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Abstract

In this thesis a framework for deriving high-level scene attributes from low-level image

features is developed. Examples of attributes derived are photo-painting, indoor-outdoor,

night-day and nature-city. The assignment of the attributes to images is done by a hier-

archical classification of the low level features, which capture colour, texture and spatial

information. A concise summary of current research and methods used in this field of re-

search is given. Furthermore, a prototype for image classification is implemented, which

aids in the evaluation of the different methods available. Training and test images are

provided by the ImagEVAL project, a French computer vision evaluation project.
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Chapter 1

Introduction

The automatic derivation of semantically-meaningful information from the content

of an image is the focus of interest for much research on image databases. Image

“semantics” can be categorized [WLW01] as

1. semantic types (e.g. landscape photograph, clip art)

2. object composition (e.g. a bike and a car parked on a beach, a sunset scene)

3. abstract semantics (e.g. people fighting, happy person, objectionable photo-

graph)

4. detailed semantics (e.g. a detailed description of a given picture).

This thesis concerns the extraction of image semantic types, the first item in this list,

from low-level image features. The extracted semantics could, for example, be used

in conjunction with an automatic segmentation of images to guide the segmentation

algorithm. Training and test images are provided by the ImagEVAL [Ima05] project,

a French computer vision evaluation project. Image semantics to be extracted, as

specified in the project description, are shown in the following list:

• Nature of the image

1. Black and White - Colour - Manually Coloured

2. Photograph - Painting

• Context of the image

1. Outdoor - Indoor

1



Introduction

2. Night - Day

3. City - Countryside

Figure 1.1 shows an example of the image annotation that is the goal in this thesis.

A variety of applications for image classification and feature extraction can be found

in Content Based Image Retrieval (CBIR). Other fields in which image classifica-

tion is widely used are: biomedicine, commerce, military, education, digital libraries,

and web searching. An application especially suited to the classification under con-

sideration here is the automatic colour correction of consumer photos during film

development [LW03][SP98]. Another application could be the automatic classifica-

tion of images in large electronic-form art collections, such as those maintained by

museums or image archives of print media / television. Generally speaking, such a

classification is useful everywhere where a manual classification or sorting process is

infeasible because of the number of images under consideration.

From the classification of images, insights can be gained, as stated in [CHL03]:

“The problem of separating photographs from paintings is interesting because it

constitutes a first attempt at revealing the features of real-world images that are

misrepresented in hand-crafted images.” This leads to “digital forensics” because

through classification, computer-generated images can be distinguished from hand-

made art. Another point made in this paper, with regard to pornography filters, is

distinguishing pornographic images from nude paintings.

The selection of applicable low-level image features with the aim of grouping images

into semantically meaningful categories is a challenging task. Chapter 2 presents

a summary of current research on image classification and methods used in this

field. To aid the evaluation of the different methods available, a prototype for

image classification is implemented. The classification of images in this work is

achieved by a hierarchical classification of the semantic attributes listed above. The

methods used in this prototype for feature extraction, building a statistical model

and classification, are discussed in detail in Chapter 3. The results obtained are

shown in Chapter 4, with the conclusion in Chapter 5.
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• colour

• outdoor

• day

• nature

• colour

• outdoor

• night

• urban

Figure 1.1: Examples of semantic annotation
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Chapter 2

Literature Review

The work in the field of automatic image classification is diverse – many differ-

ent statistical methods and classification schemes are used. This chapter gives an

overview of these methods. Technical details on the methods implemented for the

prototype are given in the next chapter.

The first part of this chapter (section 2.1) concerns the classification by attributes

for two-class problems. For evaluation of the results, a strictly defined sample of

training and testing images is often used. Ambiguous images or images not belonging

to either class are discarded. Therefore these results cannot be extended to a general

domain straightforwardly.

For binary (i.e. two-class) classification, where the input is a test sample of images,

the result obtained is either a labelling of the input images or the probabilities of

either class. Evaluation and comparison of results is done on the accuracy of the

methods applied to an independent test set or through the leave-one-out method.

In section 2.2, approaches towards systems for image classification, working in a

wider domain, are introduced. These systems assign more than one attribute and

several different usages are possible; determining input and output methods. For

example, input can be an image to classify or a query for images by specifying a

target class or parameters. Also possible is a search by example through the use of

a query image or sketch. Again, the output of such a system may be a confidence

interval of the class under consideration or a simple labelling. Other output options

include a list of closest images found in a database, a semantic classification or a

linguistic indexing (annotation) of the input image.

In either case, the underlying problem is finding clusters of images that are similar to
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each other. This similarity is defined by human perception – equality and similarity

between images in computer vision must therefore be defined so that a relation to

human vision is obtained. In [SWS+00] the following rules for similarity are given:

• Syntactic laws govern the algorithms used e.g. object matches, spectrum sim-

ilarity.

• Human perception is important because this defines equality on the same basis

as a user experiences it, e.g. usage of the CIELAB colour space, which is closer

to the human perception than the RGB space.

• Physical laws, e.g. physics of illumination are exploited to design features that

are robust regarding lighting.

• Geometric and topological rules, e.g. objects appear smaller in the background.

• Category-based rules are special to a given narrow domain, e.g. knowledge of

variation to expect in faces.

• Culture-based rules of equality and similarity, e.g. different appearances of

faces or skin-colour.

Section 2.3 deals with feature extraction with regards to these considerations. Fi-

nally, section 2.4 gives insight into different classification methods used. More details

on the features and methods selected for use in the prototype are given in Chapter 3

2.1 Classification by Attributes

The papers reviewed in this section propose methods for sub-problems of the speci-

fication of the ImagEVAL project, which are summarised in Figure 2.1. Each sub-

section deals with a different sub-problem. As no work on day-night classification

appears to exist, this is omitted. A justification for the selection of semantic classes

is found in [VFJZ01] where a small-scale experiment with 8 humans yielded the fol-

lowing high-level categories: forests and farmlands, natural scenery and mountains,

beach and water scenes, pathways, sunset/sunrise, city, bridges and city scenes with

water, monuments, scenes of Washington DC, a miscellaneous class of mixed city

and natural scenes and a face image. However the images in question belonged to a

small set of 171 vacation images, therefore this result cannot be generalised.
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Figure 2.1: Image categories specified in the ImagEVAL project

2.1.1 Colour Photo - Artistic Reproduction

In [CHL03], the goal is the determination of image features distinguishing pho-

tographs of real-world scenes from (photographs of) paintings. Line (pencil or ink)

drawings as well as computer-generated images are excluded but no constraint on

the image content is made. Four scalar-valued visual features are defined:

1. Colour edges vs. intensity edges: removal of colour eliminates more visual

information from a painting than from a photograph of a real scene.

2. Spatial variation of colour: local variation of colour - the mean of this quantity

taken over all image pixels should be, on average, larger for paintings than for

photographs.

3. Number of unique colours: paintings appear to have a larger colour palette

than photographs.

4. Pixel saturation: paintings tend to contain a larger percentage of highly sat-

urated pixels.

Each of the above had a hit rate of about 63%, a neural network trained on all 4 of

them achieved about 71% correct classification (with a standard deviation of 4%).

In the RGBXY space proposed in this paper, an image is a represented by a point

cloud in 5 dimensions. Due to the larger colour palette and larger spatial variation in

paintings, photographs and paintings are expected to be well separated in this space.

6
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The paper reports an improvement to a hit rate of 81% using the RGBXY space.

A feature capturing texture, which is more repetitive in photos, is also helpful. The

usage of Gabor filters yields 78% correctly classified. Through combining all these

classifiers a hit-rate of 90% was achieved.

In [LF05] the aim is similar to the above: to distinguish photos from photorealistic,

computer-generated pictures. An approach using the wavelet transform of the RGB

channels is chosen. The features are calculated as higher order moments and error

in prediction of wavelet coefficients. A linear discrimination analysis (LDA) for

classification yields 99.2% correctly classified photos and 54.6% correct photorealistic

images (total hit rate: 93.4%). A Support Vector Machine achieves similar results

with 98.8% and 66.8% respectively (total hit rate: 94.6%). 32.000 photographic and

4.800 photorealistic images were used for training.

In [PCH+02] classification into natural picture (Photo) and business graphic (Graf)

is achieved with a hit rate of 96.6%. The classifier is based on the observation that

a typical natural picture has more detail, noise and smooth colour changes than a

synthetic picture.

2.1.2 Indoor - Outdoor

In [SP98] a classification into indoor-outdoor photographs is performed. First a pre-

processing step is done to achieve basic colour balancing: the images are converted

to 24bit, the top and bottom 5% of intensity levels clipped and the histogram shifted

to the centre and stretched.

As a baseline experiment a colour histogram for the whole image as well as for a 4×4

image tessellation (16 blocks) was calculated and the Euclidean distance used, which

achieved a hit rate of 69.5%. This was enhanced by using the Ohta colour space

and the histogram intersection norm. This raises the result to 74.2%. The texture

features are computed using the multiresolution, simultaneous autoregressive model

(MSAR) with the Mahalanobis norm. This gives 82.2% correctly classified.

As classifier a nearest neighbour algorithm gives good results although it doesn’t

exploit local properties. Experiments with a 3-layer neural network show that this

is computationally expensive and that the results do not improve significantly.

The best result is achieved using a 4×4 image tessellation and combining the MSAR

and the colour information, which yields 90.3% correctly classified. Misclassified

were images of green plants, Christmas trees, green walls and close-ups. Relatively

7
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few parameter settings are used in the classification process. Training and testing

is done on 1300 consumer images provided by Kodak.

In [BOV03] the authors argue that a support vector machine with a kernel function

tuned to the task (i.e. histogram intersection) is best suited to fulfil the task. As

image database 600 random images from the Internet are used. Colour histograms

and co-occurrence matrices are computed. The usage of a kernel without the need

for explicit modelling of the association between the input images and the output

labels means that this approach can be easily expanded to different problems. Using

the HSV colour space, 93% accuracy is reported on the problem.

In [VFJZ01], image features calculated are the first- and second-order moments in

the LUV colour space. To capture spatial colour distribution, a 10 × 10 sub-block

tessellation was used. On a test set of 2540 images an accuracy of 88.2% is achieved.

Other features tested are MSAR texture features and edge direction and coherence

features. These features, as well as a combination with the colour moments did not

yield a better accuracy. Misclassified images either are indoor images with sunshine

through doors or windows or outdoor images with little contrast or uniform lighting

(e.g. close-up shots).

2.1.3 Urban - Natural

In [VJZ98] the following features are evaluated for their discriminative power in

urban-natural classification: colour histogram, colour coherence vector, DCT coeffi-

cient, edge direction histogram and edge direction coherence vector. The best result

is achieved using a 5-Nearest Neighbour classifier on the edge direction coherence

vector. The combination of features does not bring a significant improvement. The

system achieves 93.9% accuracy on 2716 images using the leave-one-out method.

Misclassified images are: long distance city shots at night (difficulty in extracting

edges), top view of city scenes (lack of vertical edges), highly textured buildings,

buildings obstructed by trees, tree trunks and close-ups of plant stems and fences.

Therefore this classifier seems to rely on strong vertical edges for discrimination

between the two classes.

A different approach is followed in [IA99]. Images containing large man made objects

are identified by object matching. Edges are grouped into shape representations

including “L” junctions, “U” junctions and parallel groups. A channel energy model

is utilized to extract lower-level feature vectors consisting of fractional energies in
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various spatial channels. The image database consists of 150 monocular greyscale

outdoor images taken from a ground-level camera. A hit rate of 80% is reported.

2.2 Classification Systems

The systems under consideration in this part are interesting with respect to the

problem at hand in that they work in a wider domain, especially in that they assign

more than one attribute to an image. The list of papers presented in this part is

by no means exhaustive; the aim is to give an overview of possible solutions for

multi-class problems. Also general findings and inherent limitations are referenced.

2.2.1 Hierarchical Classification

In [VFJZ01] a hierarchical classification of vacation images is achieved, using binary

Bayesian classifiers. The images are classified into indoor or outdoor; outdoor images

are further classified as city or landscape, finally, a subset of landscape images is

classified into sunset, forest, and mountain classes.

The classifier is designed and evaluated on a database of 6931 vacation photographs.

The achieved accuracy is 90.5% for indoor/outdoor, 95.3% for city/landscape, 96.6%

for sunset/forest & mountain, and 96% for forest/mountain classification problems.

The paper further describes a learning method to incrementally train the classifiers

as additional data become available. It also shows preliminary results for feature

reduction using clustering techniques. The goal is to combine multiple two-class

classifiers into a single hierarchical classifier.

2.2.2 Content-Based Image Retrieval

The advent of the Internet and a multitude of available digital vision sensors (digital

cameras) has led to a steep increase of images available in digital archives. Indexing

tools for these are required and form the justification for Content Based Image

Retrieval (CBIR).

The expected result of a CBIR may vary and generally is wider then just the retrieval

of images based on the presence or absence of objects. In [SWS+00] categories of

application of CBIR are given as follows:

9
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• Search by association is a search by iterative refinement and relevance feed-

back, started by a sketch or example image. This method facilitates easy

browsing of large image archives, on the lookout for something interesting but

not specific.

• To search for a specific image, e.g. browsing an art catalogue for an image in

mind an aimed search can be implemented, started by an example image.

• Category search aims at finding an arbitrary image representative of a specific

task. The query could be formulated by textual description or an input image

of the same class.

The semantic gap is the difference between a data or language structure and the real

world. This gap is introduced through the difference between a linguistic description

of an image and the interpretation by a user. In speech, also ambiguous at times, the

semantic gap is resolved through the context in which the information is received.

For images however the context is often not known. For web based searches [DY02]

shows the possibility to enhance image-content based classification with available

Meta-data and surrounding text.

The sensory gap is the gap between an object in the real world and the information

available though a description of a recording of that scene. This gap is greater in

a broad domain e.g. all images on the Internet, than in a narrow domain, where

variability is reduced through controlled conditions e.g. frontal views of faces under

same illumination.

The common basis for CBIR systems is a signature and a comparison rule. The

automatic derivation of optimal features is a challenging and important issue. Com-

parison between systems is difficult because human evaluation is difficult to keep

consistent and therefore seriously biased [WLW01].

The low-level content of images is described by calculating features based on local

colour, local texture and local shape. Features are often calculated for parts of

the image, where pixel grouping can be done based on: strong segmentation into

physical objects, currently not feasible because of the complexity in segmentation;

weak segmentation, e.g. colour regions; sign location for objects with (nearly) fixed

shape, e.g. an eye; or image partitioning, regardless of image content e.g. blocks

of equal size. The image partitioning can be feasible as some normative rules, e.g.

horizon in the upper half and the object of interest in centre are often followed.

Different image features are suitable for different semantic types [WLW01] (e.g.

10
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colour indexing for outdoor but region-based for indoor) therefore it is sensible to

categorise images so that semantically-adaptive searching methods can be applied

in CBIR.

2.2.3 Linguistic Indexing

In [LW03] a statistical modelling approach to automatic linguistic indexing of pic-

tures is introduced. 600 concepts with an average of 3.6 keywords per concept are

trained. An example category is “male” with the keywords “man, male, people,

cloth”. According to the paper the advantage of linguistic indexing in CBIR is that

a query image or sketch is not needed.

Training is done with a dictionary of concepts. Each concept is represented by a

statistical model, the two-dimensional multiresolution hidden Markov model (see

section 2.4 for details). Likelihood is used as a universal measure of similarity; no

similarity distance for a particular set of features is needed. Image-features used are

three colour and three texture features. Spatial information is extracted by using a

Quad-tree split at 3 resolutions as well using a tessellation into 4× 4 pixel blocks.

The output of the indexing scheme is an average of 6 words describing an image.

To return specific and interesting information, those keywords that are most “sur-

prising” or rare are selected. The topmost, or first, keyword returned is correct in

11.88% of all test cases. If comparing more than one returned keyword, and relaxing

the “match” condition to having the true category included in first 5 returned key-

words then the accuracy is 26.05%. A random scheme would yield 0.17% (1/600)

accuracy. To train one concept, 30 minutes on an 800 MHz PC is needed.

2.2.4 Semantic Classification

In [WLW01] a CBIR system that uses semantic classification methods is discussed.

A wavelet-based approach for feature extraction was chosen. A weak segmentation is

used, enhanced by Integrated Region Matching. This metric is introduced to guide

the clustering of the over-segmented image. Prior probabilities are consulted to

determine probabilities of objects appearing together in an image (e.g. boat and

water).

The overall image-to-image similarity provides a simple querying interface with a

query image. A database of 200.000 general purpose images was tested.

11
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The calculation of the signature (another term for feature vector) is done in two

steps: first the image is classified based on the given categories graph-photograph

and texture-nontextured. Then the signature is calculated based on features de-

pending on the semantic type.

In the first step the image is partitioned into 4 × 4 pixel blocks before a statistical

clustering algorithm is deployed. The segmented image is represented by a set of

regions, roughly objects, characterised by colour, shape and texture. Segmentation

is achieved by using a k-means algorithm. The features are 3 colour and spatial

variation (wavelets in the LUV colour space). The clustering algorithm is halted

when the distortion is below a threshold, the first derivative is near zero or when

an upper bound is exceeded. This clustering is performed in about one second for

an image of size 384 × 256. An image is then classified into one of n manually-

defined, mutually exclusive and collectively exhaustive semantic classes. In the case

described n is 4, the framework can be extended to more classes.

The information gained in the first step is then used to select the best features for

the feature vector. Therefore the signature calculated depends on the semantic type

of the image.

2.3 Features

A feature has large discrimination power if the intra-class distances

are small and the inter-class distances are large. [VJZ98]

The aim of feature extraction is to find representative values for each image, dis-

criminating between the classes in question. Ideally, the obtained feature vector is

of low dimension, speeding up the classification process. The features to extract can

be determined by observing differences between the classes in question.

According to [WLW01], most CBIR systems use one ore more of the following cate-

gories to extract signatures from images: “Histogram”, “Colour layout” or “Region-

based”.

Histograms are frequently used in the papers reviewed because they give a good

measure of the colour-distribution found in an image and the dimensionality can

be influenced through the number of bins used. A simple approach is to calculate

histograms for each channel and concatenate the result to a vector.
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Colour layout is a feature calculated for sub-blocks of an image. This is essentially a

low resolution representation of the image (i.e. average colour of pixel blocks). Two

CBIR systems which use this approach (mentioned in [WLW01]) are WBIIS, which

uses Significant Daubechies wavelet coefficients and WALRUS, which exhaustively

produces sub-images by sliding a window over the original image.

Region-based search represents images at object level. This requires an image seg-

mentation where regions ideally correspond to objects. Comparison is then based

on individual regions. However the automatic segmentation of an image is nearly as

difficult as image understanding. The establishment of a clear mapping from a set

of pictorial properties to semantics is also difficult.

Finding representative image features can also be achieved through “salient features”

[SWS+00]. These are, for example, the points that survive longest when gradually

blurring an image.

The computed features should be robust to variance between images found in the

class. For example the algorithm should take different scales and rotation of the

input images into account. In [WLW01] the following variations are named and

tested: “brighten, darken, blur, sharpen, saturation, pixelise, crop, shift, rotate,

flip”.

Robustness with respect to these variations is a direct result of the extraction process

used. For example a histogram is robust to the translation of an object in the image,

the drawback is that object location, shape and texture are discarded. Colour

histograms are also sensitive to intensity variation, colour distortion and cropping.

The colour layout search as well as the region-based search are sensitive to object

shifting, cropping, scaling and rotation.

2.3.1 Colour

Colour is a product of the illuminant, surface spectral reflectance and sensor sensi-

tivity (i.e. of digital sensors or of cones in the human eye). It can be characterized

by the following parameters [Fai98, p.101]:

• Hue: visual sensation according to which the colour appears to be similar to

one of the perceived colours: red, yellow, green and blue. There is no “zero”

hue, therefore hue is often described as a circle. However a distinction can be

made between an “achromatic” colour, without hue and a “chromatic” colour,
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possessing hue.

• Brightness and lightness: brightness defines the amount of light an area ap-

pears to emit. Lightness is judged relative to a similarly illuminated area. As a

side effect, as the overall luminance increases the perceived brightness follows

suit while the lightness is constant.

• Colourfulness and chroma: colourfulness is the sensation according to which a

colour is perceived to be more or less chromatic. Chroma is the colourfulness

judged as a proportion of a similarly illuminated area that appears white.

Therefore colourfulness is sensitive to changes in luminance, while chroma is

approximately constant.

• Saturation: colourfulness of an area judged in proportion to its own brightness.

This is similar to chroma but can be judged in isolation.

Many attempts have been made to capture perceptual colour similarity through

different colour spaces. The underlying problem is that colour varies with the ori-

entation of the surface, position and colour of the illumination as well as through

different surface properties.

The most common primary colours in computing are red, green and blue (e.g. colours

used in a monitor). Images are often described by three channels, in this case called

the RGB colour space. When images are stored, or processed, in this colour space

the advantage is that for the primary output device, the monitor, no conversion is

needed. However for various applications different colour spaces have better prop-

erties.

The CIE1 defined the XYZ primaries, which are virtual since they cannot be realized

physically. Nevertheless they can be used for conversion between colour spaces.

The Y primary corresponds to the luminance information, the X and Z to the

chrominance. For the conversion different matrices are defined according to the

illuminant used.

The CIE colour spaces have the advantage that the Euclidean distance between two

colours models the human perception of difference. This has the effect that the

CIELUV as well as the CIELAB colour space have good perceptional properties

[LW03].

1CIE: International Commission on Illumination (Commission Internationale d’Eclairage)
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To calculate a greyscale version of an image, the chroma and hue information is

discarded. This is achieved by only considering the L∗ channel of the CIELAB or

CIELUV colour space or, in the case of RGB encoded images, by an estimation

calculated as the mean of the three channels.

The Ohta colour space [SP98] is composed by forming the 3 largest decorrelated

eigenvectors of RGB. This was found by analysis of natural images and is therefore

used for indoor-outdoor classification. The results in [SP98] show an increase in

correctly classified images from 69.5% to 73.2% when Ohta is used instead of RGB

for indoor-outdoor classification.

A similar colour space is referred to in [SWS+00], the opponent colour representa-

tion isolates brightness information on the third axis. This is of advantage because

humans are more sensitive to brightness than to chroma.

Most methods in the literature propose the usage of colour histograms in one of

these colour spaces. The number of bins used varies between 15 to 60 per channel

and is found by empirical methods. In [SS94] it is stated that a 64-bin histogram has

a maximum discriminating power of 25,000 images. For the prototype, described

in Chapter 3, a bin size of 20 per channel was used as a compromise between

dimensionality (memory usage) and discriminating power.

An alternative description of the histogram by the first three statistical moments

is used in [VFJZ01], 6 features consisting of 3 means and 3 standard deviations

are collected. Even simpler, the mean colour components of pixels is calculated in

[LW03]. In [VJZ98] the colour histograms are calculated by a transform into the

HSV colour space, followed by a clustering to 64 colours with k-means clustering. A

Colour Coherence Vector proposed in [VJZ98] is an extension to histograms in that

it takes into account the percentage of pixels per bin that are part of an 8-neighbour

connected region of the same colour.

2.3.2 Texture

In [VJZ98] edge direction histograms are calculated by applying a Canny edge

detector at 5◦ Intervals. The histogram is composed of 72 bins, normalised by

the total number of edge points detected and an extra bin containing the count of

pixels that are not part of an edge, normalized by the total number of pixels in the

image. In the same paper an edge direction coherence vector is introduced.

It discriminates structured edges from randomly distributed edges by a connected
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component analysis. Edges that are not part of a larger connected component (0.1%

of image size) are removed.

The detection of edges in multiple directions and at multiple scales can be performed

through the use of wavelets, as used in [LW03]. In this paper the LUV colour space

is used and the Daubechies-4 wavelet transform or the Haar transform applied. In

[LF05] the first four order statistics (mean, variance, skewness, and kurtosis) of

the sub band coefficient histograms at each orientation, scale, and colour channel

(RGB) are collected. Also a linear predictor of coefficient magnitude is used to

collect further statistics.

A texture feature that is often mentioned in literature is the multi resolution, si-

multaneous autoregressive model parameters (MSAR). Another way of capturing

frequency information is performed in [SP98]: the 2D DFT magnitude is calcu-

lated, followed by the 2D DCT. In [VFJZ01] and [VJZ98] the DCT Coefficients are

calculated using the JPEG image compression algorithm and its central moments

of second and third order.

Gabor wavelets or Gabor filters can also be used to extract texture information at

certain wavelength and orientation. Gabor filters are used in [MM96] and [Wag99].

In [Wag99] an overview of feature sets for texture analysis is given and benchmarks

calculated. Table 2.1 shows the names of the feature, the size of the feature vectors,

the theoretical principle and the result when applied on the Brodatz dataset, a

widespread benchmark dataset with 13 classes. The Gabor and wavelet approach

are seen to perform extremely well on this dataset.

2.3.3 Region Matching

This method aims at finding a match for an object in an image. The difficulty with

region matching lies in the problem of finding representative digital descriptions of

real-world objects (semantic gap). The drawback is that object rotation and different

illumination have a strong effect on the result. Normally objects are easier to find

if they do not have strong variance in appearance. For example in [RBK98], [GL00]

and [RBK96] a neural network-based face detection performs region matching. The

network examines small windows of an image and decides whether each window

contains a face.

The aim in [IA99] is discriminating urban from nature images. Structures typical

of man made objects are found by region matching. The templates used are: “L”
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Feature name size Principle
Haralick 14 grey-level co-occurrence matrix 82.9%
Unser 32 sum and difference histograms 92.6%
Galloway 20 grey-level run lengths 84.7%
Laine 21 wavelet packet signatures 92.4%
Local 14 direct functions of grey values 61.1%
Fractal (1) 10 fractal box dimension 62.6%
Fractal (2) 47 fractal dimension from blankets 66.5%
Laws 14 Laws’ convolution matrices 89.7%
Fourier coeff. 33 energy in ring-shaped regions of Fourier space 92.7%
Chen 16 geometric properties from binary image planes 93.1%
Sun et al. 5 modified Haralick approach 63.9%
Pikaz et al. 31 pyramid decomposition 79.4%
Gabor 12 Gabor wavelets 92.2%
Markov 7 Markov random fields 83.1%
Dapeng 13 grey-level difference co-occurrence 85.8%
Amadasun 5 neighbouring difference histogram 83.4%
Mao et al. 6 autoregressive models 86.3%
Amelung 18 histogram and gradient features 93.0%

Table 2.1: Feature sets for texture classification (taken from [Wag99])
.

junctions, “U” junctions and parallel groups. These “ordered” edges occur more

often in urban than in natural images.

2.3.4 Spatial Information

In [SP98], to capture spatial information a 4×4 image tessellation is used. Training

is done on the 16 sub-blocks and a simple majority classifier used to combine the

results. A neural net as well as a mixture of experts classifier proved to be slower than

this method and the additional computation did not bring a significant improvement

of results. However, additional information is gained by looking at the output of

the neural net to see which sub-blocks are important for the classification.

Also in [SP98], multiple feature combination is introduced and different methods

explained. Concatenation of feature vectors increases the dimensionality of the

problem, also it is difficult to construct a metric permitting comparison between

features. This problem is solved by concatenating the results of the independent

sub-block classification. Again, a majority classifier is used for the final labelling of

the images.
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Various variations of this method are used, for example in [VJZ98] 5 local histograms

are computed for the areas top-bottom, right-left and centre. In [VFJZ01] an image

is divided into 100 (10× 10) sub-blocks and LUV histograms computed.

A combination of local and global features is extracted in [LW03]. This is achieved

by using a quad-tree split at three resolutions.

In [QFW04] orientational colour correlograms are used. This is an extension of the

grey-level co-occurrence matrix into the colour space. This method is then evaluated

against colour histogram and colour correlogram and found to perform better.

Features that capture information at multiple scales, e.g. Wavelet and Gabor filters,

also capture spatial information. All methods so far capture spatial information

by calculation of a feature vector suited to this task. A different approach is to

perform the extraction of spatial information in the classifier, an example for this,

the Multiresolution Hidden Markov Model, is given in the next section.

2.4 Statistical Models

Only the most common classification methods are described in this section. Other

approaches include fuzzy image classification [AK97] and neural networks [RBK98]

[GL00] [RBK96].

2.4.1 Bayes Decision Rule

With only the prior probabilities P of observing each class of a two class problem

available, the following decision rule (for classes ω1 and ω2) can be formulated and

is often referenced as “baseline” [DHS00]:

Resultant Class =

 ω1 if P (ω1) > P (ω2)

ω2 otherwise
(2.1)

However normally measurements (features) that take on different values for each

class are selected. For a given classification problem the observed values for each

class are taken into account by calculating the class-conditional probability density

function. This function shows the probability of measuring a particular feature value

given the input class is ωi.
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When the prior probabilities and conditional densities are known the probability of

an observation x belonging to class ωi is formulated through the Bayes formula:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(2.2)

or in words [IA99]: the a posteriori probability of class ωi with given feature vector

x is

class conditional probability density function of x× a priori probability of class ωi

probability density function of observing x

The Bayes decision rule simply states that the classification is completed by choosing

the class with the larger a posteriori probability.

In [VFJZ01] a small vector quantizer is used to model the class-conditional densities

of the features, required by the Bayesian methodology. The authors see the advan-

tage of the Bayesian approach in the small number of codebook vectors representing

each class, reducing the number of comparisons necessary for each classification and

that it allows for the integration of multiple features through the class-conditional

densities. In addition the degrees of confidence may be used to incorporate a reject

option [LSS05].

2.4.2 k-Nearest Neighbour

This algorithm makes the classification by examining the labels on the k nearest

neighbours of the feature vector to be classified in feature space and taking a vote

[DHS00] – this selects the class of which more neighbours are counted. The selected

k should be odd to reduce the chance of ties. Underlying this method is an estimate

of the a posteriori class probability. In particular: when k approaches infinity, the

estimated probabilities match the true probabilities and the error rate is the same

as the Bayes rate. If di is the [0,1] normalised Euclidean distance between the

feature-vector under consideration and its ith nearest neighbour with true class ci

(i = 1, .., k) then the confidence pj that the test image belongs to class j is calculated

as [VJZ98]:

pj =

∑
i:ci=j(1− di)∑
i≤k(1− di)

, j = 1, 2 (2.3)
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If pj > 0.5, the test image is assigned to class j.

2.4.3 Decision Trees

Decision trees [DHS00, p.395] are often used for nominal data, as opposed to real-

valued data used in conjunction with the above classifiers. A series of questions and

answers is modelled through a tree its nodes and the branches to other nodes. When

“growing” the tree, each node corresponds to a sample of data. Beginning at the

root, with all samples, a property is found to split the samples into two sub-samples

(in the case of binary trees). The method for selection of this property is crucial for

the quality of the tree. There are several measures available for measuring impurity

in a sample. The split is done so that this value is as small as possible for the

descending branches. The splitting is stopped at leaves that are pure, i.e. contain

samples of a single category, or when a criterion for stopping is met (for example a

sufficiently small remaining sample or impurity). In Weka [WF05] the tree “J48”,

a C4 tree, can be parametrised to stop on a given minimum number of instances

per leaf and through the use of a confidence factor. This factor is used to test the

hypothesis that a given split is different from a random split. Another option is

pruning, a simplification step performed after the creation of the tree.

2.4.4 Multiresolution Hidden Markov Model

In [LW03] a two-dimensional multiresolution hidden Markov model is described.

It summarizes clusters of feature vectors at multiple resolutions and the spatial

relation between clusters at different scales. The parameters can be estimated by the

maximum likelihood criterion using the expectation maximisation (EM) algorithm.

In [LGO00] a multiresolution hidden Markov model for classifying images is used.

Each image is represented by feature vectors at several resolutions, which are statis-

tically dependent as modelled by the underlying state process, a multiscale Markov

mesh. Unknowns in the model are estimated by maximum likelihood, in particular

by employing the expectation-maximization algorithm. An image is classified by

finding the optimal set of states with maximum a posteriori probability. States are

then mapped into classes. The multiresolution model enables multiscale informa-

tion about context to be incorporated into classification. Sub-optimal algorithms

based on the model provide progressive classification that is much faster than the

algorithm based on single-resolution hidden Markov models.
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2.4.5 Dimensionality Reduction

The high dimensionality of some feature vectors makes them impractical for build-

ing a classifier. Where the reduction of dimension cannot be carried out through

design of the low-level features, reducing the dimension can be achieved through the

algorithms mentioned here.

The most often mentioned method is the Principal Component Analysis (PCA)

[DHS00, p.568]. This is a rotation of the data to an N-dimensional linear subspace,

determined by calculating eigenvalues and eigenvectors and sorting these. Similar

to this method is the Karhunen-Loeve mapping (KLM). In the implementation of

PRTools [DJP+04] the difference is that the KLM is a PCA of the mean covariance

matrix while PCA is computed on the overall covariance matrix.

In [QFW04] a boosting classification scheme is described that selects the most dis-

criminative features automatically. This method is reported to work better than

PCA.

Fisher’s linear discrimination (FLD) criterion, described in [GL00] optimises the

feature set by taking the class labels into account to maximise inter- and intra-class

scatter.
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Chapter 3

A System for Image Attribute

Classification

Many algorithms used in the literature are presented in the previous chapter. This

chapter gives details on the methods implemented in the prototype. The features

selected are histograms in several colour spaces and features capturing texture infor-

mation (Gabor and wavelet filters and coherent edge histograms). For classification

the k -NN algorithm is used. Section 3.1 lists the software used. Section 3.2 describes

how the features are extracted from the images. Finally, details on the classification

scheme employed are given in section 3.3.

3.1 Software

For the prototype the following software was used:

• Matlab Version 6.5

• PRTools: Pattern Recognition Tools1 Version 4.0.14 04-Mar-2005 [DJP+04]

• Weka: Waikato Environment for Knowledge Analysis2 Version 3.4.4 [WF05]

An export function is used to convert the feature vectors and class labels to the

format expected by Weka. This tool was used to experiment with different classifiers,

dimensionality reduction algorithms and parameter settings. The findings were then

1available at http://www.prtools.org/
2available at http://www.cs.waikato.ac.nz/ml/weka/
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incorporated into the design of the prototype, programmed in Matlab and making

use of the PRTools functions. Detailed information on the tests carried out with

Weka are not explored, rather the resulting parameter settings for classification with

the prototype are explained.

3.2 Feature Extraction

Several features are implemented and evaluated for each sub-task. The framework

of the prototype allows for a rapid testing of different combinations and parameter

settings. However the calculation of the features is quite time consuming, roughly an

hour per feature for the 5474 images. For the 7 features selected for the prototype,

the calculation time per image is about 3.9 seconds. Once the parameter settings

for the feature calculation are known this task has to be performed only once for all

images in the database.

The only pre-processing step is the resizing of the images so that the smaller side

has a length of 256 pixels, for the images used the other side then has a length of

about 400 pixels. Both landscape and portrait images can be used. Few black and

white images are encoded with a single channel, these are modified to have three

identical channels.

3.2.1 Colour

All input images are encoded in the RGB colour space. Therefore it would be of

advantage to work with RGB since no conversion is needed. The drawback however

is that this space is ill-suited for most classification based on colour. For example

different illumination will change the perceived colour. While the human eye will

make adjustments to accommodate for this, it is hard to construct a metric for

which an image has the same (pixel) values regardless of lighting conditions. The

human eye is also able to distinguish between more different levels of green then red

or blue; therefore perceptually similar images and any feature constructed thereof

should possibly consider the green channel more than the other two. The luminance

information is more important to our perception than the chroma, a difficult fact to

consider when using a colour-space where luminance is not directly available, rather

being a combination of all three channels.

To capture colour information, histograms are calculated in several colour spaces.
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This section shows why the particular conversions were considered and details on

the parameters chosen.

For the calculation of a histogram two parameters have to be chosen: the number

of bins to use and the interval to be represented by each bin. As mentioned in Sec-

tion 2.3.1, the number of bins has a direct influence on the maximum discriminating

power of the feature. However, a large number of bins has the disadvantage that

the classifier has to deal with a large dimensionality. For an insufficient number of

training images a large dimensionality can also lead to overfitting – if each image

has a distinct distribution of colour values and therefore a unique feature vector,

no generalisation is performed. We have therefore opted to use only 20 bins per

channel.

The second parameter – the interval to be represented by each bin is calculated by

a division by the bin size of the interval between minimum and maximum value to

be expected in the colour space. For RGB for example the channels encode values

between 0 and 255. A different approach is to calculate the intervals based on the

minimum and maximum value for each image. The drawback of this approach is

that a direct comparison between histograms is hampered since the bins represent

different values. However this operation is analogous to a pre-processing step pro-

posed in [SP98], an illumination compensation whereby the histogram of the image

is shifted to the centre and stretched to accommodate all possible levels. Figure 3.1

shows that this basic colour balancing operation has a similar effect to choosing the

intervals for the bins on a per image basis.

(a) fixed (b) per image (c) fixed preprocessed

Figure 3.1: Histogram calculation – determination of histogram intervals for
greyscale image: (a) fixed intervals of bins; (b) calculation of intervals based on
image; (c) fixed intervals applied to pre-processed image.

For the conversion to the CIELAB and CIELUV spaces, as indicated in the last

chapter a conversion to the CIE XYZ primaries is needed beforehand. This is

accomplished by a matrix multiplication of each RGB vector, for example RGB to
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CIE XYZ with the C illuminant:
0.607 0.174 0.200

0.299 0.587 0.114

0.000 0.066 1.116



The HSV colour space, representing hue, saturation and colour value (brightness)

has the shape of a hexagonal cone. The angle is given by the hue, the distance from

the centre of the cone by the saturation and the vertical position by the value. This

colour space is used for the colour statistics.

RGB Histogram Although the RGB space was expected to perform worse than

other colour spaces for the reasons mentioned above, there are good reasons for

calculating a feature vector based on this space. An advantage is that no conversion

errors are introduced. The classification of images into the nature and urban class

was also expected to benefit from this space when considering the green channel

which is expected to show higher values for the nature class. The means of the

green channel for 1000 images are shown in Figure 3.2. The distributions follow a

distinctly different pattern justifying the inclusion of this feature into the evaluation

process.

Figure 3.2: RGB Histogram: mean of green channel for classes nature and urban
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Ohta Histogram The Ohta colour space is proposed for indoor-outdoor classifi-

cation in [SP98], and is calculated as follows:

I1 = R + G + B (3.1)

I2 = R−B

I3 = R− 2G + B

The first channel of this space captures brightness information as it is the sum of

the three channels of RGB. Therefore the interval for the histogram is fixed to a

minimum of 0 and a maximum of 3 × 255. The interval of expected values for the

second channel is [−255, 255] and for the third channel [−255× 2, 255× 2]. Results

with this colour space discouraged its further use. Although it is found to be suited

for indoor-outdoor classification it is outperformed by the CIELAB space, also used

for other sub-problems.

CIELUV Histogram As mentioned in the last chapter the CIELUV colour space

has good perceptional properties and its use has been proposed in several papers

on image classification. In the formula below L∗ is the luminance u∗ and v∗ encode

chrominance. A reference white XnYnZn is needed for the conversion.

L∗ =

 116 3

√
Y
Yn

if Y
Yn

> 0.008856

903.3 Y
Yn

otherwise
(3.2)

u∗ = 13(L∗)(u′ − u′n)

v∗ = 13(L∗)(v′ − v′n)

where

u′ =
4X

X + 15Y + 3Z

v′ =
9 ∗ Y

X + 15Y + 3Z

u′n =
4Xn

Xn + 15Yn + 3Zn

v′n =
9Yn

Xn + 15Yn + 3Zn

CIELAB Histogram For conversion to the CIELAB (also written as L∗a∗b∗)

colour space a reference white XnYnZn is needed. L∗ is the perceived whiteness, a∗
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the red-green chrominance and b∗ the yellow-blue chrominance.

L∗ = 116f
(

Y

Yn

)
− 16 (3.3)

a∗ = 500
[
f
(

X

Xn

)
− f

(
Y

Yn

)]
b∗ = 200

[
f
(

Y

Yn

)
− f

(
Z

Zn

)]

f(ω) =

 ω1/3 if ω > 0.008856

7.787ω + 16/116 oherwise

An advantage of the CIELAB as well as the CIELUV colour space is that the

Euclidean distance between two colours models the human perception of colour

difference. The luminance information is directly available in the first channel. The

calculation of the luminance is more complex than in the case of the Ohta colour

space and is expected to lead to better results. Figure 3.3 shows the means of

the first channel (L) for 200 images for the nature-urban classes. The CIELAB

calculation of the luminance seems to be better suited for discriminating between

these classes.

Srgb Histogram The calculation of the normalized RGB colour space3 is per-

formed as proposed in [CHL03]. The “intensity free” image is computed by division

by the intensity at each pixel. The calculation of the intensities is based on the

Matlab function rgb2gray which calculates I as follows:

I = (299 ∗R + 587 ∗G + 114 ∗B)/1000 (3.4)

The normalised RGB values are then:

R∗ = R/I (3.5)

G∗ = G/I

B∗ = B/I

Colour Statistics Apart from histograms the following statistics are collected:

3This is not the sRGB as defined by IEC 61966-2-1 “Default RGB Colour Space”.
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(a) CIELUV luminance

(b) CIELAB luminance

Figure 3.3: means of luminance channel for classes nature and urban

• Illuminant: this value indicates the colour of the light source. Illuminance

refers to the amount of incident light and can be estimated by the amount

of light reflected from a surface (luminance). It is calculated in two versions,

through the “Grey-world algorithm” and the “White patch algorithm”. The

former is calculated by the mean of the three colour channels, which is assumed

to be “grey” (multiplied by 2 to get white), the latter is calculated by assuming

that a white patch is always visible in an image, therefore taking the maximum

value of each channel.

• Unique colours: this value is calculated by transformation into the HSV-space

and counting the unique values in the Hue channel.

• Histogram sparseness: a histogram is calculated and bins containing counts

higher than a fixed cut-off value counted.

• Pixel saturation: this is calculated as a ratio between the number of highly
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saturated and unsaturated pixels in the HSV colour space [CHL03].

• Variance in each channel of the RGB space.

• Variance between the three channels of the RGB space.

3.2.2 Texture

The following texture features are implemented for usage in the prototype and eval-

uated for their discriminative power on the classification problems:

Edge direction This feature is used to compare the frequency of occurrence of edge

directions. As with colour, a histogram is used to discretise the values.

There are a variety of edge detectors available in literature. To find the edge direc-

tions two convolution kernels are applied to the image to find horizontal and vertical

edges. For example with the Prewitt operator:

h =


1 1 1

0 0 0

−1 −1 −1

 , v =


−1 0 1

−1 0 1

−1 0 1


For a greyscale image the gradient is calculated in the two directions. The next step

is the calculation of the magnitude and direction at each pixel x:

m(x) =
√

fh(x)2 + fv(x)2 (3.6)

θ(x) = arctan

(
fv(x)

fh(x)

)
(3.7)

where fh and fv are the horizontal and vertical edges found by Matlab’s gradient

function.

The calculation of the edge direction coherence vector is accomplished by a

morphological closing of the magnitude image with a line segment followed by a

morphological opening with a small disk. Thereby the dominating structures are

enforced while degenerate “edges” – isolated pixels – are removed. As above, a

greyscale image is used for the input. In both cases the result is a histogram of

the direction image multiplied (masked) by the thresholded magnitude image. The

threshold is determined using the Matlab function graythresh. The 37 bins represent

5 degree intervals from −90 to 90 degrees. The number of edge pixels found is

stored in an extra bin of the histogram. Normalization with the image size is also

29



A System for Image Attribute Classification 3.2. Feature Extraction

performed. A result of taking the means of the histograms of 200 images can be

seen in Figure 3.4. As can be observed, the histograms are distinct for the nature

and urban classes.

Figure 3.4: Coherent Edge Histogram for classes nature and urban

Edge statistics This feature is used to determine whether the edges in the image

result from intensity changes, as is the case with natural images, or from changes

in hue, a method employed in paintings [CHL03]. The intensity edges are found as

above. The colour edges are found by first transforming the image into the sRGB

space, resulting in normalised RGB components. The colour edges of the resulting

“intensity-free” image are then determined by applying the edge detector to the

three colour channels and fusing the results by taking the maximum. The feature

extracted is the fraction of pure intensity-edge pixels.

Wavelets The Haar transform is used to decompose an image into frequency bands.

This decomposition is generally used for compressing images. The Haar transform

is defined as:

T =
1√
2
∗

 1 1

1 −1

 (3.8)

The decomposition is performed by using the formula Y = T ∗X ∗ T T . Applied to

a 2× 2 pixel block with values [ab; cd] this yields:
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T ∗

 a b

c d

 ∗ T T =
1

2
∗

 a + b + c + d a− b + c− d

a + b− c− d a− b− c + d

 (3.9)

To apply this to an image, the image is divided into 2 × 2 pixel blocks and the

formula applied as above. The result is equivalent to filtering with the following

functions:

• Top left: 4-point average or 2-D lowpass (Lo-Lo) filter.

• Top right: Average horizontal gradient or horizontal highpass and vertical

lowpass (Hi-Lo) filter.

• Lower left: Average vertical gradient or horizontal lowpass and vertical high-

pass (Lo-Hi) filter.

• Lower right: Diagonal curvature or 2-D highpass (Hi-Hi) filter.

(a) input image (b) output image

Figure 3.5: Reordered result of the Wavelet filter: average, horizontal, vertical and
diagonal information.

The result can be reordered (by putting all top-left, top-right etc. results together)

to produce the output as shown in Figure 3.5. To extract an image feature this

transform is applied to the L component of a LUV image [LW03] (an option would

be to apply it to the channels of RGB). The square root of the second order moment

of wavelet coefficients in the three high-frequency bands is computed. This image

feature captures variations in different directions.
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When the transform is applied recursively to the top left quarter of the result,

representing detail not captured by the gradient bands, effectively a multi scale

feature is constructed. While the first step considers 4 pixels at a time, at the last

level each of the 4 inputs is a quarter of the image. In the implementation of the

prototype 4 levels are computed. This yields a feature vector of length 12.

The Gabor filter is a quadrature filter. It selects a certain wavelength range

(bandwidth) around the centre wavelength using the Gaussian function. This is

similar to using the windowed Fourier transform with a Gaussian window function.

The feature vector is constructed by calculating the mean and standard deviation

of the magnitude of the transform coefficients at several scales and orientations

([MM96] [Wag99]). This means that the fast Fourier transform (FFT) is applied

to an image and then the Gabor filter, specific to this scale and orientation, is

applied. Now the inverse of the FFT is taken and the mean and standard deviation

calculated. For the prototype this filter is applied at 6 orientations and at 4 scales.

Two values are collected at each point; therefore the feature vector has the length

48.

3.3 Classification

In this section various facets of the classification system of the prototype are ex-

plained.In section 3.3.1 the used classifier and its parameter as well as the employed

dimensionality reduction is referenced. In section 3.3.2 algorithms for the calcu-

lation of feature vector distances are compared. Section 3.3.3 shows how spatial

information is captured and section 3.3.4 how multiple features are combined. Fi-

nally, section 3.3.5 shows how the classification of the sub-problems is combined in

one model.

3.3.1 Classifier

The framework provided by PRTools was used extensively for building a classifier.

The feature vectors and target classes are stored in a “dataset”, a structure which

also provides fields for prior probabilities. The data is split into a training and a

test dataset. This aids the evaluation of the classifier at build time. A PRTools

classifier can be initialised without data, only the parameters are set. Before the

data is applied to the classifier a feature reduction is performed through the Prin-
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cipal component analysis (PCA). Other algorithms for feature reduction that were

tested are the Karhunen-Loeve Mapping (KLM) and Fisher’s Least Square Linear

Classifier.

The classifier used can be selected through a parameter, the following were tested:

• Back-propagation trained feed-forward neural net classifier

• Parzen classifier

• Linear Bayes Normal Classifier

• Quadratic Bayes Normal Classifier

• Mixture of Gaussian classifier

• Decision tree classifier

• Bootstrapping and aggregation of classifiers (Bagging)

• k -Nearest Neighbour Classifier (k -NN).

The results reported in Chapter 4 were obtained with the k -NN classifier, where the

number of neighbours is set to 5. The other classifiers are deselected due to their

complexity, sharply increasing computation time (neural net, Mixture of Gaussian),

or because of their lower performance, probably because of the inability to model

complex distributions (Linear and Quadratic Bayes and Parzen classifier). The

Bagging classifier, based on k -NN and the Decision trees proved to be competitive

but not as robust as the k -NN classifier.

The prototype-function for building a classifier returns a structure, representing the

combination of feature reduction map and classifier, which is stored to disk for later

use.

3.3.2 Histogram Distance

A histogram can be conveniently used as feature vector, where each bin accounts

for a dimension of the feature vector. Similarity, or rather dissimilarity s, between

two feature vectors F is often calculated as a function of the Euclidean distance

(also called L2 distance):
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s(F q, F d) = g
[
dEuc(F

q, F d)
]

(3.10)

dEuc(F
q, F d) =

√
(F q − F d)T (F q − F d) (3.11)

where g is a positive, monotonically non-increasing function and d is the distance

function. Generally a problem with histograms is that classifiers expect decorrelated

variables whilst in a histogram the values of the bins are highly correlated. In an

attempt to overcome this and for “incorporating the metric of the feature space into

the similarity measure” [SWS+00] the Mahalanobis distances take into account the

similarity between related bins. The correlation of the data set is incorporated into

the Mahalanobis distance metric by multiplication with the covariance matrix Σ.

dMaha(F
q, F d) =

√
(F q − F d)T Σ−1(F q − F d) (3.12)

Another option to make the histogram distance robust to small variations is the

usage of cumulative histograms. For the calculation of these the Matlab function

cumsum is used. Although the information stored in a cumulative histogram is

identical to that stored in a normal histogram, the comparison of a single bin has a

different effect. For example: when comparing bin 10 (i.e. for a 20 bin histogram, in

RGB, red channel, median of possible values) in a normal histogram the comparison

shows which of the two images has a higher percentage of pixels with the colours

specified by that bin. In a cumulative histogram, the comparison of the two bins

shows how many pixels of the colour specified by this bin as well as all preceding

bins are contained in each image. Therefore, when comparing only a subset of

the available bins, the cumulative histogram might be of advantage. Histogram

smoothing has a similar effect, single “spikes” are spread out and influence other

bins.

The distance between histograms can also be measured with the intersection dis-

tance, which measures the amount of overlap between corresponding buckets of

two histograms. It is less sensitive to outliers because the linear error instead of the

squared error is penalised [SP98].

d∩(F q, F d) =
n∑

i=1

F q
i −min(F q

i , F d
i ) (3.13)

(3.14)
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where n is the number of bins.

In [SWS+00] the observation is made that a slightly modified version has the same

ordinal properties as the Manhattan distance (also called L1 distance) when all

images have the same number of pixels (same
∑

i Fi for all i). The formula is given

as:

d∩(F q, F d) =
n∑

i=1

min(F q
i , F d

i ) (3.15)

In [RTG98] the Earth Mover’s distance is described. The underlying notion

is an application of the transportation problem, well covered in the literature, to

histograms. As a way of comparison in Figure 3.6 the intra- and interclass distances

for the two classes “day” and “night” are shown in a histogram. Only the green

channel (of the RGB histograms) and only the top - left image block was considered

for simplicity. It can be observed that the distance metric does influence class

distances considerably. However the somewhat more complex classes “nature” and

“urban” show much less deviation for the three methods under consideration, see

Figure 3.7.

These distance metrics are mostly considered when dealing with colour histograms,

but can be extended to texture histograms where applicable. However, these varia-

tions of distance calculation did not bring a big improvement of classification results.

Therefore, for the prototype the Euclidean distance was used after all.

3.3.3 Spatial Information

To capture spatial information, each image is divided into 16 sub-images. This 4×4

image tessellation is of benefit because image regions can be weighted according to

their importance. For each sub-block a feature vector is calculated separately. A

simple concatenation of these would increase the dimensionality by a factor of 16, to

keep the classification simpler the following method is used: a classifier is built for

each sub-block and a combining classifier, described in the next section, effectively

weights the results of these.

A drawback of this approach is that only simple concepts can be captured through

this method (e.g. blue sky at the top - for outdoor images). Complex concepts,

such as XOR cannot be solved. As an example for successful weighting, Figure 3.8

shows the error rate for indoor-outdoor classification based on the RGB histogram,
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averaged over the sub-blocks of 1000 test images when trained with 2000 images. In

Figure 3.8, white represents the best error rate of 0.244% and black the worst with

0.365%. As can be observed the classification is better for the blocks in the upper

part of the images, probably capturing the “sky” information. Also the combination

of the results of the individual sub-blocks brings an improvement to an overall error

rate of 0.183%.

3.3.4 Combining Features

The method used for incorporating spatial information is extended for several fea-

tures straightforwardly. For each sub-block and for each feature a classifier is trained

using a subset of 70% of the data available. Depending on the number of features

used, between 16, for one feature, and 64, for 4 features, classifiers have to be trained.

These classifiers are applied to 100% of the training data independently. The out-

put when applying a classifier is a value signifying the confidence with which each

image belongs to the class under consideration. In the next step these values are

concatenated to a feature vector and the combining classifier trained.

The training of the sub-blocks with 70% of the data is done to introduce “unseen”

data for the combining classifier. This avoids overfitting the combining classifier.

The number of classifiers for each sub-problem is the number of blocks times the

number of features plus one.

Experiments were also carried out with the possibilities for combining classifiers

provided by PRTools. These are: Product, Mean, Median, Maximum, Minimum

and Voting combiner. However classification with these combiners generally shows

an error rate higher than that achieved with the scheme above.

3.3.5 Hierarchical Classification

A hierarchical classification similar to that described in [VFJZ01] is implemented.

The classifier for the whole problem is organised in the hierarchy shown in Figure 3.9.

At each node the training or application of a classifier takes place. Only the appro-

priate sub-sample of images, as determined by the node, is passed to the children

nodes. At leaf nodes training or classification stops. This is a divide and-conquer

strategy with several advantages. One advantage, compared to a classification of all

attributes at once, is reduced complexity through reduction to two-class problems.
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Also there is no need for a third class of images belonging to none of the classes

under consideration.

Each node can be configured individually. The prototype currently has settings for:

enabling/ disabling classification, list of low-level features selected, prior probabili-

ties, chosen combining scheme (classifier, voting scheme) and the list of children, if

any. This structure could be extended for parameters specifying the type of classifier

(k -NN, decision trees etc.) and parameters to use. During the training phase the

obtained classifiers are also stored in this structure.

This scheme also helps to keep the feature-vector used for training and during classi-

fication as small as possible, for example for day-night classification only one feature

is used.

The logic of the problem-domain is easy to implement through the setting of the

“children” list. This allows for a relatively easy extension to other attributes.

Through this integration of the logic, inherent in the targets, a plausibility-check is

not needed for the class labels (e.g. a setting of two contradicting labels does not

lead to an error).

When applying the classifier, classification stops at the leaf nodes. This leads to an

increase of speed and could be further exploited to only extract the needed features

for each image.

Each of the nodes can be analysed separately. Figures such as the one shown in

Figure 3.8 are available for each attribute and feature pair and help to interpret

performance at each node. During training an estimate of the error expected for

each feature and node is output.
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(a) Euclidean

(b) Intersection

(c) Earth Mover’s

Figure 3.6: Comparison of Histogram distances for Day-Night Classes. Per diagram
two intra class and the inter class distance is shown
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(a) Euclidean

(b) Intersection

(c) Earth Mover’s

Figure 3.7: Comparison of Histogram distances for Nature-Urban Classes. Per dia-
gram two intra class and the inter class distance is shown
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Figure 3.8: Using image tessellation to capture Spatial Information: Indoor-Outdoor

Figure 3.9: Hierarchy of Classifiers
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Chapter 4

Results

This chapter reports on results achieved with the implemented prototype. For the

evaluation a sample size of 2000 images is chosen for training and 1000 images are

used for testing. The sample sizes were chosen for the purpose of faster testing,

similar results are obtained when testing on the remaining 2474 images. Figure 4.1

shows the class distribution for the whole image database.

5474 images
|- 429 art
|- 329 bw Col
|-1122 b&w
| |– 498 indoor
| |– 624 outdoor
| |– 608 day
| | |– 159 nature
| | |– 449 urban
| |– 16 night
| |– 0 nature
| |– 16 urban
|-3596 colour

|–1129 indoor
|–2439 outdoor

|–2041 day
| |– 946 nature
| |–1092 urban
|– 398 night

|– 3 nature
|– 368 urban

Figure 4.1: Class Distribution for the whole ImagEVAL database
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As mentioned in the last chapter, a classifier is computed for each node of the tree

shown in Figure 4.1. Each of these classifiers may have several sub-classifiers, one for

each sub-block and feature. For the results shown in this chapter, rather then giving

detail on each sub-classifier, the results are summarised for each attribute assigned

to the images. The following figures and statistics are shown in each section.

For the comparison of features and also as a means to test their variance box plots

were created with a (smaller) sample of 700 training and 200 test images. Each

feature and attribute pair was tested with a randomized sample of images and 10

runs of training and testing. A box plot is a summary of a distribution, the box is

limited by the lower quartile (25% of the data) and the upper quartile (75% of the

data) values. The median is indicated by a horizontal line. To show the extent of

the rest of the data “whiskers” are lines extending from each end of the box to the

values lying above and below the quartiles but at most 1.5 times the box height.

Other data points are considered as outliers, marked by crosses. Box plots offer a

convenient way of observing variance and skewness of a distribution.

The vertical axis of the box plots is the classification error. The following abbrevi-

ations for the methods used are on the horizontal axis of the box plots:

rgb Histogram in the RGB space

ohta Histogram in the Ohta space

luv Histogram in the CIELUV space

lab Histogram in the CIELAB space

srgb Histogram in the normalised RGB space

cStat Colour statistics

eStat Edge statistics

edge Edge direction histogram

edgeC Edge direction coherence vector

wav Wavelet filter

gabor Gabor filter

comb Combined feature (all of above)
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In this chapter, the task of classifying an image into the classes: “black and white”,

“manually coloured”, “art” or “colour photo” is considered as a one-of-four classi-

fication problem. Therefore the total number of instances for the first 4 sections is

1000. Section 4.5-4.7 present the binary classification results.

The features selected for each problem are shown at the beginning of each sub-

section. The baseline is calculated as described in section 2.4.1, by division of

the size of the bigger class by the total number of instances. This is the best result

possible when guessing the class, without any feature available. To measure accuracy

and retrieval effectiveness, the following statistics are collected for each classification

task1:

tn true negatives: the instances correctly classified as negative;

tp true positives: the instances correctly classified as positive;

fp false positives: negative instances wrongly classified as positive;

fn false negatives: positive instances misclassified as negative.

TP-Rate: The true positive rate is the proportion of positive instances that were

correctly reported as positive: TPr = tp / positives.

FP-Rate: The false positive rate is the proportion of negative instances that were

erroneously reported as positive: FPr = fp / negatives.

Precision: The number of correctly classified instances as a proportion of the total

number of instances classified as the class under consideration: tp/(tp+fp) and

tn/(tn+fn).

Recall: The number of correctly classified instances as a proportion of the number of

all instances of the class under consideration available: tp/(tp+fn) and tn/(tn+fp).

As this prototype incorporates no reject option, this value is always the same as the

TP-Rate.

F-measure: The harmonic mean of precision and recall F = 2 ∗ P ∗R/(P + R)

The first four of these values are summarised in form of a confusion matrix. This

matrix has the following form:

a b <– classified as

tn fp a

fn tp b

1This is the format used by WEKA and was chosen to facilitate easy comparison.
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As can be observed the sums of the rows of each class show how many instances

belong to either class, whereas the sums of the columns show how many instances

are classified to belong to each class.
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4.1 Black and White

Features Chosen: Lab, cStat

Correctly Classified Instances: 990 99.0 %

Incorrectly Classified Instances: 10 1.0 %

Total Number of Instances: 1000

Baseline: 79.7%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

other types 0.995 0.030 0.992 0.995 0.994

black and white 0.970 0.005 0.980 0.970 0.975

Confusion Matrix

other types black white <– classified as

793 4 other types

6 197 black white

The features used for the colour - black and white classifier are the colour statistics

and the CIELAB histogram. The results achieved are very good, supporting the

decision to choose these features. An interesting result shown in the box plot is that

pure texture features perform significantly worse than colour features. While this re-
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sult is not surprising it does show that the content (i.e. objects, image composition)

of the images of the two classes is quite similar.

An analysis of the CIELAB histograms shows that this colour space is well suited for

this problem because the chrominance is available separately. Colour images show

a Gauss-like distribution in these two channels while black and white or greyscale

images show a single spike around the value representing zero or achromacity and

a very small percentage of other chrominance values. The separation of the classes

in the CIELAB colour space is not perfect due to the inclusion of sepia images

into the black and white class. The box plot shows that the RGB space, where

chrominance as well as luminance is a product of the three channels, is not suited

for this classification.

The colour statistics show good results because in black and white images there is

nearly no variance between the three channels in the RGB colour space whereas

colour images have a high variance. Again, sepia images are the reason for a small

error. Both features show slightly better results for the four sub-blocks in the centre,

probably because some images contain a border of a different colour/luminance. The

combination of all features available did not yield a significant better result than

each of the two features chosen.

Images of the colour class misclassified as black and white have a colour distribu-

tion similar to the sepia images or are very bright with little contrast. Nearly all

misclassified black and white images are sepia images reported as manually coloured

black and white.
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4.2 Manually Coloured Black and White

Features Chosen: Lab

Correctly Classified Instances: 961 96.1 %

Incorrectly Classified Instances: 39 3.9 %

Total Number of Instances: 1000

Baseline: 93.4%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

other types 0.983 0.348 0.976 0.983 0.979

coloured BW 0.652 0.017 0.729 0.652 0.688

Confusion Matrix

other types Coloured BW <– classified as

918 16 other types

23 43 coloured BW

For the classification of images into the classes colour and manually coloured black

and white images the CIELAB histogram is used. The results achieved are good,

but compared to the classification in the previous section, the recall of the smaller

class (manually coloured black and white) is not quite as satisfactory. This indicates
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that the unequal distribution of instances is used to bias the classifier towards the

larger class.

The box plot shows that all features available perform nearly equally well on this

classification task and that a combination of all features does not yield a signifi-

cantly better result. The CIELUV as well as the CIELAB colour space seems to

be best suited. An analysis of the CIELAB histograms shows that the L∗ channel

has a slightly different distribution for the two classes under consideration. While

the colour images follow a near Gaussian distribution in this luminance channel, the

distribution for the manually coloured images has two peaks. The second maximum

represents noticeably higher luminance values than found in colour images. The

third channel of the CIELAB histogram, representing yellow-blue chrominance also

shows a significant variation between the two classes. The values for the manually

coloured images show less variance around the zero value, representing achromatic-

ity. The performance of the sub-block classifiers shows very little variance with

respect to error-rate. As in the classification of black and white images, the texture

features perform marginally worse than the colour features.

Misclassified images of the manually coloured class are assigned to the art or colour

classes. The attribute “manually coloured image” is wrongly assigned to images of

the colour class when an image contains uncommon colours, as with outdoor images

with a lot of fog, but also to an aerial image. As mentioned above sepia images are

difficult to classify into this class or the black and white class.
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4.3 Art

Features Chosen: srgb, wav

Correctly Classified Instances: 949 94.9 %

Incorrectly Classified Instances: 51 5.1 %

Total Number of Instances: 1000

Baseline: 91.4%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

other types 0.985 0.430 0.961 0.985 0.972

art 0.570 0.015 0.778 0.570 0.658

Confusion Matrix

other types art <– classified as

900 14 other types

37 49 art

The features selected for the classification of images into the classes photographic

image - artistic reproduction/ paintings are the sRGB histogram and the wavelet

filter. Similar to the observations made with the classification of images into the

colour - manually coloured classes, the box plot does not show a single feature
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outperforming the others and the combination of features does not seem promising.

Also the results obtained show a lower recall rate on the smaller class (paintings).

The CIELAB histogram has slightly higher luminance values for the “art” class

but a higher deviation is found in the green channel of the sRGB histogram. The

distribution of the histograms in this colour space is generally less spread out for

images belonging to the class of paintings. The wavelet filter shows higher values

for colour images, this represents texture detail, indicating that paintings are less

structured than photos of (natural) scenes. Both features show little variance with

regard to the results of the sub-block classifiers; however slightly better values are

observed for the off-centre blocks. This could be a result of the general layout of

paintings, with the subject in the centre and less detail near the borders.

As mentioned above some manually coloured black and white images are wrongly

assigned to this class. Furthermore colour images of richly decorated indoor scenes

(palaces, gold plating) are considered as art, as are some outdoor scenes. Difficult

to interpret is the reason why many art images are misclassified as colour photos.

These images mostly have a realistic colour layout and a higher level of detail.
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4.4 Colour Photo

Correctly Classified Instances: 933 93.3 %

Incorrectly Classified Instances: 67 6.7 %

Total Number of Instances: 1000

Baseline: 64.6%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

other types 0.862 0.028 0.944 0.862 0.901

colour photo 0.972 0.138 0.928 0.972 0.949

Confusion Matrix

other types colour photo <– classified as

305 49 other types

18 628 colour photo

This table is a summary of results obtained so far in that it shows the error in

classification for colour photos versus the other types in question. Through the

hierarchic classification, the classifications performed until this point discriminate

black and white images, manually coloured images and paintings from a general

“colour” class, therefore what we are left with here are photographic colour images.

Not considered, but also not part of the training sample, are black and white artistic

reproductions. For the further classification only colour photos and black and white

photos are considered.
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4.5 Outdoor - Indoor

Features Chosen: rgb, Lab, edgeC, wav

Correctly Classified Instances: 693 83.5 %

Incorrectly Classified Instances: 137 16.5 %

Total Number of Instances: 830

Baseline: 63.5%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

outdoor 0.869 0.223 0.870 0.869 0.869

indoor 0.777 0.131 0.775 0.777 0.776

Confusion Matrix

outdoor indoor <– classified as

456 69 outdoor

68 237 indoor

For the classification of images into the indoor or outdoor class the following features

are selected: RGB and CIELAB histograms, coherent edge direction histogram and

the wavelet filters. The result obtained in the classification process is not as good

as those covered so far. However the results obtained by other authors (82% to
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93% – see section 2.1.2) are comparable because their training and test sets are

often smaller and ambiguous images are eliminated beforehand. An interpretation

of the box plot is that generally colour features seem to perform better than texture

features, what is striking is that the combination of all features yields a much better

result than any single feature. Also the Gabor filter performs as well as the colour

features.

An analysis of the RGB and CIELAB histograms shows that indoor images have

slightly less luminance and (therefore) less highly saturated pixel values. Also the

sub-block classifiers for these features perform better for the upper half of the im-

ages, this can be attributed to the presence or absence of a sky or alternatively that

this area best reflects lighting conditions. The values obtained through the Gabor

filters show higher values for the indoor class, indicating more structure or highly

textured images. For the final implementation of the prototype the Gabor filter

was deselected because of its high computational costs, however the wavelet filters,

selected instead, show a similar response for this classification. As with the Gabor

filter the result of the wavelet operation shows higher values for the indoor class.

The coherent edge direction histograms show higher values for the outdoor class,

seemingly contradicting this observation. Both classes show peaks at the values in-

dicating horizontal, vertical and diagonal structures −90, −45, 0, 45 and 90 degrees.

This effect is somewhat more pronounced for the indoor class.

The results obtained in combining the said features are similar to the combination

of all features, as indicated by the feature “comb” in the box plot. It has been

indicated in several papers that a combination of features has most effect when

combining features of the “colour” group with those of the “texture” group.

The reason for indoor images to be classified as outdoor often seems to be lighting

conditions caused by the presence of windows or doors. Also a strong presence of

green or, in the case of black and white images, a bright background seems to bias

the images into this class. The outdoor images classified as indoor either show very

high detail or cluttering of the image or depict outdoor scenes with lighting common

to indoor images, e.g. during dawn and dusk.
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4.6 Night - Day

Features Chosen: Luv

Correctly Classified Instances: 435 96.5 %

Incorrectly Classified Instances: 16 3.5 %

Total Number of Instances: 451

Baseline: 86.8%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

night 0.857 0.024 0.783 0.857 0.818

day 0.976 0.143 0.985 0.976 0.980

Confusion Matrix

night day <– classified as

36 6 night

10 399 day

The classification of images into the day - night classes is achieved using the CIELUV

histograms. As can be observed in the box plot, colour features perform better than

texture features and the combination does not bring an improvement over using the

CIELUV colour space. The accuracy achieved is acceptable and the recall rates are
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good for both classes. The means of the CIELUV histograms for this classification

problem show a distinct deviation in the luminance channel. As can be expected

photos during daylight are much brighter than night shots. Interestingly enough,

the chrominance values of the night class are higher than those of the day class.

This might be a conversion error due to the little luminance and therefore little hue

information available or alternatively the presence of light emitting objects. The

results for the sub-blocks are slightly better for the upper half of the images.

The reason for misclassification of day scenes is often a very dark sky and in one

instance an underwater image with black background. Night scenes misclassified as

day were taken during dusk, ambiguous even to a human observer. Three images

show city scenes with man-made lighting.

As an example of the output of Weka consider the decision tree shown in Figure 4.2.

The input for this classifier is the feature vector for the top left sub-block, labelled

luvHist1 through luvHist60 for the 3 channels comprised of 20 bins each. The

1657 feature vectors exported to Weka are split at 66% into training and test data.

This classifier achieves a hit-rate of 92.2% on the test data. The decision tree is

surprisingly small and performs quite well. The confidence factor is set to 0.01 and

the minimum objects per leaf to 20, see section 2.4.3 for details on these parameters.

The analysis of a decision tree is helpful because it shows which features are impor-

tant for classification. It also shows why a certain class is chosen. A comparable

analysis is not possible with the k -NN classifier. In the tree the relation isDay is

shown, therefore 0 represents night and 1 day. At each node an estimate of instances

that reach the leaf is given (in brackets).

luvHist27 <= 0.002887

| luvHist2 <= 0.137915

| | luvHist25 <= 0.027062: 1 (1466.0/97.0)

| | luvHist25 > 0.027062: 0 (27.0/11.0)

| luvHist2 > 0.137915: 0 (52.0/13.0)

luvHist27 > 0.002887

| luvHist8 <= 0.164309: 0 (89.0/18.0)

| luvHist8 > 0.164309: 1 (23.0/3.0)

Figure 4.2: Weka output: decision tree for day (class 1) - night (class 0) problem

55



Results 4.7. Urban - Nature

4.7 Urban - Nature

Features Chosen: rgb, edgeC, wav

Correctly Classified Instances: 393 87.1 %

Incorrectly Classified Instances: 58 12.9 %

Total Number of Instances: 451

Baseline: 63.2%

Detailed Accuracy by Class

Class TP Rate FP Rate Precision Recall F-Measure

urban 0.917 0.194 0.871 0.917 0.893

nature 0.806 0.083 0.872 0.806 0.838

Confusion Matrix

urban nature <– classified as

243 22 urban

36 150 nature

For the classification problem nature - urban the following low-level features where

selected: RGB histogram, coherent edge direction histogram and wavelet filters. As

with the indoor - outdoor classification this seems to be a harder problem. The 87%

hit-rate achieved lies close to the results reported on the problem by other papers
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Results 4.7. Urban - Nature

(see section 2.1.3). The box plot shows that colour features as well as texture

features are suited for the classification, also the combination of features promises

an improvement.

The analysis of the RGB histograms does not yield explicit evidence other than that

all channels have higher values in the nature class. The distribution in the CIELAB

colour space confirms a higher luminance for nature images. This can be attributed

to a different illumination, rather counter-intuitive is that there is no abundance of

green in nature images. The histograms of the coherent edge direction suggest more

ordered structures in the urban class. The peaks and valleys are more pronounced

for this class. While both classes have a maximum at 0◦, representing horizontal

detail, the urban class has maxima at -90 and 90 degrees, representing vertical detail,

while the nature class has a near equally spaced distribution. This feature therefore

draws on the assumption that nature images have smaller, chaotic structures than

urban images. Both the Gabor and the wavelet filters show higher values for the

urban class at all scales and orientations, confirming this observation.

The sub-blocks in the centre have higher accuracy for the RGB and the wavelet

feature. For the coherent edge direction histogram the best results are achieved in

the lower part of the images.

Natural images classified as urban show a very highly structured composition. This

is caused by trees, rocks or landscape formations e.g. canyons. Some cases also show

man made structures in the foreground, e.g. castles or walls. Abundance of sky or

green plants as well as the presence of lakes and rivers in urban scenes seems to be

the main reason for the wrong assignment of the attribute nature.
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Results 4.8. Overall Result

Attribute rgb ohta luv lab srgb colour-stats
art 91.9 92.9 91.5 91.2 *93.1 91.3
blackWhite 87.4 97.6 95.1 98.0 93.5 *98.6
bw Col 93.6 95.1 94.7 *95.7 94.7 92.5
day 95.9 93.6 *96.2 91.6 91.8 91.1
indoor 74.2 75.7 72.4 *77.7 74.8 67.1
nature *80.9 78.4 78.6 77.8 71.3 61.9

Attribute edge-stats edges edges C. Wavelet gabor combined
art 91.6 *91.8 *91.8 91.2 *91.8 93.3
blackWhite *89.3 76.1 74.4 73.7 76.9 98.1
bw Col 93.0 93.0 92.9 92.5 *93.2 95.6
day 85.9 87.3 86.1 *88.6 85.9 96.8
indoor 63.4 65.8 66.9 67.6 *75.4 83.5
nature 57.6 78.8 77.0 75.4 *84.2 88.1

Table 4.1: Comparison of Features - the percentage of correctly classified images is
given; top: colour histograms, bottom: texture features. The “combined” feature is
a combination of all features available. The best single feature is bold, an asterisk
marks best result of each sub-table.

4.8 Overall Result

Table 4.1 is a summary of the feature comparisons, only the median hit-rate of each

attribute and feature pair (taken from the box plots of the previous sections) is

shown. As has been mentioned before, the combination of a texture and a colour

feature is more promising then the combination of two features of the same type.

Therefore not only the best overall result is marked bold, but the best texture/colour

feature is marked by an asterisk.

Correctly Classified Instances: 710 71.0 %

Incorrectly Classified Instances: 290 29.0 %

Total Number of Instances: 1000

Baseline: 20%

An accuracy of 71% is achieved on the whole problem, i.e. assigning up to 4 at-

tributes to an image. The images considered to be incorrectly classified have one

or more wrongly assigned attributes. This value is not simply the sum of errors re-

ported in the previous sections. The baseline error, the assignment of the class with

the highest probability, would yield 20% hit-rate with this image database; however

this would also imply a recall rate of 0% for all other classes in question because all

images would be assigned to the same class. The overall hit-rate on the 3474 images
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Results 4.8. Overall Result

not used for training is 72.4%. This suggests that the classifier generalises well and

can be expected to perform comparably on similar data.

To compare the results on a different dataset two test runs were made on a part of

the Corel image database used in [LW03] and [WLW01]. A sample of 500 images

was selected; Table 4.2 shows the chosen directories and the attributes manually

assigned to them. Each directory contains 100 images.

directory ground truth
autumn colour Photo, outdoor, day, nature
night colour Photo, outdoor, night, urban
kitchen colour Photo, indoor
paintings art
ny city colour Photo, outdoor, day, urban

Table 4.2: Selected groups from the Corel Image Database

In one test run the classifier, trained on the ImagEVAL data was applied to the

500 images. The percentage of correctly classified images is much lower than the

one reported above with 47.2%. This can be attributed to the differences in prior

probabilities as well as image composition. Notably, all 100 art images, mostly

aquarelles, are misclassified.

In the second test run the classifier was trained on 400 images (using a random draw)

and tested on the remaining 100. The percentage of correctly classified images rises

to 80% (art: hit-rate of 95.9%). However these results do not give insight into how

well the classifier generalises. The discrepancy between these two results can rather

be explained by the different domain of the ImagEVAL images compared to the 500

images selected from the Corel image database.

59



Results 4.9. Sample Application: Query by Image

4.9 Sample Application: Query by Image

A common application in CBIR is “query by image”. To demonstrate how the classi-

fication achieved in this thesis can be of benefit a small application was implemented

and tested on the 100 images from the Corel database previously used for testing the

classifier. A query image is selected by the user and the feature vectors and semantic

classes computed. Certainly simplified, as compared to existing CBIR systems, the

RGB feature vector is used to find the images with the smallest Euclidean distance

to the query image. The returned image list can then be filtered, excluding images

that have different image semantics.

Figure 4.3 shows the result of the query without, and Figure 4.4 with filtering of

the images through the use of semantic information gathered by the prototype. The

image at the top left is the query image. As can be observed the query without

filtering shows images of different semantic classes. Included are paintings and

nature images although the query image clearly shows a town’s skyline. Only one

out of the eight returned images can be considered a match. For this image, and

also others tested, the filtered results work much better. Only one mismatch, an

image of stalagmites, is returned. Of course these are optimistic conditions, but

the comparison shows that semantic information might be of benefit for comparable

applications.
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Results 4.9. Sample Application: Query by Image

Figure 4.3: Query by image, RGB Euclidean distance, top-left is query image

Figure 4.4: Query by image using semantic Classes, RGB Euclidean distance, top-
left is query image
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Chapter 5

Conclusion

This thesis shows that reasonable results can be obtained in extracting image se-

mantics with the aid of statistical methods. An accuracy of 71% is achieved on

the problem posed by the ImagEVAL project. The image attributes extracted are:

black and white photo, colour photo, manually coloured photo, artistic reproduction,

outdoor, indoor, night, day, nature, urban.

The review of literature available in research of automatic image classification is

helpful in selecting low-level image features. Some interesting approaches to the

statistical modelling are also shown. Several suggestions in the literature are taken

up in the implementation of the prototype. The hierarchical classification makes

use of knowledge about the problem-domain. The attributes to be assigned to the

images are mutually exclusive and cover a wide spectrum of input images. Features

used are: colour histograms in several colour spaces, colour statistics, wavelet and

Gabor filters and edge detectors.

The prototype developed is used for two aims. The result of image classification is

used to evaluate and compare the discrimination power of several features on the

given problems. Secondly, conclusions about the reasons why particular features are

suited for a problem are drawn. This is done through an analysis of results and

variables available at sub-stages during the training and testing phases. This seems

to suggest an iterative development of the image classifiers, as more information

about the problem domain is gained in the process.

The ambiguity of natural language, where, for example, “nature” and “urban” is

not explicitly defined and leads to problems in classification of images that cannot

be accurately described with either word, is an unsolved problem. An interesting
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addition to this thesis would be a comparison of the results obtained by the pro-

totype with the results obtained by humans on the same image database (manual

classification).

It is quite impossible to generalise the obtained results to a “total” class of all

images available world-wide. This hampers comparison with other research because

a sub-set of possible images and therefore a biased classification is always chosen.

To make use of the biggest image collection in the world, the Internet, the imple-

mentation of more attributes would be of interest. For example business graphic -

photograph. The integration of meta-information of the images, e.g. size of file or

information stored in Exchangeable Image File Format (EXIF) tags, would also be

of interest.

An improvement of feature extraction speed would be of advantage, not only in

use of the prototype with large image databases, but also to rapidly test other

parameter settings and low-level features. The results obtained with the prototype

are comparable to those found in literature.
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