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Abstract

We continue previous work about the combination of top-down and bottom-up adaptive

segmentation techniques, Voronoi diagrams and irregular pyramids. We extend our consi-

derations to the dual irregular pyramid to overcome the problem of increasing degree inher-

ent to the "classical" irregular pyramid. Experimental results are presented, the analysis

of which reveals inconsistencies in the theory of dual irregular pyramids. The conclusion of

the report outlines two strategies for research in view of a solution.
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1 Introduction

Voronoi diagrams are useful to achieve a greylevel segmentation of a digital image in a

top-down process [1, 7, 4]. Irregular pyramids can be used to do the same in a bottom-up

manner [13]. We have successfully combined the two approaches in a previous work [3].

In this report we continue this research by taking into consideration the dual irregular

pyramid that can solve the problem of unbounded degree that irregular pyramids su�er

from.

Levels of an irregular pyramid are general graph structures. In applications of segmen-

tation, vertices of these graphs represent regions of a segmented image, i. e. the structure

of the pyramid can re
ect the structure of the scene represented by the image data. Ho-

wever, the size of a vertex' neighborhood, its degree, is not bounded from level to level,

and, consequently, neither are both time complexity of local processes and memory space

required for representation [11].

Using the concept of dual graphs can avoid the problem of non-bounded size of neigh-

borhood present in irregular pyramids. The main di�erence to the "classical" irregular

pyramid is the extension of the set of space elements that are used to de�ne the topology

of the pyramid levels. In addition to zero- and one-dimensional space elements (vertices

and edges) considered by Meer [12] in his proposition of the irregular pyramid concept,

we have introduced two dimensional space elements (faces) into our considerations, and

we represent them as vertices of the dual graph. The process of decimation as described

in [12] divides the vertices of a level of the pyramid into survivors and non-survivors. To

do the same for the set of faces, we required surviving faces that are spanned by at least

three vertices [11].

In this technical report we �rst brie
y review Voronoi diagrams and irregular pyramids

in Sections 2 and 3, and then introduce the concept of duality that helps to overcome the

problem of increasing degree in irregular pyramids (Section 4). In Section 5 we present the

example of a dual irregular pyramid built over a Delaunay triangulation. We then analyze

the example from the point of view of dual graphs, and reveal inconsistencies in the theory

(cf. Section 6), Section 7 outlines two possible strategies to remedy the situation.

2 Voronoi diagrams for segmentation

Franz Aurenhammer has written in [2]: \Human intuition is often guided by visual per-

ception. If one sees an underlying structure, the whole situation may be understood at a

higher level." This sentence could explain the use in this technical report of the Voronoi

diagram and the pyramidal approach for the segmention of grey-level images.

The de�nition of the Voronoi diagram is very simple [14]. Let S be a set of N points

in the plane, indexed by i 2 f1; : : : ; Ng. The Voronoi region associated to one point

p

i

2 S denoted by V or

S

(p

i

) is the set of the points closer to p

i

than to any other points

of S. According to this de�nition it is easy to show that each Voronoi region is polygonal

and convex as an intersection of the half-plane. Let us denote H(p

i

; p

j

) the half-plane
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containing p

i

that is de�ned by the perpendicular bissector of p

i

p

j

. We can write:

V or

S

(p

i

) =

\

i 6=j

H(p

i

; p

j

):

The Voronoi diagram is de�ned by the set of all Voronoi polygons.

An interesting property is that the dual graph of the Voronoi diagram is the Delaunay

graph with the following properties: the Delaunay graph is a triangulation such that each

circle C circumscribed by every triangle p

i

p

j

; p

k

does not contain in its interior any point

of S (Figure 1). The proof is very easy. Assume that it exists a point p

l

of S in the interior

of C. Then the distance between the center c of C and p

l

is smaller than the distance

between c and any p

n

2 S, n 6= l. According to the de�nition of a Voronoi polygon, c

belongs to the interior of V or

S

(p

l

) which is contradictory.

In this section we address the problem to give a description of an image with various

shape: Voronoi polygons structured in the Delaunay graph. According to our goal, we

apply the split and merge method [8] based on Voronoi polygons [7]. The global principle

Figure 1: Voronoi polygons and Delaunay triangulation. The circle does not contain in its

interior any point of S (Black dots).
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results in the steps of the following algorithm (cf. De�nitions 1 and 2):

1. Assign a little number of points with a Poisson process in the image.

2. Compute the Voronoi diagram and the Delaunay graph.

3. Compute mean grey value, standard deviation, and surface of each polygon.

4. For all polygons, split if the polygon is not homogeneous (De�nition 1).

5. Repeat 2{4 until convergence (all the polygons are homogeneous).

6. Merge: supression of the useless polygons (De�nition 2).

De�nition 1 A region enclosed by a polygon is said to be homogeneous if and only if the

variance in the region is less than a given threshold.

De�nition 2 A polygon V or

S

(p

i

) is said to be useless if and only if all the neighbors of

V or

S

(p

i

) have almost equal grey level means.

Steps 2 and 5 of our algorithm allow a dynamic management of the Voronoi and the

Delaunay diagrams, illustrated in Figure 2. Here, we use the incremental technique to

compute the Voronoi diagram [6] because of its two main advantages:

� the run time optimality in general cases;

� the dynamic management of the Voronoi and Delaunay structure.

The algorithm o�ers the possibility to add or delete one point in an existing Voronoi

diagram without the need to recompute the whole structure again. Practically, we obtain

Figure 2: Construction of the Voronoi diagram by adding successively sites and local

modi�cation of the diagramm. The black dot is the last site to add.
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600000 polygons with 1200000 triangles in 4 min. on a Silicon Graphics Indigo workstation.

In our algorithm, the grey level variation of a given image guides the evolution and location

of the polygons. Consequently the polygon distribution is adapted to the image content:

there is a high density of seeds in regions with an important grey level variation and a low

density of polygons where there is little grey level variation (Figure 3).

Figure 3: Result of the split and merge algorithm. From left to right and top to bottom:

original image, split result (14625 polygons) and the Delaunay graph, merge result (9941

polygons) and the Delaunay graph.
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To summarize we can say that:

� Voronoi diagram is very well adapted to describe a higher level content of a given

image.

� Delaunay graph is usefull to describe the neighborood.

Such a description provides a higher level understanding of the image content. In [3] we

have shown how to use the structure of the Delaunay graph and the information of the

Voronoi polygon in a pyramidal approach. In this paper, we would like to show how to

implement this in the dual irregular pyramids. Before this, let us recall some fundamental

de�nitions of irregular pyramids.

3 Irregular pyramids

Irregular pyramids have been introduced by Meer [12] to overcome instabilities due to the

rigid structure of regular pyramids [5]. Levels of irregular pyramids are general graph struc-

tures. Irregular pyramids can be used for bottom-up segmentation when the neighborhood

structure of the image is represented by a graph [13]. The adaptation of the structure to

the image data has been shown in [10].

We will in this section �rst recall some basic de�nitions from graph theory and then

proceed with the de�nition of the irregular pyramid and the process to construct it.

3.1 Basic de�nitions from graph theory

De�nition 3 A graph G = (V;E) consists of two sets: a �nite set V of elements called

vertices and a �nite set E of elements called edges. Each edge is a binary relation between

two vertices.

We use the symbols v

1

; v

2

; v

3

; : : : to represent the vertices and the symbols e

1

; e

2

; e

3

; : : : to

represent the edges of the graph.

De�nition 4 The vertices v

i

and v

j

related by an edge e

l

are called the end vertices of

e

l

. The edge is denoted as e

l

= (v

i

; v

j

). An edge is said to be incident on its end vertices.

Figure 4 shows an example of a graph. Vertices are represented by black spots (�), edges

by straight lines.

De�nition 5 Two vertices are adjacent if they are the end vertices of some edge.

De�nition 6 The number of edges incident on a vertex v of a graph G(V;E) is called its

degree or its valency. It is denoted by d(v).

De�nition 7 A vertex of degree 1 is called a pendant vertex. The edge incident on a

pendant vertex is called a pendant edge.
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Figure 4: Pictorial representation of a graph G(V;E).

3.2 Building an irregular pyramid

De�nition 8 An irregular pyramid is an ordered sequence of connected graphs G

0

; ::; G

m

.

The graphs of the sequence are called the levels of the irregular pyramid, G

0

the base le-

vel. Two consecutive levels G

n

; G

n+1

of an irregular pyramid are related to each other by

the set inclusion V

n+1

� V

n

, and by mappings (V

n

� V

n+1

) �! V

n+1

.

The process to construct G

n+1

from G

n

�rst selects set V

n+1

� V

n

and then creates edges

e

n+1

2 E

n+1

. De�nition 9 contains the �rst version of the process given by Meer [12]. In

this version, the selection of the vertex subset is based based on random numbers. For the

sake of completeness we should mention that this selection has also been carried out by

means of an energy term of the kind used for Hop�eld neural networks [3].

De�nition 9 Stochastic decimation of a graph [12] is a process that is executed in the

following steps:

1. Random numbers are assigned to the vertices.

2. Vertices with a local maximum of this variable (surviving vertices) are selected.

3. All non-surviving vertices are assigned to one survivor out of their neighborhood.

4. Repeat steps 1 : : : 3 for all non-survivors who do not have a survivor in their neigh-

borhood.

5. The receptive �eld RF (v

s

) of a survivor v

s

is formed by all non-survivors (child-

ren) that are assigned to v

s

(parent). It also includes v

s

itself.

6. Vertices of the reduced graph are neighbors if vertices of their receptive �elds are

neighbors in the original graph.

6



The following two locally observable rules control the extraction of survivors:

1. No two neighbors must survive.

2. Every non-survivor must have at least one survivor in its neighborhood.

All levels of an irregular pyramid are obtained from the base level G

0

of the irregular

pyramid by recursive application of stochastic decimation.

4 The dual irregular pyramid

The importance of pyramidal processing schemes for image analysis is given by local connec-

tions of the processing elements. These allow to take decisions in constant time, a global

decision is obtained at the apex of the pyramid after a logarithmic number of parallel

processing steps.

The condition of localness, however, is not ful�lled in the irregular pyramid, since the

degree of a vertex cannot be bounded during its construction [11]. The consequence is that

logarithmic time complexity is lost for processes that run in irregular pyramids.

The concept of duality can remedy the situation, as we could prove in the same pa-

per [11]. We considered the graphs that are dual to the levels of the irregular pyramid, and

we proved that vertex degree in the dual graphs remains bounded throughout the pyramid.

This section contains in a �rst part the formal de�nition of a dual graph. The second

part of the section is devoted to a process that has a level G

n

of an irregular pyramid and

its dual graph G

n

as an input, as well as the result of decimation G

n+1

. It selects surviving

vertices in the dual graph and connects them according to the result of the decimation.

4.1 Paths, circuits, cutsets and dual graphs

This section assembles all de�nitions that we need to introduce the concept of duality

between graphs.

De�nition 10 A path in a graph is a �nite alternating sequence of vertices and edges

v

0

; e

1

; v

1

; e

2

; : : : ; v

k�1

; e

k

; v

k

such that

1. vertices v

i�1

and v

i

are the end vertices of the edge e

i

, 1 � i � k;

2. all edges are distinct;

3. all vertices are distinct.

Vertices v

0

and v

k

are called end vertices of the path, and we refer to it as v

0

�v

k

path.

The number of edges in a path is called the length of a path.

Figure 5 shows two example paths of the graph G in Figure 4.

De�nition 11 A circuit is a path the end vertices of which are not distinct.
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Figure 5: Two paths of G.
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Figure 6: Three examples of circuits of G.

Figure 6 shows three circuits of the graph G in Figure 4.

De�nition 12 Let V

0

be a subset of the vertex set V of a graph G = (V;E). Then the

subgraph G

0

= (V

0

; E

0

) is the induced subgraph of G on the vertex set V

0

(or simply vertex-

induced subgraph hV

0

i of G) if E

0

is a subset of E such that an edge (v

i

; v

j

) is in E

0

if

and only if v

i

and v

j

are in V

0

.

De�nition 13 A cutset S of a connected graph G(V;E) is a minimal set of edges of G

such that its removal from G disconnects G, that is, the graph G(V;E�S) is disconnected.

Figure 7 shows graph G of Figure 4 after removal of cutset fe

9

; e

10

; e

11

; e

12

g: G is dis-

connected and consists of exactly two components hfv

1

; v

2

; v

3

; v

4

; v

5

; v

6

gi and hfv

7

; v

8

; v

9

gi.
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Figure 7: G after removal of cutset fe
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g.

De�nition 14 A graph G is a dual of a graph G if there exists a one-to-one correspon-

dence between the edges of G and those of G such that a set of edges in G is a circuit if

and only if the corresponding set of edges in G is a cutset.

Figure 8 shows a simple example of a pair of dual graphs. Both graphs have an equal

v

4

v

1

v

2

v

3

e

4

e

3

e

2

e

1

u u

u u

f

2

f

1

(a)

u u

f

2

f

1

�

�

� B

B

B

�

�L

L

�

� Z

Z

�

�H

H

e

1

e

2

e

3

e

4

(b)

Figure 8: A pair of dual graphs.

number of edges, and there is a one-to-one correspondence between their respective circuits

and cutsets. Graph G has only one circuit, fe

1

; e

2

; e

3

; e

4

g, which corresponds to the only

cutset fe

1

; e

2

; e

3

; e

4

g of G. Table 1 lists all circuits of G, along with the corresponding

cutsets of G. Figure 8 also reveals another property of graphs having a dual, planarity:

De�nition 15 A graph G is said to be planar if it can be drawn on a plane surface such

that its edges intersect only at their end vertices. Such a drawing of a planar graph G is

called a planar embedding of G.
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circuit of G cutset of G

fe

1

; e

2

g fe

1

; e

2

g

fe

1

; e

3

g fe

1

; e

3

g

fe

1

; e

4

g fe

1

; e

4

g

fe

2

; e

3

g fe

2

; e

3

g

fe

2

; e

4

g fe

2

; e

4

g

fe

3

; e

4

g fe

3

; e

4

g

Table 1: Circuits of G and corresponding cutsets of G.

De�nition 16 An embedding of a planar graph on a plane divides the plane into regions

or faces. A region or face is �nite if the area it encloses is �nite; otherwise it is in�nite.

De�nition 17 The edges on the boundary of a face contain exactly one circuit, and this

circuit is said to enclose the face. Let f

1

; f

2

; f

3

; : : : ; f

r

be the faces of a planar graph with

f

r

as the in�nite region. We denote by C

i

; 1 � i � r, the circuit on the boundary of region

f

i

. The circuits C

1

; C

2

; : : : ; C

r�1

; corresponding to the �nite regions, are called meshes or

cycles.

Like Harary [9, p. 103], we will refer to a cycle corresponding to a face f

i

as the cycle of

f

i

, and we will denote it as C(f

i

).

4.2 Building a dual irregular pyramid

With the de�nition of a dual graph we can now proceed with the de�nition of a dual

irregular pyramid.

De�nition 18 The dual irregular pyramid is an irregular pyramid, where each level is

complemented by its dual graph.

This section contains the de�nition of the process that complements a new level of the

irregular pyramid to obtain a new level of the dual irregular pyramid. The process uses

the information generated by decimation to also simplify the dual of the decimated graph.

Two notions, receptive �eld set and valence will be used to de�ne the process.

De�nition 19 The receptive �eld set RS(f) of face f is the set of parents of all di�erent

receptive �elds that are represented by the vertices of cycle C(f) corresponding to f .

Similarly, the receptive �eld set of an edge is de�ned.

De�nition 20 The receptive �eld set RS(e) of edge e is the set of parents of all di�erent

receptive �elds that are represented by the end vertices of e.
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De�nition 21 The valence of an edge or a face is de�ned as the cardinality of its receptive

�eld set,

val = card(RS):

De�nitions 19, 20, and 21 allow to proceed with the de�nition of the process that comple-

ments a new level of the dual irregular pyramid.

De�nition 22 Let G and G

0

be the dual graphs of the graph G and the result of its deci-

mation G

0

respectively. The following three steps construct a graph G

�

(F

�

; E

�

):

1. Induced connection set E

c

: If val(e) = 1 for an edge e 2 E, the corresponding edge

e = (f

1

; f

2

) 2 E does not create a connection in G*. We thus de�ne the connection

set E

c

by

E

c

:= fe 2 Ejval(e) = 2g:

2. Surviving faces F

�

: Faces f 2 F 'survive' to F

�

if their valence is greater than 2,

otherwise they don't:

F

�

:= ff 2 F jval(f) � 3g:

3. New edges E

�

: Two surviving faces f

�

0

; f

�

n

are neighbors in G

�

if there exists a path

(f

�

0

; f

1

; : : : ; f

n�1

; f

�

n

) in G

c

(F;E

c

) and all the intermediate faces f

1

; : : : ; f

n�1

=2 F

�

.

Theorem 1 states the relationship between graph G

�

and the dual of G

0

, G

0

. The proof can

be found in [11].

Theorem 1 The graph G

�

(F

�

; E

�

) constructed from G and the decimation of G according

to De�nition 22 is the dual of G

0

(F

0

; E

0

), G

�

(F

�

; E

�

) � G

0

(F

0

; E

0

):

The main motivation to build the dual graph is the property of bounded degree of the

graphs dual to the levels of an irregular pyramid. Theorem 2 states this property, for the

proof see [11].

Theorem 2 Let G(F;E) be the dual graph of G(V;E), G

0

(V

0

; E

0

) be the result of decima-

ting G(V;E), and G

0

(F

0

; E

0

) the corresponding dual graph. For every face f

0

2 F

0

there

exists a face f 2 F such that d(f

0

) � d(f) .
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5 Experimental results

Figure 9 shows six levels of a dual irregular pyramid built over a Voronoi diagram. The

most interesting result of our experiments is the occurrence of pendant edges (level 4 in

our example).

Figure 9: Dual irregular Voronoi pyramid.
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6 Discussion of the results

We discuss in this section the impact of a pendant edge on the dual irregular pyramid.

Figures 10, 11, 12 illustrate how decimation may lead to a pendant edge (cf. De�nition 9).

Figure 10 shows a graph G and its dual G before decimation of G. G(V;E) consists of

8 vertices and 15 edges. The plane is divided into 9 faces, with face f

9

being the in�nite

region.

Figure 10 b shows the dual of G, G(V ;E), with one vertex representing every face of G.

There is a correspondence between edges e

i

of G and edges e

i

of G (expressed by identical

indexing), and between circuits and cutsets, respectively. Figure 11 a illustrates the result
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Figure 10: G and G before decimation of G.

of the selection of survivors and the child-parent assignment. Table 2 lists the receptive

�elds for each vertex of the set of survivors fv

1

; v

3

; v

6

; v

8

g. Table 3 contains neighborhood

relations between receptive �elds, along with the neighborhood relations (edges) at the

new pyramid level. Figure 11 b illustrates the result of the decimation of G. The next

step during the construction of a new level of the dual irregular pyramid is to simplify also

the dual of the decimated graph G. According to De�nition 22, information generated by

decimation is used during this step: receptive �eld sets and valences of faces and edges.
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Figure 11: Decimation of G, resulting graph G

0

.

surviving vertex receptive �eld

v

1

fv

1

; v

2

g

v

3

fv

3

g

v

6

fv

6

g

v

8

fv

4

; v

5

; v

7

; v

8

g

Table 2: Survivors and receptive �elds.

adjacent receptive �elds connecting edges new edge

RF (v

1

); RF (v

3

) e

2

e

0

1

RF (v

1

); RF (v

8

) e

3

; e

4

; e

5

e

0

2

RF (v

3

); RF (v

8

) e

6

e

0

3

RF (v

6

); RF (v

8

) e

8

; e

9

; e

11

e

0

4

Table 3: Survivors and receptive �elds.
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Tables 4 and 5 contain these informations for all faces and edges. As can be seen from

face receptive �eld set valence

f

1

fv

1

; v

8

g 2

f

2

fv

1

; v

8

g 2

f

3

fv

1

; v

3

; v

8

g 3

f

4

fv

6

; v

8

g 2

f

5

fv

6

; v

8

g 2

f

6

fv

6

; v

8

g 2

f

7

fv

8

g 1

f

8

fv

8

g 1

Table 4: Receptive �eld sets and valences of faces.

the valences in Table 4, only face f

3

is surviving. From the valences displayed in Table 5

edge receptive �eld set valence

e

1

fv

1

g 1

e

2

fv

1

; v

3

g 2

e

3

fv

1

; v

8

g 2

e

4

fv

1

; v

8

g 2

e

5

fv

1

; v

8

g 2

e

6

fv

3

; v

8

g 2

e

7

fv

8

g 1

e

8

fv

6

; v

8

g 2

e

9

fv

6

; v

8

g 2

e

10

fv

8

g 1

e

11

fv

6

; v

8

g 2

e

12

fv

8

g 1

e

13

fv

8

g 1

e

14

fv

8

g 1

e

15

fv

8

g 1

Table 5: Receptive �eld sets and valences of edges.
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follows the induced connection set E

c

of edges of the dual graph:

E

c

= fe

2

; e

3

; e

4

; e

5

; e

6

; e

8

; e

9

; e

11

g:

Set E

c

allows to de�ne paths in G that lead to neighborhood relations between surviving

faces, in the example under consideration between f

3

and the in�nite region f

9

. Three

paths in G can be distinguished,

� f

3

; e

5

; f

2

; e

4

; f

1

; e

1

; f

9

;

� f

3

; e

2

; f

9

;

� f

3

; e

6

; f

9

.

The resulting graph G

�

is represented in Figure 12 a. Figure 12 b shows the dual of graph

G

0

. It has been obtained from the planar embedding of G

0

in Figure 11 b by a process that

is described in [15, p. 194]:

1. place a vertex in every region f

i

;

2. for each edge e common to regions f

i

and f

j

(not necessarily distinct), draw a line

connecting vertices representing f

i

and f

j

, so that it crosses e; this line represents

the edge e.
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(b) Graph G

0

.

Figure 12: Graph G

�

and the dual graph G

0

are not identical.

We summarise our analysis with two observations:
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� If the decimation of a graph G yields a pendant edge, then the graph G

�

obtained

from the process described in De�nition 22 is not the dual of the decimation G

0

.

This is a contradiction to Theorem 1.

� The degree of vertex f

3

in G

0

(Figure 12) is higher than its degree in G (Figure 10).

This is a contradiction to Theorem 2.

7 Conclusion

Motivated by peculiar results during the construction of the dual irregular pyramid, we

analyzed the algorithm carefully. We found that, starting from a triangular net, we may

obtain a graph with pendant edges, i.e. the obtained topology being no longer a valid

triangulation.

A more serious aspect with respect to the principle of massively parallel computation

is that the duality relation between the graphs may get lost in the pyramid, and that the

degree in the dual graph may also increase. Two strategies can be followed to solve the

problem:

� the conservative one: how can we extend the formal system to cope with the

above described problem ?

� the radical one: how else can we connect the set of surviving vertices, e.g. by

triangulation ?

Further research we plan will address the following questions:

� Are there possible solutions for both strategies ?

� Which are the computational costs for the solutions ?

� Can both strategies be combined, i.e. can problem areas be identi�ed and bounded,

in the limits of which a radical solution can be found ?
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