatorial Map at the top level(G9).
mid in both directions (folding and unfolding the pyramid).
Different ways to construct a combinatorial pyramid can be
found in the literature. Such methods either store a stack of
successively reduced maps; or they store the initial combi-
natorial map and additional information to describe the con-
struction history of the pyramid. The canonical encoding
of the combinatorial pyramid reduces the memory require-
ments of the previous works without loss the functionality.
In our proposed framework to encode the combinatorial
pyramid the darts ranked according to its importance on the
initial image (i.e. most of the darts of the uniform regions
are contracted at the firsts level of the pyramid. They will be
in the lasts positions of the canonical encoding). Now, we
plan to study this property of our canonical encoding and to
build signatures for image matching applications such as in
[14, 13].
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