
PRIP-TR-107
The eccentricity transform

(computation)

Thomas Flanitzer

Institute of
Computer Aided Automation

Pattern
Recognition &
Image
Processing

Group

Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/183-2
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: e0300286@student.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-107 July 26, 2006

The eccentricity transform (computation)1

Thomas Flanitzer

Abstract

The eccentricity of a vertex is the longest shortest distance to any other vertex in a graph.
We introduce the eccentricity transform which calculates the eccentricity for every point in
a graph. Applied to digital images it offers some interesting properties including invariance
to articulated motion and robustness whith respect to salt & pepper noise. Applied to
graphs with an embedding it can be used for boundary determination. Its characteristics
make it a good candidate for supporting or even replacing the distance transform as a basic
tool in many feature extraction tasks (e.g. shape description). This report focuses on the
computation of the eccentricity transform and explains implementation approaches.

1Thanks to Prof. Walter G. Kropatsch, Adrian Ion and Yll Haxhimusa for their
guidance and support.

Figure 1: Instability of Skeletons derived by the distance transform with
respect to small changes on the boundary.

1 Introduction

Object recognition on a computer system is mainly possible by extracting
information about the objects presented on a digitised image. This can be
a form of “abstraction”, where essential features are extracted while unnec-
essary details are neglected. The extracted information can be color and
geometry based. One such property determined by the objects geometry is
shape which is examined by different shape analysis methods. Many of them
are based on the distance transform.

This opens many problems which are caused by the instability of the
distance transform e.g. with respect to small changes on the boundary of a
shape. An example of this is displayed in Figure 1.

The eccentricity transform is intended to provide additional shape based
information, which could be used to overcome these problems. Being robust
against various types of noise (e.g. salt & pepper), it could be combined
with or even replace the distance transform as a basic tool in several feature
extraction tasks (e.g. shape description and matching).

Our work consisted of making the eccentricity transform practically us-
able. An efficient algorithm was developed and finally implemented in form
of a MATLAB toolbox.

1.1 State of the Art

Given a grid metric (d : Z2 → Z), the distance transform [1, 5] associates
to every pixel of a shape the smallest distance to a pixel on the boundary
of this shape. Given a binary shape S ⊂ Z2 (ones define the shape, zeros
the background) with p being a pixel of this shape, the distance transform
is defined as follows:

dt(p) = min{d(p, q) : q ∈ S}

Algorithmically, the distance transform can be determined efficiently us-
ing a two pass algorithm [1, 5].

1

Figure 2: Eccentricity of a graph

Based on the distance transform it is possible to calculate the medial axis
transform (MAT) [5, 1] or also called the distance skeleton [2]. The MAT
consists of all centers of maximum disks which can be inscribed in the given
shape. For each center, it contains the radius of the disk. Given a MAT it is
possible to exactly reconstruct the original shape if necessary.

A similar abstraction of shapes is the skeleton [2, 8], which is generally
determined by thinning algorithms. For the same shape its form is identical
to the medial axis. But in contrast it provides no further information of the
points as it is only binary. Therefore the skeleton is a very compact repre-
sentation of a shape which preserves many of the topological and proportion
characteristics of the original shape.

Shock graphs [7] are an example of an even further abstraction of shapes.
They represent skeletons as directed, acyclic graphs using 4 types of shocks
to describe the singularities.

2 Definition of the eccentricity transform

Defined for Graphs in [3], the eccentricity ecc(u) of a given node u in a Graph
G(V, E) is

ecc(u) = max {d(u, v) : v ∈ V }. (1)

The eccentricity of a point is the shortest distance to the point in the
graph, which is the farthest away.

The eccentricity transform of a graph is determined by calculating the
eccentricity for every node. An example for the eccentricity transform of a
graph is illustrated in Figure 2.

Applied to two-dimensional binary shapes, the nodes in the graph are
associated to pixels and the distance between them is determined by the se-

2

(a) Shape (b) 4-nb (c) 8-nb

Figure 3: Isoheight lines for the eccentricity transform of a simple shape (a)
with city-block (b) and chessboard metric (c). Where continuous, lighter
means higher value.

lected metric. Important to mention is that the distance is always calculated
using only pixels which are situated inside the shape. An example of the
eccentricity of a shape using the city-block and the chessboard metric can be
seen in Figure 3.

3 Properties

Diameter The maximum value of the eccentricity transform of a shape is
the diameter of this shape.

Center The eccentricity transform produces a distance value for every ver-
tex. The vertices with the minimum value therefore have the smallest dis-
tance to any eccentric vertex. These are called the center of the graph. The
center of a discrete region is always a part of this region.

Robustness The eccentricity transform is robust with respect to (salt and
pepper) noise. As long as the connectivity of the shape is not broken, if single
vertices change, all the paths which would cross these vertices just go around
them. This makes the eccentricity values only a little bit larger. Additionally
in the case of discrete metrics (like 4- and 8-connectivity), there is a rather
high probability that there are several paths with the same shortest length
(see next property). In such cases the eccentricity is only affected if all
shortest paths between a vertex and its farthest vertex are disturbed.

3

Figure 4: In the discrete space space with 4-connectivity there can be more
than one shortest paths between two points (the points of interest are black,
the centers of the paths between them are gray).

4-connectivity In the discrete space with 4-connectivity, the shortest path
between two points is a series of steps along the two coordinate axes. Any
permutation of these steps is also a shortest path. An example of this is
illustrated in Figure 4. This fact increases the robustness of the eccentricity
transform but has also two other consequences:

1. There is not a single midpoint between the two endpoints making the
center of an elongated region a diagonal line. In fact the length of the
line between the two end points is as long as the smaller coordinate
differences of the two end points.

2. Since the number of midpoints depends on the angle of the discrete line
the resulting centers are no more rotationally invariant (which they are
in the Euclidean case).

Maxima are all on the boundary Any bounded region has a boundary
which separates it from the background. The background can be considered
as the complement of the region with respect to the embedding space.

Boundary determination Because the maxima are only on the boundary,
the vertices that make up the boundary do not have to be known a priori
like in the distance transform. Instead the eccentricity transform can start
on any vertex in the region and will reach the boundary only at its maximum
values. In this case the image edges are used as the stopping criterion rather
than the initial condition.

Complementarity between distance transform and eccentricity trans-
form In the distance transform the smallest values are on the boundary of
a shape. The highest values lie in the center, their local maxima are the cen-
ters of maximum disks. These centers can be used to determine a skeleton or

4

MAT. The eccentricity transform in contrast has the highest values on the
boundary and the minimum defines the center.

Invariance As stated earlier, the eccentricity transform calculates dis-
tances only inside a given region. This makes it invariant to any translation.
For the Euclidean metric it is also invariant to rotation. In the discrete space
this is not the case because the length of a path following an imaginary line
varies with changing orientation. It is also robust with respect to articulated
motion of thin regions.

4 Computation

4.1 Naive Approach

The naive way to get the eccentricity of a shape, is to determine the max-
imum path that can be drawn for every point inside the shape. We have
implemented this algorithm to get a feeling of the values produced by the
eccentricity transform and to validate later results produced by an optimized
algorithm. It relies on the function bwspdist which calculates the distance
transform of a single point, using the specified metric. It is described in
Algorithm 1.

Input: Shape S, Vertex p, Connectivity C
Result: Single point distance transform D
set D to zero;1

N := boundary of p with connectivity C;2

repeat3

D(N) := i;4

i := i + 1;5

N := boundary of D with connectivity C;6

until D contains all vertices of S ;7

Algorithm 1: function bwspdist(S, p, C)

An implementation of this function, which is based on morphological
operations, can be found in appendix B.1.

Using this function, the eccentricity can be determined rather easily, Al-
gorithm 2 shows a pseudo code description.

The complexity of the naive algorithm is O(| V |3). The function bwspdist
could be replaced by Dijkstra’s algorithm [3] for solving the single source

5

Data: Shape S, Connectivity C
Result: Eccentricity transform E
for each point p of S do1

D = bwspdist(S, p, C);2

E(p) = max(D);3

end4

Algorithm 2: Naive algorithm

shortest path problem. It has a complexity of O(| V |2 log(| V |)). This
would result in a total complexity of O(| V || E | + | V |2 log(| V |)).

4.2 Optimized algorithm

The optimized algorithm also relies on the function bwspdist but uses it in a
more clever way by calculating it only for vertices which can generate new
results.

The first phase of the algorithm relies on the fact that by jumping from
one vertex to its most distant counterpart, a diameter’s end is found. It
is used by selecting an arbitrary vertex and determining the distance to all
other vertices of the shape. Then the maximum is selected for the next
iteration. The distance results of every iteration are merged using the max
operation. It can be proven that no more than 3 iterations are needed until
the result converges. For some simple shapes the result up to here is already
the eccentricity transform.

An example why this is not the final result in all cases is illustrated in
Figure 5. It is possible that some eccentric vertices are not taken into account.

To overcome this problem the algorithm performs some additional steps.
Because of the fact that the minima of the eccentricity transform make up
the center and the previous steps calculated the eccentricity along a diameter
of the shape, the minimum of the current result should already be a good
approximation of the center. The advantage is that from the center all ec-
centric points are easily detectable. If the distances from the center to all the
other points gets calculated, the diameter endpoints are the local maxima of
the result.

Due to some properties of the discrete space, there can be multiple short-
est paths between two points and the center at this stage can consist of a set
of points (see Fig. 4). So what is done is that an arbitrary point of the center
is selected. Then the local maxima of the result are determined, which yields
a set of points which might not have been taken into account in the previous
iterations. They get analyzed by calculating the distances to all the other

6

�
�

�
�

�
�

�
�

��

Z
Z

Z
Z

Z
Z

Z
Z

ZZ �
�

�
�

�
�

�
�

��

Z
Z

Z
Z

Z
Z

Z
Z

ZZt

t

t

t

A

B

C

D

-�

6

?

a

b

a > b > AB

Figure 5: Some eccentric vertices may not be taken into account in the first
steps of the algorithm. If the algorithm starts at point A, it will find C as
the most distant point. Using C in the next iteration it will again find A and
the algorithm converges although all vertices whose eccentric point is not A
or C do not have the correct eccentricity value assigned.

points and the results are merged with the already determined values. Then
again a point of the minima is selected and the whole procedure is repeated
until the result converges. The result after that is the eccentricity transform.

A pseudo code description is shown in Algorithm 3. The optimized al-
gorithm is much faster than the naive approach but can be proven to give
correct results only on simply connected shapes (no holes).

4.3 Dead ends

Initial algorithm version The first versions of the algorithm included
only the first phase of the algorithm (Algorithm 3 line 1-8). A very simple
example shape where this does not work is a 3x3 square. See Figure 6 for the
iterations of such a shape. We tried to fix this issue by masking the points
that have already been calculated. This version produced correct results for
the 3x3 square but still did not work for other shapes (e.g. every rectangle
bigger than 3x3).

Points with less than 3 neighbors Another approach we have tried was
to select all points of a shape which have less than 3 neighbors and then
calculate the distances to all the other points. We had this idea because the

7

Data: Shape S, Connectivity C, Minima selection method msm
Result: Eccentricity transform E
Select an arbitrary vertex p of S;1

repeat2

D := bwspdist(S, p, C);3

h := max(D);4

E := max(D, E, h−D);5

mark p as visited;6

p := vertex with maximum value in E;7

until E not changed ;8

/* first convergence */

repeat9

M := one arbitrary or all unvisited vertices with minimum of E;10

for each unvisited m of M do11

D := bwspdist(S, m, C);12

E := max(D, E);13

mark p as visited;14

end15

L := all local maxima of E;16

for each unvisited l of L do17

D := bwspdist(S, l, C);18

E := max(D, E);19

mark p as visited;20

end21

until E not changed ;22

/* final convergence */

Algorithm 3: Optimized algorithm

4 3 2
3 2 3
2 3 4

(a) First Iter-
ation

4 3 2
3 2 3
2 3 4

(b) Second It-
eration, con-
vergence

4 3 4
3 2 3
4 3 4

(c) Correct
result

Figure 6: The iterations until the first convergence for a 3x3 square. The
used vertex in each iteration is shown bold.

8

diameter endpoints in a discrete metric with 4-connectivity always have less
than 3 neighbors. Otherwise there is always a point that is farther away
which would yield to a longer diameter. This approach did indeed work at
least for 4-connectivity. But it was not very general and with some shapes
it caused a lot of redundant calculations. It also did not perform any better
than the optimized algorithm on not simply connected shapes.

Not simply connected shapes We have encountered that the optimized
algorithm does not always produce the correct result for shapes which have
holes and therefore are not simply connected. More specifically the problem
occurs when the center points are not connected. Among other things, we
tried to take all minima into account for finding diameter endpoints. This
produced results which were more similar to the correct ones but still not
equal. Therefore the algorithm at its current state is only applicable to
simply connected shapes.

No first algorithm phase It should be noticed that a slight modification
of the optimized algorithm would also work without the first phase. This has
been tried during the development of the algorithm.

Although this approach is more simple, experiments showed that it is
slower than the optimized algorithm.

5 Implementation

The described algorithm was implemented in MATLAB 7, the source code
can be found in Appendix B. The function bwexc which implements the
eccentricity transform was intended to be similar in use to bwspdist of the
Image Processing Toolkit which implements the distance transform.

In the following, some implementation specific details are explained.

Minima selection method Several ways to select minima were imple-
mented. These included the selection of one arbitrary minimum, one random
minimum and all minima. The selection of all minima was especially imple-
mented as an attempt to overcome the production of incorrect results with
not simply connected regions (but which turned out not to solve the prob-
lem). However, the three selection methods are still in the implementation
and can be selected by a function parameter. As default an arbitrary min-
imum is selected which is implemented by simply taking the first minimum
of the vector returned by Matlab.

9

Don’t visit again Due to the functionality of the algorithm it is likely that
points are selected multiple times to calculate the distances to all the other
points. But this would in any case just be a waste of time because all results
are merged anyway (using max) and therefore recalculating cannot change
the results. For this reason a mask matrix is managed to disable points when
they get analyzed. Multiple calculation of the same data is avoided.

5.1 Room for improvements

A major issue with the current implementation is its low performance. Com-
pared to the distance transform of the MATLAB Image Processing Toolbox
it is very slow. To get an impression, on an AMD Athlon64 3000+ with
512 MB RAM it takes about 9 milliseconds to calculate the distance trans-
form of the hand picture (129x129) which was used in the experiments. The
eccentricity transform takes almost 12 seconds.

The main performance bottleneck is the function bwspdist which gets
called very often and takes up most of the processing time. When calculating
the hand picture, bwexc gets called 64 times and is active for 98% of the
processing time. The overall performance of the algorithm could be greatly
improved if this function was optimized.

6 Experiments

As a basis for the experiments we used the Kimia database [7]. As the library
is quite big (137 images) and the processing time of the eccentricity transform
is rather high, we used only a subset containing 10 images for most of the
experiments. Each image of this subset is chosen to represent a typical type
of shapes.

Because the properties of the invariance, with respect to articulated mo-
tion, were also to be tested, we selected another subset containing 10 images
of a human hand in various positions.

Finally to test the correctness of the algorithm we also created a set of
“problem” shapes. These are shapes which are not simply connected (see
Appendix A.4). The optimised algorithm still fails to correctly determine
the eccentricity transform of most of them.

In the following, some details of the experiments are explained.

10

6.1 Noise robustness comparison to the distance trans-
form

We compared the robustness of the distance and eccentricity transform with
respect to noise. We used two kinds of noise: Random salt & pepper noise and
circumcision to simulate common segmentation errors. A table containing the
results can be found in Appendix A.2.

As stated earlier, the eccentricity transform is very robust with respect
to salt & pepper noise and in this case clearly outperforms the distance
transform.

Looking at the results using the circumcised sets, it can be stated gener-
ally that the eccentricity is robust to circumcision as long as the diameter of
the shape is not affected. In this case there is no difference to the results pro-
duced using the original shapes. If the diameter is affected the eccentricity
produces rather high error rates proportional to the diameter length change.

6.2 Invariance with respect to articulated motion tested
using the hands subset

In this experiment the eccentricity transform of the images of the hands set
was calculated. In the results, the minima are marked with red dots, the
local maxima with green dots. The results are illustrated in Appendix A.1.
It can be noticed that the position of these dots on the shape roughly stays
the same even when the fingers are bent or the hand is rotated.

6.3 Minima selection compared

We made an experiment which calculates the eccentricity transform for ev-
ery image with all given minima selection methods. The outputs are then
compared to reference results determined by the naive algorithm.

As expected, for simply connected shapes there was no difference to the
results determined by the naive algorithm for none of the minima selection
methods. On the basis of this fact it is sustainable to use the minima selec-
tion method with the lowest computational complexity which is the “any”-
method.

To test how well the results for not simply connected shapes approximate
the correct ones we compared these with respect to the root mean square
error (RMSE), maximum deviation and correlation of the local maxima. The
results of this experiment can be found in Appendix A.4. It is interesting
that for not simply connected shapes the “all” minima selection method does

11

not always produce the best results. Surprisingly, the “any” and “random”
method often produce results which are closer to the reference.

6.4 Correlation experiments with circumcised shapes

The values of the eccentricity transform in a discrete metric change when the
shape is rotated, circumcised, scaled or affected by noise. But the position of
the local maxima roughly stays the same. So the position of the local maxima
and the relation between them is an interesting descriptor for a shape.

To test this kind of invariance we used an experiment where the eccen-
tricity transform is calculated for a shape with and without noise. Then the
local maxima of both results and the correlation between them are deter-
mined. This was done using random salt & pepper noise and circumcision
as noise.

The correlation results, which can be found in Appendix A.3, look very
promising. Even when the original shapes are circumcised radically, the
correlation roughly drops below 0.8.

6.5 Development of eccentricity transform results with
respect to increasing salt & pepper noise

Earlier experiments showed that the eccentricity transform is stable with
respect to 5% salt & pepper noise. In this experiment we measured how our
optimized algorithm develops when the noise is increasing. In Appendix A.5
the RMSE, the maximum deviation and the local maxima correlation are
drawn over the noise level for three different shapes. The results were also
determined for each minima selection method.

The results show that the RMSE develops rather linear for compact
shapes like the car. It is more subject to fluctuations if the shape is less
compact.

The maximum deviation always rises very early to a high level where it
remains rather constant. This happens because single vertices get cut out
of the shape, which very likely happens on the boundary. The eccentricity
value then drops to zero which results in a high deviation.

The correlation of the local maxima seems to be not so stable against
increasing salt & pepper noise.

12

7 Conclusion

The eccentricity transform applies to every pixel of a shape the length of
the longest shortest path to any other pixel of the shape. Its robustness
with respect to salt & pepper noise and minor segmentation errors has been
tested and verified. It was especially compared to the distance transform and
has shown to be more stable in many cases. Besides its general robustness,
the local maxima of the resulting values also offer some interesting proper-
ties. Their positions relative to the shape are highly invariant to articulated
motion and rotation which might be of use for shape description.

An efficient algorithm was developed and implemented in MATLAB. It
works much faster than the naive algorithm and gives correct results on
simply connected shapes. It does not always work on not simply connected
shapes, but it has been shown that it gives at least a good approximation of
the correct results.

References

[1] Reinhard Klette, Azriel Rosenfeld: Digital Geometry, Morgan Kauf-
mann Publishers Inc, US, 2004

[2] Gisela Klette: Skeletons in Image Processing, CITR-TR-112, CITR
Tamaki, University of Auckland, 2002

[3] Fred Buckley, Frank Harary: Distance in Graphs, Perseus Books (Sd)
(January, 1990)

[4] Remco C. Veltkamp, Michiel Hagedoorn: State-of-the-Art in Shape
Matching, Utrecht University, Department of Computing Science

[5] Robert M. Haralick, Linda G. Shapiro: Computer and Robot Vision,
Addison-Wesley Publishing Company, 1992

[6] Axel Pinz: Bildverstehen, Springer Verlag Wien New York, 1994

[7] Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson, Steven W. Zucker:
Shock Graphs and Shape Matching, International Journal of Computer
Vision, 30, 1999

[8] Milan Sonka, Vaclav Hlavac, Roger Boyle: Image Processing, Analysis
and Machine Vision, Chapman & Hall Computing, 1993

13

A Experiments

Abbreviations used in the description of the experiments

• RMSE . . . Root mean square error

• max.dev . . .Maximum deviation

• cor . . . Correlation

A.1 Eccentricity transform of human hand images

The green dots mark the local maxima, the red dots the minima.

4-connectivity

8-connectivity

14

A.2 Noise robustness comparison between DT and Ecc

For this experiment only 4-connectivity was used. RMSE and max.dev give
a comparison to the results without noise.

Original shapes

Salt & Pepper Noise (5%)
dt RMSE 15.83 6.27 3.58 8.48 6.84 3.36 5.51 2.79 4.33 0.42

max.dev 43 17 10 30 24 14 15 11 15 4
ecc RMSE 0.03 0.24 1.48 0.05 0.19 1.55 0.09 1.77 0.10 0.56

max.dev 2 2 4 2 2 4 2 6 2 6
Circumcised shapes I

dt RMSE 2.51 1.33 0.46 1.01 0.36 1.77 0.98 0.35 2.71 0.04
max.dev 19 8 5 7 6 11 8 5 8 1

ecc RMSE 10.96 0.00 0.00 0.00 0.00 0.00 5.38 0.00 0.00 0.00
max.dev 16 0 0 0 0 0 13 0 0 0

Circumcised shapes II

dt RMSE 8.01 0.35 0.90 0.66 2.35 0.80 2.15 0.62 0.30 0.04
max.dev 35 4 10 6 14 8 12 9 5 1

ecc RMSE 27.41 49.17 71.86 0.06 30.07 36.82 8.85 21.90 53.73 26.70
max.dev 38 64 83 2 42 64 24 46 63 36

A.3 Correlation of the local maxima between the ec-
centricity transform of a shape and its circumcised
equivalent

The correlation values shown have been calculated between the results using
the circumcised and the original shapes.

Original shapes

15

Circumcised shapes I

4-nb. 0.73 1.00 1.00 0.96 0.96 1.00 0.77 1.00 1.00 0.95
8-nb. 0.93 1.00 0.72 0.97 1.00 0.82 1.00 1.00 1.00 0.98

Circumcised shapes II

4-nb. 0.71 0.79 0.97 0.96 0.89 0.97 0.71 0.98 0.87 0.92
8-nb 0.48 0.45 0.90 0.96 0.72 0.65 0.98 0.97 0.73 0.98

A.4 Similarity of the results of the optimized algo-
rithm to the correct results using all different min-
ima selection methods

The values show the difference to the results determined by the naive algo-
rithm.

4-connectivity
all RMSE 0.00 0.11 0.33 0.00 0.38 0.24

max.Dev 0.00 1.00 1.00 0.00 1.00 1.00
corr 1.00 1.00 0.71 1.00 0.84 0.96

random RMSE 0.12 0.11 0.33 0.00 0.57 0.34
max.Dev 1.00 1.00 1.00 0.00 2.00 1.00
corr 1.00 1.00 0.71 1.00 0.73 0.92

any RMSE 0.12 0.14 0.23 0.00 0.66 0.36
max.Dev 1.00 1.00 1.00 0.00 2.00 1.00
corr 1.00 1.00 0.87 1.00 0.72 0.89

8-connectivity
all RMSE 19.00 18.84 9.47 15.41 18.83 15.53

max.Dev 25.00 25.00 12.00 19.00 21.00 21.00
corr 0.58 0.62 1.00 1.00 1.00 0.89

16

random RMSE 19.00 18.84 9.47 15.41 18.93 15.71
max.Dev 25.00 25.00 12.00 19.00 22.00 22.00
corr 0.58 0.62 1.00 1.00 0.86 0.78

any RMSE 19.00 18.84 9.47 15.41 19.10 15.58
max.Dev 25.00 25.00 12.00 19.00 23.00 21.00
corr 0.58 0.62 1.00 1.00 0.79 0.87

A.5 Development of eccentricity transform results with
respect to increasing salt & pepper noise

The values show the difference to the results determined using the original
shape.

17

18

B Matlab Sourcecode

B.1 bwspdist.m

% Ecc en t r i c i t y (computation)
% −−
% Thomas F l an i t z e r <t . f lanitzer@gmx . at> e535 0300286
% Vers ion : 0 . 2 Date : 2 . 6 . 2006
% −−
% Sing l e Point Distance Transform
%%

func t i on D = bwspdist (S , p , CONN)

% check params
i f (narg in < 3 | | CONN == 4)

s e l = s t r e l (’ diamond ’ , 1) ;
e l s e i f (CONN == 8)

s e l = s t r e l (’ square ’ , 3) ;
end

% D same S i z e as S
D = ze ro s (s i z e (S)) ;

% s e t seed
D(p (1) ,p (2))=1;

% Continous ly d i l a t e the form
v = 1 ;
DL = D>0;
% p i x e l s to d i l a t e
toDi l = DL;

whi l e (t rue)
DB = imd i l a t e (toDi l , s e l) ;
% cut with the form
DBS = DB & S ;
% exc lude a l r eady d i l a t e d p i x e l s
DB = DBS & ˜DL;
% form f o r the next i t e r a t i o n
DL = DBS;
% d i l a t e only new p i x e l s
toDi l = DB;

19

% f ind new
B = f ind (DB) ;

% no new : end
i f isempty (B) , break , end ;

% s e t d i s t anc e value
D(B) = v ;
v = v+1;

end

% c l e a r seed
D(p (1) ,p (2))=0;

end

B.2 bwexc.m

% Ecc en t r i c i t y (computation)
% −−
% Thomas F l an i t z e r <t . f lanitzer@gmx . at> e535 0300286
% Vers ion : 0 . 1 Date : 2 . 6 . 2006
% −−
% BW Ecc en t r i c i t y
%%

func t i on E = bwexc (S , CONN, MINSELECT)

% DEBUG on/ o f f
DEBUG = 0 ;

% check params
i f (narg in < 2)

CONN = 4 ;
end

i f (narg in < 3)
MINSELECT = ’any ’ ;

end

S = ˜S ;

% DVA−mask
M = ones (s i z e (S)) ;

20

% e c c e n t r i c i t y matrix
E = ze ro s (s i z e (S)) ;

% s e l e c t f i r s t po int
shapePixe l s = f i nd (S) ;
[p (1) p (2)] = ind2sub (s i z e (S) , shapePixe l s (c e i l (rand (1) ∗

l ength (shapePixe l s)))) ;
% exc lude po int f o r f u r t h e r i t e r a t i o n s
M(p (1) ,p (2)) = 0 ;

% phase 1
i = 1 ;
whi l e (1)

EOLD = E;

D = bwspdist (S , p , CONN) ;
M(p (1) ,p (2)) = 0 ;

% f i nd next po int
m = max(D(:)) ;
[p (1) p (2)] = f i nd (D==m, 1 , ’ f i r s t ’) ;

% merge r e s u l t s with e c c e n t r i c i t y matrix
E = max(max(D, m−D) , E) ;
E = E.∗ double (S) ;

% i f convergence : end
i f (˜ i s e qu a l (E,EOLD))

cont inue ;
e l s e

break ;
end

end

i f (DEBUG)
img = 1 ;

end

whi le (1)
EOLD = E;

% f i nd minumum value

21

mi = min(E(f i nd (S))) ;

switch lower (MINSELECT)
case ’ a l l ’

mins = f i nd ((E.∗M)==mi) ;

case ’ any ’
mins = f i nd ((E.∗M)==mi , 1 , ’ f i r s t ’) ;

case ’ random ’
mins = f i nd ((E.∗M)==mi) ;
i f (l ength (mins) > 0)

mins = mins (c e i l (rand (1) ∗ l ength (mins))
) ;

end

otherwi se
e r r o r (’Unknown minimum−s e l e c t i o n method ’) ;

end

RMax = 0 ;
% use a l l s e l e c t e d minima
f o r i =1: l ength (mins)

% ca l c bwspdist o f a po int
[x (1) x (2)] = ind2sub (s i z e (S) , mins (i)) ;
Dmi = bwspdist (S , x , CONN) ;

% merge r e s u l t s with e c c e n t r i c i t y matrix
E = max(Dmi , E) ;
M(mins (i)) = 0 ;

% f i nd l o c a l maxima
RMax = RMax | imregionalmax (Dmi , CONN) ;

end

i f (DEBUG)
% DEBUG: show l o c a l maxima
subplot (3 , 3 , img) ;
imshow (S , []) ;
hold on ;
% DEBUG: show minima
[ry rx] = ind2sub (s i z e (S) , mins) ;
p l o t (rx , ry , ’m∗ ’) ;

22

end

% exc lude a l r eady v i s i t e d po in t s
RMax = RMax.∗M;
% determine remaining po in t s
rm = f ind (RMax) ;

i f (DEBUG)
% DEBUG: show l o c a l maxima (a l r eady v i s i t e d

excluded)
[ry rx] = ind2sub (s i z e (S) , f i nd (RMax)) ;
p l o t (rx , ry , ’ y ∗ ’) ;
img = img+1;

end

% proce s s po in t s
f o r i =1: l ength (rm)

[p (1) p (2)] = ind2sub (s i z e (S) , rm(i)) ;

% bwspdist o f cur rent po int
D = bwspdist (S , p , CONN) ;
M(p (1) ,p (2)) = 0 ;
m = max(D(:)) ;

% merge r e s u l t s with e c c e n t r i c i t y matrix
E = max(m−D, max(D, E)) ;
E = E.∗ double (S) ;

end

i f (˜ i s e qu a l (E, EOLD))
cont inue ;

e l s e
break ;

end

end % whi le

end

23

