
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: irfan.adilovic@tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-104 February 2, 2006

An audio filter framework for JOP

Irfan Adilovic1

Abstract

The aim of this project is to develop a conceptual implementation of a filter framework
for the Java Optimized Processor (JOP). The target system is a board with (among other
things) a Cyclone FPGA and an AC’97 audio codec. The filter framework and the target
system are not intended for industrial use, but rather for educational purposes about pro-
gramming embedded systems in pure Java without foregoing any cross-platform capabilities
of Java. The filter framework needs to run without changes on desktop systems (in a free
JVM, like SUN’s or IBM’s) as well as on the targeted embedded system.

1Thanks to Martin Schöberl for his support, without which this work would not be possible.

http://sourceforge.net/projects/dspfilter
http://www.jopdesign.com


1 Introduction

Embedded systems are mostly programmed in languages like C, and it would be interesting
to see a pure Java program running without any modifications on both a desktop computer
and an embedded system. The project is offered as part of the Digital Signal Processors
course at the Vienna Technical University.

1.1 Hardware

The target system consists of a Cyclone FPGA board with I/O extensions offering a USB
interface, SD-Card connectors, bluetooth communication, a serial interface and an AC’97
audio codec. See [11] and [10] for further info.

1.2 Theoretical background

An audio filter is a type of filter used for processing sound signals. An audio filter is
typically designed to pass some frequency regions through unattenuated while significantly
attenuating others. Analog filters achieve these goals by letting the source signal (directly)
through analog circuitry whereas digital filters achieve the goals by passing the sampled
source signal through a mathematical function defined by the filter. However the signal
first needs to be sampled by an analog to digital converter.

A finite impulse response filter outputs a weighted sum of past and present input
values1. It is a simple digital filter whose response to an impulse ultimately settles to
zero regardless of the filter’s configuration. This is in contrast to infinite impulse response
filters which may have an infinite response to a single impulse.

The finite impulse response filter calculates the response to an impulse by multiplying
past and present input samples with some fixed coefficients and summing up the result
to yield a response (processed sample), there is no feedback (feeding the output back as
input). If the input samples are i0, i1, i2, i3, etc. and the FIR coefficients are c0, c1 and
c2, then the output of the filter will be:

o0 = c0i0 + c10 + c20
o1 = c0i1 + c1i0 + c20
o2 = c0i2 + c1i1 + c2i0
o3 = c0i3 + c1i2 + c2i1

and so on.
A trivial example of a FIR filter is the moving average filter: it outputs the average

of the last n input values. This filter, when averaging over n values, implemented as FIR
filter would have n identical coefficients 1

n
.

Further details (such as coefficient generation) is outside the scope of this paper.

1One could think of weighted past, present and future input values for non-real-time filtering where
data is available.

1

http://www.soc.tuwien.ac.at/courses/sigproc/LU
http://www.tuwien.ac.at/


1.3 Goals

The goal of the project is to develop a finite impulse response filter in Java and apply
it on a sound signal that is fed into the filter independently of the filter implementation.
In addition to that, a small framework needs to be developed, which allows for chaining
of different filters and implementation of further filters which can be used together. The
implementation needs to run on a desktop computer with a free JVM and on the target
embedded system.

1.4 Previous Work and Current State

As ever, the persistent increase in processor speeds and the persistent drop in costs of such,
has made it feasible to have embedded systems programmed in Java. In the beginnings,
Java was unpopular because it has a further layer of abstraction (virtual machine) as
compared to languages like C, and because it was simply slower (see section 4.2 for one
of the reasons). To illustrate, until May 2000, SUN’s KVM was ported to more than 25
devices that are in the class of 16/32-bit microprocessors with a few hundred kilobytes
total memory [8].

The idea of embedded Java existed within months of the initial launch of the Java
technology in 1995 [7].

As of this writing, there are several commercial embedded systems for Java, having
either a hardware or software virtual machine. Examples include EJC [14] running atop
a RTOS on a 32-bit ARM720T processor, JStamp [3] on the aJ-80 processor with a
hardware VM, leJOS [1] on a 16-bit Hitachi H8300 with a VM that fits in 32kb, commercial
microprocessors based on picoJava [9], etc.

However the DSP market is relatively silent on the issue, there are no Java-DSP
breakthroughs as of now. Capable boards exist, but they are not really mainstream DSP
boards.

2 Design and Implementation

The imposed goals allow for a clear design of the framework in Java. We will have

• an interface common to all filters, we name it Filter

• an abstract class which the filters may extend and which encapsulates common
functionality, we name it AbstractFilter

• a meta-filter which chains other filters and acts transparently as a filter itself, we
name it FilterChain

• a finite impulse response filter, with the name of FIR

New filters may be implemented as needed, they just need to implement the Filter

interface, and possibly use the functionality provided in AbstractFilter.

2



2.1 Filter

The only function of the Filter interface is to define a function to process a buffer of audio
samples. This function needs to accept an array of source integer samples (regardless of
the actual resolution, assuming it is not greater than 32 bits2), the offset at which to start
processing in the source array, an array where to store the result, the offset at which to
start storing the result and finally, how many samples to process. The signature of the
only declared function is:

public int processBuffer(int[] src, int srcOffset, int[] dest, int destOff-

set, int length);

Originally, the Filter interface included the declaration of a function called process-

Sample - why it was removed will be discussed later.

2.2 AbstractFilter

The abstract class AbstractFilter is meant for factorization of any common functional-
ity of filters, and originally implemented processBuffer so that each sample is processed
by the processSample function of the concrete filter. Therefore the concrete filter does
not have to implement the processBuffer method of the Filter interface, if it can rely
on the obvious functionality provided by AbstractFilter (which is usually the case).
This was left out because of inlining restrictions of Java, which will be discussed later.
The class was not removed after the removal because it may prove useful for any future
common functionality. It should be noted that the abstract class does not have a per-
formance impact, since polymorphism induced through the usage of the Filter interface
necessitates dynamic binding of processBuffer calls.

AbstractFilter contains a constant named PRECISION which defines the precision of
fixed point numbers. This constant could have been moved to the Filter interface itself,
but for more flexibility it was kept in the abstract class because here, it can be manipulated
in run-time when needed (imagine switching from 16-bit to 20-bit input precision at run-
time, requiring more space for the integer part in the fixed-point representation).

2.3 FilterChain

With the meta filter FilterChain, one can append any filter implementing the Filter

interface (including an instance of FilterChain itself) to a list of filters through which
the input signal is passed and returned. This can be used to transparently create different
kinds of complex filters and then reuse and combine them as needed.

FilterChains would also be very useful in dynamic configuration of filters, for example
when implementing an equalizer - where the user’s actions can lead to creation, chaining
and deletion of several filters.

2The upper bound may be filter-dependant. Current implementation of the FIR filter guarantees to
work for samples of 24 bits in size, see section 2.4.1.

3



2.4 FIR

The finite impulse response filter is initialized with an array of integer coefficients which are
converted to fixed point numbers. These are then normalized to yield a sum of 1, so that no
overall amplification or attenuation is induced through the coefficients (some amplification
or attenuation is necessarily present, this is explained in the following subsection). Other
than that, the filter implements the processBuffer function of the Filter interface and
applies the proper finite impulse response logic on the input. Past samples are stored in
a cyclic buffer and subsequently used in calculating the processed sample during the run
time of processBuffer.

2.4.1 Fixed-point numbers and the quantization error

With a precision of p, a fixed-point number, contained in an integer has 2p quantization
levels between −1 and 1 − 2−(p−1). Each input value that falls between two adjacent
quantization levels is interpreted as one of the two, depending on the rounding. In the
FIR filter implementation the rounding mode is truncation, so always the smaller of the
two adjacent levels is chosen.

The maximum quantization error thus approaches the distance between two adjacent
quantization levels ē → 2−(p−1). In other words, the quantization error is always in the
interval [0, 2−(p−1)).

It is important to note that as a consequence of the rounding mode, the mean error
is not zero, it is ēmean = −2−p (assuming uniform distribution of input) because the
interpreted values are on the average smaller than actual values.

There is also a quantization error induced by the ADC that captures the sound signal.
The same argumentation about the quantization error holds3.

In the current implementation of the FIR filter, the chosen fixed-point format is s23.8
and ADC is configured for 16-bit precision, so the maximum quantization error induced
in combination is

ēmax → 2−(8−1) + 2−(16−1)

→ 2−7 + 2−15

→ 0.007843017578125

In the initial phase, the framework was developed and tested on a desktop computer
with SUN’s JVM. The Java Sound Subsystem provides sound data in a different format:
a byte buffer instead of an integer buffer, with both channels intermixed. A small adapter
utility was developed which converts such a buffer into two separate buffers of integers.

The targeted embedded system provides data also in a not directly usable format - two
16-bit samples in one 32-bit integer. This decomposition is trivial and was implemented
in-line in the source code which uses the filter functionality.

3Assuming the ADC also truncates the input to the lower quantization level. Were that not the case,
the maximum error would be ē → 2−p

4



3 Optimization

After the framework was implemented and tested in a desktop computer environment, it
has proven to perform quite badly on the targeted embedded system. Three issues were
identified and optimized: inlining, wrapping of cyclic indices and prefetching of member
variables.

3.1 Inlining of processSample

The aforementioned processSample method declared in the Filter interface induced a
severe performance hit because of the added function call overhead per sample.

Function call overhead per sample, with the processSample utilized, is at least k where
k is the number of cycles needed for a function call. It can be more, if processSample is
used only indirectly through processBuffer (i.e. because of processBuffer call overhead
- if utilized).

With processSample inlined, the overhead per sample is equal to k
n

where n is the
amount of samples processed per processBuffer call, considerably less.

As discussed in section 2.10.3. of the Java Virtual Machine Specification [5] and section
8.4.3.3. of the Java Language Specification [2], safe inlining is possible only for final

methods4. This is a consequence of the design that is at the very heart of the language:
dynamic binding. Not to mention, even for final methods, inlining cannot explicitly be
controlled by the programmer: if the method being called is final, the compiler can inline
the function, it is not obliged to do so.

The problem with dynamic binding is that at compile time, the compiler does not
always know the exact type of the object on which processBuffer is being called, be-
cause processBuffer is in the abstract class AbstractFilter and the processSample

method is at that point only an abstract method. Assuming we have more filters than
just FIR implemented, it could be any of the processSample implementations that would
eventually get called.

The compiler does know the exact type of the object at compile time for declarations
like FIR fir = new FIR(...);, and in such cases, the compiler can inline the method
calls. However, using all filters in such a way is very limiting, because absolutely no
dynamic reconfiguration of filters would be possible: we would not be able to combine or
replace filters during run-time. The whole point of a filter framework would be ruined.
The Filter interface and the AbstractFilter abstract class would be useless, because
processBuffer calls on variables of these types would always be dynamically bound
(for example Filter f = new FIR(...)). The meta filter FilterChain would need to
be implemented for each filter separately, because the usage of the Filter type within
FilterChain would disable inlining.

Hence, in order to gain control over inlining, manual inlining was undertaken. The
processSample method was removed from the Filter interface, the processBuffer

4In his article about the Java HotSpot Virtual Machine’s performance [6], Steven Meloan discusses
the ability of the HotSpot VM to inline non-final methods. However, the discussed methods are subject
to the same restrictions as the original ones: if more than one implementation can lie behind the method
call, one cannot inline that call.

5



method was removed from AbstractFilter and both combined in the FIR filter (and
expected to be thus combined in future filters).

3.2 Wrapping of cyclic indices

The buffer of past samples in the FIR filter was of cyclic nature. This meant that when
processing the samples, an index had to be run manually through the buffer and wrapped
around when it came to the buffer’s end (forward iteration) or beginning (backward iter-
ation).

Using if statements in such situations introduces jumps in the bytecode which are
expensive (see cycle lengths of goto and various if instructions in [13]) for an inner loop.
These wraps were optimized by forcing the buffer length to be a power of two, so that a
simple bitwise and operation with a mask will do. To illustrate, the following code:

if (−−someIndex < 0) someIndex += bufferLength;

was replaced with

someIndex = (someIndex - 1) & l_indexWrappingOptimizer;

where l_indexWrappingOptimizer is defined as bufferLength - 1 and introduced to
avoid repeated evaluation of the constant bufferLength - 1 expression. An obvious
equivalent of this code replacement was also made for the forward iteration variant.

3.3 Prefetching of member variables

Accessing member variables is expensive: accessing a static class variable costs 17 cy-
cles and accessing an object variable costs 25 cycles, compared to 1 to 2 cycles for
loading local variables on the JOP [13] [12]. Fetching them once just after entry into
processBuffer improves the speed of their access within the processing loops of pro-

cessBuffer. This improvement is trivial - local variables were introduced, which reduced
member variable access to one per member variable per processBuffer call as compared
to O(bufferLength) and O(bufferLength · filterLength) (depending on whether the
access happens in the outer, buffer-processing loop, or the inner, filtering loop).

4 Problems and performance issues

Several problems were encountered during the development of the framework, two major
of them being inherent to Java.

4.1 Inlining

C allows for explicit declaration of functions that are to be inlined (See section 6.7.4 of
the C99 standard [4]), but in Java, as discussed, there are no guarantees about inlining.
The programmer can only fulfill the preconditions for inlining and hope that the compiler

6



will inline the function. In our case, it is impossible to avoid dynamic binding, having the
goals of the project in mind.

Inlining can be done directly in code (and we have partly done it in our implemen-
tation as mentioned above), but this reduces the reusability of the code itself. We could
have avoided function calls even per buffer by manually inlining all the code of the filter(s)
directly in the code which fetches sound data. But then, our filters would be utterly unus-
able in different environments. Apart from that, filter chaining, dynamic filter placement
and configuration would not be feasible at all.

4.2 Array access in Java and C

Java guarantees, in utter contrast to C, that an incorrect array access shall be trivially
programmatically detectable. In C, there is no guarantee as to the access-correctness
whatsoever [4]. However, Java throws an IndexOutOfBoundsException if we are accessing
an array outside of its valid index range (section 2.15.4 in [5]). This means that in a
trivial and successful array access, there is at least:

1. A comparison of the index with 0,

2. A fetch of the upper bound value (member variable access),

3. A comparison of the index with the upper bound,

4. Memory address calculation based on array beginning and index5, and

5. Read or write of data.

The emphasized part of the above list is missing in C, which makes C far less reliable,
but much more performant. Such behavior of Java makes iteration over arrays generally
slow, and especially those inner loops which are sometimes even programmed in assembler
for better performance.

Such a problem is inherent to Java6 and cannot just be solved by refactorization,
further code optimization etc. One would have to have some kind of a special compiler and
virtual machine which allow for stripping of such checks in order to make the code more
performant, but the programmer would be faced with all the problems a C programmer
is faced with in working with arrays and debugging them. This would, of course, beat the
point of using Java in the first place, and is not a viable option.

5 It should also be noted that getting the information about the array beginning in memory is different
in C when compared to Java: in C, the array itself is a pointer and the information is readily available. In
Java, the information is hidden somewhere within the array object, most probably as a member variable,
whose fetch requires more cycles than reading the pointer value in C - another performance gain in C.

6It is the JVM which provides the guarantee about array access correctness, not the compiled code.
The compiled code contains an instruction like iaload or iastore which is interpreted by the JVM.
There is simply no facility for direct memory access, everything is provided through such abstract JVM
instructions [5].

7



4.3 Other problems

Other problems that were encountered were mainly of interpretative nature, or problems
external to the project.

Among these was the choice of Filter interface so that data is easily converted to
required form on different systems. To illustrate: the targeted embedded system provides
two 16-bit samples in a 32-bit integer - separately for each channel, and the Java Sound
Subsystem in a desktop computer environment provides us with byte data where the
channels of the input are interleaved.

Another problem was about the signedness of the samples - interpreting them as signed
or unsigned makes a big difference on the output. This problem was identified by testing
with a signal generator and an oscilloscope - spikes in the output signal were visible at
the zero region of the signal.

A reproducible problem with the JOP’s JVM was also identified: polymorphism and
dynamic binding caused exceptions in run-time. This problem was easy to avoid, and is
of nature external to the project. Specifically, method invocations on a variable declared
and initialized like Filter f = new FIR(...) would cause exceptions. Replacing that
part with FIR f = new FIR(...) temporarily resolved the problem.

Another problem emerged while debugging high-pass filters. The normalization rou-
tine functional for filters with only positive coefficients (typical low-pass filters) was not
meaningful for filters with negative coefficients (typical high-pass filters) and was thus
turned off for such cases. This required manual feed of fixed-point numbers to the filter.

Because of the problems that affected performance, the longest filter that was able
to run without distorting the signal was of length 4. In order to visualize the kind of
distortion, in figure 1, an output of a filter with more coefficients is provided.

In order to provide more execution time to the filter, we tried to reduce the sampling
rate of the AC’97 chip so that filtering with larger FIR filters is feasible. We tried to reduce
the sampling rate from the default and maximum of 48kHz to a lower one. However,
problems with either the Wishbone interface [15] to the AC’97 chip or the chip itself did
not allow for any frequency change. A simple sinusoid signal would pass properly, with
no change through the JOP (without a filter) and the AC’97 chip with 48kHz, but very
distorted with any other frequency setting (still no filter). The oscilloscope output looked
rather like many sinusoidal signals overlayed, in principle similar to the output of the
8-coefficient filter without reduction in sampling rate (Figure 1).

These problems ultimately lead to the maximum filter length of only 4 coefficients7.

7In order to gain hard data for the Results section, some tests were conducted during the revision
of this document. In these tests, the AC’97 seemed to function properly with reduced sampling rate,
software errors being absolutely impossible. There is a high probability that this testing was conducted
on a board different from the three former boards, the former ones being probably faulty. However,
because of time constraints, no further development or testing was performed.

8



Figure 1: A sine wave passed through a FIR filter with 8 trivial coefficients
1, 0, 0, 0, 0, 0, 0, 0. This filter performs no modification of the input whatsoever.

5 Results

The implementation of the filter was successful, the output of the sound chip was tested
with a signal generator and an oscilloscope, and we could show that our filter did the
work it was supposed to do.

5.1 A low-pass filter

A low-pass filter is a filter which passes low frequencies of an input signal unattenuated,
while significantly attenuating higher ones. With 4 coefficients, one cannot hope for a
first-class filter, far from that. However, one can generate a mediocre filter and test it,
even when it is of little practical use.

Figure 2 shows the magnitude response for a low-pass filter with 4 coefficients, as
generated by Matlab, being a reference for the actual state of affairs. Figure 3 which
we extracted from tests with the signal generator and the oscilloscope, shows the actual
magnitude response of the FIR filter at stake. The coefficients generated by Matlab
were 0.027099, 0.472656, 0.472656, 0.0270998. The magnitude response can be seen also in
Table 1.

As can be seen, the actual magnitude response resembles very well the reference mag-
nitude response.

8The filters were, of course, properly converted to the fixed-point format before being used by the
filter framework.

9



low-pass (dB) Freq.(kHz) high-pass (dB)
-0.157770244 1 -19.1721463
-0.211003647 2 -14.2439654
-0.390842154 3 -11.24498874
-0.555943232 4 -8.873949985
-0.800103233 5 -7.210270215
-1.090628297 6 -5.882725754
-1.411621486 7 -4.791550332
-1.851772785 8 -3.87640052
-2.270185497 9 -3.122891548
-2.757372414 10 -2.498774732
-3.298877966 11 -1.851772785
-3.903586426 12 -1.432082955
-4.671743058 13 -1.031740684
-5.481767354 14 -0.724243453
-6.375175252 15 -0.500560114
-7.37112462 16 -0.336498559
-8.404328068 17 -0.211003647
-9.735647999 18 -0.104861108

-11.05683937 19 -0.052272312
-13.15154638 20 -0.140098031
-15.91760035 21 -0.500560114
-19.65933321 22 -1.350524706
-25.03623946 23 -3.0980392
-31.70053304 24 -6.339059235

Table 1: Data of magnitude response for the low- and high-pass filter.

10



Figure 2: Reference magnitude response for a low-pass filter.

Figure 3: Actual magnitude response for a low-pass filter.

11



Figure 4: Reference magnitude response for a high-pass filter.

5.2 A high-pass filter

A high-pass filter is the exact opposite of the low-pass filter – it filters out low frequencies,
and passes high ones.

Again generated by Matlab, figure 4 shows the reference magnitude response for a
low-pass filter with 4 coefficients −0.040685,−0.566304, 0.566304, 0.040685. Figure 5, on
the other hand shows how the filter performs in reality.

This filter too, resembles the reference very well, albeit not at frequencies higher than
20 kHz. This attenuating behavior for higher frequencies has been observed just as well
without filtering, and it had the same factor of attenuation as with the high-pass filter.
Hence the filter must be judged as correct at these frequencies too, since it is to be
concluded that this is the property of the underlying hardware.

Apart from these two filters, a band-pass filter (which passes a fixed frequency band,
and attenuates frequencies below and above the band) was tested, but its quality was very
poor, as such a filter is by its nature more complex than the two filters discussed above.

Aural testing was also performed, and while the results were not very impressing, they
were certainly detectable. The low effectiveness of the filters during aural testing lies
within the fact that – due to the limitation on the number of coefficients – the filter cutoff
is too much distributed, and the frequencies that should “suddenly” be cut off, are instead
gradually cut off, making the effect harder to perceive. A real low- or high-pass filter
would have a much shorter cutoff, and the effect would be that the desired frequencies,
instead of being gradually attenuated, suddenly and (almost) completely disappear for
the human ear.

12



Figure 5: Actual magnitude response for a high-pass filter.

5.3 Conclusion

Unfortunately, the observed limit on the number of coefficients, caused by the various
problems discussed in section 4, was quite severe and makes this embedded system not
very attractive for industrial DSP applications.

In spite of these problems, however, the experiment per se was a success. We have
developed a pure Java filter which runs on both desktop systems and this embedded
system (and surely other embedded Java-capable systems on the market). It cannot be
considered for industrial use because of performance issues, but it does work, and shows
that pure Java programming of embedded systems, and DSP in Java is possible.

13



References

[1] Paul Andrews, Jürgen Stuber, Lawrie Griffiths, Brian Bagnall, Tim Rinkens, and
Jose Solorzano. Java for the RCX. http://lejos.sourceforge.net/.

[2] James Gosling, Gilad Bracha, Bill Joy, and Guy L Steele. The Java Language Spec-
ification. Addison-Wesley Professional, second edition, 6 2000.

[3] Systronix Inc. JStamp Website. http://www.jstamp.com.

[4] IST/5. ISO/IEC 9899:1999 Programming languages - C. ISO/IEC, 4 2000.

[5] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley Professional, second edition, 4 1999.

[6] Steve Meloan. The Java HotSpot Performance Engine: An In-Depth Look. http:

//java.sun.com/developer/technicalArticles/Networking/HotSpot/, 6 1999.

[7] SUN Microelectronics. LG Semicon Java Technology-Based Processor Announce-
ment. Pioneers’ Progress with picoJava Technology, 3, 1996.

[8] SUN Microsystems. J2ME Building Blocks for Mobile Devices. http://java.sun.

com/products/cldc/wp/KVMwp.pdf, 5 2000.

[9] J. Michael O’Connor and Marc Tremblay. PicoJava-I: The Java virtual maschine in
hardware. IEEE Micro, pages 45–53, March 1997.

[10] Martin Schöberl. JOP - Java Optimized Processor. http://www.jopdesign.com/.

[11] Martin Schöberl. I/O board for the DSP courses and SoC projects. http://www.

soc.tuwien.ac.at/courses/projects/dspio, 2005.

[12] Martin Schoeberl. Evaluation of a Java processor. In Tagungsband Austrochip 2005,
pages 127–134, Vienna, Austria, October 2005.

[13] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. PhD thesis, Vienna University of Technology, 2005.

[14] Snijder Micro Systems. Java on the EJC. http://www.embedded-web.com/

products/java.html.

[15] Rudolf Usselmann. AC 97 Controller IP Core. http://www.opencores.org/

projects.cgi/web/ac97/overview, 2005.

14

http://lejos.sourceforge.net/
http://www.jstamp.com
http://java.sun.com/developer/technicalArticles/Networking/HotSpot/
http://java.sun.com/developer/technicalArticles/Networking/HotSpot/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://www.jopdesign.com/
http://www.soc.tuwien.ac.at/courses/projects/dspio
http://www.soc.tuwien.ac.at/courses/projects/dspio
http://www.embedded-web.com/products/java.html
http://www.embedded-web.com/products/java.html
http://www.opencores.org/projects.cgi/web/ac97/overview
http://www.opencores.org/projects.cgi/web/ac97/overview

	Introduction
	Hardware
	Theoretical background
	Goals
	Previous Work and Current State

	Design and Implementation
	Filter
	AbstractFilter
	FilterChain
	FIR
	Fixed-point numbers and the quantization error


	Optimization
	Inlining of processSample
	Wrapping of cyclic indices
	Prefetching of member variables

	Problems and performance issues
	Inlining
	Array access in Java and C
	Other problems

	Results
	A low-pass filter
	A high-pass filter
	Conclusion


