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Abstract. In this paper, we investigate the Max-Cut problem and pro-
pose a probabilistic heuristic to address its classic and weighted version.
Our approach is based on the Estimation of Distribution Algorithm
(EDA) that creates a population of individuals capable of evolving at
each generation towards the global solution. We have applied the Max-
Cut problem for image segmentation and defined the edges’ weights as
a modified function of the L2 norm between the RGB values of nodes.
The main goal of this paper is to introduce a heuristic for Max-Cut and
additionally to investigate how it can be applied in the segmentation
context.
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1 Introduction

Many problems in computer vision end up by assigning a certain label (corre-
sponding to a class) to a pixel or a region in the image. Therefore, it is required
to choose a proper representation in order to assign such label. Many algorithms
that are suitable for graph theoretical problems can also be applied in the com-
puter vision domain if the problem is modeled using the graph formulation.
Thus, the choice of representing images as graphs has several advantages over
other approaches.

A graph theoretical clustering algorithm consists of searching for a certain
combinatorial structure in the edge weighted graph, such as the minimum span-
ning tree [9, 16] or normalized cut [26, 28]. Among those methods, the complete
linkage clustering algorithm [20] reduces the search to the problem of finding a
complete subgraph (i.e. the maximal clique [24]) in the image. Also, graph-based
spectral methods have been successfully used for clustering [21] as well.

Given a graph G = (V, E), Max-Cut is the problem of finding a partition
(T, T̄ ) of the nodes V that maximizes the number of edges between T and its
complement set T̄ . This problem belongs to the class NP-Hard [11], therefore,
no polynomial time algorithm is able to solve Max-Cut for any arbitrary class of
graphs, although several approximations have been proposed. In fact, for planar
graphs, it is possible to compute the maximum cut in polynomial time [14].



In this paper, we propose a heuristic for the Max-Cut problem for any ar-
bitrary class of graphs and we model the weighted Max-Cut as the problem
of maximizing the sum of weighted edges between two sets of nodes. Nodes of
the same set connected by an edge should be merged into one single cluster and
nodes of different sets connected by a bichromatic edge should remain separated.
Our probabilistic heuristic is based on the Estimation of Distribution Algorithm
(EDA) [1]. Moreover, we have used the segmentation task to show the applicabil-
ity of the problem in the pattern recognition domain. We address the weighted
version of Max-Cut whose weights belong to R.

The remainder of this paper is organized as follows: Section 2 provides a
literature review on graph-based segmentation. The Max-Cut problem is in-
troduced and explained in Section 3. Our heuristic is disclosed in Section 4. We
map the theoretical graph problem into image segmentation in Section 5. Our
experiments are described in Section 6. Finally, we present our conclusions and
future directions in Section 7.

2 Related Work

Early graph-based clustering methods [29] use fixed thresholds and local mea-
sures in computing a cluster, i.e. the minimum spanning tree (MST) is computed.
The clustering criterion is to break the MST edges with the largest weight. The
work of Urquhart [27] attempts to overcome the problem of fixed threshold by
normalizing the weight of an edge using the smallest weight incident on the ver-
tices touching that edge. The methods in [9, 16] use an adaptive criterion that
depend on local properties rather than global ones and have the minimum span-
ning tree as the base algorithm. It is shown in [7] that minimum spanning tree
clustering technique, although unsupervised one, approaches the performance of
‘Bayes classifier’, as the number of sample points from each class increases.

The methods based on minimum cuts [4, 6] in graph are designed to minimize
the similarity between pixels that are being split [28, 26]. Authors in [28] define
a cut criterion, but it was biased toward finding small components. Shi and
Malik [26] developed the normalized cut criterion to address this bias, which
takes into consideration self-similarity of regions. These cut-criterion methods
capture the non-local properties of the image, in contrast with the simple graph-
based methods such as breaking edges in the MST. However they provide only
a characterization of such cut rather than of final segmentation as it is provided
by Felzenszwalb [9]. Shi and Malik [26] developed an approximation method
for computing the minimum normalized cut, closely related to spectral graph
methods, e.g [10].

The minimal spanning tree and the minimum cut are explicitly defined on
weighted edge graph, whereas the concept of a maximal clique is defined on
unweighted edge graphs. As a consequence, maximal clique based clustering
algorithms work on unweighted graphs derived from the edge weighted graphs
by means of thresholding [17]. Pavan and Pelillo [24] generalized the concept of
maximal clique to weighted graphs.



Markov Random Field (MRF ) has been used for clustering [12]. However the
use ofMRF for image clustering usually leads toNP-Hard problems. The graph-
based approximation method for MRF problems [5] yields practical solution, if
the number of labels for the pixel is small, which limits these methods for use
in segmentation and clustering.

A disadvantage of graph theoretical approaches for image segmentation, i.e.
clustering, is that these algorithms in some real-time applications are very time
consuming.

3 Max-Cut

Given an undirected graph G = (V, E), a cut in the graph is a partition of the
vertices V into T and T̄ . Let T̄ = V \T be the complement set of T and E(T, T̄ )
be the set of edges connecting a vertex in T with another in T̄ . The Max-Cut
problem consists of finding the cut that maximizes |E(T, T̄ )|. It is one of the
problems of Karp [19] and it belongs to the NP-Hard class. An example of a
maximum cut is shown in Figure 1a.

(a) (b)

Fig. 1: (a) The cut that maximizes the number of bichromatic edges between the
T (red squared nodes) and T̄ (black circular nodes). (b) The Maximum Cut of
a 4-connected representation.

Considering the complexity of NP-Hard problems, common approaches con-
sist of creating ρ-approximated algorithms, i.e. polynomial algorithms whose so-
lution is ρ times the optimal solution [13]. There is a vast and growing amount of
algorithms to deal with NP-Hard problems. Researchers seek to find approaches
that are capable of achieving better approximation rates as well as they attempt
to demonstrate that there are no better approximations above a certain thresh-
old. For instance, Goemans-Williason [13] proposed an approximated algorithm
to the Max-Cut problem whose rate is close to:

α = min0≤θ≤π
2

π

θ

1− cos θ
> 0.87856. (1)



According to the authors, the approach was a substantial improvement in
nearly twenty years. Subsequently, H̊astad [15] sets a barrier that unless P =
NP, Max-Cut can not be approximated by a deterministic algorithm that
adheres to a rate strictly exceeding 16/17 [15, 18].

Finally, Kaporis et al. [18] proposed a deterministic algorithm in polynomial
time that approximates almost all instances of Max-Cut with a rate above
the H̊astad threshold. Their solution became the first improvement of Max-
Cut after a decade [18]. Thus, seeking to break the barrier imposed by H̊astad,
Kaporis et al. use two strategies: Assuming that the maximum cut is not known,
it becomes necessary to (i) find an upper bound for the Max-Cut as well as (ii)
to improve significantly the known lower bounds.

4 Estimation of Distribution Algorithm

Evolutionary Algorithms (EA) and more specifically Estimation of Distribution
Algorithms (EDA) consist of an ensemble of individuals (agents) sampling the
search space for potential solutions of a given problem. Those individuals have
a knowledge about the laws of the environment and a quality measurement that
represents how able those individuals are to solve the problem [2]. Those solutions
are created based on chromosomes and each chromosome has a probability p
of being chosen. Evolutionary Algorithms have been applied to the Max-Cut
problem before such as in [8], where the authors propose a hybrid evolutionary
algorithm using Variable Neighborhood Search and Memetic Algorithm.

In this paper, chromosomes are represented by the nodes of the graph and the
nodes should follow a probability distribution, such as the uniform distribution
in which all nodes are likely to be chosen with the same probability.

We apply the Population Based Incremented Learning (Pbil) algorithm [3]
which takes a vector of probabilities P = {p(v1), p(v2), . . . , p(vn)} associated
with how capable a chromosome (vi) is to provide a solution for the problem.
We create a population S = {s1, s2, . . . , sn} of individuals that will choose a
subset of nodes to compose the cut T . The best individual (sgbest) of generation
g is selected to survive and it is added into generation g+1. Hence, we guarantee
that sg+1

best ≥ s
g
best. The probability of pg(vi) is updated as follows:

pg+1(vi) = (1− α)× pg(vi) + α×
∑|S|
k=1[vi ∈ sk]

|S|
, (2)

where α ∈ [0, 1] is a learning rate parameter that weights the impact of both
terms of the formula. By using a high α, we decrease the impact of the probability
in the previous generation ((1 − α) × pg(vi)) and we increase the impact of
having this node chosen by many individuals. In our experiments, α = 0.5, which
means we balance equally the importance of both terms. In this algorithm, each
individuals choose one or more nodes to belong to the solution, the number of
nodes chosen by each individual is computed randomly in such a way to follow
the probability distribution of the nodes.



Data: G(V, E), P,G
Result: Sbest

1 begin
2 Sbest = ∅
3 for i = 1 to G do
4 Si ← population(G(V, E), P );

5 Si ← Si ∪ {Sbest};
6 Si

best ← evaluate(Si);

7 if Si
best > Sbest then

8 Sbest ← Si
best;

9 end

10 end

11 end

(a) Estimation of Distribution Algorithm:
Individuals (S) evolve through generations
G until the best individual (sbest) is found.

si sj

(b) Each individual (e.g. si, sj) selects a
cut T of the graph. Probability of nodes
in generation g+1 is updated using sgbest.

Fig. 2: Estimation of Distribution Algorithm.

Figure 2a shows the Estimation of Distribution Algorithm. Line 4 creates a
population based on the current graph and on the nodes’ probabilities P . We
add our best individual Sbest into the current population which ensures that
the next generation will produce as good results as the current one. Figure 2b
shows an example of two individuals selecting a subset of nodes of the graph
as their candidate solution for the cut. The best individual survives the current
generation and evolves.

5 Max-Cut-based Image Segmentation

In order to segment the image, we first create a graph representation. One ap-
proach could consider on assigning each pixel of the image as a node and using a
4-connected neighborhood to create the edges. However, considering that Max-
Cut tries to maximize the bichromatic edges, by using this representation, we
might end up with a cut such that all edges are bichromatic as displayed in
Figure 1b.

Our graph representation is built as follows: Given a non visited region in
the image, we add a seed to that region and we grow this seed by adding pixels
whose absolute difference to the seed does not exceed a certain threshold t (in
our experiments t = 40). For each region we average the intensity components
of the RGB of all pixels belonging to that region and we define the weight of
an edge (ew) between two nodes (vi, vj) as a modified function of the L2 norm
between the two regions:

ew(vi, vj) = (2× [||rgb(vi)− rgb(vj)||2 > t]− 1)× ||rgb(vi)− rgb(vj)||2. (3)



This equation states that based on a threshold t, an edge between two nodes
might be either positive or negative. This negative weight assumption prevents
the EDA of choosing certain edges in the segmentation process. In the classic
Max-Cut problem, an edge has the weight of 1. But in the weighted version
we maximize

∑
ew(vi, vj); vi ∈ T, vj ∈ T̄ ; ew(vi, vj) ∈ R which is the sum of the

bichromatic edges’ weights.
During the construction of the graph, each pixel in the boundary of two

regions will produce an edge, which means that nodes modeling bigger regions
will have more edges. In this way, our implementation of graph allows multiple
edges between two nodes in order to give preference to bigger regions in the
segmentation process. The addition of negative edges work as a mechanism to
prevent Max-Cut of choosing those edges in the search for the global maxima.
The negative edges penalize the cost function in such a way that if the EDA
chooses one such edge, the cost will be smaller than not choosing that edge.
Hence, we still try to maximize the sum of ew(vi, vj), however, some edges will
not be added into the final cut.

We map the nodes’ cut into the region segmentation as follows: whenever
there is a bichromatic edge in the graph, there will be isolated regions in the
image, i.e. distinct regions in the final segmented image as generated. However,

(a) Initial Graph (b) Iteration #0 (c) Iteration #1 (d) Iteration #2

(e) Iteration #12 (f) Iteration #65 (g) Iteration #68 (h) Iteration #91

Fig. 3: Evolution of the segmentation through the EDA generations.



when there is an edge between two nodes of the same color, those nodes will be
merged into a single region in the final segmentation.

6 Experiments

We have applied our algorithm on images of the Berkeley database [22]. Figure 3
shows an example of the segmentation results during the evolution of the EDA.
The initial graph generated by the watershed technique is displayed in Figure
3a and final result of segmentation is available in Figure 3h.

As aforementioned, this paper attempts to apply the Max-Cut into the seg-
mentation problem. We have computed the results for other images (Elephants,
Airplane, Church) in Figure 4. For all images, nodes that were merged into a
single node succeeded to do so, due to the fact that the distance between re-
gions in the RGB space are relatively small. Hence, those edges were modeled
as negative edges and were not selected by the EDA to compose the final result
because the addition of negative edges would penalize the cost.

For instance, the segmentation result obtained in the Elephants’ picture did
not merge the blue sky in the right upper corner considering that the distance
between those two regions in RGB was higher than the threshold used during
the optimization. On the other hand, the left-most elephant was merged with
a piece of sky, which clearly does not produce a correct result. However, many
segmentation algorithms, including many graph cuts use interaction with users
by adding manual scribbles or regions containing the object of interest to help the
segmentation procedure [23, 25]. The negative edges’ assumption is an attempt
to improve the segmentation results by computing a similarity measure between
regions. However, other mechanisms such as brushing or scribbling could be used
to map Max-Cut in the segmentation. One could add some knowledge about
the spatial location of the regions to the cost function as an attempt to bring
color information and spatial configuration together to improve the results.

7 Conclusions

Graph-based representation of an image has many advantages over other repre-
sentations due to the fact that many problems can be posed in graph theoretical
manner. In this paper we investigate the Max-Cut problem which belongs to
the class of problems called NP-Hard and use the Algorithm of Estimation of
Distribution to compute a solution for it.

The focus of this paper is to show a heuristic for the Max-Cut problem
and to show that it can be applied in the segmentation task by assuming, for
instance, the negative edges’ concept. We are continuously investigating how this
problem could be better explored for segmentation.



Elephants Airplane Church

Fig. 4: Segmentation of images from the Berkeley database [22] using the EDA.
First row displays the input image. The second row displays the initial graph
representation. Our segmentation obtained by Max-Cut is displayed in the third
row. We show the edges between regions in the fourth row.
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