
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: seitnerf@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-100 December 21, 2005

Robust detection and tracking of objects

Florian Seitner
seitnerf@prip.tuwien.ac.at

Abstract

Due to the increasing availability of fast and cheap hardware in the past few years, today a wide range of

complex visual tracking tasks is possible. Efficient mathematical methods can provide a high robustness

which also makes visual tracking interesting for many industrial purposes. However, the high demands on

quality and speed still provide a major challenge for each tracking application. In this thesis a tracking

system is introduced, which tries to address both demands appropriately by using currently available

algorithms to quickly track pedestrians in video streams. By combining these well-proved algorithms, a

good solution regarding computational complexity, accuracy and stability is obtained.

To achieve this task, a fast object detector similar to the approach of Viola et al. [Viola2003] is

used as one component in this tracking system. This detector uses Haar-like features which are very fast

to compute and makes a quick pedestrian detection in a frame possible. Next to the detection system,

an adaptive background model sub-divides each frame into foreground and background regions. As a

compromise between complexity and robustness a single-mode parametric background model based on

normal distributions and wrapped normal distributions is used. Both background model and detector are

combined to provide the tracking system with locations of pedestrian-like regions and to sub-divide the

body into three parts: head, upper body and lower body. After this segmentation into finer tracking units

a set of colour and spatial features for further tracking is extracted from each part individually. Individual

and spatially separated body parts also provide the possibility to use colour histograms in a spatial

sense. Moreover, an appearance model provides accurate solutions and approximations when occlusions or

missing detections occur.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 3

1.3 Literature and related work . 3

1.4 Overview of the system . 5

1.5 Contribution . 7

2 Background model 8

2.1 Colour spaces . 8

2.1.1 RGB colour space . 8

2.1.2 HSV colour space . 9

2.2 Circular statistics . 11

2.3 Colour distributions . 12

2.3.1 Normal distribution . 12

2.3.2 Von Mises distribution . 14

2.3.3 Wrapped normal distribution . 14

2.4 Background model . 16

2.4.1 Background generation . 16

2.4.2 Update background model . 18

2.5 Implementation . 19

3 Pedestrian Detector 22

3.1 Terminology . 22

3.2 Features . 23

3.2.1 Haar-like features . 23

3.2.2 Integral Image . 25

3.2.3 Illumination correction . 26

3.3 Classification . 28

3.3.1 Weak classifier . 28

3.3.2 Boosting . 29

3.3.3 Adaptive boosting . 29

3.3.4 Boosting algorithm . 31

3.3.5 Extended Boosted Classifier . 35

3.4 Detecting pedestrians . 37

i

CONTENTS CONTENTS

3.4.1 Image pyramid . 37

3.4.2 Background clipping . 38

4 Tracking features 41

4.1 Pedestrian structure . 41

4.2 Feature extraction . 42

4.3 Feature validation . 45

4.4 Distance measures . 46

4.4.1 Desirable properties of distance measures . 46

4.4.2 Distance functions . 47

4.5 Object merging . 50

5 Appearance model 51

5.1 Object assignment . 52

5.2 Object states . 53

5.3 Object updates . 55

5.3.1 Feature update . 56

5.3.2 Feature estimates . 56

5.3.3 Collision group . 57

6 Results 59

6.1 Specification of the training and test system . 59

6.2 Test sequences . 60

6.2.1 Test sequence 1 . 60

6.2.2 Test sequence 2 . 61

6.3 Detector . 61

6.3.1 Training time . 61

6.3.2 Stages . 63

6.3.3 Features . 65

6.3.4 Classifier performance . 67

6.3.5 Pre-classification . 67

6.3.6 Clipping . 70

6.3.7 Detector in progress . 72

6.4 Tracking features . 72

6.5 Appearance model . 73

6.5.1 Occlusions . 73

6.5.2 Filtering of wrong detections . 76

6.6 Tracker in progress . 76

7 Summary & Conclusion 78

Bibliography 81

ii

List of Figures

1.1 Structure of the tracking system . 5

2.1 HSV colour space . 10

2.2 Normal distribution . 13

2.3 Beta distribution . 14

2.4 von Mises distribution . 15

2.5 Separation of HSV colour space . 18

2.6 Original frame . 19

2.7 Four cases of colour reliability . 20

2.8 Foreground mask . 20

3.1 Feature types . 24

3.2 Integral Image . 25

3.3 Adaptive Boosting with a cascade of classifiers . 30

3.4 Each classifier is trained with the same set of positives and with negatives wrongly classified

by previous classifiers . 31

3.5 Normal boosted classifier . 35

3.6 Extended boosted classifier . 36

3.7 Adaptive Boosting with clipping . 39

3.8 Background clipped windows . 40

4.1 Body part reduction with shrinking ratio Rshrink = 4
5 . 42

4.2 Body parts after reduction . 43

4.3 Hue histograms and hue means. 45

5.1 Object assignment . 53

5.2 Object states . 54

5.3 Life cycle of an object . 55

5.4 Collision area . 58

6.1 Frame #1 of test sequence 1 . 61

6.2 Frame #80 of test sequence 2 . 62

6.3 Training time . 62

6.4 FloatBoost against AdaBoost . 64

6.5 Rejected negatives . 65

iii

LIST OF FIGURES LIST OF FIGURES

6.6 Features used in the cascade . 66

6.7 Feature examples . 66

6.8 ROC curves of our detector. 68

6.9 Positive pre-classification . 69

6.10 Negative pre-classification . 69

6.11 Clipping in test sequence 1. 71

6.12 Clipping in test sequence 2. 71

6.13 The detector in progress. 72

6.14 Object movements in test sequence 2. 74

6.15 Object occlusions in test sequence 2. 75

6.16 Coordinate estimation by the appearance model. 75

6.17 The tracker in progress for test sequence 2. The frame number is shown in each image. . 77

iv

Chapter 1

Introduction

The significant problems we face cannot

be solved at the same level of thinking we

were at when we created them.

Albert Einstein (1879 - 1955)

This chapter describes the main motivation behind this work and how it contributes to the field of

computer vision. Moreover, it gives an overview of currently available tracking techniques and related

work by describing their basic ideas and the theory behind them. A description of the structural design

of this thesis closes this chapter.

1.1 Motivation

The task of tracking a complex object in a real world environment requires almost no effort for a human

being. However for computers, simple object detection is already quite a difficult task and often complex

mathematical methods on fast computers are employed to attempt to cope with this problem. The

results are usually far from being as good as those achieved by human beings. The question arises, why

computers are required for this task.

The simple answer lies on the one hand in the continuous automation by using technology and on the

other hand in the huge amounts of image and video data which is produced and transfered daily. Today

video data is available over a wide range of media and the increasing transfer rates over satellites or high-

speed networks make fast access possible. Additionally, low-cost video cameras are widely available which

makes them interesting for industrial applications. The processing of large amounts of data is always

relatively time consuming or complex and therefore, for human beings, often mentally exhausting and

subject to errors. Computers can, as in many industrial automation processes, support human operators

in their daily work and improve the quality as well as the efficiency of a task.

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Over the last years the demand for reliable tracking of objects in video streams has risen dramatically.

There exist a large number of real-world applications where an automatic object tracking system could

support a human operator in dangerous, extensive or time-consuming tasks and increase the efficiency,

safety, as well as the security. A pedestrian is a good example for a complex object and is often used

in tracking applications for demonstrating the functionality of a tracking method. The tracking system

introduced in this work is designed to track pedestrians in video sequences but could be modified to track

other objects (i.e. cars) as well.

The specific area of pedestrian tracking has numerous applications ranging from tasks in traditional

video surveillance to human safety, marketing analysis and traffic systems. A system which reliably

tracks pedestrians in video streams can — to a certain degree — address multiple security tasks such as

to trace a robber after a bank robbery, to locate a lost child in a crowd or to decelerate a car automatically

to avoid collisions with crossing pedestrians. Moreover, statistical applications based on the pedestrian

frequency are imaginable. Examples such as to determine the utilization ratio of public transport and

their capacity bottlenecks or to evaluate the value of a shop or an advertisement by the number of people

passing by are only few of them. Fields like landscaping and urban planning provide an additional huge

application field. Here an accurate planning according to the human need can be supported.

Next to the fact that many of these tasks rely on a high robustness, the throughput rate of a tracking

system is also critical. Normally real-time processing of the arriving data is desired or necessary and large

amounts of data — due to resolution, frame rate or multiple cameras — have to be processed quickly.

The main motivation in this thesis was to design a tracking system for pedestrians which addresses

the robustness as well as the speed of the system by combining well established methods of pattern

recognition, machine learning and image analysis. Furthermore, the memory usage and efficiency should

be addressed since large data amounts can quickly lead to the complete consumption of the available

memory and requires careful consideration.

This tracking system focuses on robustness, efficiency and speed but since it represents a prototype which

often requires changes, corrections and improvements, Matlab as a high-level programming language

was chosen for the implementation. This language is specialized in scientific computation and provides

a multitude of mathematical functions, operations and structures. Matlab also manages the memory

allocation for data structures which allows the user to completely concentrate on the problem itself.

Widely used, it is available for all major operating systems like Windows or Unix-like systems (e.g.

Linux, Mac-OS) and supports compilation of the Matlab code into native machine code for all available

platforms. Additionally, it can work together with a wide range of low-level interfaces and libraries and

can therefore access many external ports and devices like serial or USB ports and web-cams. All these

possibilities make Matlab a good choice for prototyping. Due to speed reasons, a manual transfer of the

prototype to a low-level language afterwards is recommended, since the native code which is created by

Matlab is quite fast but does not reach the speed of a native low-level language implementation.

The emphasis of this thesis lies in the design and implementation of a tracking system for pedestrians,

which provides a usable degree of robustness and is — regarding its design — optimized to quickly

process large amounts of video data. Well-known tracking problems like occlusions or missing detections

are addressed.

2

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.2 Problem statement

Tracking of various kinds of object has been addressed in numerous works. An overview of the specific

field of pedestrian tracking is given in Section 1.3 and various tracking approaches are described. However,

every visual tracking algorithm has to deal with the same fundamental problems. The central challenge is

to determine the location of a target object as it moves through a camera’s field of view. This is normally

done by matching multiple regions or features in successive frames of a video stream. This problem of

feature matching is called the temporal correspondence problem and also arises in other related areas like

motion estimation. The difficulty in solving the temporal correspondence problem is due to three main

factors ([HB98]):

• Variations in the target pose or target deformation

• Variations in the illumination

• Partial or full occlusions of the target object

Ignoring only one of these factors would lead to inaccurate results and therefore a reliable tracking

algorithm has to address all three kinds of variations. Furthermore, the algorithm has to do this with a

certain computational efficiency since it often has to process the data — if not in real-time — at least in

a reasonable amount of time.

In a video sequence where the observations are recorded with a moving camera, the complexity of the

three problems listed above gets even higher. Therefore we made the assumption that each scene is

observed with a static camera and designed the tracking system according to this.

The tracking system introduced in this thesis is designed to accurately cope with the three kinds of

variations in a static camera environment and, at the same time, to provide an efficient way to quickly

process the arriving video data.

1.3 Literature and related work

Tracking applications and algorithms have been used since many years and various approaches have been

introduced. Strong variations between the different approaches exist, strongly depending on the available

computation power and mathematical methods, the field of application or the requirements on efficiency

and robustness. Alone in the field of pedestrian tracking the number of different approaches is high.

Most systems which try to detect or track objects in images work in the visual [WADP97, BBF+04] or

infrared [KCT04, SKK00, BBBD05] spectrum of light and use one or multiple cameras [ZT00, BBDL05].

There exists a multitude of tracking approaches with strong differences regarding the concepts, the math-

ematical theory or the addressed environment (e.g. outdoor/indoor, static/dynamic camera). Each of

these systems therefore has its very specific characteristics, strengths and problems. In this work we use

3

1.3. LITERATURE AND RELATED WORK CHAPTER 1. INTRODUCTION

pedestrians as an example for a complex object tracking application and the overview given in this section

will describe existing work done in this specialised area.

The concept or basic idea behind every tracking system is nearly always the same. The first step of most

tracking algorithms is to locate regions of interest with a high probability of containing a pedestrian.

Normally this is done by extracting low-level features like pixels or blobs from image areas. Various

classification techniques used in pattern recognition are applied to determine if a pedestrian is present. For

example, Oren et al. [OPS+98] use simple wavelet templates in combination with Support Vector Machines

(SVMs) to classify pedestrians by their shape. Levi et al. [LW04] uses a similar shape-based approach

based on edge orientation histograms (EOHs) for detecting dominant edge orientations and symmetry in

faces which also could be used for pedestrian detection. A hierarchical approach for pedestrian shapes is

introduced in [GG02] and uses a coarse-to-fine template matching technique based on distance transforms.

Another statistical approach by Philomin et al. in [PDD00] uses a Point Distribution Model (PDM) to

model the pedestrian shapes by a compact linear shape model. Afterwards, Principle Component Analysis

(PCA) is used to extract a mean shape. A widely used approach which uses Haar-like feature templates

and a cascade of boosted classifiers for pedestrian shape description is used in [JV03, LM02, LLK03]. A

system for hand detection by contour comparison is introduced in [OB04]. Here the difference between

two shapes or contours is calculated with a cost function and during detection a search for image areas

with low cost values is performed. Approaches based on neural networks have also been used successfully

for pedestrian detection in images [ZT00].

After the positive detection of a pedestrian, the system has to keep track of this object while it crosses

the scene. It uses tracking features based on colour, contour, shape or texture to find the objects in the

sequential frames again. It is therefore of great importance that the tracking features are – to a certain

degree – time-invariant. For the case that a tracked object cannot be located in the current frame by using

its tracking features, the tracking system must provide adequate estimations. Since each pedestrian can

be regarded as a dynamic system in an unknown state, filters can be used to provide this state estimate.

A multitude of different filters for dealing with this problem are used in current work. A widely used

approach for state approximation is based on Hidden Markov Models (HMM). They are closely related

to Bayesian Networks (BN) and regard the real state of a dynamic system as an unobserved (or hidden)

Markov process. Each measurement is called an observed state of the HMM. The goal of this method is

to find the sequence of hidden states which is most probable. This sequence is called the Viterbi path.

An example of a tracking system for face contours based on HMMs is described by Chen et al. [CRH01].

The often used Kalman filter (KF) is based on HMMs. This efficient filter uses the last system state and

the current (noisy) measurements to estimate the current state. The restrictions of the KF are that the

measurement noise is regarded as Gaussian distributed and the filter is limited to linear assumptions.

Most natural systems are non-linear and an extension of the Kalman filter – the Extended Kalman filter

(EKF) which can also estimate non-linear dynamic systems – must be used here. However the EKF is

still bound to Gaussian distributed noise. Bertozzi et al. [BBF+04] and Gavrila and Giebel [GG02] both

detect pedestrians by using shape properties and use Kalman filters for estimating the position of the

tracked person. An approach based on motion detection in gray-scale images and tracking of blobs with

Kalman filters is introduced by Masoud et al. [MP01]. Here the pedestrian is modeled as a rectangle with

a certain dynamic behavior and a Kalman filter is used for the pedestrian parameter estimation.

4

1.4. OVERVIEW OF THE SYSTEM CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of the tracking system

Another filter approach is based on Sequential Monte Carlo methods (SMC) or Particle filters (PF). They

are often used for spatio-temporal estimation of shape and position and can – in contrast to the KF – also

estimate dynamic systems with non-Gaussian noise or non-linear system behavior. This advantage has

its cost and normally particle filters are computationally more expensive than Kalman filters. Isard and

Blake [IB98] introduce the Condensation particle filter, which tracks the shape of faces, leaves or hands

in complex video sequences. In [GGB+02] a general tracking system for aircraft based on particle filters

is introduced. Shan et al. [SWTO04] use a Particle Filter in combination with a Mean Shift algorithm

for hand tracking in real-time. Another tracking approach for human bodies based on motion and colour

is described in [PT03]. This work uses background segmentation to extract dynamic image areas and

tracks these regions by using colour information in combination with a Mean Shift algorithm.

1.4 Overview of the system

It is obvious that there is more than one way to implement a tracking system. In this work the prime focus

is a high processing speed of the image frames and existing techniques should be combined to achieve

near real-time performance.

Figure 1.1 visualizes the structure of the tracking system implemented and shows how the parts work

together. Each frame of a video sequence is independently processed by a detector and a background

model. The background model separates the raw image into foreground and background regions and

creates a mask where each pixel is assigned to one of these two regions. In each image the detector part

tries to locate pedestrians with various positions and sizes. It describes each detected pedestrian by a

rectangle which determines the position and the size of a pedestrian in the image. Since this description of

a pedestrian is not unique and does not support a reliable tracking process we extract additional features

5

1.4. OVERVIEW OF THE SYSTEM CHAPTER 1. INTRODUCTION

of the pedestrian. This is done in the feature extraction part where the already available information

about a pedestrian is extended with colour information and information about the single body parts of

the pedestrian. We use a method which uses the available background model to gain this additional

information. After we have the tracking features for each pedestrian detection we validate them for

conclusiveness. This is done in the object validation part of the system where we decide if an object

provides us with enough information for the tracking process. After validation the detections are grouped

together to eliminate multiple detections of the same pedestrian. An appearance model collects the

available information about each object during the whole video sequence and handles occlusions and

wrong detection. No previous work based on such an approach could be found.

This thesis is organized in seven chapters and covers multiple aspects of object detection and tracking.

Chapter 2 describes the background model. For better understanding how this model describes each pixel

colour of the background a short overview of the theory of colour spaces is given and different colour

models compared. Due to the fact that some colour representations use directional and linear values to

describe a colour and its colour components, important terms of circular statistics for accurate processing

of directional data are given in Section 2.2. Furthermore, Section 2.3 introduces different density functions

for modelling the distributions of these colour components and Section 2.4 describes an adaptive model

for static background modelling.

A detector for locating pedestrians in static image frames is presented in Chapter 3 and the required

terminology explained. A fast detection algorithm based on Haar-like features ([VJ02, WAHL04]) was

used for the pedestrian detection. The theory behind the detection system and the implementation is

discussed in detail in Section 3.4. A method for quickly validating a detection by using the background

model is proposed and the traditional definition of boosted classifiers (Section 3.3.2) is extended and

optimized. This extended boosted classifier achieves the same accuracy regarding the classification results

by using fewer computations than a normal boosted classifier.

Chapter 4 discusses the feature extraction. Therefore it describes some issues concerning the calculation of

colour and spatial features for describing pedestrian-like objects and how they can be obtained from single

images and video streams. After the features have been extracted, methods for validating the features

according to logical and physical assumptions are introduced in Section 4.3. Furthermore, appropriate

distance measures to support this validation task and to estimate the similarity between two objects are

described and a brief introduction on the confidence of spatial and colour features is given.

The adaptive appearance model builds the highest layer of this tracking system and combines all parts

together. It is the content of Chapter 5 which defines important terms like model and object state and

describes how an object can be assigned to a detection. Moreover, this chapter shows how features of

an object are updated and how their reliability changes during the tracking. In times when a feature

cannot be determined exactly by using the current frame information, accurate methods to predict and

to approximate its value must be provided. They are topic of Section 5.3.2.

The performance of the tracking system is discussed in detail in Chapter 6, where each component of the

tracking system is analyzed. Moreover, the training and the test parameters are described and specific

characteristics of the system like error rates and tracking speed analyzed.

6

1.5. CONTRIBUTION CHAPTER 1. INTRODUCTION

Finally, in Chapter 7 a brief summary is given and conclusions are drawn. Moreover, some suggestions

for future work based on the results of this thesis are made.

1.5 Contribution

In this thesis the following contributions to the field of pedestrian tracking are made

• A new combination of a background model and a fast Haar-like feature based detector for validating

detections and for feature extraction is presented. The tracking system uses spatial and colour

features and multiple individual body regions.

• Development of an accurate probability model for static background modelling.

• An extension of the traditional boosted classifier structure is introduced which makes a fast pre-

rejection of negative samples already possible during the detection phase.

• A clipping algorithm to accelerate the classification process is developed.

• A method for weighting tracking features according to their reliability is introduced.

• An asymmetric FloatBoost version is introduced.

7

Chapter 2

Background model

See things as you would have them be

instead as they are.

Robert Collier (1885-1950)

The proposed tracking system relies strongly on tracking features extracted from the foreground. To

distinguish between foreground and background information and to assign frame pixels to one of these two

domains, a background model is necessary, which is introduced in this chapter. Since the model operates

on the HSV (hue, saturation and intensity) colour space, a short introduction to this colour representation

and its advantages over the traditional RGB colour space is given in section 2.1. To address the circular

nature of hue component in the HSV colour space, an accurate method for processing of directional data

is described and important terms of circular statistics are introduced in Section 2.2. Section 2.3 proposes

accurate density functions for modelling the colour components of a pixel colour and Section 2.4 describes

how they are used in a parametric background model.

2.1 Colour spaces

For accurately describing natural colours we have to find a mathematical representation or model. Such

colour models are called colour spaces and there are numerous of these spaces available. Each of them

has its advantages and disadvantages and their usage normally depends strongly on the application and

the requirements like quality, computation speed or required technology.

2.1.1 RGB colour space

The colour information of a video frame is normally available in the RGB colour space. This representation

is based on an additive model which determines each colour by its combination of red R, green G and

8

2.1. COLOUR SPACES CHAPTER 2. BACKGROUND MODEL

blue B light and is widely used in the video electronics industry. This colour representation possesses

properties which makes it easily usable for electronic devices like displays but on the other hand often

makes the further processing and visualization of colour data difficult. Disadvantageous properties of the

RGB colour space are:

• The high cross correlation between the colour components of rBR = 0.78 (cross correlation between

blue and red), rRG = 0.98 and rGB = 0.94 makes the processing of colour data more complic-

ated [TT03].

• The RGB colour space is not very intuitive for humans regarding the visualization of a colour

defined by its R, G and B values.

• The similarity or difference between two colours is — due to the human perception — not uniform.

Linear changes of a colour signal are therefore not perceived proportionately (Non-linearity of RGB

colour space).

• The RGB colour model is device dependent since it does not clearly define colours like e.g. “red”.1

The HSV colour space does not eliminate all the disadvantages of the RGB colour space like device

dependency or non-linearity but possesses a few properties which makes it highly suitable for this work.

The next section gives a brief description of how the RGB colour space can be transformed to the HSV

colour space and what makes the HSV model so suitable for further image processing.

2.1.2 HSV colour space

Already in 1915, the painter Albert Henry Munsell (1858 - 1918) tried to define an accurate system for

describing colours by developing a collection of colour samples based on the same perceptual difference of

colours. The idea of an intuitive colour space which is adjusted to the human perception is not new to the

scientific community and the HSV (hue, saturation, value) colour space, which was introduced in 1978

by Alvy Ray Smith is only one of many [Smi78]. The HSV colour space2 is a nonlinear transformation of

the RGB colour space and defines each colour by three constituent components. It describes each colour

by a hue component H , a saturation component S and an intensity component defined by the value V

and can be visualised in the form of a colour cone (Figure 2.1). The transformation of a colour in the

RGB colour space (R, G, B) defined by its red, green and blue component in the range of 0 and 1 to the

HSV colour space is given by

H =

60
(

0 + G−B
max(R,G,B)−min(R,G,B)

)

if R = max(R, G, B)

60
(

2 + B−R
max(R,G,B)−min(R,G,B)

)

if G = max(R, G, B)

60
(

4 + R−G
max(R,G,B)−min(R,G,B)

)

if B = max(R, G, B)

(2.1)

1Different primaries are used for different devices. For devices that emit their own light (i.e. monitors or projectors)
or collect light (i.e. scanners, cameras) normally the primaries red, green and blue are used to produce different colours.
Devices such as printers where the output relies on reflected light normally use a combination of yellow, cyan and magenta
to filter the light that hits the paper.

2Note that the HSV colour space is also called the HSB (hue, saturation, brightness) colour space.

9

2.1. COLOUR SPACES CHAPTER 2. BACKGROUND MODEL

Figure 2.1: HSV colour space

S =
max(R, G, B)−min(R, G, B)

max(R, G, B)
(2.2)

V = max(R, G, B). (2.3)

Note that this leads to two undesirable properties of the HSV colour space: the saturation is undefined if

max(R, G, B) = 0 and the hue is undefined for max(R, G, B) = min(R, G, B). The hue which is defined

in degrees in the range of 0
◦

and 360
◦

, represents the spectral component of a colour with the colour red

aligned at 0
◦

, green at 120
◦

and blue at 240
◦

. The value V and the saturation S are both linear values

in the range between 0 and 1.

The saturation or chroma of a colour can be interpreted as its purity or non-whiteness and is the distance

to the centred axis of the cone. Colours with a high saturation have mainly one spectral component and

appear vivid whereas colours with a very low saturation are perceived as gray tones. These gray tones

are mainly defined by their value component V which is the intensity or brightness of a colour. This

intensity is determined by the vertical position of the colour in the HSV space. Colours with intensity

V = 0 are without brightness and all represent black whereas V = 1 represents the brightest colours.

Note that black has therefore no unique definition like in the RGB colour space but all colours with an

intensity V = 0 are projected on black independently of their saturation and hue.

Specific properties of the HSV colour space makes it more suitable than the RGB colour space for

processing colour information. As described in [FM99] the HSV colour model clearly separates the

intensity information (V) from the chromatic components (H, S). Colour spaces like HSV which represent

colour in an intuitive way that can be understood naturally by humans are also called perceptual colour

spaces.

Next to the better human perception, the hue of the HSV colour space is invariant to certain types of

highlights, shadings and shadows and makes shadow removal techniques easy to apply. Since the HSV

colour space is a transformation of the RGB colour space, it is also device dependent.

10

2.2. CIRCULAR STATISTICS CHAPTER 2. BACKGROUND MODEL

Because of its more natural perceptual properties and clear separation of chroma and luminance the HSV

colour model is used in this work. Disadvantages of this colour space [CJSW01] — the discontinuity of

the hue component and the singularity and numerical instability for saturation values close to 0 — will

be addressed in the Sections 2.2 and 2.3.

2.2 Circular statistics

The algebraic structure of the line and the circle are different and therefore methods of circular data

analysis as discussed in [Mar72] must be used when working with directional data. In contrast to the

linear domain only one operation, the addition modulo 2π is available in the circular domain. Due to the

fact that the circle is a closed curve, its natural periodicity must be taken into account. In this section

important definitions in circular statistics are given. Accurate distributions for working with directional

data are introduced in Section 2.3.

It is obvious that the arithmetic mean is unsuitable for directional data since the result is very dependent

on the choice of origin in the circular domain. Lovell [LKW91] describes a way to represent a set of N

angular estimates by N unit phasors3 with arguments equal to the corresponding angular estimates. The

mean angle µ̂p is then given by the argument of the phasor sum and this direction is independent of the

choice of origin. The magnitude of the phasor sum S gives a measure of the concentration about the mean

direction and can be used as basis for a definition of the circular variance. If S = N then all estimates are

identically equal to the mean. For S = 0 no conclusion can be drawn. The general definition of circular

mean and variance based on this phasor sum are of the following form.

Definition 1 Circular Sample Mean and Sample Variance: Let {α̂(k)}, α̂ : Z 7−→ R be a set of N

observations of a random variable in the circular domain [0, 2π). Then the circular sample mean µ̂ and

the circular sample variance V̂ are defined by

µ̂ =

((

arg

[
N−1∑

k=0

ejα̂(k)

]))

2π

(2.4)

and

V̂ = 1− 1

N

∣
∣
∣
∣
∣

N−1∑

k=0

ejα̂(k)

∣
∣
∣
∣
∣

(2.5)

where (())2π denotes reduction modulo 2π onto [0, 2π).

The circular variance V̂ , V̂ ∈ [0, 1] cannot be compared directly with its linear equivalent σ2 which lies

in the domain [0,∞). However by using the relationship between the normal distribution on the circle

(wrapped normal, [Mar72]) and the normal distribution on the line a circular standard deviation in the

range [0,∞) can be defined as

σ̂ =

√

−2logn(1− V̂). (2.6)

3A phasor is a representation for complex numbers which is often used by engineers. A complex number of the form
x+ iy is represented in the form x+ iy = |z|eiφ where |z| =

p

x2 + y2 is the complex modulus and φ = tan−1(y

x
) the phase

(or complex argument).

11

2.3. COLOUR DISTRIBUTIONS CHAPTER 2. BACKGROUND MODEL

All statistical definitions in this work which are used in the context of hue values always refer to the

above definitions from circular statistics.

2.3 Colour distributions

A colour model like the RGB or HSV colour space describes colours in an abstract mathematical way,

typically by three (RGB, HSV, HSL) or four colour components (CMYK). A background model normally

uses multiple sequential frames to determine which pixels are part of the background and what colour they

possess. Since the colour values of a pixel in two sequential frames are never completely the same due to

e.g. camera sensor noise, electromagnetic disturbance or lighting change, this definition of a colour value

by a constant tuple of colours is not completely suitable. A common way to address this problem is to

describe each component of a pixel colour by a uni-modal or multi-modal distribution. Using a uni-modal

distribution, a colour component is determined by a mean value and a variance which indicates how far

from the mean value its values typically are. The variance is also called the second central moment and

is a measure of the statistical dispersion of a random variable.

Many distributions can be used for describing a colour component of a colour and this section will describe

the density functions which are used in this system. Also alternative distributions are investigated and

the reasons for not using them are described.

2.3.1 Normal distribution

Since intensity and saturation are linear variables, Gaussian distributions (Figure 2.2) characterized by a

mean µ and a variance σ are used for modeling those two channels of a pixel. Note that colours are not

Gaussian distributed [SL00] but as shown in numerous works can be well approximated by the standard

normal distribution [FM99, WADP97]. The probability of observing a saturation value S at a pixel with

a reference distribution N(µs, σs) for the saturation is therefore given by

P (S) =
1√

2πσs

e
− (S−µs)2

2σ2
s . (2.7)

The probability for the intensity is calculated identically.

As noted in [HS67] there exist many reasons why a normal distribution can provide a good description for

an unknown random process. The main theoretical justification for the use of normal distributions is due

to the central limits theorem. It states that the mean of a large number n of independent observations from

any distribution, or even from up to n different distributions, with finite mean and variance approaches a

normal distribution. In a completely static background the colour components of a pixel are theoretically

constant and variations in the measurements only due to a multitude of small disturbances like camera

noise or lighting changes. Therefore the noise should theoretically be normally distributed with mean at

the real value of the colour component. However, Hahn states in [HS67] that normal distributions are

sometimes not adequate as a physical model because of following reasons:

12

2.3. COLOUR DISTRIBUTIONS CHAPTER 2. BACKGROUND MODEL

Figure 2.2: Normal distribution

1. It is clear that many variables cannot be reasonably regarded as the sum of many small effects and

no reason exist for expecting these variables to be normally distributed.

2. The range of normally distributed variables is minus and plus infinity whereas physical variables

often possess upper and lower limits. Errors due to this limited range can be negligible but also

can lead to inaccurate results. In particular if the mean is relatively close to the physical boundary

of a variable, a symmetrical distribution like the normal distribution is inadequate.

3. For some random variables the normal distribution provides a reasonable approximation in the

center, but is not adequate at the tails of the distribution.

Other distributions like the Beta distribution (Figure 2.3) which are defined on a finite domain are

probably better suited than the Gaussian for modelling finite colour ranges. In particular for values

near the extremes the Beta distribution would probably provide a more accurate description than the

Gaussian. By using the Beta distribution B(ηs, γs), the probability for the saturation is

P (S) =

{
Γ(ηs+γs)
Γ(ηs)Γ(γs)S

γs−1(1− S)ηs−1 , 0 ≤ S ≤ 1

0 elsewhere,
(2.8)

where Γ is the gamma function and ηs > 0, γs > 0 are the parameters of the Beta distribution for the

saturation. The natural finite domain S ∈ [0, 1] of the Beta function is a significant advantage.

Nevertheless, most cameras have only a limited sensitivity range and do not cope well near the extremes.

Since we are mainly interested in accurate modelling of pixels within this camera sensitivity range, the

simpler Gaussian distribution is appropriate for saturation and value components. However, for the hue

component the Gaussian distribution is inappropriate since circular data behaves quite differently from

linear data. Here a von Mises distribution4 which is the circular equivalent of the Gaussian distribution

4This distribution is named after the Austrian mathematician Richard von Mises.

13

2.3. COLOUR DISTRIBUTIONS CHAPTER 2. BACKGROUND MODEL

Figure 2.3: Beta distribution

is a suitable density function.

2.3.2 Von Mises distribution

The probability for a hue value H described by a von Mises distribution (Figure 2.4) can be written as

P (H) =
1

2πI0(κh)
eκh cos(H−µ̂p) (2.9)

where the concentration κh and the mean direction µ̂p characterize the von Mises distribution. I0 is the

modified Bessel function of the first kind of order 0. Note that the von Mises distribution degenerates

into a uniform distribution for κh = 0. Similar in shape to the von Mises distribution is the wrapped

Gaussian or wrapped normal distribution [Mar72].

2.3.3 Wrapped normal distribution

The wrapped normal distribution of the form

P (H) =
1√

2πσh

∞∑

k=−∞

e
− (H+2πk)2

2σ2
h (2.10)

assumes H to be N(0, σh) and reduces all observed angles to the interval between −π and π. The resulting

distribution is circular and wraps the ordinary normal distribution around a circle. This is done by adding

all probabilities that fall into the same sector of the circle.

A comparison between the von Mises and the wrapped normal distribution is done in [Lov91, page 67].

It is shown that the wrapped normal distribution is a very accurate approximation to the von Mises

14

2.3. COLOUR DISTRIBUTIONS CHAPTER 2. BACKGROUND MODEL

Figure 2.4: von Mises distribution

distribution for moderate SNR (signal-to-noise ratio). For a colour distribution described by a mean µ

and a standard deviation σ, the SNR can be defined as

SNR =
µ

σ
. (2.11)

For a unimodal, static background we can assume that background changes occur slowly and signal

distortions produced by, for example, camera sensors are in a moderate range. Therefore the wrapped

normal distribution is an appropriate simpler alternative to the von Mises distribution for modelling the

hue values and is used in this system.

Next to its simplicity there are other properties in favor of the wrapped normal distribution which are

described in detail in [Mar72]:

• The wrapped normal approximation is just as accurate as the von Mises distribution approximation

for moderate SNR (signal-to-noise ratio) [Lov91, page 67].

• The dispersion parameter of the wrapped normal distribution corresponds to the standard deviation

of the familiar normal distribution on the line.

• The wrapped normal distribution possesses, in contrast to the von Mises distribution the reproduct-

ive property so that the sums and differences of two wrapped normally distributed random variables

are also wrapped normally. Therefore, the distribution of the sum or difference of two von Mises

distributed circular random variables is often calculated using the wrapped normal approximation

[Mar72, page 67].

• The distribution of the mean of a large number of circular random variables approaches a wrapped

normal distribution by the central limits theorem on the circle [Mar72, page 90]. Therefore, if the

distribution of circular random variables is well described by the wrapped normal distribution, the

15

2.4. BACKGROUND MODEL CHAPTER 2. BACKGROUND MODEL

distribution of a linear combination of these random variables is even closer to a wrapped normal

distribution5.

Stephens has also shown in [Ste63] that a wrapped normal distribution Ñ(µ, σ) can approximate the von

Mises distribution M(µ, κ) over the entire range of the concentration parameter κ reasonably closely.

2.4 Background model

An adaptive background model is used for background subtruction and motion-based foreground selection.

A parametric model as used by Francois et al. [FM99] for real-time segmentation of video streams is

used. The model operates on the HSV colour space since it clearly separates chromatic and intensity

information which makes it suitable for both intensity and colour measurements. Each colour channel

of a background reference pixel is modelled as a single and separate distribution since we use a static

camera sequence and assume that each pixel of the background can be represented as a single colour

(single model). Parametric models based on mixtures of multiple distributions as used in [PT03] or

a non-parametric model as introduced by Elgammal et al. [EDD01] can also cope with multi-model

backgrounds but are computationally more expensive and would bring no advantage in a single model

background.

As described in Section 2.3, each pixel of the background is described by two Gaussians N(µs, σs) and

N(µv, σv) for saturation and intensity and one wrapped Gaussian Ñ(µh, σh) for the hue. Initially, the

means of all three colour channels of the reference distribution are set to the corresponding values of

the pixels in the first frame. Normally each image is disturbed by noises (i.e. sensor noise, atmospheric

noise) and therefore a natural colour variance in the colour of a pixel due to these disturbances is always

present. To make the models robust against a basic amount of noise the variance for each background

distribution is always set above a minimal variance value of σmin > 0. For all sequences this minimal

variance was set manually and a small value of σmin = 3 · 10−3 provided good results.

After the initialization the model continually performs two main tasks. First the model determines if

the pixels in the current frame can be described by the current reference distributions of the background

model. If a pixel cannot accurately be described it is labeled as foreground, otherwise as background.

Secondly, after the background mask has been generated, the distributions of our background model are

updated.

2.4.1 Background generation

For describing the background each pixel has its own model which determines the pixel properties of

the background at this position. The hue, the saturation and the intensity of a background pixel are

determined by the mean values of the three colour channels µ = [µh, µs, µv]
′

and their variances σ =

5The distribution of the sum of a large number of independent circular random variables approaches the uni-variant
normal distribution.

16

2.4. BACKGROUND MODEL CHAPTER 2. BACKGROUND MODEL

[σh, σs, σv]
′

. We decide if a pixel I = [H, S, V]
′

belongs to the background by comparing this pixel I with

the model at the corresponding position in the background model. By thresholding the distance between

the pixels and its model we can decide if the pixel belongs to the background or the foreground. For

calculating this distance a distance measure δhsv, which uses all three colour channels independently, is

defined:

δhsv(I, µ) =

δh

δs

δv

 =

∣
∣
∣
∣
∣
∣
∣

](H, µh)

S − µs

V − µv

∣
∣
∣
∣
∣
∣
∣

. (2.12)

The circular domain of the hue is taken into account when computing the hue difference δh. We make the

simplified assumption that the colour channels are independent of each other to reduce computational

complexity. Porikli observed in [PT03] that this assumption degrades the quality of the results only

minimally. If, for a pixel at position x, the difference for one of the channels is larger than a foreground

threshold λ{h,s,v}(x) the pixel is marked as foreground B(x) = 0, otherwise it is labelled as foreground

B(x) = 1.

B(x) =

{

1 if δhsv(I(x), µ(x)) < λ(x)

0 otherwise.
(2.13)

The threshold λ{h,s,v} depends on the variance of the corresponding colour channel

λ{h,s,v}(x) = 2σ{h,s,v}(x). (2.14)

The range of 2σ is equivalent to a 95.5% confidence interval for a standard normal distribution. Since

colour information is not Gaussian distributed [SL00] we can still expect each colour value to lie in the

interval [µ− 2σ, µ + 2σ] with a confidence of at least 75% by applying Tchebychev’s Inequality theorem.

This theorem states that for any distribution with finite mean and variance, at least [1− (1
k2)] times 100

percent of the probability is in the range ±kσ around the mean [HS67, page 45].

For reliable computation of the hue difference we have to test if the saturation value S(x) of the frame

pixel or the mean µs(x) of the reference distribution is close or equal to 0. Pixels with saturation equal

to 0 are in the achromatic range of the HSV colour space. In this range the pixel lies on the central line

of gray values and its hue information is meaningless and not usable as a distance measure. We define

a pixel as achromatic if its saturation lies below a saturation threshold λachrs
= 0.2. According to this

we only use the reliable channels of the frame pixel and the reference distributions for comparison and

distinguish between four cases:

1. if S < λachrs
and µs < λachrs

, check δv < λv .

2. if S > λachrs
and µs < λachrs

, check δv < λv and |S − µs

µv
| < λs .

3. if S < λachrs
and µs > λachrs

, check δv < λv and | S
V
− µS | < λs.

4. if S > λachrs
and µs > λachrs

, check δv < λv , δh < λh and |S cos(](H, µh))| < λs .

In the first case no useful colour information is available and therefore only the intensity is used to measure

the distance between the pixel and colour distribution. As shown in [FM99] the saturation can be scaled

by the intensity to reflect the uncertainty of the colour information for lower intensity values (Case 2 and

17

2.4. BACKGROUND MODEL CHAPTER 2. BACKGROUND MODEL

Figure 2.5: Separation of HSV colour space

3). In Case 4 the reference pixel as well as its reference distributions lie in the chromatic range and all

channels can be used as distance measures. In this case the saturation is projected onto the mean hue

direction. The allocation of each pixel to an achromatic or chromatic range is visualised in Figure 2.5.

The gray area represents the achromatic part of the HSV colour space, the rest of the cone the chromatic

range.

one of the four cases can be seen in .

For low brightness values the saturation component is unreliable and we use an additional threshold

λachrv
= 0.2 for the intensity6. We add all pixels with an intensity V < λachrv

to Case 1 since this intensity

range of the HSV colour space represents the nearly black pixels with strong achromatic properties. The

gray region represents the range where only the intensity is used. The rest of the cone is the colour range

where also the saturation and the hue are used for comparison.

2.4.2 Update background model

After the pixels I(t) in the current frame have been labelled as foreground or background, the colour

distributions of all reference pixels are updated by

µ(t) = [1− α]µ(t− 1) + αI(t) (2.15)

and

σ2(t) = [1− α]σ2(t− 1) + α[µ(t)− I(t)]2. (2.16)

Here α is the learning rate which defines how quickly old frames are forgotten. A minimal standard

derivation σmin is introduced, which prevents the decreasing of the standard deviation σ(t) below a

minimal value. This is useful in a long period of time when the background remains constant. As in the

background generation step, only those channels of a pixel which contain useful information to support

6Hanbury and Serra [HS02] shows that this brightness dependence can easily be removed by removing the brightness nor-
malisation from the saturation expression (Equation 2.2). The saturation is computed as S = max(R, G, B)−min(R, G, B).

18

2.5. IMPLEMENTATION CHAPTER 2. BACKGROUND MODEL

Figure 2.6: Original frame

an update are updated. In the case where a reference pixel and a frame pixel are both in the achromatic

range (Case 1) and no useful colour information is available, only its intensity distribution is updated.

2.5 Implementation

By using the background model described above, each pixel of a frame is assigned to one of the 4 cases

described in Section 2.4.1. A frame before the background segmentation step is shown in Figure 2.6.

The frame is then separated into a group mask as shown in Figure 2.7. The red regions are pixels assigned

to Case 1 where only intensity information can be used. Green pixels and blue pixels represent Case 2 and

Case 3 respectively. In the white regions (Case 4) hue information is available in the background model

as well as in the current frame and saturation and hue provide useful information. The intensity is used

in all four cases. The large number of red pixels (Case 1) in the group mask is due to the large number

of nearly gray pixels in the original image which do not provide good hue or saturation information. The

reason for the large number of gray pixels is probably that this video sequence was recorded in winter time

where less sunlight is present and at an urban location where the streets or concrete buildings normally

have a characteristic gray colour. Additional reasons for achromatism in frames could be due to camera

characteristics or filters in post-processing steps.

After the assignment of each pixel to one group, the background generation step now compares the

colour of each pixel with the current background model and assigns it to background or foreground. The

resulting foreground mask is shown in Figure 2.8.

The background model performed well on all test sequences. Problems occurred only when the frame

resolution was too small or a high compression for the frames was used. Here – due to compression

19

2.5. IMPLEMENTATION CHAPTER 2. BACKGROUND MODEL

Figure 2.7: Four cases of colour reliability

Figure 2.8: Foreground mask

20

2.5. IMPLEMENTATION CHAPTER 2. BACKGROUND MODEL

artifacts or the scaling filters – a lot of noise and disturbances were present in the image and the model

could not explain the background distributions sufficiently.

21

Chapter 3

Pedestrian Detector

There are two ways of constructing a

software design; one way is to make it so

simple that there are obviously no

deficiencies, and the other way is to

make it so complicated that there are no

obvious deficiencies. The first method is

far more difficult.

C. A. R. Hoare

This tracking system makes predictions about possible pedestrian locations in each video frame. These

predictions are based on the available detections of pedestrians in the frames of the video sequence. This

fundamental part of our system finds pedestrian-like patterns in an image – independent of their size and

location. This chapter describes the theory behind this detector in detail and takes a closer look at its

implementation. For better understanding, a brief overview in Section 3.1 describes important terms used

in this area of image processing. Section 3.2 describes the features used for the pedestrian classification

and how they can be computed quickly and with illumination correction. How we use these features for

the classification process is described in Section 3.3. Section 3.4 takes a closer look at how these features

can be applied at various scales and positions in a frame.

3.1 Terminology

In image processing the same words are often used to describe different facts and properties. For a better

understanding a short description of the terminology used in this work is provided in this section.

The term detection rate D always refers to the percentage of positives which are classified correctly by

the detector from the total number of positives. The false positive rate F is the percentage of negatives,

22

3.2. FEATURES CHAPTER 3. PEDESTRIAN DETECTOR

which are incorrectly classified as positives. Good detection rate D or low false positive rate F alone do

not necessarily indicate a good detector performance. If the detection rate D and the false positive rate F

of a detector are both very high or very low this means that the detector cannot distinguish between

positive and negative patterns very well. In the first case it will classify nearly everything as positive

whereas in the second case, the detector will not classify as many negatives as positives but neither will

it recognize positives very well. Therefore only both terms together can describe the performance or

effectiveness of a detector in a meaningful way.

When we speak of an image or frame we always refer to a complete and unresized frame in the video

sequence. If we want to access a smaller part of the image we refer to sub-images in the frame within

a rectangular-shaped window. This sub-image is a standard image but represents only a smaller part

or sub-region of the frame. Each window is simply determined by an upper-left and lower-right corner.

When we work with a window it should be clear from the context if we want to access the geometric

information of the window or the colour information of the referenced sub-image pixels.

The detector or pedestrian detector described in this chapter refers to a classifier which only works on

images and classifies them either as pedestrian or as non-pedestrian. Also sub-images can be classified by

the detector since they are standard images inside a larger image. If we write that the detector classifies

a window it means that the detector indirectly classifies the referenced sub-image. Another important

term is a pedestrian detection or detection. These terms always refer to windows in the current frame

whose referenced sub-images were classified as pedestrian by the detector.

3.2 Features

Every classifier working on an image has to use some kind of feature to determine the class of this image.

The feature can simply be a single pixel but often more complex features like edges, pixels regions or

shapes are used. In this detector we use Haar-like features (Section 6.3.3) for describing a pedestrian in

an image. By using integral images (Section 3.2.2) we can quickly compute these features independent

of their size and can apply an illumination normalization (Section 3.2.3) on the feature output. A feature

calculation is always done on an image and therefore if applied on a window it indirectly uses the referenced

sub-image.

3.2.1 Haar-like features

In this detector, Haar-like features [VJ01a] are used for the classification. Each feature uses a set of two

or more pixel filters r where each filter is defined by a rectangular shaped area =((p1, q1), (p2, q2)). Here

(p1, q1) and (p2, q2) are the upper-left corner and the lower-right corner of the rectangular area. The

response r(I) of a filter r for an image I is simply the sum of pixel intensity values in the area =:

r(I) =

p2∑

x=p1

q2∑

y=q1

I(x, y) (3.1)

23

3.2. FEATURES CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.1: Feature types

Since all pixel intensity values are larger than or equal to zero, the filter response r is also always larger

than or equal to zero. Section 3.2.2 describes how those rectangle area sums can be computed very quickly

using integral images.

Each Haar-like feature ρ consists of a set of Nρ pixel filters r1..Nρ
with corresponding filter responses r1..Nρ

(I)

and orientations s1..Nρ
∈ {−1, 1}. The orientation or sign si works as a signum function and turns the

positive filter response ri into a positive or negative output. Typically each Haar-like feature has at least

one filter with a contrary orientation to the rest of its filters. The output ρ(I) of the feature ρ for an

image I is a linear combination of weighted filter responses

ρ(I) =

Nρ∑

k=1

skrk(I), sk ∈ {−1, 1} (3.2)

In this detector, seven static feature types are used (Figure 3.1). Motion based features as used in

[CD99, VJS03] were not used in this implementation because of their higher computational complexity

compared to static features.

In Figure 3.1, the filled and the white regions of the features represent rectangles with different orienta-

tion s. Therefore, the sum of the responses of all filled rectangles has the opposite sign to the sum of the

white rectangle responses. The features in box A are sensitive to horizontal and vertical edges. Feature

type 3 focuses on local context comparing a center and its surrounding information. The types 4 and 5

are good for describing horizontal and vertical line features and are often used for the relation between

24

3.2. FEATURES CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.2: Integral Image

eyes and nose or head and background. Instead of the additional use of rotated features as proposed

by Lienhart [LM02, LKP03] the feature types in box D for non-horizontal and non-vertical lines are

introduced which should also cover a similar range to rotated features. In contrast to rotated Haar-like

features no additional computation of the rotated integral image is necessary for the feature types 6 and 7.

Both features focus on non-horizontal and non-vertical edges.

The coordinates and size values of all feature filters are always normalized to the range [0, 1] and in

relation to the windows where the features are applied. This feature normalization is useful when the

features are used at different scales as is done in the image pyramid (Section 3.4.1). In this image pyramid

we work with windows of different sizes and their referenced sub-images. Before a feature is applied it is

scaled to the size of the window. A feature rectangle with a width of 0.5 means that the scaled feature

covers half of the window width.

3.2.2 Integral Image

Since the filters described in Section 6.3.3 build the basic elements of the detector, it is important to

compute them very quickly and effectively. A fast way to compute rectangle sums independent of the size

of the rectangle are integral images [VJ01b]. Since the filters in this detector use rectangle sums, integral

images can be used for computing the filter responses.

An integral image II of an image I can be computed as

II(p, q) =

p
∑

x=1

q
∑

y=1

I(x, y) (3.3)

25

3.2. FEATURES CHAPTER 3. PEDESTRIAN DETECTOR

where I(x, y) is the pixel intensity value in image I at position (x, y). Each value II(p, q) in the integral

image II at position (p, q) represents the sum of the pixel intensity values in the rectangular area between

the upper-left corner and the position (p, q) in the image I .

The intensity sum (i.e. the filter response r(I)) of a rectangular area =((p1, q1), (p2, q2)) therefore can be

computed independently of the rectangle size with 3 arithmetic operations

r(I) = II(p2, q2)− II(p1, q2)− II(p2, q1) + II(p1, q1) (3.4)

An example is shown in Figure 3.2 in which we aim to get the sum of the green rectangle D. The 4

rectangle sums are labelled with 1 to 4 where the rectangle sum 2 includes the sum of grayvalues of

rectangle A and B. Rectangle sum 3 is the sum of rectangle A and C and rectangle sum 4 contains all

pixel values of the rectangles A to D. First rectangle 2 and 3 are subtracted from rectangle 4. Area 1

was subtracted twice and has to be added again to get the sum of rectangle D.

The integral image II of an image I can be computed efficiently by first cumulatively summing the columns

/ rows and then cumulatively summing the row sums / column sums. A more detailed description of

computing integral images can be found in [LM02].

3.2.3 Illumination correction

To minimize the effect of different lighting conditions, all images are variance normalized before the image

is passed to the detector cascade for classification. As demonstrated in [LM02, VJ01a, VJ01b], the mean µ

µ =

∑

I(x, y)

size(I)
(3.5)

of all pixel intensity values in an image I can be calculated very quickly by using the integral images

again. Here size(I) is the number of pixels of image I . The variance σ is determined as

σ2 = µ2 − 1

size(I)

∑

I(x, y)2. (3.6)

For calculating the sum of the squared pixel intensity values I(x, y)2 in image I , a second integral

image II2 of image I squared is calculated (e.g. 2 integral images of the original image are used in the

whole process):

II2(p, q) =

p
∑

x=1

q
∑

y=1

I(x, y)2 (3.7)

By using the integral image and the squared integral image we can compute the mean and the variance

of an image independent of its size. As also shown in [VJ01a] it is possible to apply the illumination

26

3.2. FEATURES CHAPTER 3. PEDESTRIAN DETECTOR

correction as a post processing step after calculating the filter responses of a feature. Instead of variance

normalizing each single intensity value in an image I the normalization takes place after the computation

of the filter responses which requires only a few arithmetic operations. For an image I with mean µ and

variance σ we can normalize a filter with response

ρ(I) =

K∑

k=1

skrk(I), sk ∈ {−1, 1} (3.8)

as

ρ(I) =

K∑

k=1

sk
|rk(I)−size(rk)µ|

σ

= 1
σ

K∑

k=1

sk |rk(I) − size(rk)µ|
(3.9)

For fast computation we use only features which consist of two rectangle filters. The normalized output

of a feature is of the form

ρ(I) =
1

σ

2∑

k=1

ωk
∑

ωk

sk |rk(I)− size(rk)µ| . (3.10)

where ωk is a weight which is assigned to each filter to make its output size independent. This is necessary

to make a comparison between differently sized filters as used by feature type 3 (Figure 3.1) possible. In

our implementation the weights and orientations for the features with two filters r1 and r2 are set to

ω1 = 1, ω2 = size(r1)
size(r2)

and

s1 = 1, s2 = −1.

Here ωi and si are the weight and the orientation of filter ri. This leads to the final equation for the

variance normalized feature response of

ρ(I) = 1
P

ωkσ

2∑

k=1

ωksk |rk(I)− size(rk)µ|

= 1
2σ

[

|r1(I)− size(r1)µ| −
∣
∣
∣r2(I) size(r1)

size(r2) − size(r1)µ
∣
∣
∣

]
(3.11)

which can be computed with a few arithmetic operations.

27

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

3.3 Classification

The features described in the last section simply provide a feature output in form of a floating point

number. A classifier now has to make the class assignment according to this feature output. A weak

classifier is the simplest form of classifier used in this work and described in Section 3.3.1. More complex

and powerful classifiers are designed in Sections 3.3.2 to 3.3.5.

3.3.1 Weak classifier

A classifier c uses a single Haar-like feature ρ for the classification. Each classifier c has a threshold λc

which is used as a bias for the classification. A classifier c determines the class c(I) of an image I as

c(I) =

{

1 if ρ(I) ≥ λc

0 otherwise.
(3.12)

Here ρ(I) is the response of feature ρ for image I . If ρ(I) is smaller than the threshold λc, classifier c labels

the image I as negative (i.e. non-pedestrian, class 0). Otherwise it is classified as positive (i.e. pedestrian,

class 1).

The threshold λc of a classifier c with feature ρ is defined in such a way that the classifier has the minimal

classification error εc on the training set. This training set consists of NT training samples x1..NT
with

corresponding class y1..NT
∈ {0, 1}. Since AdaBoost (see Section 1) does not consider all training samples

equally but assigns image weights w1..NT
to them, a simple mean of the feature responses on the training

set does not suffice to estimate the threshold λc. Therefore, for calculation of the threshold λc, univariate

quadratic discriminant analysis as proposed in [DHS00] is used. For calculating the threshold λc for

classifier c, first a negative threshold λneg for all negative training samples xi with yi = 0 and image

weight wi is calculated.

λneg =

∑

wiρ(xi)
∑

wi

(3.13)

The same computation step is done for the positive threshold λpos with the positive samples xj where

yj = 1. Finally the overall threshold λc of a weak classifier c is calculated as the mean of the negative

and positive threshold λneg and λpos.

λc =
λneg + λpos

2
(3.14)

We now have a quite simple classifier based on rectangle filters which – because of their simplicity – are

also called weak classifiers. Since a pedestrian is a quite complex object it is reasonable that a single weak

28

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

classifier will not be powerful enough to describe it. Therefore we combine many of these weak classifiers

into one “super-classifier” by using a technique called boosting which is described in the next section.

3.3.2 Boosting

As in the detector of Viola and Jones [VJ01a], a boosting algorithm is used in this implementation.

Boosting [DHS00] is widely used in the field of pattern classification. It is the idea of letting multiple

and simple (or weak) classifiers decide a classification task by a majority vote. For boosting, any kind of

learning algorithm like SVMs, neural networks or decision trees can be used. This implementation uses

weak classifiers based on Haar-like features for building boosted classifiers.

A boosted classifier C uses a set of NC weak classifiers c1..NC
(Section 3.3.1). The output of each weak

classifier ci(x) is weighted with a weak classifier weight αi where

NC∑

i=1

αi = 1 and

NC∑

i=1

αici(x) ∈ [0, 1]. For

deciding on the class C(x) of a sample x the sum of all weighted outputs is used. If this sum is above

the threshold λC of the boosted classifier C, the sample x is classified as positive, otherwise as negative.

C(x) =

1 if

NC∑

i=1

αici(x) ≥ λC

0 otherwise

(3.15)

In this implementation a threshold λC = 1
2 was taken during the training, which means that if all classifier

weights are equal, a sample has to be classified by at least 50% of the weak classifiers as positive to belong

to class 1.

A boosted classifier already achieves good results but for difficult classification problems a way for com-

bining multiple boosted classifiers exists which is described in the next section. It splits the main problem

into smaller problems and trains one boosted classifier for each of these sub-problems.

3.3.3 Adaptive boosting

The common boosting process described in the last section leads to a good classifier, which consists of

a set of weak classifiers. This boosted classifier normally provides a better detection rate as well as a

lower false positive rate than each of its weak classifiers. A major problem in many classification tasks is

that with increasing detection rate, the false positive rate normally also increases. For hard classification

problems a boosted classifier hardly achieves a high detection rate together with a low false positive rate.

Adaptive boosting (AdaBoost) tries to overcome this problem by specially training and combining several

boosted classifiers.

The idea behind adaptive boosting is to create NBC boosted classifiers C1..NBC
, where each of them con-

centrates on reaching a high detection rate (D1..NBC
≈ 1) and only an average false positive rate (F1..NBC

≤

29

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.3: Adaptive Boosting with a cascade of classifiers

0.5) on a training set. We do not try to address both problems (low false positive rate + high detection

rate) at the same time but only one problem – a high detection rate for each boosted classifier. The

NBC boosted classifiers are then connected together in a classifier cascade (see Figure 3.3). This cascade

contains NBC classifier stages with one boosted classifier per stage. Since each of the classifiers C1..NBC

in this cascade has a detection rate D1..NBC
≥ 0.99 and a false positive rate F1..NBC

≤ 0.5, the classifier

cascade with NBC stages (=NS boosted classifiers) has a final detection rate D and a false positive rate F

of

D =

NBC∏

i=1

Di (3.16)

F =

NBC∏

i=1

Fi (3.17)

With each additional boosted classifier in the cascade the detection rate as well as the false positive rate

decrease. Since in this structured classification process the detection rate decreases much more slowly

then the false positive rate we can achieve a good detection rate as well as a low false positive rate. The

term classifier cascade in this work can be understood as one super-classifier which has the function to

decide if an image is a pedestrian or a non-pedestrian.

At the beginning of a classification process, as shown in Figure 3.3, the detector divides an image into

multiple sub-images (see Section 3.4.1). Each sub-image is classified by all boosted classifiers in the

classifier cascade and if rejected by one of them, classified as negative or non-pedestrian. If a sub-image

passes through all stages (i.e. accepted as a pedestrian by all classifiers), it is labelled as positive.

30

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.4: Each classifier is trained with the same set of positives and with negatives wrongly classified
by previous classifiers

After the complete training, every boosted classifier Ci of the classifier cascade should have a high

detection rate and will therefore classify nearly all positives correctly. A problem occurs if multiple

classifiers reject an equal set of samples as negatives. Since each additional classifier in the cascade has

the function of rejecting additional negatives, it does not make sense to use multiple classifiers in the

cascade for rejecting the same samples. They would only complete the same classification twice without

improving the false positive rate but only decreasing the detection rate. If all cascade classifiers are (as in

the worst case) completely equal, each classifier will reject and pass on the same samples and the cascade

will bring no improvement at all but will only increase computation time and lower the detection rate.

To avoid the scenario above, the AdaBoost algorithm tries to create a cascade, where each of the cascade

classifiers rejects different negatives to its previous classifiers. This is done by training each new classifier

in the cascade with negatives which were classified incorrectly by the previous classifiers (Figure 3.4).

For the creation of the negative samples bootstrapping [DHS00] is used. The Bootstrap algorithm ran-

domly selects subsets of a given negative training set, and uses them as new training patterns. Randomly

chosen areas of these images serve as new negative samples and provide a nearly unlimited number of

negatives for the training process.

The first boosted classifier C1 is trained on all positive examples and on a set of negatives until it achieves

a detection rate D1 ≈ 1 and a false positive rate F1 ≤ 0.5. Each additional classifier in the cascade is

trained with the same set of positives but with negatives not classified correctly by all previous boosted

classifiers. Therefore before training a new classifier Ci+1, negatives are created with bootstrapping and

classified by the existing classifiers C1..i. If a negative is classified as positive by all classifiers C1..i it is

added to the negative training set of classifier Ci+1.

3.3.4 Boosting algorithm

The creation of a good boosted classifier C is a quite complex task and done by a boosting algorithm.

This boosting algorithm can be regarded as a kind of feature selection algorithm, since it selects the

31

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

features for the weak classifiers c1..NC
of a boosted classifier. Additionally it assigns the weak classifier

weights α1..NC
to each weak classifier which defines the influence of this weak classifier in the boosted

classifier.

There are many versions of the boosting algorithm like Discrete AdaBoost [VJ01a], GentleBoost [FHT01,

LKP03], LogitBoost [FHT01] or Real AdaBoost [FHT01]. They all differ in the way they select features

and weights for the boosted classifiers and therefore have strong differences in computational complexity

and training time as well as in size and efficiency of the resulting (boosted) classifier. Instead of the

symmetric Discrete AdaBoost algorithm (see Algorithm 1) used by Viola and Jones [VJ01a, VJS03,

VJ01b], an asymmetric version of this algorithm was used and combined with the FloatSearch algorithm

used in FloatBoost [LZSZ02].

All AdaBoost versions have in common that they assign image weights w1..NT
to the training samples

x1..NT
at the beginning of the boosting process (Algorithm 1). The weights are used to determine the

error of the weak classifiers on the training set and to select the weak classifier ci with the smallest error

εi. During the training the sample weights are re-weighted according to the error of the selected weak

classifier on the training set. If a sample is classified correctly, its weights (and therefore its influence on the

training error) is lowered, otherwise increased. The algorithm constantly tries to eliminate samples which

are highly weighted and therefore badly classified. The weak classifier weight αi of a weak classifier ci is

chosen according to its error on the training set and determines its influence in the boosted classifier.

The Discrete AdaBoost [FS96, VJ01a] algorithm uses a symmetric error function to compute the error

or the fitness of a weak classifier. In this context the term symmetric means that positive and negative

samples are regarded as equally important during the training. To use a symmetric function and to

minimize the error on the complete training set makes sense if one boosted classifier alone decides on the

class of a sample. If the error is minimized, the false positive rate F and the detection rate D are also

optimized.

In the system described in this thesis, multiple boosted classifiers are used within an adaptive boosting

scheme (see Section 3.3.3). For this structure of combined boosted classifiers an average false posit-

ive rate FC ≈ 0.5 and a high detection rate DC ≈ 1 are more accurate (Viola [VJ02], Wu [WRM04])

and an asymmetric error loss function results in a smaller and more efficient boosted classifier within less

training time. The asymmetric error function in the boosting algorithm tries to create boosted classifiers

with only an average false positive rate. The reason for this is that if one boosted classifier does not reach

D ≈ 1 the detection rate of the classifier cascade will decrease significantly. If the detector misses the

false positive rate of F ≤ 0.5 the consequence will be a less selective classifier. AdaBoost compensates for

this less selective classifier, since it adds boosted classifiers to the cascade until it reaches a final goal for

detection rate and false positive rate. The asymmetric version of AdaBoost therefore focuses primarily

on achieving the high detection rate and then on the other hand on decreasing the false positive rate.

For this reason we substituted the error loss function from line 3b in Algorithm 1 by an asymmetric cost

function:

εj = ωP

∑NT,pos

i=1 wi | cj(xi)− yi |
∑P

i=1 wi

+ (1− ωP)

∑NT,neg

k=1 wk | cj(xk)− yk |
∑N

k=1 wk

(3.18)

32

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

Algorithm 1 Discrete AdaBoost [VJ01a]

1. Given a training set (x1, y1),, (xNT
, yNT

) where xi are the training samples and yi = 0, 1 the
corresponding class (0 = negative, 1 = positive).

2. Initialize weights w1,i = 1
2NT.pos

, 1
2NT.neg

for yi = 0, 1 respectively, where NT.pos and NT.neg are the

number of negatives and positives respectively.

3. For m = 1, ..., NC

(a) Normalize the weights, wt,i ←
wt,i

∑NT

j=1 wt−1,j

, so that wt is a probability distribution.

(b) For each feature, ρj , train a weak classifier cj which is restricted on using a single feature. The

error is evaluated with respect to the weights w1..NT
, εj =

NT∑

i=1

wi |cj(xi)− yi|.

(c) Add the classifier ct with lowest error εt to the strong classifier C.

(d) Update the weights, wt+1,i = wt,iβ
1−εi

t , where εi = 0, if sample xi is classified correctly and
εi = 1 otherwise, the weight correction is βt = εt

1−εt
.

(e) If DC ≥ 0.99 and FC ≤ 0.5 than stop boosting (classifier C is good enough). Otherwise
continue. DC and FC are the detection and the false positive rate of classifier C.

4. The final strong classifier is

C(x) =

{

1 if
∑M

t=1 αtct(x) ≥ λC

∑M
t=1 αt

0 otherwise

where αt = log 1
βt

is the weight and λC = 1
2 is the threshold of classifier C.

33

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

This AdaBoost version is called the Asymmetric AdaBoost algorithm. In our implementation an error

ratio of ωP = 2
3 for positive samples is used. Misclassifying a positive sample increases the error εj more

than misclassifying a negative one with the same weight. This error function prefers a fast increasing

detection rate to a slow decreasing false positive rate. Note that the asymmetric error function still uses

the sample weights of the training samples but penalizes a false classification of positives stronger than

one of negatives.

After each iteration of the Asymmetric AdaBoost algorithm a backtrack mechanism (Float Search) tries

to minimize the classification error directly and not – as during one iteration of the Discrete AdaBoost –

by optimizing an exponential function of the margin. This decreases the number of weak classifiers but

leads to a higher training time. The resulting Asymmetric FloatBoost algorithm used during the training

of our detector can be seen in Algorithm 2.

Algorithm 2 Asymmetric FloatBoost

1. Given example images (x1, y1),, (xNT
, yNT

) where xi are the training samples and yi = 0, 1 the
corresponding class (0 = negative, 1 = positive).

2. Initialize weights w1,i = 1
2NT.pos

, 1
2NT.neg

for yi = 0, 1 respectively, where NT.pos and NT.neg are the

number of negatives and positives respectively.

3. For m = 1, ..., NC

(a) Normalize the weights, wt,i ←
wt,i

∑N
j=1 wt−1,j

, so that wt is a probability distribution.

(b) For each feature, ρj , train a weak classifier cj which is restricted on using a single feature. The
error is evaluated with respect to wt,

εj = ωp

∑NT.pos

i=1 wi | cj(xi)− yi |
∑P

i=1 wi

+ ωn

∑NT.neg

k=1 wk | cj(xk)− yk |
∑N

k=1 wk

.

(c) Add the weak classifier ct with lowest error εt to the strong classifier C.

(d) Find weak classifiers ci ∈ C, i ∈ {1..m−1} where error(C\ci) = min. C is the current boosted
classifier and m the current number of weak classifiers in C. C\fi is the classifier C without
the weak classifier ci.

(e) If error(C\ci) < error(C) erase ci from C, decrease m by 1 and go back to step 3d. Otherwise
continue with step 3f .

(f) Update the weights, wt+1,i = wt,iβ
1−εi

t , where εi = 0, if sample xi is classified correctly and
εi = 1 otherwise, the weight correction is βt = εt

1−εt
.

(g) If DC ≥ 0.99 and FC ≤ 0.5 than stop boosting (classifier C good enough). Otherwise continue.

4. The final strong classifier is

C(x) =

{

1 if
∑M

t=1 αtct(x) ≥ λC

∑M
t=1 αt

0 otherwise

where αt = log 1
βt

is the weight and λC = 1
2 is the threshold of classifier C.

34

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.5: Normal boosted classifier

3.3.5 Extended Boosted Classifier

After the training of the boosted classifiers and the classifier cascade we can classify an image with

this “super-classifier”. In this work an extension to the traditional boosted classifier is introduced which

reduces the amount of necessary computation during the classification process noticeably. The “normal”

boosted classifier described in Section 3.3.1 can be visualised as shown in Figure 3.5. Here ci are the

weak classifiers and αi their corresponding weights. A boosted classifier C has NC weak classifiers.

In a traditional boosted classifier normally all weak classifiers are evaluated on the sample image. If

the weighted sum of all these outputs is above a certain threshold the image is classified as positive –

otherwise as negative. The fundamental idea behind extended boosting is to test already during the

evaluation of the boosted classifier (e.g. after 50% of the weak classifiers) if it makes sense to evaluate

the remaining weak classifiers. In particular in boosted classifiers with a large number of weak classifiers

this would result in a performance increase.

We can easily pre-classify an image as pedestrian if after evaluating k weak classifiers the sum of their

votes
∑k

i=1 αici(I) is above the pedestrian threshold λC of this boosted classifier C:

k∑

i=1

αici(I)

︸ ︷︷ ︸

>
1

2

NC∑

m=1

αm

︸ ︷︷ ︸

⇒ C(I) = 1

current λC

(3.19)

If this is the case we can skip the remaining Nc− k weak classifiers and the boosted classifier can classify

the image immediately as pedestrian.

This positive pre-classification is implementable without changing the structure of the boosted classifiers.

Another idea is if a negative pre-classification is possible where we can reject an image as non-pedestrian

before we have evaluated all weak classifiers of a boosted classifier. The test at a weak classifier ck

determines if it makes sense to evaluate the remaining and unevaluated weak classifiers by

k∑

i=1

αici(I)

︸ ︷︷ ︸

+

NC∑

j=k+1

αj

︸ ︷︷ ︸

<
1

2

NC∑

m=1

αm

︸ ︷︷ ︸

current possible λC

. (3.20)

35

3.3. CLASSIFICATION CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.6: Extended boosted classifier

Here the term
∑k

i=1 αici(I) represents the summed classification results of the already evaluated clas-

sifiers. If all remaining classifiers vote for the class pedestrian (class = 1) then the maximal possible

increase could be
∑NC

j=k+1 αj . An image I could be a pedestrian if the current sum
∑k

i=1 αici(I) and the

maximal possible rest
∑NC

j=k+1 αj can reach the classification threshold 1
2

∑NC

m=1 αm. If they cannot reach

it we can immediately classify the image as non-pedestrian and abort the classification. If we bring the

term
∑NC

j=k+1 αj to the right side of the equation, we now have a test which can be performed at each

weak classifier ci:

k∑

i=1

αici(I)

︸ ︷︷ ︸

<
1

2

NC∑

m=1

αm −
NC∑

j=k+1

αj

︸ ︷︷ ︸

⇒ C(I) = 0

current βk

(3.21)

Since both terms on the right side are now constant we can calculate them already offline as

βk =
1

2

NC∑

m=1

αm −
NC∑

j=k+1

αj = const. (3.22)

Therefore the traditional boosted classifier structure is extended to an extended boosted classifier (Fig-

ure 3.6) which contains, next to the weights α1..NC
, additional test thresholds β1..NC

for each of its

features f1..NC
. If the current sum is below the current test threshold βk the classification can be aborted

immediately and the image labelled as non-pedestrian, i.e.

k∑

i=1

αici(I) < βk ⇒ C(I) = 0 (3.23)

For positive and negative pre-classification it makes sense to sort the weak classifiers ci according to their

weights αi so that

36

3.4. DETECTING PEDESTRIANS CHAPTER 3. PEDESTRIAN DETECTOR

α1 ≥ α2 ≥ ... ≥ αNC
. (3.24)

The weak classifiers are evaluated according to their importance since classifiers with a higher weight

have a stronger influence on the final result.

For complex objects like pedestrians normally many weak classifiers must be evaluated until the image

can be pre-classified by the tests of the Equations 3.19 and 3.23. Therefore we test only after 50%, 66%,

75% and 85% of the weak classifiers if the image could be a pedestrian.1

3.4 Detecting pedestrians

The detector searches for pedestrians in the current video frame at various sizes and locations. This is

done by selecting sub-images in the frame and classifying them. For selecting a sub-image we do not copy

this part of the frame into a new memory location, but reference with a window to this sub-image. The

detector then uses this reference for classifying the correct sub-region of the frame. The windows used for

classification are uniformly distributed over the frame and the image pyramid described in Section 3.4.1

handles the scaling and the translation of the windows. In Section 3.4.2 we introduce a clipping algorithm

which reduces the constant number of windows from the pyramid by regarding the foreground motion in

a sub-image. The detector then classifies this reduced number of windows.

3.4.1 Image pyramid

The image pyramid creates a set of uniformly distributed windows (with referenced sub-image) to find

pedestrians in an image I at multiple scales and locations. A more common approach for image pyramids

is to resize the image I to the scale of each pyramid level and to apply the unresized classifiers in this scaled

image at uniformly distributed positions. This may make sense in a case where it is computationally too

complex or inaccurate to scale a filter or use it at different sizes. For our filters the scaling of the filter

makes sense because they can be applied at any scale with the same costs.

The computation time for a feature ρ is independent of its size (due to the integral images) and it is

therefore faster to resize the complete classifier cascade with all its boosted classifiers to each pyramid

level and to use it in the unresized image I at various (uniformly distributed) positions by using the

windows. The detector classifies the sub-image which is referenced by the window. The image pyramid

used in this detector consists of 13 different pyramid levels. Each level contains the complete classifier

cascade which is resized for this level scale and a set of uniformly distributed windows where the classifier

cascade is applied in image I .

Since all our video frames have a fixed resolution which does not change during one video sequence, the

pyramid has to be computed only once at the beginning and can be used for all frames without additional

1Note that both pre-classification methods save the evaluation of weak classifiers and increase the speed of the clas-
sification process. They neither change the classification result of a boosted classifier nor the detection or false positive
rate.

37

3.4. DETECTING PEDESTRIANS CHAPTER 3. PEDESTRIAN DETECTOR

computation. Note that the resizing of the classifier filters to multiple scales also takes place only once

at the initialization of the detector and can be used for all frames. If we would use an image pyramid

with multiple resolutions in each frame, computationally expensive scaling for each video frame would be

necessary.

At a scale factor S = 1.2 between each pyramid level good results were obtained. Each frame was divided

into NW = 2684 windows W1..NW
with a window width Al in pyramid level l of

Al = ASl

o (3.25)

Here A0 is the initial window width at pyramid level l = 0. For the window height twice the window

width was used Bl = Al

R
. The horizontal and vertical equal step size U was chosen relative to the window

width Al at level l with

Ul =
3

10
Al (3.26)

Therefore the step size changes with each pyramid level. The complete set of windows from all pyramid

levels build a set of windows W = {W1, .., WNW
} which is passed to the clipping algorithm in the next

section.

Another interesting possibility for future work would be to generate randomly distributed and randomly

scaled sub-windows without the uniform distributed pyramid described above. This method would be

similar to particle filters [GGB+02, AMGC02] and could concentrate on areas with a high probability for

locating a pedestrian e.g. in locations where pedestrians were detected in the frame and at the borders

of the frame.

3.4.2 Background clipping

A possibility to decrease the computations is to limit the number of images which are given to the

classification cascade. This section describes a fast clipping algorithm which uses the background model

for filtering sub-images which cannot be used by the tracking system. The tracking algorithm in our

system, which is described in more detail in Chapter 4, relies completely on the foreground information

of a pedestrian which is provided by the background model. If no or only little foreground information

is present in a sub-image then it does not matter if there is a pedestrian in this window or not since it is

impossible to find any correspondence between this detection and other objects. A logical implication is

that it does not make sense to give sub-windows without foreground information to the classifier cascade.

The clipping algorithm introduced in this section is based on this implication.

After the background segmentation (Chapter 2) we compute the fraction of selected foreground pixels in

a sub-image referenced by a window W :

fracW.fg =
NW.fg

size(W)
. (3.27)

38

3.4. DETECTING PEDESTRIANS CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.7: Adaptive Boosting with clipping

Here NW.fg is the number of foreground pixels in the area of the background mask referenced by window W

and size(W) the size of this area. If the fraction fracfg is above a threshold λclip = 0.07 then the

sub-image of window W is given to the classification cascade, otherwise rejected already before the

classification. The new structure of the detector with clipping is shown in Figure 3.7.

In Figure 3.8 we can see the results of this clipping algorithm for a set of example windows. The red

windows 3− 6 are clipped because they do not contain enough foreground information. The fraction of

foreground pixels in window 1 and 2 is higher than λclip and both windows are passed onto the pedestrian

classifier.

Long-term static pedestrians are adapted into the background and the windows which contain these

pedestrians are clipped. This is legitimate since for these windows – even if they contain a pedestrian –

no useful tracking information is provided .

In video sequences with a lot of background noise where the background model does not provide a good

separation between foreground and background, this clipping algorithm will not increase the perform-

ance significantly but maybe lead to a higher number of computations. Since our system addresses

only static camera environments with moderate background noise a performance increase was achieved

(Section 6.3.6).

After we have clipped all pyramid windows we classify them with the detector. All windows Wi which are

classified as pedestrians by the classifier cascade are named pedestrian detections ḋ1..Nd̄
, ḋi ∈ W where

Nḋ is the number of detections and Nḋ ≤ NW .

39

3.4. DETECTING PEDESTRIANS CHAPTER 3. PEDESTRIAN DETECTOR

Figure 3.8: Background clipped windows

40

Chapter 4

Tracking features

Once you eliminate the impossible,

whatever remains, no matter how

improbable, must be the truth.

Sherlock Holmes

by Sir Arthur Conan Doyle

(1859-1930)

This chapter describes the structure which is used by the tracking system to reliably track a pedestrian

and introduces a fast method for splitting a pedestrian-like detection up into three individual regions.

After the splitting the spatial and colour features are extracted, tested for their reliability and weighted.

Moreover, for comparing feature vectors with each other, appropriate distance measures are introduced.

These features are experimentally evaluated in Section 6.4.

4.1 Pedestrian structure

The effectiveness of the tracking process depends strongly on the choice of the tracking features. Until

the current stage in the system, each video frame was broken up into multiple sub-images by using the

image pyramid and a detector (Chapter 3) classified these sub-images as pedestrians or non-pedestrians.

After the classification, a set of pedestrian detections ḋk, k ∈ {0..Nḋ} in the current frame is provided.

These detections build a subset of the pyramid windows W1..NW
and are also defined by size and position.

Since this system tracks each body part of a pedestrian individually, a separation of the detection into

the three parts: head, upper body and lower body has to be done. Normally a detection window

containing a pedestrian is vertically as well as horizontally larger than the pedestrian itself. For a more

accurate height estimation of the pedestrian, we use a reduction algorithm described below and reduce

the window vertically until it contains mainly foreground pixels. After we have the vertically resized

41

4.2. FEATURE EXTRACTION CHAPTER 4. TRACKING FEATURES

Figure 4.1: Body part reduction with shrinking ratio Rshrink = 4
5

window, we divide each detection window into the three individual body zones by using a fixed height

ratio Rheight = (Rhead, Rub, Rlb)
′ = [14 , 3

8 , 3
8]′. This leads to three body part windows with equal width

and fixed height ratio. Since the widths of the parts are normally not equal we now reduce each body

part individually in the horizontal direction. This leads to three individually sized body parts.

The reduction mentioned above can quickly be done by searching for a certain number of successive rows

and columns which contain at least one foreground pixel. An example is shown in Figure 4.1. Here

the blue pixels represent foreground and white pixels represent background. In this example a shrinking

ratio of Rshrink = 4/5 is used, which means that a region is reduced in every direction until 4 of 5

rows or columns contain at least one foreground pixel. After some empirical testing a relative ratio of

Rshrink = 11/16 was chosen for the implementation and resized according to the size of the body part.

The reason for using a ratio unequal to one is to be tolerant against wrongly selected or missing foreground

pixels and moderate background noise.

Since all parts of a pedestrian body are created by dividing and reducing the original detection window,

it is ensured that all three body parts always stay inside the original detection window and therefore in

an accurate distance with respect to each other. In Figure 4.2 the complete structured pedestrian after

the reduction process is shown.

After the splitting of the detection into individual parts and the reduction to best-fitting rectangular

regions, the system extracts the tracking features.

4.2 Feature extraction

Each part of the structured pedestrian is tracked individually and therefore appropriate features must be

extracted. In this system a mixture between colour and spatial features for pedestrian tracking is used.

42

4.2. FEATURE EXTRACTION CHAPTER 4. TRACKING FEATURES

Figure 4.2: Body parts after reduction

In addition to the already available information about location and size of a body part, also the colour

histograms and means and variances of the foreground pixels of each part are extracted.

Colour histograms describe the colour characteristics of a set of pixels and are used to compare images

in many applications like image retrieval or object recognition. The reason for using two very distinctive

feature types is that colour features, in contrast to spatial features, are very robust against partial

occlusions, object deformation and scaling. Additionally they are very efficient to compute and — up to

a certain degree — insensitive to changes in the camera viewpoint.

However there are also some limitations of colour histograms. They do not use any spatial information and

therefore merely describe the quantity of each colour value occurring in the image. Therefore two images

with different appearances can have similar histograms due to similar overall colour distributions. In

addition colour histograms are very sensitive to changes of the overall image brightness and to compression

artifacts.

The feature vector for each detection ḋk has the form

fk =

Pk

Ṗk

Sk

Hk

µk

σk

(4.1)

where all six elements are vectors. Pk contains the absolute and relative position information of the

pedestrian detection and the body parts in the detection window. Ṗk and Sk respectively describe the

velocity and size information. They are of the following form:

43

4.2. FEATURE EXTRACTION CHAPTER 4. TRACKING FEATURES

Pk =

Xk.abs

Xk.head

Xk.ubody

Xk.lbody

=

(

xk.abs

yk.abs

)

(

xk.head

yk.head

)

(

xk.ubody

yk.ubody

)

(

xk.lbody

yk.lbody

)

, Ṗk =

Ẋk.abs

Ẋk.head

Ẋk.ubody

Ẋk.lbody

=

(

ẋk.abs

ẏk.abs

)

(

ẋk.head

ẏk.head

)

(

ẋk.ubody

yk.ubody

)

(

ẋk.lbody

ẏk.lbody

)

(4.2)

Sk =

Sk.abs

Sk.head

Sk.ubody

Sk.lbody

=

(

Ak.abs

Bk.abs

)

(

wk.head

hk.head

)

(

wk.ubody

hk.ubody

)

(

wk.lbody

hk.lbody

)

(4.3)

Here Xk.∗ ∈ IR2, Ẋk.∗ ∈ IR2 and Sk.∗ ∈ IR2 are the absolute and relative positions, velocity and sizes of a

pedestrian and its body parts. The positions are in respect to the centres of the pedestrian and the body

parts. The velocity vector Ṗk is set to 0 at the initialization. The absolute size Sk.abs and the absolute

position Xk.abs are determined by the detection and the absolute size and position of the each single body

part is calculated by the reduction algorithm.

Vectors Hk, µk and σk contain the histograms, means and variances for all three colour channels for all

three body parts.

Hk =

Hk.hue.head

Hk.hue.ubody

Hk.hue.lbody

Hk.sat.head

Hk.sat.ubody

Hk.sat.lbody

Hk.val.head

Hk.val.ubody

Hk.val.lbody

, µk =

µk.hue.head

µk.hue.ubody

µk.hue.lbody

µk.sat.head

µk.sat.ubody

µk.sat.lbody

µk.val.head

µk.val.ubody

µk.val.lbody

, σk =

σk.hue.head

σk.hue.ubody

σk.hue.lbody

σk.sat.head

σk.sat.ubody

σk.sat.lbody

σk.val.head

σk.val.ubody

σk.val.lbody

. (4.4)

The normalized range of [0, 1] of each colour component (hue, saturation and value) is divided into NHB

equally sized intervals and each colour histogram contains NHB bins which express the relative quantity

of the colour measurements for each of these intervals.

44

4.3. FEATURE VALIDATION CHAPTER 4. TRACKING FEATURES

Figure 4.3: Hue histograms and hue means.

Hk.∗ =

B1

B2

B3

...

BNHB

, Bi ∈ [0, 1] with
∑

Bi = 1 (4.5)

For generating the hue histogram all hue values are additionally weighted by their corresponding satura-

tion.

In Figure 4.3 the statistical hue information Hhue.∗ for the head, for the upper body and for the lower

body is visualised in a circular histogram. For each body part the circular histogram and the mean of the

hue information is shown. Here we can see that the histograms of the three parts represent the colours

of each body part i.e the histogram of the lower body shows the strong amount of green pixels for this

regions. The histogram maxima is aligned around 100◦ and close to the hue of the primary green with

120◦.

4.3 Feature validation

Each component of the feature vector is validated after the extraction. If a component does not fit

certain criteria it is regarded as not sufficiently reliable and is not included in similarity measurements

between different pedestrian detections. In this implementation, criteria for feature components are given

as follows

1. The absolute position Xk.abs in the feature vector of a pedestrian (determined by the detection) is

always used as reliable feature.

45

4.4. DISTANCE MEASURES CHAPTER 4. TRACKING FEATURES

2. The size Sk of a body or one of its parts must be greater than a minimal size Smin (in pixels) to

provide reliable position and size information for a pedestrian. If an element of Sk is too small we

assume that the background segmentation provides too little information for the reduction of this

body part. In this implementation a minimal width/height of 6 pixels was used for the body parts.

This leads to a minimal pedestrian height of 18 pixels and a minimal width of 6 pixels.

3. At least NminHist = 25 observation pixels must be used for creating a meaningful histogram.

4. At least NminHist = 25 observation pixels must be used for calculating the means µ{h,s,v} and

variances σ{h,s,v}.

According to these criteria, a reliability vector Rk for each feature vector fk of the form

Rk =

Rk.position

Rk.size

Rk.hist

Rk.mean

=

r1

...

r4

r5

...

r8

r9

...

r17

r18

...

r26

, ri =

{

1 if feature i is usable

0 otherwise.
(4.6)

is defined. An element ri ∈ Rk is 1 for all elements of the feature vector which can be used for comparison

with other feature vectors – otherwise it is set to 0 . The absolute position is always regarded as reliable

and r1 is always 1. The velocity is left out in the reliability vector since it is only used for the state

estimation (Section 5.3.2) but not as a tracking feature.

4.4 Distance measures

We now have a set of pedestrian detections – described by their feature and reliability vectors – and want

to express the similarity between them by their distance to each other. A distance or metric is a function

which assigns a distance to a set of elements. Pedestrian detections with equal or similar feature values

should have a smaller distance than strongly different pedestrians.

4.4.1 Desirable properties of distance measures

An ideal distance δ(x, y), where x and y are two observations has the following properties [GM76]:

46

4.4. DISTANCE MEASURES CHAPTER 4. TRACKING FEATURES

1. δ(x, y) = δ(y, x)

2. δ(x, y) > 0 if x 6= y

3. δ(x, y) = 0 if x = y

4. δ(x, y) ≤ δ(x, z) + δ(z, y)

Property 1 is necessary for symmetry and properties 2 and 3 are required for positive-definiteness. Prop-

erty 4 is called the triangle inequality. Examples of distance measures which satisfy all four properties

are e.g. the Euclidean distance or the Mahalanobis distance.

4.4.2 Distance functions

After we have validated which elements of the feature vector can be used for comparison with other

feature vectors, we want to compute the distances between two reliable feature vectors. Since our feature

vector contains spatial as well as colour information, different distance measures are used to calculate the

distances between two of its elements.

For measuring a spatial difference δspat between two vectors Xi, Xj ∈ IR2, a normalized Euclidean distance

is used which satisfies all four properties of Section 4.4.1:

δspat(Xi, Xj) =
‖(Xi, Xj)‖2
∆spatmax

, (4.7)

where ∆spatmax is the maximal spatial distance which is possible between two detections of the same

object and which normalizes δspat to the interval [0, 1]. The maximal spatial distance ∆spatmax is set

relatively to the absolute widths in the feature vectors. We calculate the maximal spatial distance for

the absolute positions of two detections di and dj with feature vectors fi and fj as

∆spatmax =
Ai.abs + Aj.abs

2
(4.8)

and the distance between the absolute positions by

δspat (Xi.abs, Xj.abs) =
‖(Xi.abs, Xj.abs)‖2

∆spatmax

=
2 ‖(Xi.abs, Xj.abs)‖2

Ai.abs + Aj.abs

. (4.9)

If ‖(Xi.abs, Xj.abs)‖2 > ∆spatmax the two detections with feature vectors fi and fj are regarded as spatially

to far apart to be similar and the distance between them is δspat(fi, fj) =∞. The distance between two

size vectors Si and Sj is computed equally. For the body parts we use the relative size of each part to

determine the maximal spatial distance.

The difference δhist ∈ [0, 1] between two colour histograms Hi and Hj is computed by using the Bhat-

tacharyya distance

δhist(Hi, Hj) = 1−
B∑

k=1

√

Hi(k)Hj(k) (4.10)

47

4.4. DISTANCE MEASURES CHAPTER 4. TRACKING FEATURES

where B is the number of histogram bins. In our work it was set to B = 10. Note that the Bhattacharyya

distance only satisfies the properties 1 to 3 of Section 4.4.1 but not the triangle inequality as noted in

[Kai67]. This fact is important for later processing of distance values and will therefore be investigated

in more detail later in this section.

As distance δdist, δdist ∈ [0, 1] between a reference distribution A(µ1, σ1) and other distribution B(µ2, σ2)

a modified Mahalanobis distance

δdist(µ1, σ1, µ2, σ2) = min

(|µ1 − µ2|
2min(σ1, σ2)

, 1

)

(4.11)

is used. Here the distance is normalized by the factor 2σ (which is the border of the 95% confidence

interval) and bound to the range [0, 1] by the minimum function. The distance between a distribution

A(µ1, σ1) and a value x is computed as

δdist(µ1, σ1, x) = min

(|µ1 − x|
2σ1

, 1

)

(4.12)

Note that the normal Mahalanobis distance DMahalanobis = |µ−x|
σ

is the same as the Euclidean distance

for the case σ = 1:

δdist(µ, 1, x) = |µ− x| =
√

(µ− x)2 = ‖(µ, x)‖2 . (4.13)

After the distances for all elements of the feature vectors are computed independently with the chosen dis-

tance functions the unnormalized distance vector δ, δ ∈ IR26 contains spatial (position / size), distribution

and histogram distances between two feature vectors fi and fj .

δ(fi, fj) =

δspat (Xi.abs, Xj.abs)
...

δspat (Xi.lbody, Xj.lbody)

δspat (Si.abs, Sj.abs)
...

δspat (Si.lbody, Sj.lbody)

δhist (Hi.hue.head, Hj.hue.head)
...

δhist (Hi.val.lbody , Hj.val.lbody)

δdist (µi.hue.head, µj.hue.head, σ)
...

δdist (µi.val.lbody, µj.val.lbody)

. (4.14)

Note that the velocity features are not used for the distance calculations between two feature vectors.

They are required in the dynamic system described in Section 5.3.2 for estimating the current position

of an object.

48

4.4. DISTANCE MEASURES CHAPTER 4. TRACKING FEATURES

The unnormalized distance vector δ is then element-wise multiplied by a weight vector Ω and by the

reliability vector R and summed to an overall value δnorm ∈ [0, 1]. The weight vector Ω is set according

to size of the body part and the amount of available information and reflects the influence of each feature

measurement. It has the form

Ω =

Ωposition

Ωsize

Ωhist

Ωmean

=

ω1

...

ω4

ω5

...

ω8

ω9

...

ω17

ω18

...

ω26

. (4.15)

The weights were set manually and according to the size of each body part. The feature values of larger

upper and lower body parts had stronger weights than the head features (head : ub : lb = 1
5 : 2

5 : 2
5).

The final normalized distance δnorm is a linear combination of weighted distances and is computed as

δnorm(fi, fj) =
(δ(fi, fj) · Ω)T R

ΩT R
, δnorm ∈ [0, 1] ∪∞ (4.16)

where δ is the unnormalized distance vector, R the reliability vector and Ω the feature weight vector.

The reliability vector R is a logical OR combination of the two reliability vectors Ri and Rj

R = Ri ∧ Rj . (4.17)

Therefore in Equation 4.16 only those elements of the feature vectors are used for the distance computation

which are reliable in both feature vectors.

Because δ includes a metric which does not satisfy the triangle inequality, also for δ and for our normalized

distance function δnorm this requirement does not hold. However, we can limit the influence of the

distances for histogram features with the weight vector Ω. With a boundary condition

∑

Ωhist = Ω9 + Ω10 + .. + Ω17 = const (4.18)

we limit the influence of the histogram features to 100 ·∑Ωhist percent of the total distance. The spatial

and the distribution distances provide the remaining 100 · (1−∑Ωhist)%.

49

4.5. OBJECT MERGING CHAPTER 4. TRACKING FEATURES

Also with the distance limitation to a constant factor, our normalized distance δnorm still does not satisfy

the triangle inequality but a triangle condition based only on spatial and distribution features is possible:

δnorm(x, z)−
∑

Ωhist ≤ δnorm(x, y) + δnorm(y, z). (4.19)

On the left side we subtract the value
∑

Ωhist which is the maximal increase of the distance function

δnorm due to the histogram part.

4.5 Object merging

The tracking features are for assigning detections to objects in the appearance model but are also used

by the detector to find multiple detections of the same object in a frame. All sub-windows which were

passed to the detector and classified as pedestrian windows ḋk, k ∈ {1..Nḋ}, are tested for their similarity

to each other. A similarity threshold λmerge and the normalized distance function δnorm decide if multiple

detection windows represent the same object:

δnorm(ḋi, ḋj) < λmerge, i, j ∈ {1..Nḋ} ⇒ ḋi = ḋj . (4.20)

Similar detections are grouped together to merged pedestrian detections dk, k ∈ {d1..Nd} with Nd ≤ Nḋ.

If a pedestrian is detected and confirmed by multiple detection windows we assume that the detector is

more certain about this classification. We therefore remember this number Mk of merged detections for

each dk and use it in the appearance model described in the next chapter as an estimate for the certainty

of a detection.

50

Chapter 5

Appearance model

It is only shallow people who do not judge

by appearances.

Oscar Wilde (1854-1900)

This chapter describes an appearance model – the controlling part of the tracking system – which collects

the information about all detections occurring in the video sequence and merges this information together.

In this chapter the term pedestrian detection or detection refers to a window in a single frame which was

classified as pedestrian. The term object always refers to an object structure which exists during a longer

period of multiple frames and describes a real world object i.e. a pedestrian while it moves through the

scene. Each object is handled by the appearance model and has the same structure as a detection and an

additional life value α. This life value α describes the state of the object. Since the structure of objects

and detections are completely equal except for this life value α we can also compare the feature vectors

of detections and objects with each other.

The adaptive appearance model (AAM) used in this work has to address multiple tasks. A major problem

the AAM should cope with is the stable handling of occlusions. In the case where an object is partly

or completely occluded the AAM should be able to predict its current position and size. This is done

by using the information about the velocity, direction, size and position of the occluded object, which

was collected during the previous frames. Since a missing object detection – due to the detector – can

be regarded as a complete occlusion, this special case can also be addressed by the appearance model.

Additionally, non-pedestrian objects which are incorrectly classified as persons by the detector can be

filtered by the AAM. They normally occur only briefly or stay stationary for long periods of time and

therefore can be distinguished from “real” pedestrians.

The tasks of the AAM are:

• to convert a detection d to an object structure oi when it appears in the scene for the first time.

This new object oi with feature vector fi and life value αi is included in the object pool O of the

appearance model and described by a feature vector fi.

51

5.1. OBJECT ASSIGNMENT CHAPTER 5. APPEARANCE MODEL

• to keep track of all objects oi ∈ O = {o1, .., oNO
} while they move through the scene.

• to recognise when an object leaves the scene and to delete it from the object pool.

• to filter wrong detections of non-pedestrians.

• to estimate the feature vectors of all objects where currently no update information is available.

• to recognise occlusions between multiple objects.

Use of the described appearance model is experimentally evaluated in Section 6.5.

5.1 Object assignment

This appearance model uses an object pool O where all objects known to the model are included. An

important property of the appearance model is its ability to decide if a pedestrian detection dk, k ∈ {1..Nd}
is similar to an already existing object oi in the current object pool O = {o1, .., oNO

} where NO is the

number of objects in the pool.

Since detections and objects have equally structured feature vectors we can use the same distance function

as for the object merging process (Section 4.5) for finding similarities between two feature vectors and

for the assignment of a detection to an object. A detection dk with feature vector fk is assigned to an

object om with feature vector fm if

assign(fm, fk) =

{

1 if δnorm(fm, fk) < λassign

0 otherwise.
, m ∈ {1..NO}, i ∈ {1..Nd}. (5.1)

where λassign is an assignment threshold and defined as

λassign =
λmerge −

∑
Ωhist

2
. (5.2)

The assignment threshold λassign and the weak triangle inequality of Equation 4.19 guarantee that each

(merged) detection window is only assigned to a single object in the object pool. After the merging

process the minimal distance between two merged detections with feature vectors fi and fj is at least

δnorm(fi, fj) ≥ λmerge = 2λassign +
∑

Ωhist ≥ 2λassign, i, j ∈ {1..Nd}. (5.3)

If a pedestrian detection di is assigned to an object om then no other detection can be closer than λassign

to the same object window.

The whole process of merging and assigning is visualised in Figure 5.1. Here the windows of the image

pyramid which are classified as pedestrians are merged together by similarity to avoid that multiple

windows detect the same object. During the object assignment we try to assign each detection to an

existing object in the object pool. Each detection can only be assigned to one object.

52

5.2. OBJECT STATES CHAPTER 5. APPEARANCE MODEL

Figure 5.1: Object assignment

5.2 Object states

One fundamental job of the appearance model is the handling of all objects in its object pool. It provides

each object with a life cycle and an age. For each detection which cannot be assigned to an existing

object in the object pool a new object is created. This creation is the beginning of the object’s life cycle.

During its life an object can stay a normal object or become a pedestrian. After the object cannot be

found in the scene anymore it is destroy and its life cycle ends. The appearance model has to support the

object during its life cycle and therefore handles the life update which describes the state of an object

during its life cycle.

This model uses a similar state model as used in [BCT04] for describing the state of an object by a life

value α. According to the current life value α, an object in the object pool of the appearance model

can be in one of two possible object states. For an unassigned detection dk a new object is created and

assigned to the state Object. In this state it is regarded as a possible candidate for the Pedestrian state

but before it can reach this state it has to prove that it is no short-lived detection but stays permanently

also in the subsequent frames. At this creation point the new object o gets an initial life value α0 and is

regarded as a possible pedestrian candidate. The initial life value α0 is set as

α0 = αinit + min(αmax, αbonusMk). (5.4)

Here αmax is the maximal life bonus an object can receive per frame and αinit the initial life bonus. An

object receives an additional life bonus αbonus which depends on the detection which was used for the

53

5.2. OBJECT STATES CHAPTER 5. APPEARANCE MODEL

Figure 5.2: Object states

object creation. Since each detection represents one or more merged detections (see Section 4.5) we use

the number Mk of merged detections for calculating the initial life bonus. An object which is confirmed

by many detections starts with a higher life value than an object with a single detection and is regarded

as having a higher probability to be a pedestrian.

If another detection dm is assigned to an already existing object o, the current life value αt−1 of the

object is increased by a life bonus αbonus:

αt = αt−1 + min(αmax, αbonusMm) (5.5)

where αt is the new object life value. The term Mm is the number of merged detections of the single

detection dm. For each frame an object without an assigned detection receives a penalty regarding the

life value

αj = αj − αpenalty . (5.6)

This is always the case if an object leaves the scene, if it is not detected or if it gets occluded by another

object.

If the life value αj of an object rises above a threshold λacc the object reaches the Pedestrian state and

the object can be post-labelled as pedestrian in all the previous frames. If the life span decreases below

the threshold λacc it is set into Object state again. If it decreases below a threshold λdestroy it is removed

from the object pool of the appearance model. In Figure 5.2 the possible states of an object during its

life cycle are demonstrated.

54

5.3. OBJECT UPDATES CHAPTER 5. APPEARANCE MODEL

Figure 5.3: Life cycle of an object

In Figure 5.3 the different phases in the lifetime of an object are shown. The red rectangle on the left

side represents the phase of the object creation until it is accepted as a pedestrian. The green rectangle

shows the phase where the object is regarded as a pedestrian. Note that the objects in all frames of the

first rectangle are post-labelled as pedestrians. The red rectangle on the right side represents the time

when the tracker loses the object because it has left the field of view or is occluded for too long a time.

Finally the object is removed from the object pool.

This two-state model works like a filter for wrong detections since these wrong detection windows are

normally short-lived and stay for only 1 or 2 frames. At their first appearance they are included into the

Object pool but never stay long enough to rise into the Pedestrian state.

The model thresholds λacc and λdestroy depend on the model parameters αmax, αbonus and αpenalty . By

setting these parameters we can decide how fast an object is recognised as a pedestrian or removed from

the object pool. They are all set relatively to the initial life bonus αinit which therefore has no influence

on the model behaviour.

5.3 Object updates

Each object in the object pool tries to describe a real object which moves through the scene. It gets its

feature vector from the initial detection but since the appearance of a real world object changes over time

also the feature vectors of the object in the object pool have to be updated. This update is described in

this section.

55

5.3. OBJECT UPDATES CHAPTER 5. APPEARANCE MODEL

5.3.1 Feature update

Since each moving object changes its visual properties during its life time, the object feature vector also

changes. If we want to compare a detection in the current frame to an object in the appearance model

we have to update the features of the object to adapt it to the current situation. The appearance model

therefore overwrites the old values in the object feature vector fi with the new and reliable information

(Section 4.3) from the assigned detection feature vector fj .

Often the feature vectors of the new detection and the assigned object do not have the same set of reliable

features. This is due to different temporal or spatial conditions during the lifetime of an object where the

reliable features of an object normally change. For example if the background model does not provide

a good separation between the current background and the lower body of a pedestrian, the information

or features of the other body parts maybe become more important. It is also clear that the number of

reliable features normally changes continuously. During subsequent frames more information about the

object becomes available and the reliable feature number in the object feature vector rises.

If the detection cannot provide values for some of the reliable features of the object, we must estimate

them as described in Section 5.3.2.

5.3.2 Feature estimates

The feature vectors of an object in the object pool and its assigned pedestrian detection in the current

frame often do not provide the same reliable features (Section 4). Since we cannot use an unreliable

feature of the detection to update the corresponding object feature we have two choices for handling this

problem. The first one is to leave the feature value unchanged and to hope that they do not change until

the next availability of this feature. We do this for all features which rely on the colour information like

histograms and distributions.

In contrast to colour information the position and size of a moving object normally change and these

values must be estimated. In this system a linear model estimates the current position of an object

by linear interpolation. It uses the last object position and the last available velocity to determine the

position in the current frame.

Xt = Xt−1 + Ẋlast. (5.7)

The velocity Ẋlast is interpolated between two available position observations Xt−k and Xt. Here the

velocity is calculated as

Ẋlast =
Xt −Xt−k

k
(5.8)

This interpolation is done for each body part individually. A better estimate would probably be provided

by a Kalman filter and is planned for future work.

56

5.3. OBJECT UPDATES CHAPTER 5. APPEARANCE MODEL

If an assigned detection provides reliable features which are unreliable in the object feature vector we can

use these values to gain additional information about an object and to supplement its feature vector.

5.3.3 Collision group

Areas where multiple objects are too close together to be separated clearly enough from each other have

to be specially addressed during the feature update. In these areas no clear extraction of the detection

feature vector is possible and object assignment as well as feature update must be done very carefully.

A collision group in our system is a set of objects where each object in this group collides with at least

another one of this group. Two objects oi and oj are colliding if

‖(Pi, Pj)‖2 < (Ai + Aj) λcollision. (5.9)

Here Pi and Pj are the centers of the rectangular formed object windows and Ai, Aj the widths of both

object windows. λcollision is the collision distance threshold which was set to λcollision = 0.55.

Before the assignment process each object of the appearance model is tested for collisions and collision

areas are created. If an object is in a collision area, it is regarded as temporarily read-only. No update

of the colour or histogram features is done but the position and size are estimated as in Section 5.3.2.

Figure 5.4 visualizes the assignment of an object to different collision states.

57

5.3. OBJECT UPDATES CHAPTER 5. APPEARANCE MODEL

Figure 5.4: Collision area

58

Chapter 6

Results

In theory, there is no difference between

theory and practice. But, in practice,

there is.

Jan L.A. van de Snepscheut

This chapter investigates the efficiency of the single parts of the tracking systems and how they perform

on the test sequences. The requirements on speed and robustness will be tested and shortcomings of our

system described. Individual parts of the system are evaluated separately: the detector in Section 6.3, the

features in Section 6.4 and the appearance model in Section 6.5. An example of the full system working

is given in Section 6.6.

6.1 Specification of the training and test system

For the training of the detector a dual Pentium 3 with two 1.1 GHz processors and 2 Gbyte RAM running

Linux was used. Because of the large number of users running programs on this computer simultaneously,

the operating system simulates four virtual processors to better distribute the performance between the

users. Due to the implementation in Matlab 7 which uses only a single processor, no advantage of the

multi-processor system is taken and only a single processor – or 25% of the available computation power

– is effectively used. The main advantage of running the training on this computer was its large amount

of memory. During the training a large number of images is constantly needed. The hard disk is the

bottleneck of most computers as it has only a limited data transfer rate. It is therefore often faster to

keep the data in the working memory to have them always available for fast access.

Additionally Matlab is very memory consuming when running on a Unix machine. This is because Unix

(and Linux), in contrast to Windows, frees the memory of a process after the process terminates and not

after the memory is not used anymore and freed by the process. If a data structure does not fit into the

59

6.2. TEST SEQUENCES CHAPTER 6. RESULTS

allocated and unused memory space of an application, new memory is allocated. Similar to file systems on

hard disks, in the dynamic memory a fragmentation also takes place, which leads to continuous allocation

of new memory if the code is not written carefully. Working with very large data structures and a long

process running time, it was very important to take this into account to avoid a fast consumption of the

available memory.

The implementation of the tracking system was done partly under Microsoft Windows and MacOS X

and shows the platform independence of Matlab. No alteration of the source was necessary between the

different operating systems. As system for testing the performance of the tracking system, a power book

G4 (Power-PC 7450) with 1.5 GHz and 512 Mbyte RAM was used.

6.2 Test sequences

For the training of our detector we used a training set of 1500 manually extracted pedestrians from several

video sequences. For the tests described in this section two video sequences – different to the training

sequences – were used. The tests show how the tracking system handles sequences with multiple persons

and partial or full occlusions. All pedestrians occurring in test sequence 1 and 2 were manually labelled

and the ground truth information used for validating the results of the tracking system. Table 6.1 shows

an overview of the properties of each test sequence. A detailed description of each sequence is given

below.

Test sequence 1 Test sequence 2

of persons 4 3
of frames 225 300

Partial occlusions yes yes
Full occlusions no yes
Ground truth yes yes

Table 6.1: Properties of test sequences

6.2.1 Test sequence 1

The first sequence (9 seconds, 225 frames) shows four persons where two of them are moving from the

right side of the camera view to the left and the other two persons leave the image after two seconds on

the right side. One person is partially occluded by a street lamp for part of the trajectory. This basic

test sequence should primarily test if the feature vectors extracted are usable to distinguish between

the pedestrians. Since both pedestrians have nearly the same size, primarily the colour and position

information is usable. The partial occlusion of the pedestrian shows the effect of occlusions and how they

are handled by the tracking system. Figure 6.1 shows a frame of test sequence 1.

60

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.1: Frame #1 of test sequence 1

6.2.2 Test sequence 2

In this sequence with a length of 12 seconds or 300 frames, two persons are moving next to each other

from the right to the left part of the scene. Another person enters from the left and is first partially

occluded by the street lamp and then occludes the two other pedestrians completely when he continues

to go to the right. This sequence tests the system behavior on partial and full occlusions. Additionally

it shows how it handles a group of multiple persons which are moving simultaneously and next to each

other. One frame of test sequence 2 is shown in Figure 6.2.

6.3 Detector

This section describes the implementation of the detector in more detail and investigates the performance

of the final detector on the two test sequences. Furthermore the results obtained are compared to existing

implementations with respect to the detection rate and the false positive rate.

6.3.1 Training time

To see how strongly the Asymmetry and the Float Search algorithm influences the training time and the

classifier size, we trained our system three times – once with the traditional AdaBoost algorithm (Al-

gorithm 1), once with the asymmetric AdaBoost algorithm and once with the asymmetric FloatBoost

algorithm (see Algorithm 2). The strong differences in the training time can be seen in Figure 6.3.

61

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.2: Frame #80 of test sequence 2

Figure 6.3: Training time

62

6.3. DETECTOR CHAPTER 6. RESULTS

Training the classifier cascade with the traditional AdaBoost algorithm and the training parameters from

Section 3.4 takes about 4 days. By using the asymmetric AdaBoost version a shorter training time of 3.5

days is achieved. The longest training time was needed by the asymmetric version with the Float Search

algorithm. The training time is much higher than the other implementations, but the resulting boosted

classifiers have less weak classifiers as described in Section 6.3.2. These smaller boosted classifiers are

faster to evaluate which results in a faster classification process.

To provide a comparison between our Matlab implementation and a low-level implementation, the training

time of a detector for face detection at the University of Queensland, Australia which uses a traditional

AdaBoost implementation in C from the OpenCV library1 is available. The training of this low-level

implementation with a similar number of training images to our system takes takes 3 days for the training.

The main factors for the relatively small difference in training time is that Matlab internally compiles

the code instead of interpreting it and the use of the asymmetric AdaBoost algorithm leads to a faster

convergence. However, an implementation of this algorithm in a low-level language would probably lead

to even faster results.

An interesting point is that at the beginning of the training process the feature selection is computationally

more expensive compared to the creation of the positive and negative training sets. In later stages

the creation of the negative examples for the classifier training with bootstrapping becomes more time

consuming since the false positive rate decreases in each stage and it gets harder to produce the necessary

set of negatives.

Another interesting optimisation which could decrease the training time was proposed by Friedman et

al. [FHT01] but is not used yet. They propose that training samples with a low weight, because of their

small influence in the error loss function, can be neglected dynamically. Therefore during each round of

the boosting algorithm less but more influential samples are used for the training, which results in less

computations.

6.3.2 Stages

A final classifier cascade consists of 11 boosted classifiers. The classifiers Ci are sorted by their numbers

of weak classifiers f so each one has equal or more weak classifiers than its previous stage. Since the

computational complexity of each classifier rises with its number of features, the images are first classified

by classifiers with a small size (Figure 6.4). In this figure the efficiency of the FloatBoost algorithm is

demonstrated. Most of the boosted classifiers in the FloatBoost-trained cascade are smaller than their

corresponding classifier trained with the traditional AdaBoost version and the total sum of weak classifiers

for the FloatBoost cascade is nearly 10% smaller.

Due to the arranging of the boosted classifiers according to their size, only a reduced number of samples

reaches higher classifiers in the cascade, which are more expensive to compute. If we test the detector with

1URL: http://sourceforge.net/projects/opencvlibrary/

63

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.4: FloatBoost against AdaBoost

a set of only negative samples, then the percentage of negatives dropped per boosted classifier gives us

information about the similarity between the boosted classifiers and the redundancy of a boosted classifier

compared to its previous stages. This gives us the possibility to evaluate the efficiency of the AdaBoost

algorithm. If a boosted classifier eliminates none or only a very small percentage of the negative samples

which reach its stage, it means that it represents nearly redundant information. All previous classifiers

together represent the same information as this classifier. In the AdaBoost algorithm this should never

be the case because each classifier Ci+1 should learn to eliminate new negatives which have not been

classified correctly by the previous boosted classifiers C1..i.

So if a single boosted classifier Ci reaches the target detection rate Di (in our implementation D ≥ 0.99)

and the target false positive rate F ≤ 0.5 then it represents new information regarding the classifier

cascade.

In Figure 6.5 we can see the average fraction of examples eliminated in each classifier stage which was

determined empirically. Here we can see, that each classifier eliminates at least 10% of the negatives

reaching its stage. So each classifier represents different information. We can see that the classifier at the

end of the cascade eliminates only 12% of the negatives in its stage which means that the false positive

rate is quite high and that it only presents a small amount of additional information for the whole cascade.

This should not be the case since it is the classifier with the highest feature number and therefore should

provide the best description of a pedestrian. It is obvious that for each boosted classifier it becomes more

difficult to explain how a typical pedestrian looks without using the same representation as the boosted

classifiers before it. Since the number of significant features for describing a pedestrian is also limited

often no further improvement of the detector is possible. In our case the training was aborted after the

64

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.5: Rejected negatives

11th boosted classifier because no further improvement could be achieved.

6.3.3 Features

An interesting question is which features are used for the pedestrian classification. In Figure 6.6 we see

which features in the boosted classifiers describe pedestrians. It is surprising that all seven features are

nearly equally often used.

Figure 6.7 shows some examples of features which are used by the detector for a pedestrian description.

It is interesting that most classifiers in our system compare a part or a characteristic feature of the

pedestrian with the background. Features for finding relations between two pedestrian features are not

used very often. In many face detectors based on the same kind of Haar-like features, often relations

between two characteristic features of the object are used (e.g. the spatial relation between the two eyes

or between the face and the nose). The reason why our detector sets mostly the background in relation

with pedestrian features could be that our system – in contrast to most face detectors like [JV03] – uses

images of different angles of pedestrians during the training. In face detection normally only the frontal

view of faces is used for the training. Therefore, most face detectors only detect a face if it looks nearly

frontally into the camera and does not find it if it is rotated by more than 15 degrees. In our system the

relation between the pedestrian and background is most likely more constant than the relation between

the parts of the pedestrian.

65

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.6: Features used in the cascade

Figure 6.7: Feature examples

66

6.3. DETECTOR CHAPTER 6. RESULTS

6.3.4 Classifier performance

At the beginning of the performance evaluation a static version of a detector introduced by Viola et

al. [VJS03] as reference detector to our detector was chosen. The reason for using this detector as a

test reference was because of its great similarity to our detector, e.g. it also uses Haar-like features and

a cascade structure for the classification. Our system differs only minimally in the form of the static

features (feature type 6 and 7) and the used training algorithm (Algorithm 2). As can be seen in [VJS03]

the performance of the reference detector is very dependent on the test sequence. On one test scene the

referenced detector reached a detection rate D ≥ 0.95 for false positive rates greater than F ≥ 5× 10−5.

For the second test sequence the detector only reached a detection rate of D ≥ 0.7 at the same false

positive rates.

Also if the detectors are tested on the same test sequence we normally have to use the same test method

for the performance evaluation and the same test parameters. Viola et al. [VJS03] create the ROC curve

for a test sequence by adjusting the threshold of each boosted classifier one at a time and taking the

resulting rates of this truncated classifier cascade. Since we neither have the same number of classifier

stages nor use independent and adjustable thresholds for each boosted classifier a direct comparison is

not possible.

Therefore we did the performance evaluation of our detector with the test sequence 1 and 2 which are

described above and only compared the order of magnitude of the resulting rates with the reference

detector for plausibility. To build the ROC curve we slowly lowered or raised the constant threshold λC

for the boosted classifiers. The decreasing or increasing of the threshold λC leads to a rising or descent

of the detection and the false positive rate of the detector which is used for creating the ROC curve.

This global lowering of the threshold avoids the adjusting of each boosted classifier and always regards

the performance of the complete classifier cascade. During the generation of the ROC curve the clipping

algorithm was deactivated to avoid a performance deterioration of the detector. The influence of clipping

on the detector performance is investigated in Section 6.3.6.

We can see in Figure 6.8 that for both test sequences the detection rate is around 80% at a false positive

rate of 10−5. At a higher false positive rates of F ≥ 2×10−5 the detector reaches a detection rate of 88%

in the first and 84% in the second test sequence. In the second sequence this was the highest detection

rate which could be achieved. In test sequence 1 a detection rate D ≈ 0.91 at a false positive rate of

F ≥ 7 × 10−5 was achievable. Compared to the reference detector the rates of our detector are in a

similar order of magnitude.

The average false detection rate for a boosted classifier threshold λC = 1
2 on both test sequences was

around F̃ = 3× 10−5 which is equivalent to one wrongly classified window in 1
0.3×10−4 = 3333 windows

and an average detection rate of D̃seq1 = 0.88 for test sequence 1 and D̃seq2 = 0.84 for test sequence 2.

These rates should provide a good base for our tracking system.

6.3.5 Pre-classification

The positive pre-classification with the extended boosted classifier (Section 3.3.5) was tested with a

random set of negatives which was created with bootstrapping. We compared the percentage of windows

67

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.8: ROC curves of our detector.

rejected at one of the defined pre-classification points at 50%, 66%, 75% and 85% of the total feature

number. Additionally the window percentage which required more than 85% of the weak classifiers was

counted.

The left side in Figure 6.9 shows the relative fraction of rejected windows at each of the positive pre-

classification points and on the right side – for better visualisation – the cumulative sums of these rates.

We can see that only around 4% of the windows can be rejected after evaluating 50% of the weak classifiers.

After 66% already 30% of the windows can pre-classified as a pedestrian and we can classify more than

the half of the windows with only 75% of the weak classifiers. The other half of images is harder to

classify and requires at least 85%.

For the negative pre-classification we can see in Figure 6.10 that only a relatively small amount of 5% of

the windows can already be rejected after the evaluation of only one half of the weak classifiers. After

66% already around 15% of the negative samples can be rejected. After evaluating 75% of the weak

classifiers already 40% of the negative samples can be classified as negative. A large ratio of more than

two thirds of all negatives is rejected after 85% of the weak classifiers and only a rest of 26% requires the

complete evaluation of the boosted classifier.

The theoretic velocity gain of the two pre-classification step seems quite high but in practice the effective

velocity gain is much smaller. The negative pre-rejection only saves computations in the boosted classifier

which rejects the negative sample. Since we do not know in advance which of the boosted classifiers in

our cascade will reject the negative, we have to apply pre-classification in every boosted classifier which

68

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.9: Positive pre-classification

Figure 6.10: Negative pre-classification

69

6.3. DETECTOR CHAPTER 6. RESULTS

leads to 4 additional comparisons per boosted classifier. The highest velocity gain for negative pre-

classification would be possible for complex boosted classifiers which contain many weak classifiers and

are located at the end of the cascade. Due to the cascade structure only few negatives normally reach

these complex classifiers and therefore the efficiency of negative pre-classification is limited. The positive

pre-classification saves in contrast to the negative pre-classification the evaluation of weak classifiers in

each boosted classifier and is more efficient. Since the number of positive windows (i.e. pedestrians)

normally is much smaller than the number of negative windows only for these few positives the full

velocity gain for each boosted classifier is effectively used. However, also for negatives which are hard to

classify and which reach higher stages a velocity gain is achieved since they are classified as positives in

all previous boosted classifiers before the rejecting one.

As already mentioned in Section 3.3.5 negative as well as positive pre-classification does not have any

influence on the result of the boosted classifier classification but only on the required evaluation time.

6.3.6 Clipping

The evaluation of the clipping algorithm (Section 3.4.2) is tested on the two test sequences. In Figure 6.11

and Figure 6.12 we can see the efficiency of this algorithm. Due to a clear background segmentation it is

possible to reduce the numbers of detection windows constantly to around 10% in both video sequences.

This relatively small percentage is then classified by the classifier cascade.

In Figure 6.11 one can see, that at the beginning when the background model is adapting itself to the

scene the number of clipped windows is lower than at the end of the scene. Additionally, at the beginning

four people are in the scene where two of them leave the scene after a few seconds. After an initialization

phase of the background model and after the two people have left the scene, the number of remaining

windows stays quite constant in the range between 13 and 18%. This constant behavior was predictable

since the remaining two pedestrians do not change their distance to the camera and the background

activity stays nearly constant.

For the second test sequence in Figure 6.12 one can also see the initial adaption of the background model

where the number of clipped windows rises. Around frame 150 one pedestrian in the scene occludes the

other one and a decreased foreground area leads to a lower number of clipped windows. The number of

clipped windows rises again at the end when one of the pedestrians leaves the scene.

The activated clipping does not deteriorate the performance of the detector in both test sequences. This

is probably due to the constant movement of the pedestrians in both test scenes. If a pedestrian would

not move and remain still for a longer period, he/she would be adapted into the background and therefore

clipped in the next detection step. This is intended because the pedestrian then does not provide any

tracking information. For a video sequence where the background cannot be separated clearly enough

from the foreground, this clipping algorithm would neither result in a performance boost nor deteriorate

the detection rate.

70

6.3. DETECTOR CHAPTER 6. RESULTS

Figure 6.11: Clipping in test sequence 1.

Figure 6.12: Clipping in test sequence 2.

71

6.4. TRACKING FEATURES CHAPTER 6. RESULTS

Figure 6.13: The detector in progress.

6.3.7 Detector in progress

Figure 6.13 shows the detector in progress. The green boxes show pedestrian detections where each of

them represents an already merged set of one or multiple detection windows. The windows are merged as

described in Section 4.5. At this step in the tracking system no tracking features are available but only

the raw position and size information for each pedestrian.

6.4 Tracking features

This section presents test of the quality of the tracking features. Since this feature quality is not easily

measurable we had to find a way to analyse the tracking features regarding their expressiveness and

robustness.

An idea for testing the features was to lower the classification threshold for the boosted classifiers of the

detector progressively2. By doing so the detector classifies more sub-windows as pedestrians which leads

to a higher number of competing detection windows and where we can test if the features can distinguish

the feature vectors well enough and support an undisturbed tracking process. The dependence between

2The clipping algorithm was deactivated during this test.

72

6.5. APPEARANCE MODEL CHAPTER 6. RESULTS

the decreasing threshold λC and the increasing number of windows classified as pedestrians gives us a

method of testing the quality of the tracking features.

The tracker performed well until we reached the threshold level resulting in a false detection rate of

15 wrong detections per frame. No wrong pedestrian was accepted or real pedestrian lost above this

threshold. Below this threshold, incorrectly accepted pedestrians increased rapidly and in the first test

sequences two wrong pedestrians were accepted. At 17 wrong detections per frame one pedestrian was

lost and not found again and at 24 wrong detections no continuous tracking was possible.

In the second test sequence three wrong pedestrians were accepted and furthermore one of three ped-

estrians was lost at the beginning, found again later, and tracked as a different pedestrian. The lost

pedestrian is partly due to the large number of competing detection windows, but also because of the

background model which needs a few frames at the beginning to initialize the background distributions

correctly. At a threshold level resulting in 26 wrong detections no object could be tracked for longer than

a few frames.

For both test sequences the system stays robust for a moderate number of false detections. For a higher

number of false positives the system cannot separate the objects clearly enough and loses track of them

or accepts non-pedestrians as pedestrians. The critical limit of 15 wrong detections in one frame in

test sequence 1 is equivalent to a false positive rate of F = 5.6 × 10−3 for 2684 windows. Since our

detector normally has a much lower false positive rate we will not have to deal with such a high number

of competing windows. The results of this test indicate that the used tracking features are suitable for

our application.

The object validation according to the evaluation criteria for tracking features (Section 4.3) proves to be

highly effective. In both test sequences many wrong detections which contain only little tracking inform-

ation are automatically rejected during the feature extraction. In the test above the object validation

rejected about one third of the false detections.

6.5 Appearance model

This section describes the results of the appearance model evaluation. Here test sequence 2 was used for

testing the behavior of the tracking system during occlusions and wrong detections. In this sequence the

detector incorrectly labels multiple wrong windows as pedestrians and the filtering by the appearance

model can be investigated. Further we have partial as well as full occlusions in this sequence which

provide a way to test the state estimation of our system.

6.5.1 Occlusions

In the ground truth information of test sequence 1 and 2 all occlusions occurring were manually marked.

By using this information we can evaluate how the appearance model handles these situations. In Fig-

ure 6.14 we can see the the ground truth x-coordinates of the three pedestrians while the persons are

73

6.5. APPEARANCE MODEL CHAPTER 6. RESULTS

Figure 6.14: Object movements in test sequence 2.

moving through the scene. Pedestrian 1 and 2 are moving from the right side of the camera view to the

left and pedestrian 3 is coming from the left. As we can see there is a point at around 140 frames when

all three pedestrians are too close together and a collision occurs. This collision area is marked with a

circle and should be recognized by the appearance model.

For clearness we will take a closer look at pedestrian 2. This person is coming from the right side,

is occluded after around 140 frames by pedestrian 3 and after around 225 frames by a street lamp.

Figure 6.15 shows the two collision areas and the manually extracted position of this object. For better

visualisation we show the tracking of this object by our tracking system in a separate figure (Figure 6.16).

In this figure one can see how the appearance model handles the collision with another pedestrian and

with a street lamp. During the collision with the second pedestrian the positions are interpolated until

both pedestrians are outside of the collision area again. Since no clear detection or extraction of the

features is available in the collision areas, we will never get exactly the real object path but only an

estimate. Figure 6.16 shows that the appearance model estimates the position of the pedestrian and

handles this complete occlusion robustly. After the pedestrian has left the collision area, it is recognized

again and its position corrected with the new detection information3.

Since the system has no information about collisions with non-pedestrians, no collision areas are created

for these regions. For the case of the street lamp no estimations are done but this partial occlusion with

one quarter of the pedestrian width is quite small and has nearly no noticeable influence on the tracking

3Note that also outside of collision areas a deviation from the manually labelled object path is present since the reduction
algorithm only provides an position estimate and depends on the quality of the current background prediction.

74

6.5. APPEARANCE MODEL CHAPTER 6. RESULTS

Figure 6.15: Object occlusions in test sequence 2.

Figure 6.16: Coordinate estimation by the appearance model.

75

6.6. TRACKER IN PROGRESS CHAPTER 6. RESULTS

results. The detector seems to be robust against small partial occlusions since no estimation is used and

the detector also finds the partially occluded pedestrian. For larger partial occlusions by a non-pedestrian,

the detector cannot find the pedestrian and the appearance model has to estimate his/her state.

The estimate for the single body parts is normally determined by the detection window of the pedestrian.

During occlusions, no exact window is provided and also the position and size of the body parts is

estimated. In contrast to the absolute position of the pedestrian we do not achieve the same quality

for the estimates of the body positions. The head, the upper body and the lower body have a periodic

up-down movement which cannot be described by a linear function. Here an interpolation with a function

of an angle (i.e. the sine function) could provide better estimates.

6.5.2 Filtering of wrong detections

In Section 6.3.4 the average false detection rate in both test sequences was given with one wrongly

classified window in 1
3×10−5 = 3333 windows. In an image pyramid with 2684 windows this results on

average in one wrong detection every three frames. Each wrong detection is also included in the object

pool of our appearance model, but not immediately regarded as a pedestrian. The appearance model

works as a filter for these wrong detections. Tested on both test sequences this filtering process proved

to be very useful since not even one false detection window was accepted as a pedestrian and the false

positive rate was decreased to zero. The test done in Section ?? indicates that the appearance model

cannot filter all negatives if the number of wrong detections exceeds a certain limit.

6.6 Tracker in progress

The final tracking system in progress can be seen in Figure 6.17. This figure shows the tracking process

in test sequence 2 which includes partial and full occlusions. In the beginning at frame 0 the system does

not show any pedestrian but already in this phase pedestrians are detected and objects created by the

appearance model. These objects have not reached the pedestrian state yet but have to be recognized

again in subsequent frames. The final tracker needs about two seconds per frame on an Apple Powerbook

G4 with 1.5 GHz and 512 MB memory. An implementation in a lower level language like C would increase

this rate significantly.

76

6.6. TRACKER IN PROGRESS CHAPTER 6. RESULTS

Figure 6.17: The tracker in progress for test sequence 2. The frame number is shown in each image.

77

Chapter 7

Summary & Conclusion

I may not have gone where I intended to

go, but I think I have ended up where I

needed to be.

Douglas Adams

The research done for this thesis mainly focused on the developing of a fast and robust tracking system

for pedestrians. For this purpose already existing algorithms were investigated and combined in this

work. The approach in this system which combines a pedestrian detector and a background model for

the feature extraction showed its successful operation in multiple test sequences.

The detector robustly detects the pedestrians in a video frame and also seems to be robust against

partial occlusions. The cascade structure of this detector makes a fast classification process possible

and the asymmetric FloatBoost algorithm results in small and efficient boosted classifiers. The pre-

classification extension which was introduced in this work leads to an increase in the classification speed

without influencing the classification results. In addition the proposed clipping algorithm based on the

background model decreases the number of classification windows of the detector significantly and provides

a very effective possibility to validate pedestrian detections after the classification process.

The background model provides a good estimate for the background and foreground in the test sequences.

This can indirectly be seen in the high number of clipped windows and the feature extraction. The

separation into three body parts and the extracted features reliably distinguish between the objects in

our test sequences and support the tracking process. Here the separation in reliable and unreliable feature

values improves the information which is used for the tracking. For partial and full occlusions when no

clear features can be extracted the appearance model provides good estimates for the object states.

The resulting tracking system of this work seems to accomplish the requirements on robustness and speed.

However, there are still some possibilities for improvement. The estimates done by the appearance model

78

CHAPTER 7. SUMMARY & CONCLUSION

could be improved by the use of a better interpolation or filter i.e. a Kalman filter. All parts of the

tracking system are strongly dependent on the background model which only achieves a moderate result

for images with a low resolution or a high compression rate. The obtained results in the test sequences

are still suitable for our application but since the tracking system strongly relies on the quality of the

background model a future goal should be to improve the model for example by the use of a better colour

model or with shadow detection. Additional performance tests on standard test sequences should be done

to be able to better compare the tracking results.

Also a low-level implementation to increase the speed of the tracking system provides possibilities for

future work. Since most implementations are written in a low-level language this would also provide

a good possibility to compare the velocity of our system with others and to evaluate the performance

increase due to the introduced speed optimisations.

79

Acknowledgements

I would maintain that thanks are the

highest form of thought, and that

gratitude is happiness doubled by wonder.

G. K. Chesterton

I would like to gratefully and honestly thank all persons who supported me during the intensive work

on this thesis. In particular, I would like to express deepest gratitude to my advisor, Allan Hanbury, for

allowing me to work in a very interesting research area, for his full support and patience. Furthermore, I

would like to sincerely thank Brian Lovell for his support and interesting discussions during my time at

his department.

For their valuable disscussions, friendship and numerous coffee breakes I would like to thank Remy

Mevel, Daniel Wilhelm, Reinhard Klein and Amin Abbosh who furthermore made my stay in Australia

unforgettable.

Finally, I would like to thank my family. I am greatly indebted to my mother who provided me support,

friendship, great freedom during my studies, delicious dinners and tons of chocolate. Above all, I cannot

express my full gratitude to my partner, Julia, who constantly supported me through this entire thesis.

80

Bibliography

[AMGC02] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for

on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing,

50(2):174–188, Feb 2002.

[BBBD05] Massimo Bertozzi, Emanuele Binelli, Alberto Broggi, and Michael Del Rose. Stereo vision-

based approaches for pedestrian detection. In Procs. Intl. IEEE Workshop on Object Tracking

and Classification in and Beyond the Visible Spectrum, San Diego, USA, June 2005.

[BBDL05] Massimo Bertozzi, Alberto Broggi, Michael Del Rose, and Andrea Lasagni. Infrared stereo

vision-based human shape detection. In Proc. IEEE Intelligent Vehicles Symposium 2005,

pages 23–28, Las Vegas, USA, June 2005.

[BBF+04] M. Bertozzi, A. Broggi, A. Fascioli, A. Tibaldi, and R. Chapuis F. Chausse. Pedestrian local-

ization and tracking system with Kalman filtering. In IEEE Intelligent Vehicles Symposium

2004, pages 584 – 589, 2004.

[BCT04] Tilo Burghardt, Janko Calic, and Barry Thomas. Tracking animals in wildlife videos using

face detection. In European Workshop on the Integration of Knowledge, Semantics and Digital

Media Technology, October 2004. London, U.K.

[CD99] Ross Cutler and Larry Davis. Real-time periodic motion detection, analysis and application.

In Proc. of IEEE Conference on Computer and Pattern Recognition, pages 326–331, 1999.

Fort Collins, USA, 1999.

[CJSW01] H.D. Cheng, X.H. Jiang, Y. Sun, and J. Wang. Color image segmentation: advances and

prospects. Pattern Recognition, 34(6):2259–2281, 2001.

[CRH01] Y. Chen, Y. Rui, and T. Huang. Jpdaf based HMM for real-time contour tracking. In

Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,

2001.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-

Interscience Publication, 2nd edition, 2000.

[EDD01] Ahmed M. Elgammal, Ramani Duraiswami, and Larry S. Davis. Efficient non-parametric

adaptive color modeling using fast Gauss transform. In CVPR (2), pages 563–570, 2001.

[FHT01] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of

boosting. In The Annals of Statistics, volume 28, pages 337–374, October 2001.

81

BIBLIOGRAPHY BIBLIOGRAPHY

[FM99] A. R. Francois and G. G. Medioni. Adaptive color background modeling for real-time segment-

ation of video streams. In Proceedings of the International Conference on Imaging Science,

Systems, and Technology, pages 227–232, 1999.

[FS96] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In 13th

International Conference on Machine Learning, pages 148–156, 1996.

[GG02] D. M. Gavrila and J. Giebel. Shape-based pedestrian detection and tracking. In IEEE

Intelligent Vehicle Symposium, 2002., volume 1, pages 8 – 14, 17-21 June 2002.

[GGB+02] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P. Nord-

lund. Particle filters for positioning, navigation, and tracking. In IEEE Transactions on Signal

Processing, volume 50, pages 425–435, Feb 2002.

[GM76] A. H. Gray and J. D. Markel. Distance measures for speech processing. In IEEE Trans.

Acoust., Speech, Signal Processing, ASSP-24, pages 380–391, 1976.

[HB98] Gregory D. Hager and Peter N. Belhumeur. Efficient region tracking with parametric models

of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 20(10):1025–1039, 1998.

[HS67] Gerald J. Hahn and Samuel S. Shapiro. Statistical Models in Engineering. John Wiley &

Sons, 1967.

[HS02] Allan Hanbury and Jean Serra. A 3d-polar coordinate colour representation suitable for image

analysis. Technical Report PRIP-TR-077, PRIP, TU Vienna, Vienna, 2002.

[IB98] M. Isard and A. Blake. Condensation – conditional density propagation for visual tracking.

In International Journal of Computer Vision, volume 29(1), pages 5–28, 1998.

[JV03] Michael Jones and Paul Viola. Fast multi-view face detection. Technical Report TR2003-096,

Mitsubishi Electric Research Laboratories (MERL), June 2003.

[Kai67] T. Kailath. The divergence and Bhattacharyya distance measures in signal selection. In IEEE

Trans. Comm. Technology, volume 15, pages 52–60, Feb. 1967.

[KCT04] S. J. Krotosky, S. Y. Cheng, and M. M. Trivedi. Face detection and head tracking using stereo

and thermal infrared cameras for ’smart’ airbags: A comparative analysis. In 7th IEEE Conf.

on Intelligent Transportation Systems, October 2004.

[LKP03] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky. Empirical analysis of detection

cascades of boosted classifiers for rapid object detection. In Pattern Recognition, 25th DAGM

Symposium, Magdeburg, Germany, September 10-12, 2003, pages 297–304, 2003.

[LKW91] Brian C. Lovell, Peter J. Kootsookos, and R. C. Williamson. The circular nature of discrete-

time frequency estimates. In IEEE International Conference on ASSP, pages 3369–3372,

Toronto, May 1991.

[LLK03] Rainer Lienhart, Luhong Liang, and Alexander Kuranov. A detector tree of boosted classifiers

for real-time object detection and tracking. In IEEE ICME2003, volume 2, pages 277–280,

July 2003.

82

BIBLIOGRAPHY BIBLIOGRAPHY

[LM02] Rainer Lienhart and Jochen Maydt. An extended set of Haar-like features for rapid object

detection. In IEEE ICIP2002, volume 1, pages 900–903, Sept. 2002.

[Lov91] B. C. Lovell. Techniques for Non-Stationary Spectral Analysis. PhD thesis, University of

Queensland, 1991. Brisbane.

[LW04] K. Levi and Y. Weiss. Learning object detection from a small number of examples: the im-

portance of good features. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

2004, pages 53–60, 2004. Washington DC.

[LZSZ02] S. Li, Z. Zhang, H. Shum, and H. Zhang. Floatboost learning for classification. In Proceedings

of The 16-th Annual Conference on Neural Information Processing Systems (NIPS), pages

993–1000. MIT Press, Dec 2002. Vancouver, Canada.

[Mar72] K. V. Mardia. Statistics of directional data. Academic Press, London, 1972.

[MP01] O. Masoud and N.P. Papanikolopoulos. A novel method for tracking and counting pedestrians

in real-time using a single camera. In IEEE Transactions on Vehicular Technology, volume 50

of 5, pages 1267–1278, September 2001.

[OB04] Eng-Jon Ong and Richard Bowden. A boosted classifier tree for hand shape detection. In Sixth

IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004),

May 17-19, 2004, Seoul, Korea, pages 889–894, 2004.

[OPS+98] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian detection using

wavelet templates. In IEEE ICCV, pages 555–562, 1998. Bombay, India.

[PDD00] V. Philomin, R. Duraiswami, and L. Davis. Pedestrian tracking from a moving vehicle. In

Intelligent Vehicles Symposium, 2000. IV 2000., pages 350–355, 2000.

[PT03] Fatih Porikli and Oncel Tuzel. Human body tracking by adaptive background models and

mean-shift analysis. In IEEE International Workshop on Performance Evaluation of Tracking

and Surveillance, March 2003.

[SKK00] Yoichi Sato, Yoshinori Kobayashi, and Hideki Koike. Fast tracking of hands and fingertips in

infrared images for augmented desk interface. In Proc. of IEEE Automatic Face and Gesture

Recognition (FG2000), pages pp.462–467, 2000.

[SL00] Nicu Sebe and Michael S. Lew. A maximum likelihood investigation into color indexing. In

Proceedings Visual Interface 2000, pages 101–106, 2000.

[Smi78] Alvy Ray Smith. Color gamut transform pairs. SIGGRAPH Comput. Graph., 12(3):12–19,

1978.

[Ste63] M. A. Stephens. Random walk on a circle. In Biometrika, 50, pages 385–390, 1963.

[SWTO04] Caifeng Shan, Yucheng Wei, Tieniu Tan, and Frédéric Ojardias. Real time hand tracking

by combining particle filtering and mean shift. In Sixth IEEE International Conference on

Automatic Face and Gesture Recognition (FGR 2004), May 17-19, 2004, Seoul, Korea, pages

669–674, 2004.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[TT03] Marko Tkalcic and Jurij Tasic. Colour spaces - perceptual, historical and applicational back-

ground. In Baldomir Zajc and Marko Tkalcic, editors, Eurocon 2003 Proceedings. IEEE

Region 8, September 2003.

[VJ01a] Paul Viola and Michael J. Jones. Rapid object detection using a boosted cascade of simple

features. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), volume 1, pages 511–518, December 12-14 2001. Kauai, Hawaii.

[VJ01b] Paul A. Viola and Michael J. Jones. Robust real-time object detection. In Second International

Workshop on Statistical Learning and Computational Theories of Vision-Modelling, Learning,

Computing and Sampling, July 2001.

[VJ02] P. Viola and M. Jones. Fast and robust classification using asymmetric Adaboost and a

detector cascade. In NIPS2002, 2002.

[VJS03] Paul A. Viola, Michael J. Jones, and Daniel Snow. Detecting pedestrians using patterns of

motion and appearance. In Proc. of IEEE International Conference on Computer Vision

ICCV03, volume 2, pages 734–741, 2003.

[WADP97] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pentland. Pfinder:

Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(7):780–785, 1997.

[WAHL04] Bo Wu, Haizhou Ai, Chang Huang, and Shihong Lao. Fast rotation invariant multi-view face

detection based on Real Adaboost. In Sixth IEEE International Conference on Automatic

Face and Gesture Recognition (FGR 2004), May 17-19, 2004, Seoul, Korea, pages 79–84,

2004.

[WRM04] J. Wu, J. Rehg, and M. Mullin. Learning a rare event detection cascade by direct feature

selection. In Advances in Neural Information Processing Systems 16 (2004), 2004.

[ZT00] L. Zhao and C.E. Thorpe. Stereo- and neural network-based pedestrian detection. ITS,

1(3):148–154, September 2000.

84

