

Comparison of three-dimensional surfaceimaging systems $\stackrel{\star}{\sim}$

Chieh-Han John Tzou^{a,*}, Nicole M. Artner^b, Igor Pona^a, Alina Hold^a, Eva Placheta^a, Walter G. Kropatsch^b, Manfred Frey^a

 ^a Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Austria
 ^b Institute of Computer Graphics and Algorithms, Pattern Recognition and Image Processing Group, Vienna University of Technology, Vienna, Austria

Received 24 October 2012; accepted 3 January 2014

KEYWORDS 3D surface-imaging; Three-dimensional; Facial analysis; Stereophotogram- metry; Structured light; 3dMD; Axisthree; Canfield; Crisalix; Di3d; 3D photography; Soft-tissue simulation	 Summary Background: In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the reader with relevant information on 3D surface-imaging systems. In it, we compare the most recent technologies to reveal their differences. Methods: We have accessed five international companies with the latest technologies in 3D surface-imaging systems: 3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D; in alphabetical order). We evaluated their technical equipment, independent validation studies and corporate backgrounds. Results: The fastest capturing devices are the 3dMD and Di3D systems, capable of capturing images within 1.5 and 1 ms, respectively. All companies provide software for tissue modifications. Additionally, 3dMD, Canfield and Di3D can fuse computed tomography (CT)/cone-beam computed tomography (CBCT) images into their 3D surface-imaging data. 3dMD and Di3D provide 4D capture systems, which allow capturing the movement of a 3D surface over time. Crisalix greatly differs from the other four systems as it is purely web based and realised via cloud computing. Conclusion: 3D surface-imaging systems are becoming important in today's plastic surgical setups, taking surgeons to a new level of communication with patients, surgical planning and outcome evaluation. Technologies used in 3D surface-imaging systems and their intended field

***Presented at:** Joint Meeting of Austrian and German Association for Aesthetic, Plastic and Reconstructive Surgeons on September 30th, 2011 in Innsbruck, Austria and 12th International Facial Nerve Symposium, June 28th–July 1st 2013, Boston, Massachusetts, USA.

* Corresponding author. Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria. Tel.: +43 1 40400 6986; fax: +43 1 40400 6988.

E-mail address: chieh-han.tzou@meduniwien.ac.at (C.H. Tzou).

1748-6815/\$ - see front matter @ 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.bjps.2014.01.003

of application vary within the companies evaluated. Potential users should define their requirements and assignment of 3D surface-imaging systems in their clinical as research environment before making the final decision for purchase.

 \odot 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

Since the first report of computed tomography $(CT)^1$ in 1967 and magnetic-resonance imaging $(MRI)^2$ in 1971, the term 'three-dimensional (3D) imaging' has referred to techniques that can process true internal 3D data by acquiring volumetric pixels (or voxels) of the measured target. In contrast to CT and MRI, an imaging process measuring and analysing surfaces (*x*, *y* and *z* coordinates) in a 3D space is called '3D surface imaging'.³

Since the 1940s, 3D surface-imaging technologies have measured the complexities of an object with stereophotogrammetry,^{4,5} image-subtraction techniques,⁶ moiré topography,⁷ liquid-crystal scanning,⁸ light-luminance scanning,⁹ laser scanning,¹⁰ structured light,¹¹ stereolithography¹² and video systems.^{13–16} These systems provide 3D analysis with promising results,^{8,14–16} but most have not been applied in clinical routine due to timeconsuming processes, inconsistent image quality and unpredictable costs.

In the last decade, advances in optical systems including structured light¹⁷ and stereophotogrammetry¹⁸ have made 3D surface imaging less time consuming: generating precise 3D surface images, handling vast data formats efficiently and being more accessible to patient protocols.^{17,19}

3D surface-imaging technologies offer multiple medical applications. Practical guides have been written for these systems,^{3,20} but most departments are uncertain which imaging system best meets their needs. We sought to provide a framework for comparing the technologies currently available on the market, and thereby to help readers evaluate and find the most suitable system for their use.

Material and methods

Hardware and software products of five companies -3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D) - were selected for comparison on these parameters: price, hardware set-up, technique of realisation, range of coverage, capture speed, processing speed, data file size, geometry representation, error in geometry, maintenance and support, customer training, on-site installation, portability, calibration time and sample density. Information was gathered by on-site demonstrations, personal interviews and trial captures at our institutions (except for Crisalix and Di3D). We performed extensive research of the companies' history and literature review on scientific validation of the products. A table with a glossary of parameters used in this article clarifies the technical terms (http://goo.gl/ teF080).

The basic technologies used by the selected systems fall into two groups: structured $light^{17}$ (Axisthree) and

stereophotogrammetry¹⁸ (3dMD, Canfield and Di3D). Subsequently, the basic technologies are explained concisely with illustrations.

Structured-light (http://goo.gl/P6rLbK) technology estimates the 3D surface of an object by the deformation of a projected pattern. The simplest set-up includes one projector, which projects a pattern (stripes, grid, dots, etc.) onto the object's surface, and a calibrated camera captures an image of the object overlaid by the pattern from a viewing direction different from the projector, in order to see the deformation of the projected pattern. With the knowledge about the design and geometry of a projected pattern and perception of the deformation by the 3D surface of the object, it is possible to estimate the 3D surface of the object and generate a 3D surface image.¹⁷

There are three different strategies for stereophotogrammetry: active, passive and hybrid. 'Active stereophotogrammetry' (http://goo.gl/Nj7ZK2) is based on structured light. It projects a pattern onto the surface of an object and uses two (or more) cameras to capture the deformation of the pattern by the objects' surface from different viewpoints. A 3D surface image is generated by a process called triangulation, calculating the 3D coordinate of each 2D point (pixel) visible in both camera views. This is achieved by combining the knowledge about the system (position of camera, distances of cameras, etc.) and the captured 2D images of the cameras with their correspondences (pairs of 2D points/pixels, which occur in both camera views). The projected pattern simplifies the finding of correspondences and no additional lighting is needed for this strategy, resisting the effects of ambient lighting.¹⁹ By contrast, 'passive stereophotogrammetry' (http://goo.gl/ X2fa2C) determines 3D surface images only based on the images taken by two (or more) cameras without the projection of a pattern. Due to the missing, projected pattern, the process of finding correspondences between views/ images is more difficult and ambiguous. It is important to choose high-guality cameras, to capture surface details and sufficient texture information of the objects of interest including natural patterns, such as pores, freckles, scars and rhytids. The lighting conditions must be carefully controlled, since a strong directional ambient light may cause glare, diminishing the surface details.¹⁹ Lastly, 'hybrid stereophotogrammetry' combines both active and passive, to achieve higher accuracy and guality in 3D surface imaging.

Results

3dMD: technology and products

Since 1997, 3dMD, based in London, UK, and Atlanta, GA, USA, has been developing products for 3D imaging in

Table 1	Comparisor	n of 3D surfa	ace-imaging	systems.										
Company/ products	3dMDface	3dMDhead	3dMDtrio	3dMDtorso	3dMDbody	Axisthree XS-200	Axisthree XS-400	Canfield VECTRA H1	Canfield VECTRA M3	Canfield VECTRA XT	Canfield VECTRA CR 3D	Crisalix 3D MAMMO FACE si simulator	lix 3D mulator	DI3D™
Hardware	2 modular units of 6 medical grade, machine vision cameras, industrial-grade flash vystem synchronized in a single capture with a PC- controller desktop or PC- controller laptop for portability for portability	5 modular units of 15 medical grade, machine vision cameras, industrial-grade flash system synchronized in a single capture with a PC- controller desktop	3 modular units of 9 medical grade, machine vision cameras, industrial-grade flash system synchronized in a single capture with a PC- controller desktop	4 modular units of 12 modular units vision cameras and an industrial-grade flash system synchronized in a single capture with a PC- controller desktop	from 4 to 22 modular units of 12 to 66 machine vision cameras and an industrial-grade flash system synchronized in a single capture with PC- controller desktop (s)	3 imaging heads with cameras, projectors and lenses	4 imaging heads, chassis unit with micro controller, actuation control, automatic Range Finder PC with Intel 13 processor	1 pod with on- board modular, intelligent flash unit	3 pods, floor stand 36 MP color texture, on-board, intelligent flash units PC + 23" monitor	3 pods, floor stand with motorized lift to adjust for patient height, 36mp color texture, on-band intelligent flash units PC + 23" monitor	2 or more pods, floor stand system scalable and customizable pC + 23" monitor or laptop	none from Crisalix; user pc/laptop and a stan consumer camera (digita webcam, smartphone	s s as 18 18 18 18 18 to camera, foi etc.) op	standard 3D vystem uses 4 mon EOS 5500 MP, twos heat udio flash kir udio flash kir illumination, with pre- installed software
Realization	com	bined active and p	passive (hybrid)ste	ereo photogramm	ietry	structur	ed light		passive stereo ph	notogrammetry		3D reconstruction fi 2D image analysi	om pho	assive stereo otogrammetr
Coverage	190-degree face and neck capture (ear-to- ear)	Full 360-degree capture of the head, face, and neck	Dual purpose 190-degree face, neck, and décolletage capture and torso capture for augmentation including under the breast	190-degree face neck, and décolletage capture afor fuller figured reduction and reconstruction including under the breast	360-degree capture of body from head to toe with multiple anatomical options depending on application	~ 180-degree face capture	~180-degree face/torso capture	capturing volume (mm): 220x130x70 (H, -WD) typical application: 100- degree of left, right or front face	capturing volume (mm): 400x300x250 (H)WD) typical application: face, neck and décolletage	capturing volume (mm): 600x520 (HWD) typical application: face, breast, torso, body	depends on number and placement of pods	-180° frontal and top-do	vn views ~	180-degrees ace capture
Capture Speed	~1.5 ms at highest resolution	~1.5 ms at highest resolution	~1.5 ms at highest resolution	~1.5 ms at highest resolution	~1.5 ms at highest resolution	<= 2 seconds	2 <= seconds	8 ms	3,5 ms	3,5 ms	2 ms	depends on camera o	user ler	igth of a flash ~ 1 ms
Processing Speed	<8 seconds	<15 seconds	<10 seconds	<12 seconds	<60 seconds	depends on PC of customer	face: < 1 min torso: < 30 sec.	~20 seconds	~120 seconds	~80 seconds	~120 seonds	<= 5 min		60 seconds
File Size	depends on configuration, 4MB - 26MB	depends on configuration, 15MB - 95MB	depends on configuration, 11MB - 65MB	depends on configuration, 12MB - 70MB	depends on configuration, 5MB - 100MB	3 MB	3 MB	8 MB	8 MB	8 MB	depends on configuration	there are no files (web :	ervice)	50 – 60 MB
Geometry representation	a	continuous point c dens	loud available as a e textured point m	a textured mesh a nodel	pu	a continuous later convert	point cloud -> ed to a mesh		me	sh		mesh	D D	a continuous oint cloud -> converted to mesh later
Error in Geometry	< 0.2mm	< 0.2mm	< 0.2mm	< 0.3mm	< 0.2mm to 1mm	< 0.5mm	< 0.5mm	> 0.1mm (x,y,z)	> 0.1mm (x,y,z)	> 0.1mm (x,y,z)	> 0.1mm (x,y,z)	2-5 mm		<= 0.2 mm (32,33)
Onsite Installation	>	>	>	>	>	>	>	>	>	>	>	no need (web servi	(e)	>
Portable	>	>	>	>	>	>	ou	>	>	ou	>	>		>
Calibration time	20 seconds	90 seconds	30 seconds	45 seconds	90 seconds	< 5 minutes	< 5 minutes	no calibration	< 3 minutes	no calibration	< 2 minutes	no calibration		5 minutes
Sample density	62 vertices / cm²	62 vertices / cm ²	62 vertices / cm²	55 vertices / cm ²	8-62 vertices / cm² depending on configuration	each head samples 0.5 million points	3 samples/mm²	 1.2 mm geometry resolution (polygon edge length) 	 1.2 mm geometry resolution (polygon edge length) 	1.2 mm geometry resolution (polygon edge length)	1.2 mm geometry resolution (polygon edge length)	not specified	20 si	samples/mm to 30 amples/mm ²
approx. Price (June 2013)	Each system is c customer's s	custom-configurec pecific imaging wc	l and upgraded fro orkflow requireme	om standard modu nts. Prices start at	ules to meet the t 21.000 EUR.	13.000 EUR	27.000 EUR	9.000 EUR	26.000 EUR	37.000 EUR	depends on setup	1590 – 5490 EUR per	year	25.000 EUR

Please cite this article in press as: Tzou CH, et al., Comparison of three-dimensional surface-imaging systems, Journal of Plastic, Reconstructive & Aesthetic Surgery (2014), http://dx.doi.org/10.1016/j.bjps.2014.01.003

ART

CL

medicine. In 2001, 3dMD introduced its first face and torso capture systems. A modular design was introduced in the following year to increase functionality and flexibility. The dynamic 4D system (3D plus time) was introduced in 2004.

The 3dMD technology (http://3dmd.com/) exploits hybrid stereophotogrammetry (active, http://goo.gl/ Nj7ZK2, and passive, http://goo.gl/X2fa2C) with the software algorithms using both projected random patterns and texture of the skin (pores, freckles, etc.) to stereotriangulate and generate a 3D surface image. System calibration takes up to several minutes depending on the hardware set-up. 3dMD offers six different hardware products (Table 1), each suitable for a specific application: 3dMDface (sample capture: http://goo.gl/56Pzlu), 3dMDhead (sample capture: http://goo.gl/G94fle), 3dMDtorso (sample capture: http://goo.gl/sWawTG), 3dMDbody, 3dMDtrio and 3dMDdynamic 4D systems (http:// goo.gl/P3Jl0F). Besides the preconfigured products, they offer custom packages, such as the 3dMDflex (Figure 1) and 3dMDcustom systems. Because of the modular system, its hardware allows relocation of the set-up and enables mobility. The 3dMDdynamic 4D system (Table 2) captures up to 10 min of sequential 3D surface images of 60 frames per second.

3dMD provides a visualisation software, called 3dMDvultus (http://goo.gl/5xJoAX, Table 3), which can fuse the resulting 3D surface image with CT/cone-beam computed tomography (CBCT)/digitised dental study models to visualise 3D volumes, track the patient's history and simulate soft-tissue outcomes (surgical and nonsurgical) by employing a biomechanical mass-spring model.²¹

Scientific validation of 3dMD

Maal et al.²² evaluated treatment outcomes in oral and maxillofacial surgery by comparing the data captured with 3dMD (3dMD LLC, Atlanta, GA, USA) and Maxilim (Medicim NV. Mechelen, Belgium). The intra- and inter-observer error of the reference-based registration method was found to be 1.2 and 1.0 mm, respectively. Aldridge et al.²³ investigated the precision, error and repeatability associated with anthropometric landmark coordinate data. The 3dMDface System data were highly repeatable and precise. A validation of the ability to determine the volume and contour of the breast by Losken et al.²⁴ found the relative difference between the measured volume and the calculated volume to be about -2% (standard deviation (SD) \pm 13–16%). Mean relative difference between the measured and calculated distances between nipple and sternal notch was about -6%(SD \pm 6–7%). Lubbers et al. evaluated data acquisition and data of the 3dMD system and found the system to be reliable, with a mean global error of 0.2 mm (range, 0.1–0.5 mm) for manneguin head measurements.²

Axisthree: technology and products

'Axisthree' (http://www.axisthree.com/professionals/ home) is based in Belfast, Ireland, and was founded in 2002. It focusses on 3D simulation using clinical data to do physics-based tissue-behaviour simulation on models. In

Figure 1 3dMDflex system (Courtesy of 3dMD, Atlanta, Georgia, USA; with permission).

2006, Axisthree created a technology called Colour-Coded Triangulation $(CCT^{TM})^{26}$ together with Siemens and opened up its technology to third-party development, which facilitated its reach to various medical 3D-imaging applications.

Axisthree uses the principal of structured light to create 3D surface images (http://goo.gl/P6rLbK). System calibration takes <5 min, and it is necessary only when the hardware has been moved. There are two hardware configurations (Table 1): XS-200 for faces (sample capture: http://goo.gl/S4keOT) and XS-400 for torso (Figure 2, sample capture: http://goo.gl/zf609K).

Axisthree's 'Tissue Behaviour Simulation' (TBS; Table 3) allows the simulation of surgical procedures and the evaluation of their outcome. According to the company, TBS generates real-time highly accurate simulations of soft-tissue modelling.

Scientific validation of axisthree

Currently, there are no peer-reviewed papers about this system.

Canfield: technology and products

'Canfield' Scientific, Inc. (http://www.canfieldsci.com/), based in Fairfield, NJ, USA, was founded in 1988. Initially, it developed specialised 2D photographic systems, especially off-the-shelf customised solutions. Its best-known software application is Mirror[®] Medical Imaging Software, for simulating procedures in 2D images. In 2005, Canfield introduced its first 3D surface-imaging system.

Canfield exploits the principle of passive stereophotogrammetry, where the texture of the skin is used to determine the geometry and generate a 3D surface image (http://goo.gl/X2fa2C). Canfield supplies four hardware options (Table 1): VECTRA H1 (http://goo.gl/X4ezUW),

Comparison of 3D surface-imaging systems

Table 2 Comparison of 4D capturing systems.

Companies/ products	3dMDdynamic	DI4D™		
Hardware	2 modular units of 6 medical grade (2 viewpoints), or three modular units of 9 medical grade (3 viewpoints), high frame rate machine vision cameras, with a PC-controller workstation	Standard system 4 monochrome and 2 colour cameras (Basler avA1600-65 km/kc 1200 × 1600 pixel @ 60 fps cameras), two Kino-Flo Diva Lite 400 s for illumination, one or more PCs with appropriate NVidia graphics cards		
Realisation	Combined white light active and passive (hybrid) stereophotogrammetry, tracking the deformation of the entire surface frame by frame	Passive stereophotogrammetry and per-pixel optical flow		
Coverage	190-degree face capture (ear-to-ear/2 viewpoints). 3 modular units increase performance space.	~180 degrees		
Capture speed	60 3D sequential frames per second for up to a 10 min capture cycle at highest resolution	One frame \sim 2 ms, standard systems 60 frames per seconds, specialist systems up to 500 frames per second		
Processing speed	Varies based on capture duration and PC processing power. Approximately 10 seconds per 3dMD image per processor thread.	2 pod data using NVidia CUDA acceleration is approx 30 seconds per frame including optical flow tracking to previous and subsequent frame		
File size	Varies based on capture duration and system configuration. Depending on configuration, a single 3D capture within the continuous 4D sequence ranges from 4 MB–95 MB.	2 pod 4D data fully processed at 100% scale is approximately 70 MB per frame		
Geometry representation	A continuous point cloud per frame, available as a textured mesh per frame for processing, dense surface tracking allows thousands of individual surface points to be tracked in six degrees of freedom (x,y,z within yaw, pitch, role of the subject)	A continuous point cloud per frame, converted to a mesh per frame for viewing/export, mesh tracking converts to a consistent mesh topology per frame with dynamic normal maps and texture maps		
Error in geometry	<0.2 mm RMS or better within depth of field	n/a		
Onsite installation				
Portable		(setup in approx. 2.5 h)		
Calibration time Sample density	100 s 62 vertices/cm ²	5 min, should be done for every capture session 1200 \times 1600 processed at 100% scale: approx 20 samples per mm ²		
Approx. price (Jan. 2013)	Price on application	95.000 EUR		

VECTRA M3 (http://goo.gl/4xn4zi), VECTRA XT (Figure 3) and VECTRA-CR. VECTRA H1 captures 100° of frontal faces (http://goo.gl/u8R258). VECTRA M3 captures face, neck and décolletage (http://goo.gl/UZQeAX). VECTRA XT captures face, breast and body (http://goo.gl/3LXPfm). VECTRA-CR 3D is a portable, customised and versatile 3D system for clinical research (CR).

The Canfield Sculptor[™] software (Table 3) performs tissue simulations with 3D surface images. Breast Sculptor[™] provides automatic breast measurements and simulates breast augmentation outcomes. Face Sculptor[™] can simulate multiple surgical and non-surgical facial procedures.

Scientific Validation of Canfield de Menezes²⁷ tested the accuracy and reproducibility of the Canfield VECTRA-CR system and stated that random errors were always <1 mm. Rosati et al.²⁸ evaluated the integration of the dental virtual model into soft-tissue facial morphologies created with VECTRA-CR and found that the greatest mean relative error of measurements was <1.2%. Quan et al. measured the 'bottoming-out' phenomenon after breast reduction with VECTRA-CR,²⁹ documented the migration of breast tissue from the upper pole to the lower pole of the breast by 6% (P < 0.05) and concluded that the 3D surface-imaging system is a useful tool to monitor postoperative changes in breast morphology objectively. A scientific validation of the current passive stereophotogrammetry-based VECTRA system is not yet available.

Crisalix: technology and products

Crisalix (http://www.crisalix.com) is based in Bern, Switzerland, and was founded in 2009. It is the first webbased 3D simulator for plastic surgery and aesthetic procedures. Unlike the other companies, Crisalix does not offer any hardware. The program creates 3D surface images from three 2D images taken with a consumer camera,

Companies	3dMD	Axisthree	Canfield	Crisalix	Di3D
CT/CBCT Fusion	3dMDvultus and third-party software (e.g. Dolphin, Materialise CMF, Materialise Simplant OMS, Maxilim, OnyxCeph3D)	No	Third-party software (e.g. Dolphin)	No	Third-party software (e.g. Dolphin, Maxilim and Materialise OMS)
Track patients history		1		Under development	~
Simulate surgery					Third-party software
Monitor progress, evaluation of outcome	~			Under development	
Real-time 3D volumetric visualisation		1			~
Tissue behaviour simulation	~			~	Third-party software

 Table 3
 Comparison of functions of software.

physical distance measurements of the patient's anatomy and a set of landmarks. Crisalix offers two products: 3D MAMMO simulator (http://goo.gl/yPjFya) for planning and biomechanical simulations of breast implants and skin elasticity and 3D FACE simulator (Figure 4) for surgical and non-surgical facial procedures. Crisalix does not reveal how fast the 3D surface image is generated or how long the entire process will take, but considering the image acquisition time,^{30,31} we estimate ~10–15 min. Since all calculations and simulations are done through cloud computing storing the data in Switzerland, there is no information on data size.

Scientific Validation of Crisalix de Heras Ciechomski et al. evaluated the accuracy of the surface reconstruction of the 3D MAMMO simulator on 11 clinical cases against ground truth from 3D laser scans³⁰ with mean reconstruction errors (root mean square (RMS)) between 2 and 4 mm. Oliveira-Santos et al. assessed the accuracy of the 3D FACE simulator with experiments on synthetic and real faces. The average reconstruction error over the whole data set (338 faces) was below 2 mm.³¹ They also qualitatively evaluated the data set of real faces through a visual

Figure 2 Axisthree XS400 system (Courtesy of Axisthree, Belfast, Ireland; with permission).

analysis by two surgeons, and 26 of 28 real faces were categorised as 'good' or 'very good', sufficient for practical use in consulting.

Di3D: technology and products

'Di3D' (http://www.di3d.com), Dimensional Imaging Ltd, is based in Glasgow, Scotland, and was founded in 2002. In

Figure 3 Canfield Vectra XT system (Courtesy of Canfield, Fairfield, Neu Jersey, USA; with permission).

ARTICLE IN PRESS

Comparison of 3D surface-imaging systems

Figure 4 Sample image of Crisalix 3D Face simulator (Courtesy of Crisalix, Bern, Switzerland; with permission).

2010, it launched a 4D system, which captures 3D video sequences of dynamically changing surfaces.

Di3D's technology exploits passive stereophotogrammetry (http://goo.gl/X2fa2C). System calibration takes about 5 min. The standard system is the DI3DTM FCS-100 system (Table 1, Figure 5). They offer customcapture systems with up to 32 cameras. The DI4DTM – 4D Capture System (Table 2, http://goo.gl/US0JfU) generates a 4D sequence of 3D surface images over time with a temporal resolution of 60 surface images per second.

DI3DviewTM is a 3D analysis, simulation and measurement software (table 3, http://goo.gl/0I76Tl), which can fuse the resulting 3D surface image with CT/CBCT.

Scientific validation of Di3D

Wider at al. assessed for geometric accuracy and found a mean error of 0.057 mm, a repeatability error (variance) of 0.0016 mm and a mean error of 0.6 mm in linear measurements, compared with manual measurements.³² Khambay et al. assessed the accuracy and reproducibility, which resulted in system error within 0.2 mm.³³ Fourier et al. concluded that the results of accuracy and reliability comparing laser-surface scanning (Minolta Vivid 900), CBCT and 3D stereophotogrammetry (Di3D system) were accurate and reliable for research and clinical use.³⁴ Catherwood et al.³⁵ demonstrated accurate and reliable breast assessment with a mean difference between manual and digital curved surface distance measurement of 1.36 mm, with maximum and minimum differences of 3.15 and 0.02 mm, respectively. These validations were done on inanimate objects.

Discussion

For decades, 3D surface scanners have been used by the automotive and aerospace industries, in which the accuracy of measurement is of prime importance.²⁶ The speed of acquisition was less important because moving subjects are uncommon. In the last 30 years, these scanners have been adapted for medical applications²⁶ and gained increasing popularity worldwide.³⁶ Because most articles are technical, clinicians often face difficulties in gaining a full

Figure 5 Di3D FCS-100 system (Courtesy of Dimensional Imaging Ltd., Glasgow, Scotland, UK; with permission).

understanding of the technologies of the devices.³⁷ We have provided clinically relevant technical information to compare these 3D surface-imaging systems.

A major advantage of 3D surface-imaging systems over 2D photographs is the ease of imaging a patient in 3D, compared with traditional multiview photographs.¹⁹ A single 3D camera shot can generate any 2D view without repositioning the patient. Since there is no need for direct contact with the patient, measurement errors caused by modification of soft tissues in direct measurements can be avoided.²⁰

3dMD combines active and passive stereophotogrammetry triangulation strategies into its systems called 'hybrid' stereophotogrammetry.³⁶ The cameras are based on machine vision standards: containing sensors of higher quality and consistency than off-the-shelf single-lens reflex (SLR) cameras. Machine vision cameras are designed for engineering and industrial applications and can be configured to tightly synchronise the capture times of 1.5 ms (1/650th of a second = 0.0015 s)¹⁹ generating highquality 3D data at 4–100 MB.

Axisthree uses structured light for its 3D surface-imaging systems, a technology with easy implementation and rapid full-field measurement,³⁸ which evolved from machine vision industries.³⁹ This technique²⁶ was further developed by Siemens and introduced into the medical community by Axisthree in 2006.³⁶ Originally designed for use in engineering, where accuracy of measurement is of prime importance, the data acquisition of this system is around 2 s (three imaging devices, approximately 300 ms per imaging head, e.g., 1/3rd of a second = 0.3 s).³⁶ As in photography,⁴⁰ a maximum capture speed of a 1/500th of a second is recommended for the 3D surface-imaging system to be

robust against the patient's motion. Slower capturing might result in inaccuracies in the 3D surface image. A data acquisition of 2 s might lead to noisy or missing raw data geometry. Compensation during 3D reconstruction by filling in gaps can introduce errors when validating the accuracy of the geometry.¹⁹ At this moment, no validation of the structured-light technique used on living subjects is available; however, the company states that long-time experience in gathering tissue-behaviour data from real patients has resulted in a huge knowledge library, which enables it to create a simulation tool that offers high realism and anatomical accuracy.³⁶

Canfield and Di3D passive employ stereophotogrammetry, which generates 3D surface images solely on the basis of natural patterns, such as skin pores, freckles, scars and so forth. Therefore, the 3D reconstruction depends on the integrity of the pixels and requires high-resolution cameras. Both Canfield and Di3D use cameras capturing high-quality surface images at 8-60 MB, which include enough surface details for 3D reconstruction. In contrast to active stereophotogrammetry, strong directional ambient light may cause the effects of glare on subject's surface, diminishing the details of the texture.¹⁹ Therefore, lighting must be carefully controlled with standardised flash units to overcome the sensitivity to illumination changes. According to Di3D, criticism¹⁹ of the limited commercial DSLR camera (Canon)³² sync-speed preset (1/200th of a second) can be overcome. Di3D states that with the cameras set at a shutter speed of 1/ 50th of a second, F/20 aperture and ISO 100, the synced cameras capture the data within the length of the flash illumination, which lasts 1-1.25 ms (1/1000th of a second = 0.001 s - 1/800 th s = 0.00125 s). In this way, motion artefacts are avoided.

Crisalix's 3D MAMMO and 3D FACE are web-based simulators.^{30,31} Their goal lies not in providing precise 3D models but in facilitating communication between physicians and patients on simulated outcomes of plastic surgery. It requires only a computer and a standard camera. This is an advantage for physicians not having the necessary resources for a 3D surface-imaging hardware system. Crisalix makes no claims about the accuracy of neither the image nor the simulated results.

All systems are challenged in rendering accurate surfaces for hair and shiny areas. Even though the software renders a 3D surface, it is not necessarily an accurate or measurable surface. Depending on the system, the 3D surface-rendering software can (1) generate an inaccurate, general representation of the surface for visualisation purposes; (2) decide not to render a 3D surface without integrity; or (3) modify the rendering algorithms to approach the generation of each surface (soft tissue, hair and shine) differently depending on the surface properties.

Conclusion

Technologies have advanced rapidly in the last decade taking surgeons to a new level of surgical planning, outcome evaluation and communication with patients. Technologies used in 3D surface-imaging systems and their intended field of application vary among the companies evaluated. Users should define their requirements for 3D surface imaging before making the final decision for purchase.

Disclaimer

Information in this article is provided by the companies and is subject to change without notice. The authors make no representation or warranty whatsoever regarding the completeness, accuracy, 'up-to-dateness' or adequacy, suitability, functionality, availability or operation of the listed products or the information it contains.

Source of funds

None.

Conflict of interest

The authors have no financial disclosures and no funding was received for this work. Moreover, the authors have no associations with the aforementioned companies.

Acknowledgements

The authors would like to thank 3dMD, Axistree, Canfield, Crisalix and Di3D (in alphabetical order) for their technical assistance and/or onsite demonstration of their products. This paper is an objective evaluation of 3D surface-imaging systems, which are currently distributed internationally. The authors don't own any of these systems presented and are using the "3D video-analysis system" developed by the senior author, Frey et al. in 1999. Moreover we are aware of the fundamental differences of the technologies and applications between Chrysalis and the 3D surface-imaging systems. Chrysalis was incorporated during the manuscript revision upon request.

References

- 1. Richmond C. Sir Godfrey Hounsfield. BMJ 2004;329:687.
- 2. Damadian R. Tumor detection by nuclear magnetic resonance. *Science* 1971;171:1151–3.
- Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Phot 2011;3:128–60.
- 4. Thalmaan D. Die Stereogrammetrie: ein diagnostisches Hilfsmittel in der Kieferorthopaedie [[Stereophotogrammetry: a diagnostic device in orthodontology]]. Zurich: University Zurich, Switzerland; 1944.
- Burke PH, Beard FH. Stereophotogrammetry of the face. A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod 1967;53:769-82.
- Neely JG, Cheung JY, Wood M, Byers J, Rogerson A. Computerized quantitative dynamic analysis of facial motion in the paralyzed and synkinetic face. *Am J Otol* 1992;13:97–107.
- 7. Takasaki H. Moire topography. *Appl Opt* 1970;9:1467-72.
- Inokuchi I, Sato K, Ozaki Y. Range-imaging system for 3-D range imaging. 806.

Comparison of 3D surface-imaging systems

- Meier-Gallati V, Scriba H, Fisch U. Objective scaling of facial nerve function based on area analysis (OSCAR). *Otolaryngol Head Neck Surg* 1998;118:545–50.
- Bush K, Antonyshyn O. Three-dimensional facial anthropometry using a laser surface scanner: validation of the technique. *Plast Reconstr Surg* 1996;98:226–35.
- Geng ZJ. Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems. *Opt Eng* 1996;35: 376-83.
- Moss JP, Grindrod SR, Linney AD, Arridge SR, James D. A computer system for the interactive planning and prediction of maxillofacial surgery. *Am J Orthod Dentofacial Orthop* 1988; 94:469-75.
- Bajaj-Luthra A, Mueller T, Johnson P. Quantitative analysis of facial motion components: anatomic and nonanatomic motion in normal persons and in patients with complete facial paralysis. *Plast Reconstr Surg* 1997;99:1894–902. discussion 903–4.
- Ferrario VF, Sforza C, Poggio CE, Tartaglia G. Distance from symmetry: a three-dimensional evaluation of facial asymmetry. J Oral Maxillofac Surg 1994;52:1126–32.
- Trotman C, Gross M, Moffatt K. Reliability of a threedimensional method for measuring facial animation: a case report. *Angle Orthod* 1996;66:195–8.
- Frey M, Giovanoli P, Gerber H, Slameczka M, Stüssi E. Threedimensional video analysis of facial movements: a new method to assess the quantity and quality of the smile. *Plast Reconstr Surg* 1999;104:2032–9.
- Olesen OV, Paulsen RR, Hojgaar L, Roed B, Larsen R. Motion tracking in narrow spaces: a structured light approach. *Med Image Comput Comput Assist Interv* 2010;13:253–60.
- Edge JD, Hilton A, Jackson P. Model-based synthesis of visual speech movements from 3D video. EURASIP J Audio Speech Music Process 2009;2009:12.
- **19.** Lane C, Harrell Jr W. Completing the 3-dimensional picture. *Am J Orthod Dentofacial Orthop* 2008;**133**:612–20.
- Heike CL, Upson K, Stuhaug E, Weinberg SM. 3D digital stereophotogrammetry: a practical guide to facial image acquisition. *Head Face Med* 2010;6:18.
- Schendel SA, Montgomery K. A Web-based, integrated simulation system for craniofacial surgical planning. *Plast Reconstr* Surg 2009;123:1099–106.
- 22. Maal TJ, van Loon B, Plooij JM, et al. Registration of 3dimensional facial photographs for clinical use. *J Oral Maxillofac Surg* 2010;68:2391-401.
- Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT. Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. Am J Med Genet A 2005;138A:247–53.
- Losken A, Seify H, Denson DD, Paredes Jr AA, Carlson GW. Validating three-dimensional imaging of the breast. Ann Plast Surg 2005;54:471-6. discussion 77-8.
- 25. Lubbers HT, Medinger L, Kruse A, Gratz KW, Matthews F. Precision and accuracy of the 3dMD photogrammetric system in

craniomaxillofacial application. *J Craniofac* Surg 2010;21: 763–7.

- 26. Sterbak R. *Machine vision 3D object recognition*; 2006. pp. 91–2. Fall.
- de Menezes M, Rosati R, Ferrario VF, Sforza C. Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system. J Oral Maxillofac Surg 2010;68:2129–35.
- Rosati R, De Menezes M, Rossetti A, Sforza C, Ferrario VF. Digital dental cast placement in 3-dimensional, full-face reconstruction: a technical evaluation. Am J Orthod Dentofacial Orthop 2010;138:84–8.
- **29.** Quan M, Fadl A, Small K, et al. Defining pseudoptosis (bottoming out) 3 years after short-scar medial pedicle breast reduction. *Aesthetic Plast Surg* 2010;**35**:357–64.
- **30.** de Heras Ciechomski P, Constantinescu M, Garcia J, et al. Development and implementation of a web-enabled 3D consultation tool for breast augmentation surgery based on 3Dimage reconstruction of 2D pictures. *J Med Internet Res* 2012; 14:e21.
- **31.** Oliveira-Santos T, Baumberger C, Constantinescu M, et al. 3D face reconstruction from 2d pictures: first results of a webbased computer aided system for aesthetic procedures. *Ann Biomed Eng* 2013;**41**:952–66.
- 32. Winder RJ, Darvann TA, McKnight W, Magee JD, Ramsay-Baggs P. Technical validation of the Di3D stereophotogrammetry surface imaging system. Br J Oral Maxillofac Surg 2008;46:33–7.
- **33.** Khambay B, Nairn N, Bell A, et al. Validation and reproducibility of a high-resolution three-dimensional facial imaging system. *Br J Oral Maxillofac Surg* 2008;**46**:27–32.
- **34.** Fourie Z, Damstra J, Gerrits PO, et al. Evaluation of anthropometric accuracy and reliability using different threedimensional scanning systems. *Forensic Sci Int* 2010;**207**: 127–34.
- Catherwood T, McCaughan E, Greer E, et al. Validation of a passive stereophotogrammetry system for imaging of the breast: A geometric analysis. *Med Eng Phys* 2011;33:900–5.
- Tzou CH, Frey M. Evolution of 3D surface imaging systems in facial plastic surgery. *Facial Plast Surg Clin North Am* 2011;19: 591-602.
- 37. Riphagen JM, van Neck JW, van Adrichem LNA. 3D surface imaging in medicine: a review of working principles and implications for imaging the unsedated child. J Craniofac Surg 2008;19:517–24.
- Chen F. Overview of three-dimensional shape measurement using optical methods. Opt Eng 2000;39:10.
- Muller E. Fast 3-dimensional form measurement system. Opt Eng 1995;34:2754–6.
- 40. Rockwell K. The importance of flash sync speed. http://www. kenrockwell.com/tech/syncspeed.htm. [accessibility verified 06.02.11].