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Abstract

Combinatorial maps and pyramids have been studied in great detail in the past, and it
has been shown that this concept is advantageous for many applications in the field of
image processing and pattern recognition by providing means to store information of the
topological relations of the represented data. In the course of these studies, the properties
of combinatorial maps have been investigated using different sets of permutations, different
operations and different algorithms. In each case new software had to be created in order
to conduct experiments, as the existing programs were designed to work only for a specific
model. Due to the complexity of combinatorial maps, the implementation of such a software
is a time and resource intensive task. Thus these programming efforts were often responsible
for delaying the presentation of new results in the past. This paper presents COMA - a
C++ framework for combinatorial maps - that has been created during recent studies
of combinatorial maps, motivated by this problem. Using an object oriented approach,
COMA was specifically designed to allow an efficient and quick integration of changes to
the model of combinatorial maps used, as well as the implementation of new algorithms.
As a consequence COMA significantly reduces the amount of time needed to set up new
experiments.



1 Introduction

Handling “structured geometric objects” is important for many applications
related to geometric modeling, computational geometry, image analysis, etc.;
one has often to distinguish between different parts of an object, according
to properties which are relevant for the application (e.g. mechanical, pho-
tometric, geometric properties) [29]. For e.g. in image analysis, a region is
a (structured) set of pixels or voxels, or more generally an abstract cellu-
lar complex consisting of dimensions 0, 1, 2, 3 ... (i.e. 0-cells are vertices,
1-cells are edges, 2-cells are faces, 3-cells are volumes, ...) and a bounding
relation [27].

The structure, or the topology, of the object is related to the decom-
position of the object into sub-objects, and to the relations between these
sub-objects. Many topological models have been conceived for representing
the topology of subdivided objects, since different types of subdivisions have
to be handled: general complexes [8, 9] or particular manifolds [1, 2], sub-
divided into any cells [17, 13] or into regular ones (e.g. simplices, cubes,
etc.) [15, 32]. Few models are defined for any dimensions [3, 31]. Some of
them are (extensions of) incidence graphs or adjacency graphs. Their prin-
ciple is often simple, but they cannot deal with any subdivision without loss
of information and operations for handling such graphs are often complex.
Other structures are “ordered” [5, 31], and they do not have the drawbacks
of incidence or adjacency graphs. A subdivided object can be described at
different levels, so several works deal with hierarchical topological models and
topological pyramids [12, 3, 28]. For geometric modeling, levels are often
not numerous. For image analysis, more levels are needed since the goal is
to rise up information which is not known a priori.

The authors in [7, 20] show that 2D combinatorial maps are suitable
topological structures to be used in 2D segmentation. Many domains need
to work in 3D imagery (e.g. medicine, geology), so the theoretical framework
of 2D combinatorial maps has been extended to 3D [10, 4, 23]. These works
introduce more than one set of permutations to be used for the combinatorial
maps as well as defining different operations to collapse a given combinatorial
map.

When studying 2D and 3D combinatorial maps, experimental results are
an important step to demonstrate the theoretical results. While software
implementations of combinatorial maps exist (e.g. [11]), these libraries have
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concentrated on a specific set of permutations and operations. This means
that new software or at least a lot of programming effort was necessary when-
ever a different model of combinatorial maps was studied. This motivated
the implementation of “COMA” with the goal of creating a C++ framework
that provides all functionality for combinatorial maps of any dimension using
an arbitrary set of permutations and operations. Examples for using COMA
can be found in [21, 26, 25, 23].

This paper presents the main structure of the COMA library and gives
examples on how to use it for implementing a specific model of combinatorial
maps or a specific set of experiments. For this purpose Section 2 will give
an overview of the architecture of COMA, explaining the independent layers
within the library encapsulating the different aspects of a program using
combinatorial maps.

A comprehensive overview of the library is presented in Sections 3 and 4.
Section 3 contains a description of each class, explaining its purpose within
COMA. Examples are provided to show the capabilities provided by each
class and how to adapt certain classes in order to implement changes effi-
ciently. In Section 4 a complete example algorithm is presented to demon-
strate how to use the library to set up a specific set of experiments.

Finally experiments conducted with COMA are presented in Section 5
and conclusions and an outlook are discussed in Section 6.

The theoretical background of terms mentioned in this report are ex-
plained in great detail in [24].
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2 Architecture

COMA is a framework providing all functionality to work with combinatorial
maps and combinatorial pyramids in an efficient way. The main goal of
this library is to offer the means to implement new algorithms and different
models of combinatorial maps in a fast manner without having to implement
the complete theory of combinatorial maps every time. To achieve this goal
the following guidelines were used when designing COMA:

• Using a different set of permutations for a certain dimensionality as
well as using different operations should be done in single place and
transparent to other parts of the library, especially the algorithm.
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Figure 1: Architecture of the COMA framework.
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• The kind of values represented by the combinatorial map (e.g. the color
of a voxel represented by a given vertex) should have no impact on other
parts of the library. Thus algorithms do not need to be changed when
working with different types of input sources.

• When implementing an algorithm with the framework, all functionality
of combinatorial maps should be available to the algorithm. At the
same time the algorithm should not be responsible for maintaining the
consistency of the combinatorial maps or need to have any knowledge
of the specific implementation of the combinatorial maps.

• The way in which the data is accessed should be transparent to the
library. This applies for both, the input data as well as the data written
as the result of an algorithm.

• When implementing a new output format to save the results of an ex-
periment (e.g. saving the pyramid as a set of labeled images, or creating
a visualization of combinatorial maps as graphs), this method should
automatically be usable for all other algorithms that use the library.

These guidelines led to the architecture shown in Fig. 1. The architecture
is divided into four functional layers, each being responsible for different
tasks.

2.1 Functional Layers

The following Section gives an overview of the different layers and the classes
present in these layers. A more detailed description of each class is provided
in the next section.

2.1.1 Input/Output Layer

This layer is responsible for providing a transparent way of reading data from
and writing data to different data-sources like images, movies, text-files or
sets of images. For this purpose the abstract coma adapter class provides
one interface for accessing the data as an n-dimensional array to the library.
The handling of the different types of data-sources is taken care of in classes
derived from this base class. They implement the functions for reading the
data from and writing the data to the file system in each specific format.
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2.1.2 Translation Layer

This layer is used for the translation between the geometric, coordinate-based
representations of data that is used in most data-files, into the topological
representation used by the combinatorial maps. Two classes are defined to
achieve this. The coma data class reads values associated with coordinates
and assigns them to the i-cells of the combinatorial maps (e.g. associating a
given voxel to a specific vertex or volume). In addition it provides a function
for mapping indices to darts and i-cells in a unique and bi-directional way.
This mapping mechanism is defined for each set of permutations introduced
to the library by a class derived from coma data for this purpose.

The second class of this layer is the coma output class. It is used to save
the results of an algorithm to the file system. As such it provides functions
for saving maps, pyramids and receptive fields. The base class implements
the basic operations needed for every output format while rendering the
output for each specific output format is defined in the derived classes. (e.g.
saving the result as a segmentation image, as a text file containing the labels
associated with each vertex, or as an image showing the combinatorial map).

2.1.3 Combinatorial-Map Layer

The actual implementation of combinatorial maps is located at this layer. It
consists of the four classes coma, coma value, coma dart and coma kernel.

The coma value class is a container storing the values associated with
i-cells of a combinatorial map. It provides a generic interface for the most
commonly used functions when working with values read from the data-
source, without knowing the type of data (e.g. grayscale values, RGB values,
etc.). Specializations are used whenever a default function is not adequate
for a certain type of data (e.g. calculating the weight of an edge might be
different when working with RGB values or grayscale values).

The coma dart class implements the specific set of permutations of a
combinatorial map (e.g. α and σ for 2D, or β1, β2, and β3 for 3D) and
provides mechanisms for working with these permutations. In addition the
values associated with the i-cells that each dart belongs to, can be accessed
using a pointer to the corresponding coma value object. The dart class also
implements most of the commonly needed operations for darts like traversing
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all darts belonging to the same cycle of a permutation or to the same i-cell,
calculating the degree and dual-degree of the i-cell the dart belongs to, or
retrieving all darts belonging to the receptive field of a given dart.

The class coma represents a complete combinatorial map. It uses the
coma dart and coma value objects to build new maps. This is done in two
ways:

• Building a grid-like combinatorial map from a given coma data object
representing this data.

• Building a reduced combinatorial map from an existing map by apply-
ing contraction- and removal-kernels.

Once a combinatorial map has been built, the coma class can be used to
access all darts and i-cells within this map. For this purpose two kinds of
arrays are provided:

• The set D contains all darts of a map. A specific dart can be directly
accessed using its index, or an iterator can be used to access all darts
in a loop.

• For each i-cell of a given dimension, one array is created. These arrays
store one dart for every i-cell of that dimension. Again these arrays can
be accessed using either the index of the cell or by using an iterator to
loop through all cells. Once a dart has benn retrieved, the other darts
belonging to the same i-cell can be accessed using the iterators of the
coma dart class.

The fourth class of the combinatorial map layer is the coma kernel class.
It provides functions for building a valid kernel to be applied to a combi-
natorial map. The base class implements the infrastructure needed by all
kernels like adding a dart to the kernel or accessing darts in the kernel. The
specific conditions for each operation are implemented in the two derived
classes coma contraction kernel and coma removal kernel.
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2.1.4 Algorithm Layer

The algorithm layer implements the functionality for building a pyramid
based on combinatorial maps using a given algorithm. In most cases this layer
is the only one that must be adapted when implementing a new algorithm.

The class coma pyramid is initialized with an existing combinatorial map
as its base level. A new reduced level is then built by implementing an al-
gorithm that select edges as candidates for a contraction. The new level is
constructed by first applying these edge contractions and then simplifying
the resulting map by selecting additional i-cells that may be contracted or
removed according to the conditions for these operations. This way a com-
plete combinatorial pyramid is built by creating new and reduced levels until
no more candidate edges are found in the algorithm step.

2.2 Extending COMA

One of the goals when designing COMA, was to reduce the necessary amount
of programming to a minimum when implementing a new functionality (e.g. a
different set of permutations, different input- and output-formats or building
a new algorithm based on combinatorial maps). Table 1 gives an overview
of the classes that must be extended when implementing changes to the
framework that are typically needed when setting up a new experiment. As
can be seen, most changes require only the adaption of a single class. The only
extension that has an impact on more than two classes is the implementation
of a new operation.

change coma dart value adapter data output kernel pyramid

permutations × ×
data source ×
output format ×
algorithm ×
operation × × ×
value types ×

Table 1: Classes that must be adapted when extending COMA.

7



3 Classes

This Section provides a description of the most important classes of the
COMA framework. An overview of each class is given as well as examples
on how to use each class.

3.1 coma adapter

The coma adapter class is the only class of the input-/output layer. Its
main purpose is to encapsulate all interaction with the actual data-sources by
providing a uniform way of loading, saving and accessing data, independent
of the specific format in which the data is stored on the file system. E.g.
a combinatorial map can be built from a single image, a stack of images, a
movie or a simple text-file. This is achieved by mapping each data-source to
an nD matrix within the coma adapter class. This matrix is then used by
all other classes of COMA.

To avoid that adding support for an additional file format automatically
results in changes to coma adapter, derived classes are used for each specific
file format. E.g. a class coma adapter image is used to extend COMA to
support reading and writing of 2D images. Most of the functionality is im-
plemented in the base class, while the image specific translation is handled
by the derived class coma adapter image.

Listing 1 shows an example of loading, accessing and saving data from a
2D image using the coma adapter class.

3.2 coma data

The coma data class is one of the two classes that reside in the translation
layer. This layer is responsible for the translation between the coordinate
based geometric representations that the input and output data is usually
stored in, and the topological representation of combinatorial maps. In-
troducing such a layer allows all other classes of the framework to remain
unaware of the geometric properties of the data.

While coma data handles the translation of input data, the data itself is
read using the coma adapter class. Once a data object is initialized this way,
three sets of functions are provided that
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// Create a new adapter o b j e c t wi th i t s f i l ename
coma adapter image<> adapter ( ” t e s t image .ppm” ) ;

// Load the image to make i t s data a c c e s s i b l e as a 2D matrix
adapter . load ( ) ;

// Access the p i x e l a t coord ina t e s (2 ,3)
vc l c ou t << ”Value o f p i x e l ( 2 , 3 ) : ”

<< adapter (2 , 3 ) << ”\n” ;

// Change the p i x e l a t coord ina t e s (4 ,1)
adapter (4 , 1 ) = WHITE;

// Save the changes us ing a d i f f e r e n t f i l ename
adapter . save ( ” t e s t ou tpu t .ppm” ) ;

Listing 1: Example for the coma adapter class

• bi-directionally calculate a unique index for each dart and i-cell of a
grid-like combinatorial map representing the data. E.g. calculate the
index for the vertex that represents a specific pixel of a 2D image,
identified by its coordinates.

• assign the actual values of the data to a given dart or i-cell identified
by such an index. E.g. when using a 2D image as input, assign the
color of each pixel to the vertex it is represented by in the initial map.

• calculate the index of the next dart in the cycle of a permutation. E.g.
return the index of the next dart in the cycle of the σ permutation
starting from a specific dart specified by its index.

Within a grid-like initial map, each dart can be directly associated with a
set of coordinates and a direction. This information is used to calculate the
index of a dart or i-cell. A helper class params is used to encapsulate these
parameters.

Note, that the third set of function implies, that the coma data class
has knowledge about these permutations. It is therefore one of two classes
within COMA that must be extended when a new set of permutations is
introduced. While all permutation independent functions are implemented
in the abstract base class coma data, the third set of functions is handled by
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derived classes: e.g. a class coma data 2d is introduced for 2D combinatorial
maps using α and σ.

Listing 2 shows an example of the coma data class.

// Create a new adapter o b j e c t as the data source
// and use t h i s adapter to i n i t i a l i z e the coma data o b j e c t
coma adapter image<> adapter ( ” t e s t image .ppm” ) ;
coma data 2d<> data(&adapter . load ( ) ) ;

// Ca l cu l a t e the index o f the dar t a t (1 ,2) po in t ing to the l e f t .
int coord [ ] = {1 ,2} ;
v c l c ou t << ” Index o f the dart at (1 , 2 ) po in t ing l e f t : ”

<< data . dar t index ( params ( coord ,LEFT 2D) ) << ”\n” ;

// Ca l cu l a t e the index o f the ver tex , edge , and face a s s o c i a t e d
// wi th the dar t a t coord ina t e s (1 ,2) po in t ing to the l e f t .
vc l c ou t << ” Index o f the ver tex : ” <<

data . topo logy index ( params ( coord ,LEFT 2D, T VERTEX)) << ”\n” ;
v c l c ou t << ” Index o f the edge : ” <<

data . topo logy index ( params ( coord ,LEFT 2D, T EDGE)) << ”\n” ;
v c l c ou t << ” Index o f the f a c e : ” <<

data . topo logy index ( params ( coord ,LEFT 2D, T FACE) ) << ”\n” ;

// Print the va lue a s s o c i a t e d wi th the v e r t e x o f
// the dar t a t coord ina t e s (1 ,2) po in t ing to the l e f t .
vc l c ou t << ”Value a s s o c i a t ed with the dart : ” <<

data . va lue ( params ( coord ,LEFT 2D,T VERTEX)) << ”\n” ;

// Ca l cu l a t e the index o f the next dar t in the c y c l e
// o f the a lpha and the sigma permutat ions .
int index = data . dar t index ( params ( coord ,LEFT 2D ) ) ;
v c l c ou t << ” Index o f the alpha su c c e s s o r : ” <<

data . next dart by perm ( index , P ALPHA) << ”\n” ;
v c l c ou t << ” Index o f the sigma suc c e s s o r : ” <<

data . next dart by perm ( index , P SIGMA) << ”\n” ;

Listing 2: Example for the coma data class

3.3 coma value

The coma value class is introduced to COMA to provide a generic interface
for working with different types of data (e.g. grayscale pixels or RGB pixels
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when processing an image). This way an algorithm can be designed without
knowing the exact format of the input data. For this purpose coma value is
implemented as an abstract base class that provides the most common func-
tions like comparing, adding and subtracting values. The actual calculations
for a given data type are implemented by programming a specialized class
for these data types.

// Create two g ray s ca l e va l u e s
coma value<vxl byte , 2> value1 , va lue2 ;
coord [ ] = {1 ,2} ;

// I n i t i a l i z e va lue1 wi th co l o r whi te and index 1
value1 . i n i t (WHITE, 1 , coord ) ;
// I n i t i a l i z e va lue2 wi th co l o r b l a c k and index 2
value2 . i n i t (BLACK, 2 , coord ) ;

// Create two RGB va lue s
coma value<v i l r gb <vxl byte >, 2> rgb value1 , rgb va lue2 ;

// I n i t i a l i z e RGB va lue1 wi th co l o r red and index 3
rgb va lue1 . i n i t (RED, 3 , coord ) ;
// I n i t i a l i z e RGB va lue2 wi th co l o r b l u e and index 4
rgb va lue2 . i n i t (BLUE, 4 , coord ) ;

// Compare va l u e s
i f ( va lue . compare ( value2 ) != 0) {

vc l c ou t << ”Value 1 and value 2 d i f f e r \n” ;
}
i f ( rgb va lue . compare ( rgb va lue2 ) != 0) {

vc l c ou t << ”RGB value 1 and RGB value 2 d i f f e r \n” ;
}

// Ca l cu l a t e the d i s t ance o f the va l u e s
vc l c ou t << ”Distance o f va lue 1 & 2 : ”

<< value . d i s t ance ( value2 ) << ”\n” ;
v c l c ou t << ”Distance o f RGB value 1 & 2 : ”

<< rgb va lue . d i s t ance ( rgb va lue2 ) << ”\n” ;

Listing 3: Example for the coma value class

In addition to storing the actual value of each pixel or voxel, coma value

also allows to store coordinates and an index. An example working with
RGB-values and grayscale values is shown in listing 3. As can be seen, both
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types of values can be used in the same way once they are initialized.

3.4 coma dart

Darts are the atomic elements that a combinatorial map consists of. The
corresponding class coma dart is therefore also the central class of COMA.
This class offers all functions for the typical operations on a dart:

• Using a given dart as the starting point for a traversal on the com-
binatorial map. E.g. examining all darts that belong to the cycle of
one of the permutations, retrieving all darts belonging to an i-cell, or
processing the darts belonging to the receptive field of a specific dart.

• Working with the properties of an i-cell that is associated with a dart.
These properties include the value of the associated pixel or voxel, the
degree and dual-degree of the i-cell, flags for self-loops and parallel
i-cells, as well as the index of the i-cell or dart.

• Applying a certain operation on an associated i-cell, i.e. contracting or
removing the i-cell.

For some of these functions the class must know about the used set of
permutations and operations. Therefore this class is the second class of
the COMA framework that must be extended when introducing a new set
of permutations or operations. In order to keep the necessary amount of
programming at a minimum, all generic functions are implemented in a the
base class coma dart. The set of permutations and operations supported
by the specific model of combinatorial maps is handled by derived classes.
Currently two such derived classes exist: coma dart 2d for 2D combinatorial
maps using α and σ, and coma dart 3d for 3D combinatorial maps using β1,
β2, and β3.

Two ways of traversing the darts of the cycle of a permutation or that
belong to the same i-cell are supported by the coma dart class. Each dart
object contains a set of pointers that will return the next dart directly, or
iterators can be used to loop through all darts of the cycle or i-cell.

Listing 4 shows an example of using the functions of the coma dart class.
For this example an instance of the class coma dart 2d, identified by dart,
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// Print the d e t a i l s o f the dar t
vc l c ou t << ” De ta i l s o f the dart : ”

<< dart << ”\n” ;

// Print the d e t a i l s o f the p i x e l a s s o c i a t e d wi th the dar t
vc l c ou t << ” De ta i l s o f the dart : ”

<< dart−>value ( ) << ”\n” ;

// Print the i n d i c e s o f a l l da r t s b e l ong ing to
// the same ve r t e x us ing a topo l o gy i t e r a t o r
vc l c ou t << ”Darts be long ing to the same ver tex : ” ;
coma dart 2d <>:: t o p i t e r a t o r i t ;
for ( i t = dart−>t o p o l o g y i t e r a t o r (T VERTEX) ; i t . dart ;++ i t ) {

vc l c ou t << i t . dart << ”\n” ;
}

// Print the the i n d i c e s o f a l l da r t s in the c y c l e o f the
// sigma permutat ion us ing a permutat ion i t e r a t o r
vc l c ou t << ”Darts be long ing to the sigma permutation : ” ;
coma dart 2d <>:: i t e r a t o r i t 2 ;
for ( i t 2 = dart−>pe rm i t e r a to r (SIGMA 2D) ; i t 2 . dart;++ i t 2 ) {

vc l c ou t << i t 2 . dart << ”\n” ;
}

// Print the va lue o f the second v e r t e x o f the edge
// us ing the a lpha permutat ion
vc l c ou t << ” P ixe l at the other end o f the edge : ”

<< dart−>perm(ALPHA 2D)−>value ( ) << ”\n” ;

// Print the dual−degree o f the face t h i s dar t i s i n c i d en t to
vc l c ou t << ”The degree o f the f a c e i s : ”

<< dart−>dua l degree (T FACE) << ”\n” ;

// Test i f the edge t ha t t h i s dar t b e l ong s to i s a s e l f −l oop
i f ( dart−> i s s e l f l o o p ( ) ) {

vc l c ou t << ”The edge i s a s e l f −loop \n” ;
}

Listing 4: Example for the coma dart class

is used. It is assumed that this is a valid and initialized dart object. How to
retrieve dart objects of a given combinatorial map will be explained in the
Section describing the coma class.
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3.5 coma

The main purpose of the coma class is to create new combinatorial maps, to
maintain the set of darts D, and to provide efficient methods for accessing
the specific darts or i-cells encoded by the map.

There are two possibilities to create a new combinatorial map:

• To create an initial grid-like combinatorial map, a coma object can be
initialized by specifying a coma data object.

• To create a reduced combinatorial map, a coma object can be initial-
ized by specifying an existing coma object to be simplified as well as a
contraction and removal kernel to be applied to this map.

A coma object created this way will contain an array d that holds all darts
of the combinatorial map. These darts can then either be directly accessed
using their index, or an iterator can be used to process all darts in the array.

Additionally there is one array for each kind of i-cell encoded by the
combinatorial map. These arrays store pointers to one dart for each i-cell.
Again the darts can either be accessed using the index of the i-cell or by
iterating through all i-cells using an iterator.

Two functions are implemented to enable a quick validation of a combi-
natorial map. The function print details will print details of all darts and
i-cells of the map. This can be used to check small maps manually or ob-
serve the results of a particular contraction or removal operation applied to a
map. The function check map will conduct a series of automated consistency
checks and print a report if errors are found.

Listing 5 shows an example of creating a map from a test image and then
accessing darts and i-cells of the combinatorial map.

3.6 coma kernel

To create a reduced combinatorial map from an existing one, contraction
and removal operations are used. Kernels are used to apply multiple such
operations in one step. First, all darts belonging to i-cells that are chosen
for contraction or removal are stored in a kernel. Once all darts have been
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// Create an adapter f o r the t e s t−image
coma adapter image<> adapter ( ” t e s t .ppm” ) ;
// Create a data o b j e c t us ing the adapter o b j e c t
coma data 2d<> data(&adapter . load ( ) ) ;

// Create a comb ina tor ia l map and i n i t i a l i z e i t
// wi th the data o b j e c t to c r ea t e a gr id− l i k e
// i n i t i a l map r ep r e s en t i n g the t e s t−image .
coma 2d<> map ;
map . i n i t (&data , new coma se t t ings 2d ( ) ) ;

// check the cons i s t ency o f the crea t ed map
i f (map . check map ( ) != 0) {

vc l c ou t << ”Map i s i n c o n s i s t e n t !\n” ;
}

// p r i n t a summary o f the comb ina tor ia l map ,
// d e t a i l s o f a l l da r t s and i−c e l l s , the number
// o f edges and the number o f dar t s
vc l c ou t << ”Summary o f the map : ”

<< map << ”\n” ;
v c l c ou t << ” De ta i l s o f the map : ”

<< map . p r i n t d e t a i l s ( true , true ) << ”\n” ;
v c l c ou t << ”Number o f edges : ”

<< map . edges ( ) . count ( ) << ”\n” ;
v c l c ou t << ”Number o f dar t s : ”

<< map . d ( ) . count ( ) << ”\n” ;

// Print d e t a i l s o f the dar t wi th index 52 ,
// and the face wi th index 19.
vc l c ou t << ” De ta i l s o f dart 52 : ”

<< map . d ( ) . get (52) << ”\n” ;
v c l c ou t << ” De ta i l s o f f a c e 19 : ”

<< map . f a c e s ( ) . get (19) << ”\n” ;

// Print the index o f every edge
// us ing an i t e r a t o r
typename coma 2d<>:: coma array type : : i t e r a t o r i t ;

for ( i t=map . v e r t i c e s . begin ( ) ; i t !=map . v e r t i c e s ( ) . end();++ i t ) {
vc l c ou t << ”Edge with index : ”

<< i t . dart−>value (T VERTEX)−>index << ”\n” ;
}

Listing 5: Example for the coma class
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selected and added to the kernel this way, the new combinatorial map can be
created by applying all contraction and removal operations simultaneously.

For this purpose the class coma kernel is provided. It offers functions
to add a dart or an i-cell to the kernel, to check whether the conditions for
the given operation are met by the dart or i-cell, and to access all darts
currently in the kernel. With the exception of the operation specific condi-
tions all functions are implemented in the abstract base class coma kernel.
The check dart function that validates the conditions of each operation,
is handled by derived classes. Currently such derived classes exist for the
contraction and for the removal operation, implementing the 5 conditions
introduced by [23]: coma kernel contraction and coma kernel removal.

// Create an adapter and data o b j e c t f o r a t e s t image
coma adapter image<> adapter ( ” t e s t .ppm” ) ;
coma data 2d<> data(&adapter . load ( ) ) ;

// Create a gr id− l i k e i n i t i a l map f o r t h i s image
coma 2d<> map ;
map . i n i t (&data , new coma se t t ings 2d ( ) ) ;

// Create a con t rac t i on ke rne l
// I n i t i a l i z e i t and as s i gn i t to the map
coma cont rac t i on kerne l <> ∗ c k e r n e l =

new coma cont rac t i on kerne l <>();
c ke rne l−> i n i t ( data . d a r t s i z e ( ) , &s e t t i n g s ) ;
map . c k e r n e l = c k e r n e l ;

// add some edges to the con t rac t i on ke rne l by s e l e c t i n g
// one dar t o f the edge and s p e c i f y i n g T EDGE
i f ( c ke rne l−>add dart (map . d ( ) . get (48 ) , T EDGE) != 0) {

vc l c ou t << ”Edge with dart 48 may not be contracted \n” ;
}
i f ( c ke rne l−>add dart (map . d ( ) . get (−70) , T EDGE) != 0) {

vc l c ou t << ”Edge with dart −70 may not be contracted \n” ;
}

// b u i l d new map us ing the con t rac t i on ke rne l
coma 2d<> new map ;
new map . i n i t (&map, new coma se t t ings 2d ( ) , c ke rne l ,

NULL, false , true ) ;

Listing 6: Example for the coma kernel class
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Listing 6 shows an example of a reduced combinatorial map being built
by using a contraction kernel.

3.7 coma output

The coma output class is used to save combinatorial maps in different output
formats. E.g. the result of an algorithm could be saved as a segmentation
image, a simple text file containing the labels of the surviving vertices, as a
visualization of the i-cells encoded by the map, or as a textual description.

Most of the functionality needed for saving a combinatorial map stays
the same, regardless of the actual output format. This includes processes
like accessing the file system, the calculation of receptive fields, or functions
to save each dart or i-cell of a given map. In most cases it is therefore
sufficient to provide a function for transforming a dart or i-cell into the
needed output-format. E.g. assigning a color and coordinates, or calculating
for a given vertex the associated set of pixels in the output-image.

For this reason, the coma output class is implemented as an abstract
base class handling functions needed by all output formats. Derived classes
are then used for the necessary transformations of each specific format (e.g.
coma output segmentation is used to save segmentation images of whole
maps. Since coma output defines a generic interface for all output-classes,
each derived class that implements a new output format can immediately be
used by all programs based on the COMA framework.

Listing 7 shows an example of a combinatorial map that is saved in mul-
tiple output formats and to various file types. This is done by using different
output adapters and coma output classes.

Figure 2 shows examples of images created by some output classes. The
image of a vase reconstructed using the receptive fields of a combinatorial
map can be seen in Figure 2a. Figure 2b shows a segmentation image of
the same vase from a reduced combinatorial map. Figure 2c&d display vi-
sualizations of a complete 3D combinatorial map and the receptive field of
one vertex. In these cases COMA produced the input files for the 3D visual-
ization software “raybooster” that was provided by the Computer Graphics
Group of the Institute of Computer Graphics and Algorithms of the Univer-
sity of Technology Vienna. A detailed description of this software is provided
by [16, 6].
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a) reconstructed image b) segmentation image

c) 3D visualization d) 3D visualization of
one receptive field

Figure 2: Examples for different output formats of combinatorial maps. Out-
put created as a 2D image (a), a 2D segmentation image (b), a 3D visualiza-
tion using the raybooster software (c), and the 3D visualization of a receptive
field (d).
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// Create an adapter f o r a t e s t image and
// i n i t i a l i z e a data o b j e c t wi th i t .
coma adapter image<> adapter ( ” t e s t .ppm” ) ;
coma data 2d<> data(&adapter . load ( ) ) ;

// Create a gr id− l i k e i n i t i a l map f o r t h i s image
coma 2d<> map ;
map . i n i t (&data , new coma se t t ings 2d ( ) ) ;

// Create an adapter f o r sav ing the map
coma adapter image<> image adapter ;

// Save the bounding r e l a t i o n s h i p diagram of the map
coma output bounding graph<> output(&image adapter , &map ) ;
output . save map ( ”bounding graph .ppm” ) ;

// Save the map as a segmentat ion image
// by us ing a d i f f e r e n t output c l a s s
coma output segmentation<> output image(&image adapter , &map ) ;
output . save map ( ” segmentat ion .ppm” ) ;

// Add i t i ona l l y save the segmentat ion as a b s i f i l e
// by us ing a d i f f e r e n t adapter
c oma adap t e r b s i f i l e b s i f i l e ;
coma output segmentation<> output bs i (& b s i f i l e , &map ) ;
ou tput bs i . save pyramid ( ” segmentat ion . b s i ” ) ;

Listing 7: Example for the coma output class

Figure 3, 4, and 5 show examples of using COMA to visualize combinato-
rial maps as graphs. A bounding relationship diagram of a 3D combinatorial
map can bee seen in Figure 5, while Figure 3 and 4 display the darts, vertices,
and permutations of 2D combinatorial maps.

Figure 3 shows an initial grid-like combinatorial map G1 created from a
5 × 5 image (The background vertex is not visualized). In the same way a
map G2 created from G1 using edge contractions is given in Figure 4. The
details (darts and permutations) of G1 and G2 can be found in appendix A.
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Figure 3: Visualization of a grid-like 2D combinatorial map.
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Figure 4: Visualization of a reduced 2D combinatorial map.
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Figure 5: Visualization of a 3D combinatorial map as a bounding relationship
diagram.

3.8 coma pyramid

The coma pryamid class is the only class in the algorithm layer. It is responsi-
ble for building combinatorial pyramids where each levels contains a reduced
combinatorial map based on the level below. For this purpose the pyramid is
initialized with a combinatorial map as the base level of the pyramid. New
levels are then created using the algorithm described in [23]:

1. Merging of adjacent voxels that belong to the same component (algo-
rithm step)

2. Eliminating redundant i-cells (simplification steps)

When creating a new level, construct c kernel by algorithm is called
first to select all candidate edges that shall be contracted to merge adjacent
voxels. All darts belonging to these edges are added to a contraction kernel
if they fulfill the conditions for an edge contraction.

Once vertices have been merged this way, the pyramid uses the func-
tion construct c kernel by simplification to select all i-cells that can
be simplified using a contraction operation. In the same way the function
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construct r kernel by simplification is used to identify i-cells that can
be eliminated from the combinatorial map using a removal operation. This
process is repeated until no more candidates for a simplification can be found
in the combinatorial map.

When programming a new algorithm using COMA, it is usually sufficient
to replace the function construct c kernel by algorithm in order to imple-
ment the algorithm’s specific way of deciding which voxels are to be merged
at each level. The simplification steps will then be applied automatically to
reduce the number of other i-cells in the resulting combinatorial map. Once
a pyramid is built, various functions are provided by coma pyramid to access
the different levels of the pyramid and to work with the receptive fields of
single darts or i-cells.

Listing 8 contains an example that demonstrates how the coma pyramid

class is used to build a combinatorial pyramid for a 2D test image. This
process is independent from the actual algorithm used for the algorithm step.
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// Load the t e s t image us ing an adapter and data c l a s s
coma adapter image<> adapter ( f i l ename ) ;
coma data 2d<> data(&adapter . load ( ) ) ;

// I n i t i a l i z e the base map with the image
coma 2d<> map ;
map . i n i t (&data , new coma set t ings2d ( ) ) ;

// Create a new pyramid and i n i t i a l i z e i t wi th
// the map as i t s base l e v e l
coma pyramid<> pyr ;
pyr . i n i t (&map, new coma set t ings2d ( ) ) ;

// Bui ld the complete pyramid
// This func t i on w i l l c r ea t e new l e v e l s
// u n t i l no more edges are found f o r a con t rac t i on
pyr . c o n s t r u c t a l l l e v e l s ( ) ;

// Print h e i g h t o f pyramid and a summary o f the top l e v e l
vc l c ou t << ” Bu i l t a ”

<< pyr . t o p l e v e l ()−> l e v e l << ”pyramid\n” ;
v c l c ou t << ”Summary o f the top l e v e l ”

<< pyr . t o p l e v e l ( ) << ”\n” ;

// Ret r i eve the s e t o f a l l da r t s b e l ong ing to
// the r e c e p t i v e f i e l d o f the v e r t e x wi th index 189
coma pyramid <>:: d a r t v e c t o r t ype f i e l d ;

pyr . t o p l e v e l ()−> r e c e p t i v e f i e l d ( f i e l d ,
pyr . t o p l e v e l ()−>map−>d ( ) . get (189) ,
T VERTEX) ;

// I t e r a t e through a l l da r t s o f the r e c e p t i v e f i e l d
// us ing an i t e r a t o r
coma pyramid <>:: d a r t v e c t o r t ype : : i t e r a t o r i t ;

v c l c ou t << ”Darts in r e c ep t i v e f i e l d : ” ;
for ( i t=f i e l d . begin ( ) ; i t != f i e l d . end();++ i t ) {

vc l c ou t << (∗ i t ) << ” ” ;
}

Listing 8: Example for the coma pyramid class
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4 Implementing an Algorithm

In the previous Sections, an overview of the the COMA framework has been
given by describing the architecture and the classes of the library. In this
Section, the process of building an algorithm based on COMA is demon-
strated. For this purpose it is shown, how an algorithm similar to the one
described in [14, 22] can be implemented with this framework.

Whenever new algorithms are implemented, it is necessary to program the
specific algorithm step by extending construct c kernel by algorithm of
the coma pyramid class. In the case of the algorithm chosen for this example,
the standard coma value objects must also be extended, as will be described
below. The algorithm works in two steps:

1. All edges are sorted and processed according to their weight in an
ascending order. (The specific weight function depends on the values
associated with each pixel. E.g. a subtraction if grayscale values are
used).

2. For each edge the weight is compared to a threshold associated with
the vertices it connects. The edge is contracted if the weight is below
this threshold. Whenever two vertices are merged, a new threshold is
calculated for the resulting single vertex.

4.1 Implementing the Threshold Functions

To implement the functionality of calculating the threshold for a vertex cre-
ated by the contraction of an edge, the class coma value is extended. One
way to do this, is to derive a class fs value that contains a pointer to a con-
tainer structure storing all values needed for the calculation of the threshold.
Listing 9 contains the definitions for these two classes.

The coma value class is only extended by adding a pointer to a container
object called fs container. This way no other changes need to be applied
to the original value class.

When calculating the threshold of vertices connected by an edge, three
cases are differentiated:
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// Extension o f coma value .
template <class VALUE TYPE=vxl byte>

class f s v a l u e : public coma value<VALUE TYPE, 2> {
public :

// Pointer to the conta iner used to c a l c u l a t e the t h r e s h o l d
f s c o n t a i n e r t y p e ∗ f s c o n t a i n e r ;

// de s t r u c t o r
˜ f s v a l u e ( ) ;
// con s t r u c t s a new f s v a l u e o b j e c t and i n i t i a l i z e s i t
// us ing the g iven value , index and coord ina t e s
f s v a l u e ( const va lue type & value , int index ,

const int c oo rd i na t e s [ num coord ] ) ;
} ;

// De f i n i t i on o f the c l a s s used f o r the t h r e s h o l d c a l c u l a t i o n
template <class FS VALUE>

class f s c o n t a i n e r {
public :

// Values needed f o r the t h r e s h o l d ( the maximum weight , the
// parameter ’ k ’ , the number o f v e r t i c e s and an index .
double max weight ;
int k ;
int count ;
int index ;

// Constructor s e t t i n g k and the unique index
f s c o n t a i n e r ( int k , int index ) ;

// Functions used f o r the c a l c u l a t i o n o f the t h r e s h o l d :
// The i n t e r n a l contras t , the i n t e r n a l c on t r a s t o f two
// components , and the func t i on tau
const double INT(void ) const ;
const double MINT( const f s c o n t a i n e r t y p e &c ) const ;
const double tau ( ) const ;

// Function f o r adding a s i n g l e v e r t e x to t h i s conta iner
void add value ( const double weight , f s v a l u e t yp e ∗v ) ;
// Function f o r merging two con ta iner s
void merge conta iner ( f s c o n t a i n e r t y p e ∗c ) ;

} ;

Listing 9: Extension of the class coma value for a new algorithm
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1. Both vertices represent a single pixel. In this case the edge may be
contracted if the weight of the edge is smaller or equal than the global
parameter k.

2. One vertex represents a single pixel, while the other one represents a
component c of more than one pixel. In this case, the edge may be con-
tracted if the weight of the edge is smaller or equal to min(k, INT (c)+
τ(c)). τ() is k divided by the number of pixels, and INT () is equal
to the largest weight of an edge that has been contracted for merging
pixels belonging to c.

3. The vertices represent two components c1, c2 of more than one pixel. In
this case the edge may be contracted if the weight of the edge is smaller
or equal than MINT (c1, c2), with MINT (c1, c2) = min(INT (c1) +
τ(c1), INT (c2) + τ(c2)).

The functions INT (), MINT (), and τ() are implemented in the class
fs container. Additionally the functions merge container and add value

are provided to update the number of pixels and the maximum weight when-
ever an edge is contracted.

4.2 Implementing the Algorithm Step

The implementation of the algorithm itself is done by creating fs pyramid, a
class that is derived from coma pyramid. To program a new way of choosing
which vertices shall be merged, construct c kernel by algorithm is over-
written in the new class, as this function is responsible for the algorithm step
that selects the edges that will be contracted when building the next level of
the pyramid.

For the algorithm described in this Section, the algorithm step is divided
into two functions: construct c kernel by algorithm and compare darts.

An implementation of construct c kernel by algorithm is shown in
listing 10. First an ordered list is created by processing all darts of the
combinatorial map using an iterator on the array “d”. Each dart and the
weight of the edge the darts are incident to is inserted into a standard C++
map, which will automatically create an ordered list. A second iterator is
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template<class COMA>
coma cont rac t i on kerne l <typename f s pyramid<COMA> : : dart type>

∗ f s pyramid<COMA> : : c on s t r u c t c k e r n e l by a l g o r i t hm (COMA ∗ map){

// Define i t e r a t o r s and temporary v a r i a b l e s
typename COMA: : coma array type : : i t e r a t o r i t ;
dar t type ∗dart ;
s td : : multimap<double , da r t type ∗> o ;
typename std : : multimap<double , da r t type ∗> : : i t e r a t o r o i t ;

// Bui ld a l i s t o f a l l edges in t h i s comb ina tor ia l map t ha t i s
// so r t ed by t h e i r we igh t
for ( i t=map−>d ( ) . begin ( ) ; i t !=map−>d ( ) . end ( ) ; i t++) {

o . i n s e r t ( std : : pa ir<double , da r t type ∗>(
i t . dart−>value()−>d i s t ance (∗ ( i t . dart−>alpha()−>value ( ) ) ) ,
i t . dart ) ) ;

}

// Process a l l da r t s in the so r t ed l i s t and c a l l
// compare darts f o r each to check the th r ee cases
for ( o i t=o . begin ( ) ; o i t !=o . end();++ o i t ) {

dart = o i t−>second ;

i f ( compare darts ( dart , dart−>alpha ( ) ) != 0) {
// An edge t ha t i s s e l e c t e d f o r con t rac t i on by
// compare darts w i l l a lways pass the the cond i t i on s
// f o r con t rac t i on . Therefore the re turn va lue o f
// add dar t does not need to be checked .
c ke rne l−>add dart ( dart , T EDGE) ;

}
}

return c k e r n e l ;
}

Listing 10: Implementing the algorithm step

then used to call compare darts for each dart within this ordered list. The
edge is added to the contraction kernel based on the result of this function.

Listing 11 contains the implementation of the function compare darts.
First it determines whether each of the two vertices represents either a sin-
gle pixel or a region of more than one pixel by retrieving the associated
fs container objects. The weight of the edge is then compared against
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the correct internal contrast according to the 3 distinguished cases of the
algorithm described at the beginning of this Section. This is done using the
functions provided by the container object. If the weight is smaller or equal
to the internal contrast, the containers are updated and 1 is returned to
indicate that the edge should be added to the contraction kernel.

template<class COMA>
int f s pyramid<COMA> : : compare darts ( dar t type ∗dart1 ,

dar t type ∗dart2 ) {
// Temporary v a r i a b l e s .
double s i n g l e m i n t = 0 ;
dar t type ∗tmp = NULL;

// S e l e c t the con ta iner s a s s o c i a t e d wi th each v e r t e x
// connected by the edge . These f unc t i on s w i l l r e turn
// NULL i f the v e r t e x r ep r e s en t s on ly a s i n g l e p i x e l .
f s c o n t a i n e r t y p e ∗ c1 = dart1−>value()−> f s c o n t a i n e r ;
f s c o n t a i n e r t y p e ∗ c2 = dart2−>value()−> f s c o n t a i n e r ;

// Ca l cu l a t e the we igh t o f the current edge .
double weight = dart1−>value()−>d i s t ance (∗ ( dart2−>value ( ) ) ) ;

// Case 3 : Both v e r t i c e s r ep r e s en t more than one p i x e l
i f ( c1 != NULL && c2 != NULL ) {

// In the case o f an edge s e l f −loop , the edge i s i n c i d en t to
// the same ve r t e x tw ice . In t h i s case both con ta iner s have
// the same index and the edge i s not added to the k e rne l
i f ( c1−>index == c2−>index ) return 0 ;

// Compare the we igh t o f the edge to the i n t e r n a l c on t r a s t
// o f the two v e r t i c e s by us ing the MINT func t i on prov ided
// by f s c on t a i n e r
i f ( weight <= c1−>MINT(∗ c2 ) ) {

// The two v e r t i c e s are merged by con t ra c t i n g the edge .
// F i r s t the we igh t o f the edge i s added to the conta iner .
c1−>add value ( weight , NULL) ;

// Then the con ta iner s are merged and one i s d e l e t e d .
c1−>merge conta iner ( c2 ) ;
delete c2 ;

return 1 ;
}
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return 0 ;
}

// Case 2 : One v e r t e x r ep r e s en t s more than one p i x e l .
i f ( c1 != NULL | | c2 != NULL ) {

// For ea s i e r p roce s s ing c1 i s s e t to a lways ho l d s the
// f s c on t a i n e r o b j e c t . The dar t s are swapped i f necessary .
i f ( c2 ) {

c1 = c2 ; c2 = NULL;
tmp = dart1 ; dart1 = dart2 ; dart2 = tmp ;

}

// The i n t e r n a l c on t r a s t i s c a l c u l a t e d us ing the INT and
// tau func t i on s prov ided by f s c on t a i n e r .
s i n g l e m i n t = (double ) c1−>INT()+c1−>tau ( ) ;

// I f the we igh t o f the edge i s sma l l e r or equa l to the
// i n t e r n a l c on t r a s t the edge may be con t rac t ed .
i f ( weight <= s i n g l e m i n t ) {

// Add the we igh t to the conta iner .
c1−>add value ( weight , dart2−>value ( ) ) ;

return 1 ;
}
return 0 ;

}

// Case 1 : Both v e r t i c e s r ep r e s en t a s i n g l e p i x e l .
// The edge may be con t rac t ed i f the we igh t i s sma l l e r than
// parameter ’ k ’ . ’ s e t t i n g s ’ i s a s t r u c t o f f s pyramid s t o r i n g
// the g l o b a l parameter ’ k ’ and the l a s t index f o r a conta iner .
i f ( weight <= se t t i n g s−>k ) {

// Create a new conta iner wi th a unique index
c1 = dart1−>value()−> f s c o n t a i n e r =

new f s c o n t a i n e r t y p e ( s e t t i n g s−>k , s e t t i n g s−>index++);

// The weigh t o f the edge i s added .
c1−>add value ( weight , dart2−>value ( ) ) ;

return 1 ;
}
return 0 ;

}

Listing 11: Calculating the threshold
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5 Experiments

An implementation of a connected components algorithm based on COMA
is presented for the experiments of this report. This algorithm is using no
permutation specific operations. It is therefore suitable to demonstrate how
a program that is based on COMA can be built for input data of an arbitrary
dimension. This algorithm will also be used to give a performance comparison
of processing 2D and 3D data with combinatorial maps using COMA.

5.1 Experimental Setup

The connected components algorithm used for the experiments is modified,
as it would otherwise merge all neighboring pixels/voxels of the same color
in one step. This would lead to very low pyramids that would only consist
of few levels. Instead the modified algorithm selects at most one edge to be
contracted for each vertex. This is done by iterating through all edges of the
map in a random order. An edge gets selected if it connects two vertices with
the same label and neither of these two vertices is incident to an edge that is
already part of the contraction kernel (Different strategies for selecting edges
to be contracted are presented in great detail in [19, 18, 30]). All other edges
of a vertex will be kept until the next level. All simplification steps will be
applied before the next level is constructed.

Listing 12 shows the algorithm step for this algorithm. This implemen-
tation uses only functions that operate on i-cell. It is therefore independent
of the set of permutations used for the combinatorial map or its dimension.
(Note, that this is only true if the kind of i-cells exists for the given dimen-
sionality. E.g. working with volumes is not possible for a 2D combinatorial
map).

5.2 Experimental Results

In order to study the performance of COMA, 2D and 3D combinatorial pyra-
mids for initial maps of different sizes that representing the same configura-
tion are compared. The bottom-up construction times as well as the allocated
memory for thebuilding process is measured and compared. The sizes of the
initial maps are chosen in such a way, that the 2D and 3D combinatorial
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template<class COMA>
coma cont rac t i on kerne l <typename COMA: : dart type>

∗coma pyramid<COMA> : : c on s t r u c t c k e r n e l by a l g o r i t hm (COMA ∗ map){

// Define two i t e r a t o r s to proces s the edges o f the map
typename COMA: : coma array type : : i t e r a t o r

i t , i t e nd = map−>topo logy ar ray (T EDGE) . end ( ) ;

// one dar t f o r each v e r t e x connected by an edge
dar t type ∗ ver tex dar t1 , ∗ ve r t ex da r t2 ;

// Process a l l edges o f the map us ing an i t e r a t o r
for ( i t= map−>topo logy ar ray (T EDGE) . begin ( ) ; i t != i t end ;++ i t ) {

// Assign one dar t f o r each v e r t e x to the temporary v a r i a b l e s
// Using the func t i on ’ v e r t e x b y e d g e ’ w i l l r e turn the next
// v e r t e x be l ong ing to the same edge . I t can t h e r e f o r e be
// used independent o f the under l y ing model f o r a
// comb ina tor ia l map or the dimension o f the input data .
ve r t ex da r t1 = ( dar t type ∗) i t . dart ;
v e r t ex da r t2 = ( dar t type ∗) i t . dart−>ver tex by edge ( ) ;

// Compare o f o f both v e r t i c e s
i f ( compare darts ( i t . dart ,

( dar t type ∗) i t . dart−>ver tex by edge ( ) ) ) {

// I f they are i d e n t i c a l , the edge i s added to the k e rne l
c ke rne l−>add dart ( i t . dart , T EDGE)

}
}

return c k e r n e l ; ;
}

Listing 12: A connected component algorithm for 2D and 3D

pyramids are comparable: For each 2D map a 3D map with approximately
the same number of vertices is selected for the experiments. Table 2 lists the
4 pairs of pyramids used in the experiments.

Table 3 and Table 4 list the bottom-up construction times for the 2D
and 3D combinatorial pyramids. The times are given for the accumulated
construction times up to each level and for each level alone. These times are
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Number of vertices 2D initial map 3D initial map

size darts size darts
≈ 125 11 × 11 520 5 × 5 × 5 3.072
≈ 1.000 32 × 32 4.216 10 × 10 × 10 25.272
≈ 8.000 89 × 89 32.032 20 × 20 × 20 199.272
≈ 64.000 253 × 253 257.040 40 × 40 × 40 1.569.672

Table 2: Sizes of the four pairs of 2D and 3D combinatorial pyramids for the
experiments.

also shown in Figure 6. As can be seen by comparing the diagrams for the
2D pyramids (Figure 6a) and for the 3D pyramids (Figure 6b), the times
for pyramids with the same number of vertices differ by a factor of ∼ 20.
This is expected as the number of darts in grid-like 3D combinatorial maps
is about 6 times the number of darts needed for a grid-like 2D combinatorial
map (a vertex in a grid consists of 24 darts for 3D and 4 darts for 2D).
Another reason for the higher times is the additional permutation for 3D
combinatorial maps. However, if the factor is taken into consideration the
times for 2D and 3D pyramids are similar. This shows, that the performance
of algorithms built with COMA is stable with respect to the dimensionality
and the size of the input data.

Table 5 and Table 6 show the memory allocated by the construction of
2D and 3D combinatorial pyramids. For each pyramid and level the total
amount of memory allocated up to this level as well as the memory used by
that level alone (in brackets) is given in kilobytes. A graphical comparison
is shown in Figure 7.

The amount of memory used for a pyramid is mainly dependent on the
number of darts in the initial combinatorial map. This can be seen by com-
paring the memory used for 2D and 3D pyramids with initial maps containing
the same number of vertices. The 3D pyramids are about 4 to 5 times larger
than the 2D pyramids. This corresponds to the number of darts for these
initial maps (there are 6 times more darts per vertex for 3D), when taking
into account, that additional memory is needed by COMA to store the values
associated with each vertex and for some internal structures to maintain the
sets of darts and i-cells. This additional memory is constant for 2D and 3D
pyramids.
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level 11× 11 32× 32 89× 89 253× 253

0 0,010s (0,010s) 0,060s (0,060s) 0,210s (0,210s) 1,800s (1,800s)
1 0,020s (0,010s) 0,090s (0,030s) 0,330s (0,120s) 2,750s (0,950s)
2 0,030s (0,010s) 0,110s (0,020s) 0,420s (0,090s) 3,480s (0,730s)
3 0,040s (0,010s) 0,120s (0,010s) 0,470s (0,050s) 3,900s (0,420s)
4 0,050s (0,010s) 0,130s (0,010s) 0,510s (0,040s) 4,170s (0,270s)
5 0,060s (0,010s) 0,140s (0,010s) 0,530s (0,020s) 4,400s (0,230s)
6 0,070s (0,010s) 0,150s (0,010s) 0,540s (0,010s) 4,530s (0,130s)
7 0,070s (0,000s) 0,160s (0,010s) 0,550s (0,010s) 4,570s (0,040s)
8 0,070s (0,000s) 0,170s (0,010s) 0,560s (0,010s) 4,600s (0,030s)
9 0,180s (0,010s) 0,570s (0,010s) 4,610s (0,010s)
10 0,180s (0,000s) 0,580s (0,010s) 4,630s (0,020s)
11 0,590s (0,010s) 4,660s (0,030s)
12 0,600s (0,010s) 4,670s (0,010s)
13 0,610s (0,010s) 4,680s (0,010s)
14 0,620s (0,010s) 4,700s (0,020s)
15 0,620s (0,000s) 4,710s (0,010s)
16 4,720s (0,010s)
17 4,730s (0,010s)
18 4,740s (0,010s)
19 4,750s (0,010s)
20 4,760s (0,010s)
21 4,760s (0,000s)

Table 3: Bottom-up construction times of 2D combinatorial pyramids. For
each pyramid and level the time is given as the accumulated total construc-
tion time up to this level and as the time for each level alone.

level 5× 5× 5 10× 10× 10 20× 20× 20 40× 40× 40

0 0,094s (0,094s) 0,578s (0,578s) 4,766s (4,766s) 37,812s (37,812s)
1 0,125s (0,031s) 0,828s (0,250s) 7,125s (2,359s) 57,578s (19,766s)
2 0,140s (0,015s) 0,968s (0,140s) 8,281s (1,156s) 69,734s (12,156s)
3 0,156s (0,016s) 1,062s (0,094s) 8,906s (0,625s) 76,625s (6,891s)
4 0,156s (0,000s) 1,125s (0,063s) 9,359s (0,453s) 80,187s (3,562s)
5 0,156s (0,000s) 1,140s (0,015s) 9,609s (0,250s) 82,265s (2,078s)
6 0,156s (0,000s) 1,140s (0,000s) 9,656s (0,047s) 83,343s (1,078s)
7 0,156s (0,000s) 1,140s (0,000s) 9,687s (0,031s) 83,843s (0,500s)
8 0,156s (0,000s) 1,140s (0,000s) 9,702s (0,015s) 84,093s (0,250s)
9 0,156s (0,000s) 1,140s (0,000s) 9,702s (0,000s) 84,218s (0,125s)
10 9,702s (0,000s) 84,296s (0,078s)
11 9,702s (0,000s) 84,359s (0,063s)
12 9,702s (0,000s) 84,374s (0,015s)
13 9,702s (0,000s) 84,405s (0,031s)
14 9,702s (0,000s) 84,421s (0,016s)
15 84,421s (0,000s)
16 84,421s (0,000s)
17 84,421s (0,000s)

Table 4: Bottom-up construction times of 3D combinatorial pyramids. For
each pyramid and level the time is given as the accumulated total construc-
tion time up to this level and as the time for each level alone.
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Figure 6: Bottom-up construction times (given in seconds) for 2D (a) and
3D (b) combinatorial pyramids with initial maps of different sizes.
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level 11× 11 32× 32 89× 89 253× 253

0 1.996 (1.996) 2.924 (2.924) 9.560 (9.560) 58.994 (58.994)
1 2.016 (20) 3.200 (276) 11.876 (2.316) 77.504 (18.510)
2 2.044 (28) 3.380 (180) 13.548 (1.672) 90.584 (13.080)
3 2.060 (16) 3.520 (140) 14.652 (1.104) 99.548 (8.964)
4 2.068 (8) 3.564 (44) 15.228 (576) 102.940 (3.392)
5 2.068 (0) 3.580 (16) 15.396 (168) 104.996 (2.056)
6 2.072 (4) 3.596 (16) 15.504 (108) 106.308 (1.312)
7 2.072 (0) 3.612 (16) 15.592 (88) 107.228 (920)
8 2.072 (0) 3.624 (12) 15.668 (76) 107.776 (548)
9 3.632 (8) 15.740 (72) 108.296 (520)
10 3.632 (0) 15.804 (64) 108.816 (520)
11 15.868 (64) 109.336 (520)
12 15.936 (68) 109.856 (520)
13 16.000 (64) 110.368 (512)
14 16.064 (64) 110.884 (516)
15 16.064 (0) 111.392 (508)
16 111.904 (512)
17 112.420 (516)
18 112.932 (512)
19 113.444 (512)
20 113.956 (512)
21 113.956 (0)

Table 5: Memory (specified in kilobytes) allocated by 2D pyramids.

level 5× 5× 5 10× 10× 10 20× 20× 20 40× 40× 40

0 1.356 (1.356) 5.640 (5.640) 29.720 (29.720) 192.640 (192.640)
1 2.004 (648) 9.820 (4.180) 52.944 (23.224) 351.660 (159.020)
2 2.372 (368) 10.728 (908) 66.980 (14.036) 449.256 (97.596)
3 2.628 (256) 12.156 (1.428) 77.356 (10.376) 518.000 (68.744)
4 2.728 (100) 12.584 (428) 85.148 (7.792) 574.056 (56.056)
5 2.768 (40) 12.864 (280) 87.448 (2.300) 589.832 (15.776)
6 2.788 (20) 13.004 (140) 88.616 (1.168) 599.724 (9.892)
7 2.808 (20) 13.108 (104) 89.596 (980) 606.512 (6.788)
8 2.828 (20) 13.200 (92) 90.340 (744) 611.632 (5.120)
9 2.848 (20) 13.268 (68) 90.868 (528) 615.908 (4.276)
10 91.396 (528) 619.696 (3.788)
11 91.920 (524) 623.408 (3.712)
12 92.444 (524) 627.040 (3.632)
13 92.964 (520) 630.628 (3.588)
14 93.488 (524) 634.192 (3.564)
15 637.760 (3.568)
16 641.328 (3.568)
17 644.896 (3.568)

Table 6: Memory (specified in kilobytes) allocated by 3D pyramids.
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6 Conclusion and Outlook

In this technical report, COMA is presented. COMA is a C++ library with
the goal of providing an efficient framework for implementing software that
uses combinatorial maps. For this purpose an object oriented architecture
has been designed, that encapsulates the different functionalities needed by
such programs. This architecture is explained and it is shown that only
few classes must be adapted when new functionalities are introduced, like
adding a new set of permutations, supporting new input or output formats
or implementing a new algorithm. Additionally a comprehensive overview
of each class within COMA is provided, demonstrating the purpose of each
class and giving examples for using each class.

To demonstrate the capabilities COMA provides for the task of program-
ming a new algorithm, an example algorithm implemented with COMA is
presented. It is shown that only two classes of the framework must be ex-
tended in order to build an algorithm with COMA, and that the complexity
of the combinatorial maps itself is completely transparent to the algorithm.

Finally experimental results based in a connected component algorithm
that was implemented using COMA are presented. It is shown, that this
algorithm works for different sets of permutations and dimensionality of the
input data without having to change the source code. Performance mea-
surements in terms of bottom up construction times as well as allocated
memory are presented for 2D and 3D combinatorial pyramids built with this
algorithm. These numbers demonstrate, that the performance is mainly de-
pendent on the number of darts and the number of permutations used for a
specific model of combinatorial maps.

The examples and experiments show, that COMA can be used to set up
new experiments using different permutations, operations or algorithms in a
fast and efficient way, thus speeding up the process of verifying theoretical
results in this field. Further they show, that algorithms that do not use the
permutations of a combinatorial map directly, will work on any model of
combinatorial map. Therefore COMA allows to compare different models
and operations directly, by invoking the same algorithm for each model.

The measured performance during the experiments also indicates, that
COMA in its current version has high demands regarding processing time and
memory allocation (e.g. using 645 megabytes of memory and 84 seconds to
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construct a combinatorial pyramid for an initial 40×40×40 3D combinatorial
map). While this is sufficient for scientific experiments, it might be too high
for real-time applications. Future work based on these results will therefore
include optimizing COMA. This will include using parallel computing as well
as using prebuilt maps to accelerate building the initial grid-like maps that
are the dominating factor of the total construction time.
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A Combinatorial Maps

This appendix contains details of combinatorial maps used in this technical
report. The set of darts D is given as well as the permutations.

A.1 Darts and Permutations of G1

Details of G1:

D = { 16, 17, -3, 3, 18, 19, -16, -5, 5, 20, 21, -18, -7, 7, 22, 23, -20, -9, 9,
24, -24, 25, -22, 30, 31, -28, 28, -17, 32, 33, -30, -19, 34, 35, -32, -21, 36, 37,
-34, -23, 38, -38, 39, -36, -25, 44, 45, -42, 42, -31, 46, 47, -44, -33, 48, 49, -46,
-35, 50, 51, -48, -37, 52, -52, 53, -50, -39, 58, 59, -56, 56, -45, 60, 61, -58, -47,
62, 63, -60, -49, 64, 65, -62, -51, 66, -66, 67, -64, -53, 72, -70, 70, -59, 74, 75,
-75, -72, -61, 76, 77, -77, -74, -63, 78, 79, -79, -76, -65, 81, -81, -78, -67 }

α : {-81 81}, {3 -3}, {5 -5}, {7 -7}, {9 -9}, {-24 24}, {28 -28}, {-38 38},
{42 -42}, {-52 52}, {56 -56}, {-66 66}, {70 -70}, {-75 75}, {-77 77}, {-79
79}, {16 -16}, {17 -17}, {18 -18}, {19 -19}, {20 -20}, {21 -21}, {22 -22}, {23
-23}, {25 -25}, {30 -30}, {31 -31}, {32 -32}, {33 -33}, {34 -34}, {35 -35},
{36 -36}, {37 -37}, {39 -39}, {44 -44}, {45 -45}, {46 -46}, {47 -47}, {48
-48}, {49 -49}, {50 -50}, {51 -51}, {53 -53}, {58 -58}, {59 -59}, {60 -60},
{61 -61}, {62 -62}, {63 -63}, {64 -64}, {65 -65}, {67 -67}, {72 -72}, {74 -74},
{76 -76}, {78 -78}

σ : {-81 3 5 7 9 -24 28 -38 42 -52 56 -66 70 -75 -77 -79}, {16 17 -3}, {18 19
-16 -5}, {20 21 -18 -7}, {22 23 -20 -9}, {24 25 -22}, {30 31 -28 -17}, {32 33
-30 -19}, {34 35 -32 -21}, {36 37 -34 -23}, {38 39 -36 -25}, {44 45 -42 -31},
{46 47 -44 -33}, {48 49 -46 -35}, {50 51 -48 -37}, {52 53 -50 -39}, {58 59 -56
-45}, {60 61 -58 -47}, {62 63 -60 -49}, {64 65 -62 -51}, {66 67 -64 -53}, {72
-70 -59}, {74 75 -72 -61}, {76 77 -74 -63}, {78 79 -76 -65}, {81 -78 -67}
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A.2 Darts and Permutations of G2

Details of G1:

D = { 17, 3, 18, 19, -5, 21, -18, 7, 22, -9, -24, -22, 30, -28, -17, 32, 33,
-30, -19, 35, -32, 36, 37, -23, 38, 39, -36, 44, 45, 42, 47, -44, -33, 48, 49, -35,
51, -48, -37, 52, -52, 53, -39, 58, -56, -45, 60, 61, -58, -47, -60, -49, -62, -51,
-66, -64, -53, 72, 70, 74, 75, -75, -72, -61, 76, 77, -77, -74, 78, 79, -79, 81 }

α : {17 -17}, {3 -5}, {18 -18}, {19 -19}, {21 -23}, {7 -9}, {22 -22}, {-24
38}, {30 -30}, {-28 42}, {32 -32}, {33 -33}, {35 -35}, {36 -36}, {37 -37}, {39
-39}, {44 -44}, {45 -45}, {47 -47}, {48 -48}, {49 -49}, {51 -51}, {52 -52},
{53 -53}, {58 -58}, {-56 70}, {60 -60}, {61 -61}, {-62 76}, {-66 81}, {-64
78}, {72 -72}, {74 -74}, {75 -75}, {77 -77}, {79 -79}

σ : {17 18 19 -5}, {3 7 -24 42 -52 -66 70 -75 -77 -79}, {21 -18 22 -9}, {-22
38 39 -36}, {30 -28 -17 44 45}, {32 33 -30 -19}, {35 -32 36 37 -23}, {47 -44
-33 48 49 -35}, {51 -48 -37 52 53 -39}, {58 -56 -45 72}, {60 61 -58 -47}, {-60
-49 76 77 -74}, {-62 -51 78 79}, {-64 -53 81}, {74 75 -72 -61}
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