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Abstract

Combinatorial maps and irregular pyramids based on combinatorial maps for 2D data have
been studied in great detail. It has been shown that this concept is advantageous for many
applications in the field of image processing and pattern recognition by providing means to
store information of the topological relation of the represented data. While the concept of
combinatorial maps has been defined for any dimension, most of the studies concentrated
on the representation of two dimensional data and only few results exist regarding higher
dimensions. This report studies the properties of combinatorial maps for 3D data. Espe-
cially collapsing an initial map of the volumetric data by applying contraction and removal
operations to produce a minimal representation while preserving the topological relations
is presented in this report. Formal conditions for applying these operations as well as the
minimal configurations of the topological relations found in volumetric data are presented
in this report and means for discriminating and identifying these minimal configurations
using pseudo elements are introduced.
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Chapter 1

Introduction

This technical report presents the diploma thesis “Minimal Combinatorial
Maps for analyzing 3D Data” [Illetschko, 2006].

Combinatorial pyramids are irregular pyramids where each level is repre-
sented by a combinatorial map, encoding a topological representation of the
processed data. Within the pyramid each level represents a reduction of the
level below, up to the top level which is the minimal topological equivalent
representation of the initial data. As such, the combinatorial pyramid is a hi-
erarchical stack of topological encodings that can be used to analyze an image
and sequences of images. In the past, it has been shown that this concept can
be advantageous in various fields of image processing e.g. the segmentation
of images [Grasset-Simon et al., 2005, Brun and Kropatsch, 1999b].

Instead of analyzing images solely based on the values represented by the
pixels of an image (like colors, contrast, shapes, etc.), it is often important
to know about the structure within the data. For example, an application
might need to distinguish between different parts of an object. These parts
of an object resemble the structure of the object. Such an application can
be helped by representing the relations of the regions within an image.

Another example would be an application that needs to distinguish be-
tween solid objects and objects that enclose other objects. In order to
do this, topological relations like adjacency, “contains” and “surrounds”
must be representable as well as the inside and outside of regions must be
known [Brun and Kropatsch, 2005].

The structure or topology of an object can be understood as the decompo-
sition of the object into its sub-objects and the description of their relations
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to each other. E.g. one way of representing the topology of a person would be
to describe a person as a set of six sub-objects and their relations - a head,
a torso, two arms and two legs. The person is further defined by a strict
relation between these sub-objects: the torso must be adjacent to the other
sub-objects, the head, the two arms and the two legs. In the field of image
analysis such sub-objects are equivalent with regions within the images.

A region can be defined as a (structured) set of pixels (2D) or voxels
(3D). A more general definition would be that of an abstract cellular complex
consisting of dimensions 0, 1, 2, 3 and a bounding relation. The topological
relations can then be described by the adjacency of these cells and their
bounding relations [Kovalevsky, 1989].

In the past, different models have been introduced to represent topological
relations. These models have different properties and few are capable of han-
dling data of any dimension. A comparison can be found in [Lienhardt, 1991].

Combinatorial maps encode any subdivision of nD topological spaces ori-
entable or non-orientable with or without boundaries. As such they have been
shown to be a suitable topological representation model for the field of 2D im-
age analysis [Brun and Kropatsch, 2000, Haxhimusa et al., 2005a]. 2D seg-
mentation algorithms [Felzenszwalb and Huttenlocher, 1998, Bor̊uvka, 1926]
have been successfully implemented and studied using combinatorial
maps [Haxhimusa et al., 2005b].

These examples have shown that combinatorial maps are a use-
ful framework for analyzing images. But even though combinatorial
maps are defined for any dimension [Lienhardt, 1989] and [Damiand, 2001,
Braquelaire et al., 2003] have presented suitable extensions to 3D, most stud-
ies so far have concentrated on 2D. One of the reasons for this is the fact
that combinatorial maps are computational expensive and resource intensive
compared to other methods.

For 2D combinatorial maps efficient operations have been defined to re-
duce the complexity of the initial maps [Kropatsch, 1995]. Using these opera-
tions irregular pyramids can be built, where each level is a reduced version of
the level below [Brun and Kropatsch, 1999b]. The top level of such a combi-
natorial map will represent the minimal topological equivalent representation
of the 2D data. Working with these minimal maps allows efficient processing
of the data while more details can be retrieved from the levels below when
needed [Brun and Kropatsch, 2003].

[Damiand, 2001] has presented a definition for 3D combinatorial maps as
well as methods of creating minimal maps using removal operations.

9



The goal of this report is to study the properties of 3D combinatorial maps
with a strong focus on minimal maps. For this purpose a combinatorial map
will be considered minimal if each connected component is represented by a
single vertex. Suitable contraction and removal operations are introduced to
reduce initial combinatorial maps to their minimal form. It will be shown,
that a minimal 3D combinatorial map can be obtained for any initial 3D
combinatorial map that does not contain a face self-loop.

Further minimal configurations with respect to the number of cells and
the operations introduced in this report are examined and the topological
relations presented therein are analyzed. Finally, methods for identifying the
topological relations and for distinguishing between them are presented.

An introduction to 2D combinatorial maps and combinatorial pyramids
together with the basic notions needed in the context is presented in chap-
ter 2. Chapter 3 recalls the extension of combinatorial maps to 3D defined
by [Damiand, 2001, Braquelaire et al., 2003].

The contraction and removal operations needed to reduce a 3D combina-
torial map to its minimal form are described in detail in chapter 4. Definitions
of these operations are presented as well as 10 conditions when these oper-
ations may be applied. The 10 conditions ensure that the result of these
operations is a valid combinatorial map and that the operations used to sim-
plify the maps will preserve adjacency and inclusion information as well as
the genus of the bounding surfaces.

Chapter 5 describes the process of building a 3D combinatorial pyramid
using the contraction and removal operations, starting from an initial map
representing the original data. Minimal maps, where each connected com-
ponent is represented by a single vertex, are discussed in chapter 6 and it
is shown that such minimal combinatorial maps can be obtained for any
3D combinatorial map that does not contain a face self-loop. Additionally
minimal configurations representing topological relations are examined and
methods identifying and discriminating between each of these topological
relations are presented.

Chapter 7 describes experimental results. A C++ program for 3D combi-
natorial maps has been created for this report implementing the operations
defined here. Representative configurations reduced using this C++ frame-
work are shown as well as some observations regarding the performance and
resource costs of 3D combinatorial pyramids built with this implementation.

Finally chapter 8 will present a discussion of the results and the conclu-
sions of this report together with an outlook.
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Chapter 2

Recall of Combinatorial Maps

Within this chapter the definition of a nD combinatorial map and definitions
for 2D combinatorial maps are recalled. In addition, basic operations needed
for building a combinatorial pyramid are defined as well as the concept of such
pyramids in the example of 2D combinatorial maps. A complete and detailed
definition of these concepts can by found in [Brun and Kropatsch, 1999b].

Combinatorial maps are a mathematical model of representation
of space subdivision in any dimension. They were introduced
by [Edmonds, 1960], at first as a planar graph representation model, and
extended by [Lienhardt, 1989] in dimension n to represent orientable or not-
orientable quasi-manifolds. Combinatorial maps encode space subdivisions
and all incidence relations [Damiand and Resch, 2002, Bertrand et al., 2000].

In dimension n a combinatorial map is a (n + 1)-tuple M =
(D, β1, β2, . . . , βn) such that D is the set of abstract elements called darts, β1

is a permutation on D and the other βi are involutions on D. An involution
is a permutation whose cycle has the length of two or less.

For combinatorial maps of dimension n there is more than one way of at-
tributing the permutations βi. When encoding the same configuration using
two different ways of attributing the permutations, the differences between
these two encodings are limited to the number of darts, the number of per-
mutations, and their meaning.
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2.1 2D Combinatorial Maps

Using the above definition, a 2D combinatorial map is defined by the triplet
M = (D, β1, β2). Two different sets of permutations are often found in
literature. Fig. 2.1 shows the encoding of simple 2D objects using these
different sets.

β2

β1

a) 2D shape b) combinatorial map

ϕ

σ

−dd

α

c) simplified representation d) combinatorial map

Figure 2.1: 2D combinatorial maps using different notations.

[Brun and Kropatsch, 1999a] define the combinatorial map by the triplet
G = (D, σ, α) where D represents the set of darts, σ is a permutation in
D connecting all darts encountered when turning clockwise around a vertex
and α is an involution connecting 2 darts belonging to the same edge (see
Fig. 2.1d).

Notation 2.1 Let D be a set of darts, and let βi be a permutation on D.
Applying βi n times on a dart d ∈ D will be denoted βn

i (d).

βn
i (d) = βi(βi(. . . βi(

︸ ︷︷ ︸

n−times

d) . . .))
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Definition 1 (Vertex Model of a 2D Combinatorial Map) The vertex
model is a combinatorial map G given by the triplet G = (D, σ, α), where D
is a set called the set of darts and σ, α are two permutations defined on D
such that α is an involution:

∀d ∈ D α2(d) = d

As such the vertex model of a 2D combinatorial map can be understood
as a particular encoding of a planar graph, where each edge is split into
2 half-edges represented by the darts and connected by the α involution.
Additionally the orientation of edges around a vertex is encoded by the per-
mutation σ.

A similar definition is used by [Damiand, 2001] that will be called the
“face model” in this report.

Definition 2 (Face Model of a 2D Combinatorial Map) The face
model is a combinatorial map G given by the triplet G = (D, β1, β2)) where
D represents the set of darts, β1 is a permutation of the darts belonging to
the same face and β2 is an involution connecting two darts belonging to the
same edge:

∀d ∈ D β2
2(d) = d

Fig. 2.1 shows examples of combinatorial maps using the “vertex model”
(Fig. 2.1d) and the “face model” (Fig. 2.1b).

Proposition 2.1 Definition 1 (vertex model) and definition 2 (face model)
are equivalent definitions of a 2D combinatorial map. Both definitions can
be derived from each other by using β1 = σ ◦ α and β2 = α. Using these two
equations, it follows that σ = β1 ◦ β2.

Proof: Starting with β1 ◦ β2 = β1 ◦ β2 it can be shown that σ = β1 ◦ β2

using the two substitutions from proposition 2.1:

β1 ◦ β2 = β1 ◦ α = σ ◦ α2 = σ

�

Definition 2 (face model) will be used in this report when extending com-
binatorial maps to 3D.

13



2.2 Dual Combinatorial Maps

Each combinatorial map has a corresponding dual combinatorial map that
can be obtained directly from the original map. E.g. given a combinatorial
map G = (D, σ, α), the combinatorial map Ḡ = (D,φ, α) is called the dual of
G. The permutation φ is defined by φ = σ ◦α [Brun and Kropatsch, 1999a].

Intuitively a combinatorial map and its dual combinatorial map are sym-
metrical representations of the same configuration. Given a nD combinatorial
map each i-cell corresponds to exactly one (n − i)-cell in the dual. (e.g. For
2D each vertex corresponds to a face in the dual).

In the same way incidence relations correspond to bounding relations in
the dual. (e.g. the edges being incident to a vertex in the primal correspond
to the edges bounding the face in the dual).

This relation also applies to the removal and contraction operations in-
troduced later in this report. A contraction in the primal graph corresponds
to a removal in the dual and vice versa.

2.3 i-cells, Degree, Dual-degree

A nD combinatorial map implicitly encodes the subdivision of a nD space
into cells of dimension 0, . . . , n. In the case of 2D, combinatorial maps encode
a subdivision of a 2D space into 0-cells (vertices), 1-cells (edges) and 2-cells
(faces).

[Damiand, 2001] defines the i-cell for a nD combinatorial map using the
notion of the orbit of a dart.

Definition 3 (Orbit) Let Φ = {f1, . . . , fk} be some permuta-
tions on D. We note < Φ > the permutation group generated by
Φ. This is the set of permutations obtained by any composition
and inversion of permutations contained in Φ. The orbit of a dart
d relatively to Φ is defined by < Φ > (d) = {φ(d)|φ ∈ Φ}.

14



Definition 4 (i-Cell) Let C be a nD combinatorial map G =
(D, β1, . . . , βn), let d be a dart of D, and let 0 ≤ i ≤ n. The i-cell
incident to d is defined by

• < β2 ◦ β1, . . . , βn ◦ β1 > (d) if i = 0

• < β1, . . . , βi−1, βi+1, . . . , βn > (d) if i > 0

Notation 2.2 Let G be nD combinatorial map and let c be an i-cell of G.
D(c) denotes the set of darts belonging to c.

The darts belonging to a specific i-cell can be obtained by start-
ing from any dart belonging to the i-cell using (n − 1) permutations
βi [Damiand and Lienhardt, 2003]. In case of 2D exactly one permutation
is used: given a combinatorial map G = (D, σ, α) the darts belonging to a
0-cell (vertex) are obtained using σ, the darts belonging to a 1-cell (edge)
are obtained using α and the darts belonging to a 2-cell (face) are obtained
using φ.

Proposition 2.2 Given a nD combinatorial map G = (D, β1, . . . , βn). Each
dart d ∈ D belongs to exactly one i-cell of each dimension (0 ≤ i ≤ n).

Proof: Given a nD combinatorial map G = (D, β1, . . . , βn), a dart d ∈ D.
The i-cells that d is incident to are obtained by using d as the starting dart.
Therefore the set of darts obtained for the i-cells of dimension 0 ≤ i ≤ n must
contain at least d itself. Thus d is incident to an i-cell for each dimension
0 ≤ i ≤ n.

Given an i-cell c1 ∈ G that d is incident to. There cannot be another
i-cell c2 ∈ G, c1 6= c2 that d is also incident to. An i-cell is defined as the set
of darts obtained by the orbit of n−1 permutations. Due to the definition of
an orbit, any dart incident to a given i-cell can be used as the starting dart
to obtain the complete set of darts belonging to that i-cell. This means that
if d is incident to c1 and c2, both cells can also be obtained by using d as the
starting dart. Thus the same set of darts is obtained and c1 = c2.

Therefore d is incident to exactly one cell of each dimension 0 ≤ i ≤ n.
�

15



Definition 5 (Incidence) Given a combinatorial map G, let c be an i-cell
of G. An i-cell c′ ∈ G is called incident to c iff

D(c) ∩ D(c′) 6= ∅.

Proposition 2.3 Given an nD combinatorial map G.

∀ i-cell ci ∈ G, 0 ≤ j ≤ 1, j 6= i;∃ i-cell cj ∈ G such that cj is incident
to ci

Proof: The set Dc of darts belonging to an i-cell c with dimension i
is non-empty. Thus there is at least one dart d ∈ Dc. Since each dart
belongs to exactly one cell of each dimension there also must be one cell
c′ of each dimension with Dc′ being the set of darts belonging to c′, where
d ∈ D′

c ∧ d ∈ Dc which is the definition of incidence (definition 5). �

The number of times that a given i-cell is incident to (i+1)-cells is called
the degree of the i-cell. This corresponds to the definition of a local cell
degree given by [Damiand, 2001]:

Definition 6 (Degree) The degree of an i-cell c is the sum of the number
of times that c′ is incident to c for each (i + 1)-cell c′ incident to c.

Notation 2.3 Let G be a combinatorial map G = (D, β1, β2, . . . , βn), let
d ∈ D be a dart of G and let c be an i-cell of G. 0 ≤ i ≤ n.

δ(d, i) will then denote the degree of the i-cell the dart d belongs to.

δ(c) will denote the degree of the cell c.

Note that definition 6 does not specify how to calculate δ(ci) for a given
nD combinatorial map G = (D, β1, . . . , βn) and i-cell ci as the calculation of
δ(ci) depends on the attribution used for the permutations β1, . . . , βn as well
as on the permutation sequences used for the ci. Instead algorithms for the
calculation of δ for i-cells of dimension 0, . . . , 3 will be provided in section 3.2
for the specific 3D combinatorial maps used in this report.

Fig. 2.2 gives an example of how the degree is determined for an edge.
The degree for E1 is two in both cases. In the example on the left side the
degree is two because the edge is incident to two different faces (F1 and F2).

16



a) two faces separated by an edge b) one face with a pendant edge

Figure 2.2: Degree of an edge. In both cases the degree of E1 is two. In the
first example (a) the edge E1 is incident to two different faces (F1 and F2).
In the second example (b) E1 is incident to only one face F1, but the degree
is still two, since it is incident to that face twice.

In the example on the right side the edge is incident to only one face (F1)
but the degree is still two since it is incident to this face twice (F1 touches
E1 on both sides of the edge).

Using G = (D, σ, α) the degree of a 0-cell is equal to the length of the
cycle of the σ permutation and the degree of a 1-cell is equal to the length
of the cycle of the involution α.

The number of times that a given i-cell is bounded by (i−1)-cells is called
the dual-degree of a cell. The dual-degree is defined as the degree of the dual
i-cell:

Definition 7 (Dual-Degree) The dual-degree of an i-cell c is the sum of
the number of times that c′ is incident to c for each (i − 1)-cell c′ bounding
c.

Notation 2.4 Let G be a combinatorial map G = (D, β1, β2, . . . , βn), let
d ∈ D be a dart of G and let c be an i-cell of G. 0 ≤ i ≤ n.

δ̄(d, i) will then denote the dual-degree of the i-cell the dart d belongs to.

δ̄(c) will denote the dual-degree of the cell c.

As for the definition of the degree (definition 6), definition 7 does not
specify how to calculate δ̄(ci) for a given nD combinatorial map G =
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(D, β1, . . . , βn) and i-cell ci, but algorithms for the calculation of δ̄ for i-
cells of dimension 0, . . . , 3 will be provided in section 3.2 for the specific 3D
combinatorial maps used in this report.

Fig. 2.2 can be reused for an example of the dual-degree. On the left side
the dual-degree of F1 is two, as it is bounded by two edges (E1 and E3). On
the right side the dual-degree of F1 is three, as it is bounded by E2 once and
by E1 twice.

Using G = (D, σ, α) the dual-degree of a 2-cell (the number of edges that
bound a face) is equal to the length of the cycle of the φ permutation and
the dual-degree of a 1-cell is equal to the length of the involution α (An edge
is always bounded twice by vertices).

2.4 Bounding Relationship Diagram

Following proposition 2.3, i-cells have strict bounding relations. Each i-cell
with i > 0 is bounded by at least one (i − 1)-cell. E.g. a face is bounded by
edges which are themselves bounded by vertices.

These bounding relations can be visualized using a bounding relationship
diagram. For a nD combinatorial map the diagram is divided into n + 1
columns, where each column contains all i-cells for a given i (0 ≤ i ≤ n)
present in the map. The columns are ordered starting with the highest i on
the left. E.g. a bounding relationship diagram for a 2D combinatorial map
consists of three columns. The first one displays all faces (2-cells) of the
map, the second one contains all edges (1-cells), and all vertices (0-cells) are
presented in the rightmost column.

Each i-cell is connected with arrows to all (i − 1)-cells bounding it, thus
visualizing the bounding relation of this i-cell. A number w on the arrow
indicates that the i-cell is bounded w times by this particular (i − 1)-cell.

Fig. 2.3a shows the bounding relationship diagram for a square consisting
of one face (F1), 4 edges (E1 to E4) and 4 vertices (V e1 to V e4). The face
is bounded by all four edges described by 4 arrows from F1 to each 1-cell.
The edges E1 to E4 are all bounded by two of the four vertices shown by two
arrows from each edge to the bounding vertices in the rightmost column.

Fig. 2.3b shows another example for a bounding relationship diagram. A
face (F1) that is bounded by an edge self-loop (E2) and a pendant edge (E1).
F1 is therefore bounded by E1 twice which is indicated by the 2 on the arrow
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a) square

F1

F1

E1

E2
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2

2

Ve2Ve1

E2

E1

F1

b) face bounded by an edge self-loop and a pendant edge

Figure 2.3: Examples of bounding relationship diagrams. The square (a)
consists of 7 cells: one face (2-cell), four edges (1-cells) and four vertices (0-
cells). Their bounding relations are presented in the bounding relationship
diagram by arrows from the bounded cell to the bounding cells. The second
example shows a face that is bounded by an edge self-loop and a pendant
edge (b). The fact that the face is bounded twice by the pendant edge and
that the edge self-loop is bounded twice by the same vertex is indicated by
the 2 on the arrows.

from F1 to E1 in the bounding relationship diagram. In the same way the
fact that the edge self-loop (E2) is bounded by the same vertex (V e1) twice
is indicated again by a 2 on the arrow from E2 to V e1.

The bounding relationship diagram will be used throughout this report
using the following abbreviations for the heading line: “Vo” - 3-cells (vol-
umes), “F” - 2-cells (faces), “E” - 1-cells (edges) and “Ve” - 0-cells (vertices).

2.5 Initial Map

The first step when working with 2D combinatorial maps is building an initial
map that represents the data. This is done by building a grid-like map, when
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a) 3 × 3 image b) combinatorial map

Figure 2.4: Representation of a 3x3 image using a combinatorial map. Each
pixel in the image (a) is represented by one vertex in the combinatorial map
(b). The adjacency of pixels is represented by edges connecting these vertices.
An additional background-vertex is added and connected to each pixel at the
border of the image.

working with typical data sources like labeled images.

In that context, labeling (or filing or region detection) is one of the first
tasks that arises frequently in picture analysis. It is the process of assigning
the same labels to pixels that belong to the same component, such that two
pixels that do not belong to the same component are assigned different labels
(see [Klette and Rosenfeld, 2004] for a more complete and formal description
of this process).

Within a grid-like map the pixels of the labeled image can either be
represented by the 0-cells (vertices) of the map or by the 2-cells (faces) of
the map. These cells are assigned the label of the pixel they represent. The
adjacency relations of the 4 neighboring pixels are then either represented
by edges connecting the vertices corresponding to these pixels or by edges
separating the corresponding faces. (Fig. 2.4 shows such a representation for
a 3x3 image using vertices to represent the pixels).

When using vertices to represent pixels, an additional vertex is added
to the map. This vertex represents the background or outside of the image
that each pixel on the border is adjacent to. Throughout this report the grid
using vertices to represent pixels is used.
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2.6 Contraction and Removal Operations

Two operations were defined by [Brun and Kropatsch, 1999a,
Grasset-Simon et al., 2005] to simplify combinatorial maps: the con-
traction operation and the removal operation. In addition, conditions
were presented that define when these operations may be applied without
changing the topological relations encoded by the combinatorial map i.e.
the original adjacency and inclusion relations are preserved.

The removal operation can be applied to an i-cell with i < n (where n
is the dimension of the combinatorial map). It is used to remove redun-
dant i-cells like parallel edges or empty self-loops that contain no topological
information from the map. [Brun and Kropatsch, 1999a] give the following
definition of a removal operation for a 2D combinatorial map:

Lemma 2.1 The Restriction Operator

Given a combinatorial map G = (D, σ, α) and D′ ⊂ D the appli-
cation:

pD,D′

(
D′ → D
d → σn−1(d) with n = min{p ∈ N

?|σp(d) ∈ D′}

is an injective function.

Definition 8 (Removal Operation in a vertex model 2D
combinatorial map)

Given a combinatorial map G = (D, σ, α) and d ∈ D. If α?(d) is
not a bridge, the combinatorial map G′ = G\α?(d) is the submap
defined by:

• D′ = D − α?(d) and

• σ′ = σ ◦ pD,D′.

This operation will be denoted Rd.

Notation 2.5 Given a nD combinatorial map G = (D, β1, . . . , βn) and an
i-cell c ∈ G with Dc being the darts of c. The removal of c will be denoted
G \ Dc.

The contraction operation can be applied to an i-cell with i > 0 bounded
by two (i − 1)-cells to merge it to a single (i − 1)-cell. E.g. a face bounded
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by 2 edges can be contracted to an edge or an edge can be contracted to
a vertex. The edge contraction is used to merge two vertices represent-
ing pixels that belong to the same component [Brun and Kropatsch, 1999a,
Damiand and Lienhardt, 2003]. [Brun and Kropatsch, 1999a] give the fol-
lowing definition of a contraction operation for a 2D combinatorial map (in
this definition G is used to denote the dual combinatorial map):

Definition 9 (Contraction Operation in a vertex model
2D combinatorial map)

Given a combinatorial map G = (D, σ, α) and one dart d ∈ D
which is not a self loop. The contraction of dart d creates the
graph:

G′ = G/α?(d) = G \ α?(d)

This operation will be denoted Cd.

Note that this operation is well defined since d is a self loop in G
iff it is a bridge in G.

Notation 2.6 Given a nD combinatorial map G = (D, β1, . . . , βn) and an
i-cell c ∈ G with Dc being the darts of c. The contraction of c will be denoted
G/Dc.

Definition 8 and definition 9 are specific definitions for the removal and
contraction operation based on the the vertex model of a 2D combinatorial
map (definition 1).

Chapter 4 will provide definitions for the six specific contraction and
removal operations for 3D combinatorial maps used in this report.

2.7 2D Combinatorial Pyramids

A 2D Combinatorial pyramid is a hierarchical stack of 2D combinatorial
maps. Such irregular pyramids can be obtained by removal and contrac-
tion operations. Each new level - starting from the grid-like map rep-
resenting the original data - is built using edge contractions to merge
two adjacent vertices belonging to the same component. Face contrac-
tion and edge removal are then used to simplify the map. This proce-
dure is repeated until no more simplification is possible and the mini-
mal map is reached. A detailed description of this process can be found
in [Kropatsch, 1995, Brun and Kropatsch, 1999b].
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Figure 2.5: Example of a graph pyramid built from a 3x3 image. Vertices
of the same color are merged at each level. Vertices that are eliminated by
such an operation are connected to the corresponding surviving dart at the
higher level. (This is indicated by the blue, dotted line).

Using the concept of surviving darts and connecting
walks [Brun and Kropatsch, 1999b, Brun and Kropatsch, 2003] details
can be retrieved from levels below within such a pyramid. Each non-
surviving dart that is eliminated at a certain level by a contraction or a
removal operation is assigned to exactly one surviving dart. This way each
surviving dart is associated with a set of non-surviving darts at the level
below. This information can then be used to obtain the receptive field for
each dart of a higher level. Fig. 2.5 shows an example of a graph pyramid.
Each non-surviving vertex is connected to one surviving vertex at the next
level.

Combinatorial pyramids are a powerful tool when analyzing data. The
top-level of the pyramid allows us to work with a minimal representation of
the underlying data while maintaining topological relations within the data.
Using connecting walks to obtain the receptive fields of any dart in the top
level gives us the possibility to retrieve more details from a lower level when
needed.

In the next chapters of this report the concepts of combinatorial maps,
combinatorial pyramids, and contraction and removal operations are ex-
tended for representing and minimizing 3D data.
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Chapter 3

3D Combinatorial Maps

This chapter describes the extension of combinatorial maps for representing
volumetric data that is used within this report. The set of permutations,
the definitions of i-cells as well as the degree and dual degree of such i-cells
within these 3D combinatorial maps are explained.

This report uses the definition of 3D combinatorial maps given
by [Braquelaire et al., 2003, Damiand, 2001]:

Definition 10 (3-map) A 3-map, is an 4-tuple M =
(D, δ1, δ2, δ3) where:

1. D is a finite set of darts;

2. δ1 is a permutation on D;

3. δ2, δ3 and δ1δ3 are involutions on D.

This definition is compliant to the general definition of a combinatorial
map given in chapter 2. [Braquelaire et al., 2003] propose two equivalent
models for the attribution of the permutation δ1 and the involutions δ2 and δ3:
the topological map with global embedding (GE Model) and the topological
map with hierarchical local embedding (HLE model).

This report uses the HLE model which is a 3-map defined by MHLE =
(D, β1, β2, β3). This model is an extension of definition 2 (Face Model of a
2D Combinatorial Map).

β1 is a permutation that links darts that belong to consecutive edges of
a face. Thus it encodes the orientation of these darts around the face. In 3D
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Figure 3.1: 3D combinatorial map permutations

each face has two sides. The set of darts that one side of a face consists of
is disjoint from the set of darts that the other side of this face consists of.
Both sides have the opposite orientation encoded by β1.

β2 is an involution that connects two darts belonging to the same edge
and to the same volume.

β3 is an involution that connects two darts that belong to the same edge
and to the same face.

Intuitively β1 is used to build faces, β2 builds volumes by connecting these
faces to create the border of the volume, and β3 connects these volumes by
linking two sides of a face together. Fig. 3.1 shows an example of how β1, β2

and β3 are used to represent volumetric data.

3.1 i-cells

In volumetric data, four types of topological cells are present: 0-cells (ver-
tices), 1-cells (edges), 2-cells (faces) and 3-cells (volumes). According to
section 2.3, two permutations are needed to obtain the darts belonging
to a specific i-cell in a 3D combinatorial map: given a 3D combinator-
ial map M = (D, β1, β2, β3) two permutations δ1 and δ2 are selected so
that the 2D combinatorial maps M ′ = (D′, δ1, δ2) are a partition on D.
δ1, δ2 ∈ {β1, β2, β3}, δ1 6= δ2.

Table 3.1 lists the permutations for the i-cells of a 3D combinatorial map
given by [Braquelaire et al., 2003].
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Vertices Edges Faces Volumes
(D′, β2 ◦ β1, β3 ◦ β1) (D′, β2, β3) (D′, β1, β3) (D′, β1, β2)

Table 3.1: Permutations for the i-cells of a 3D combinatorial map.

3.2 Degree and Dual-Degree

As has been introduced in section 2.3, the degree δ() can be used to calculate
the number of (i+1)-cells being incident to a given i-cell and the dual-degree
δ̄() can be used to calculate the number of (i − 1)-cells the i-cell is being
bounded by. In 2D both, the degree and the dual-degree, are determined by
the length of the cycle of a certain permutation. The length of the cycle of a
permutation is defined by the number of darts belonging to the cycle of the
permutation.

Definition 11 (Cycle of a Permutation) Let G be a combinatorial map
G = (D, β1, . . . , βn). The cycle of βi (1 ≤ i ≤ n) for a given dart d ∈ D is
the maximum set of darts β?

i (d) that can be obtained by starting with d and
applying βi any number of times.

The number of darts in β?
i (d) is called the length of the cycle of the per-

mutation βi for the dart d.

Note, that the definition of a cycle β?
i (d) corresponds to the definition of

an orbit < Φ > (d) if βi is the only permutation in Φ.

The calculation in 3D is more complicated since the i-cells are defined
as 2-maps using two permutations. (i + 1)-cells being incident to a given
i-cell can consist of more than one dart also belonging to this i-cell. In the
same way (i − 1)-cells bounding a given i-cell may be defined by more than
one dart also being part of the i-cell. This section explains how to calculate
the degree and the dual-degree for each kind of i-cell being present in a 3D
combinatorial map.

Table 3.2 gives an overview of the bounding and incidence relations in
a 3D combinatorial map. It lists the possible values for the degree δ and
dual-degree δ̄ for i-cells of each dimension.

i-cell Vertex Edge Face Volume

degree 1 ≤ δ 1 ≤ δ δ = 2 not defined

dual-degree not defined δ̄ = 2 1 ≤ δ̄ 1 ≤ δ̄

Table 3.2: Degree and dual-degree of i-cells in a 3D combinatorial map.
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3.2.1 0-cells (Vertices)

The degree of a 0-cell (vertex) is the number of times edges are incident to
a given vertex. The vertex is defined by the permutations β2β1, β3β1 and
edges are defined by the permutations β2 and β3.

Since both β2 and β3 are involutions, all darts belonging to one edge
can be retrieved by consecutively applying both permutations in alternating
order until the first dart is reached again.

The degree can therefore be calculated by examining all darts belonging
to the vertex and using a flag to indicate which darts have been counted. If
an unmarked dart is encountered the degree is increased by one and all darts
belonging to the same edge are marked. If a marked dart is encountered the
degree will not be increased. Listing 3.1 contains a C implementation of this
algorithm.

By definition β2 and β3 will return a dart that belongs to the same edge
but the opposite vertex. This can be used to refine the algorithm. When
marking all darts that belong to the same edge, β2 and β3 are applied in
an alternating way and only every second dart is marked. This ensures that
only those darts are marked that also belong to the same vertex the degree
is calculated for. This makes no difference in most cases since marking the
darts of the opposite vertex has no impact on the algorithm, but in the case
of self-loops both ends are bounded by the same vertex. In these cases the
edge is two times incident to the vertex and must therefore be counted twice.

A vertex is not bounded by other i-cells. Therefore the dual-degree is not
defined for vertices.

3.2.2 1-cells (Edges)

The degree of an edge is equivalent to the number of faces being incident to
this edge.

The darts belonging to an edge are retrieved using the permutations β2

and β3. Both permutations are involutions so it is sufficient to apply these
two permutations consecutively and in an alternating way on any dart of the
edge to obtain the complete set of all darts of this edge.

β3 will return a dart associated with the same face and edge. To calculate
the degree of the edge it is therefore sufficient to iterate through all darts of
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// s e t the degree to 0 and i n i t i a l i z e the f l a g
// f o r a l l da r t s b e l ong ing to the v e r t e x
degree = 0 ;
r e s e t ma rk s o f v e r t e x ( l a b e l o f v e r t e x ) ;

// ge t one dar t o f the v e r t e x
dart = g e t d a r t o f v e r t e x ( l a b e l o f v e r t e x ) ;

// i t e r a t e through a l l da r t s b e l ong ing to the v e r t e x
do {

// i f an unmarked dar t i s encountered
i f ( dart not marked ( dart ) ) {

// inc rea se the degree
degree++;

// and mark a l l da r t s b e l ong ing to the
// same edge and v e r t e x
tmp dart = dart ;
do {

mark dart ( tmp dart ) ;
tmp dart = beta 2 ( tmp dart ) ;
tmp dart = beta 3 ( tmp dart ) ;

} while ( tmp dart != dart ) ;
}

// ge t the next dar t o f t h i s v e r t e x
// NULL i s re turned i f t h i s was the l a s t dar t
dart = ge t n ex t da r t ( ) ;

} while ( dart != NULL) ;

Listing 3.1: Calculation of the degree of a vertex

the edge counting the number of β3-connected darts. Such an algorithm is
shown in listing 3.2.

An edge is always bounded exactly two times by vertices. Therefore the
dual-degree is always two for a 1-cell. In the case of an edge self-loop the
edge is bounded twice by the same vertex, thus the dual-degree is also 2.

3.2.3 2-cells (Faces)

The degree of a face corresponds to the number of times this face is incident
to volumes. In 3D a face is always incident to exactly two times to volumes.
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degree = 0 ;

// ge t one dar t o f the edge
dart = g e t d a r t o f e d g e ( l a b e l o f e d g e ) ;
tmp dart = dart ;

// i t e r a t e through a l l da r t s b e l ong ing to the edge
do {

// inc rea se the degree
degree++;

// app ly b e t a 3 and be ta 2 .
// the dar t re turned by be t a 3 i s sk ipped
tmp dart = beta 3 ( tmp dart ) ;
tmp dart = beta 2 ( tmp dart ) ;

// s top the i t e r a t i o n i f the f i r s t dar t i s reached again
} while ( tmp dart != dart ) ;

Listing 3.2: Calculation of the degree of an edge

The degree is therefore two for all faces present in a 3D combinatorial map.

The dual-degree of a face is the number of times a face is bounded by
edges.

Since β1 encodes the edges around the border of a face, the dual-degree
is equivalent to the length of the cycle of the β1 permutation.

The dual-degree of a face can be shown using the examples in Fig. 2.2.
Face F1 in Fig. 2.2a has a dual degree of two, as it is bounded by two edges
(E1 and E3) once. In the second example (Fig. 2.2b) the dual-degree of F1 is
three. While F1 is still only bounded by two different edges (E1 and E2), it
is bounded by E2 once and by E1 twice. Therefore the dual-degree is three.

3.2.4 3-cells (Volumes)

Volumes are the highest dimensional i-cells present in a 3D combinatorial
map. Thus, no cells of a higher dimension can be incident to a 3-cell and the
degree is undefined.

The dual-degree of a 3-cell is defined by the number of times a volume is
bounded by faces.
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The darts of a volume are obtained by applying the permutations β1 and
β2 on any dart of the volume in any possible order. β1 returns the darts
belonging to the same face while β2 returns a dart belonging to the same
edge but a different face. This can be used to build an algorithm to calculate
the dual-degree that is similar to the algorithm for determining the degree
of a vertex: all darts belonging to the same volume are iterated through. If
an unmarked dart is encountered, the dual-degree is increased and all darts
belonging to the same face are marked. If a marked dart is encountered, the
dual-degree is not increased.

Listing 3.3 shows an implementation of such an algorithm.

// s e t the dual−degree to 0 and i n i t i a l i z e the f l a g
// f o r a l l da r t s b e l ong ing to the volume
dua l deg ree = 0 ;
r e s e t marks o f vo lume ( l ab e l o f v o l ume ) ;

// ge t one dar t o f the volume
dart = ge t da r t o f vo lume ( l ab e l o f v o l ume ) ;

// i t e r a t e through a l l da r t s b e l ong ing to the volume
do {

// i f an unmarked dar t i s encountered
i f ( dart not marked ( dart ) ) {

// inc rea se the dual−degree
dua l deg ree++;

// and mark a l l da r t s b e l ong ing to the same face
tmp dart = dart ;
do {

mark dart ( tmp dart ) ;
tmp dart = beta 1 ( tmp dart ) ;

} while ( tmp dart != dart ) ;
}

// ge t the next dar t o f t h i s volume
// NULL i s re turned i f t h i s was the l a s t dar t
dart = ge t n ex t da r t ( ) ;

} while ( dart != NULL) ;

Listing 3.3: Calculation of the dual-degree of a volume
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Chapter 4

Contraction and Removal in 3D

In order to simplify a 3D combinatorial map, the two operations introduced
in section 2.6, contraction and removal, are extended to 3D. This way six
specific operations are introduced: edge contraction, face contraction, vol-
ume contraction, vertex removal, edge removal, and face removal. These
operations are explained in detail in this chapter.

Additionally, 10 conditions will be defined for these operations. If these
conditions are fulfilled, the application of the removal or contraction opera-
tion will produce a valid combinatorial map.

One of the goals when simplifying a combinatorial map is to reduce the
number of darts and i-cells in the combinatorial map while creating a topo-
logically equivalent map i.e. the resulting map shall encode the same infor-
mation about adjacencies and inclusions. The conditions presented in this
report will ensure that the simplification of a 3D combinatorial map will pre-
serve adjacency and inclusion information and will not change the genus of
the bounding surfaces of the encoded objects.

Definition 12 (equivalent combinatorial map) A combinatorial map G′

obtained from a given combinatorial map G is equivalent, if the connected
components, the connected component adjacency relations and inclusion re-
lations encoded by G are preserved in G′.

It will be shown for the operations used to simplify the combinatorial
maps (face contraction, volume contraction, edge removal and face removal)
that the genus of the bounding surfaces will not change if all conditions
are fulfilled. This will be done using the Euler Characteristic. The Euler
Characteristic χ = v − e + f determines the genus of a surface based on the
number of vertices v, number of edges e and number of faces f .
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Within this report all three contraction operations and two removal op-
erations will be used to merge vertices within a map that belong to the same
component and to simplify the resulting maps to their minimal form while
maintaining the topological relations. Vertex removal is not used, since in
this report vertices are used to represent voxels. The removal of a vertex
would therefore remove a voxel from the combinatorial map.

4.1 Contraction Operation

Formally a contraction operation is defined as the removal of the i-cell and
the merging of two (i−1)-cells - effectively removing one of these (i−1)-cells.
E.g. when contracting an edge, the two bounding vertices of this edge are
merged into a single vertex, removing one of the vertices. The connecting
edge is also removed in the process.

Because a contraction operation merges two (i − 1)-cells, only cells of
dimsion i ≥ 1 may be contracted. Therefore there are 3 contraction operation
for a 3D combinatorial map: edge contraction, face contraction, and volume
contraction. For each of these operations a definition is provided.

Definition 13 (Edge Contraction) Let G = (D, β1, β2, β3) be a 3D com-
binatorial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the
contraction of a selected 1-cell E = (De, β2, β3), De ⊂ D. G′ = G/De is then
defined by

1. D′ = D \ De

2. ∀d ∈ D′,

β′

1(d) =

{
β1(d) : β1(d) /∈ De

βn
1 (d) with n = min{p ∈ N

?|βp
1(d) /∈ De} : β1(d) ∈ De

3. ∀d ∈ D′, β′

2(d) = β2(d)

4. ∀d ∈ D′, β′

3(d) = β3(d)
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Definition 14 (Face Contraction) Let G = (D, β1, β2, β3) be a 3D com-
binatorial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the
contraction of a selected 2-cell F = (Df , β1, β3). G′ = G/Df is defined by

1. D′ = D \ Df

2. ∀d ∈ D′, β′

1(d) = β1(d)

3. ∀d ∈ D′, β′

2(d) =

{
β2(d) : β2(d) /∈ Df

β2(β1(β2(d))) : β2(d) ∈ Df

4. ∀d ∈ D′, β′

3(d) = β3(d)

Definition 15 (Volume Contraction) Let G = (D, β1, β2, β3) be a 3D
combinatorial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the
contraction of a selected 3-cell V = (Dv, β1, β2). G′ = G/Dv is defined by

1. D′ = D \ Dv

2. ∀d ∈ D′, β′

1(d) = β1(d)

3. ∀d ∈ D′, β′

2(d) = β2(d)

4. ∀d ∈ D′, β′

3(d) =

{
β3(d) : β3(d) /∈ Dv

β3(β2(β3(d))) : β3(d) ∈ Dv

The properties of each contraction operation will be discussed later in
this chapter.

Since the i-cell is effectively removed by the contraction operation all
bounding relations from (i + 1)-cells to the contracted i-cell are removed as
well. On the other hand, all incidence relations of the two (i−1)-cells that are
merged as a result of the contraction operation to other i-cells are inherited
by the surviving (i − 1)-cell. In Fig. 4.1 the bounding relationship diagram
of the contraction of an i-cell is shown.

As such a contraction operation can be understood as the reduction of
an i-cell to an (i − 1)-cell. E.g. an edge is contracted into a vertex, a face is
contracted into an edge and a volume is contracted into a face.

Not every i-cell may be contracted within a given combinatorial map.
Instead it must be ensured that applying a contraction operation on an i-
cell will again produce a consistent combinatorial map and that the map is
topologically equivalent. For this purpose five conditions are presented in
this section that must be met by every i-cell that shall be contracted.
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a) configuration before contraction
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(i-2)

1
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b) contraction of the (i)-cell with index 2

(i+1) i (i-1)

1

2

1

3

1

3

2

(i-2)

1

2

c) final configuration after the contraction

Figure 4.1: Contraction of an i-cell. (a) shows the bounding relationship
diagram before the contraction operation. By contracting the i-cell with
index 2, the two bounding (i− 1)-cells with index 2 and 3 are merged. As a
result the bounding relation from the (i+1)-cell with index 3 to the contracted
i-cell is removed as well. (b). In the final configuration (c) the incidence
relations from the (i− 1)-cells 2 and 3 are inherited by the surviving (i− 1)-
cell with index 2.

4.1.1 Condition 1: Dual Degree

[Damiand and Lienhardt, 2003] present the dual-degree as one condition for
the contraction operation. An i-cell may only be contracted if it has a dual-
degree of 2.
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Condition 1 Let c be an i-cell of a given combinatorial map G =
(D, β1, β2, β3). c may only be contracted if

δ̄(c) = 2.

This means that an i-cell can be contracted only if it is bounded exactly
two times by (i − 1)-cells (Either one (i − 1)-cell bounding the i-cell twice,
or two different (i − 1)-cells, each bounding the i-cell once.). A volume may
only be contracted if it is bounded two times by faces, a face may only be
contracted if it is bounded two times by edges and an edge may only be
contracted if it is bounded two times by vertices. Note that this condition
does not need to be validated for edges, as the dual-degree is always two for
an edge.

4.1.2 Condition 2: Bounding and Incidence Relations

Strict bounding and incidence relations must be enforced within combinato-
rial maps due to the way i-cells are encoded. Each cell must bound at least
one other cell and must also be bounded by at least one other cell after a
contraction operation.

As a result of this, a contraction might remove other cells as a side-effect.
Therefore condition 2 is defined to disallow such contractions.

Condition 2 Let ci be an i-cell of a given combinatorial map G =
(D, β1, β2, β3) and let Cj be the set of all j-cells of G with j 6= i. ci may
only be contracted if

∀cj ∈ Cj, D(cj) 6⊆ D(ci).

This condition can be derived from the definition of a contraction opera-
tion. According to the previous sections, the contraction of an i-cell ci is the
removal of this i-cell and the merging of its two bounding (i − 1)-cells. All
other cells must survive.

The removal of ci is equivalent to the removal of all of its darts from the
map. Since each dart is associated with exactly one cell of every dimension,
the darts belonging to the removed cell will also be removed from all other
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cells. Thus the contraction of a specific i-cell ci might also remove a j-cell cj

(with i 6= j) if all darts defining cj are also part of ci.

This means that if there is at least one other cell in the combinatorial
map that is defined only by darts belonging to ci, then this cell would get
removed as well. This would violate the definition that only ci is removed
by the contraction operation and is therefore not allowed. Fig. 4.2 shows an
example of an invalid contraction violating this constraint.

(i+1) i (i-1)

1

2

1

2

1

3 3

2

(i-2)

1

2

a) contraction of the (i)-cell with index 2

(i+1) i (i-1)

1

2

11

3

2

(i-2)

1

2

b) configuration after the contraction

Figure 4.2: Contraction of an i-cell that violates the “Bounding and Incidence
Relations” condition. (a) shows the bounding relationship diagram before the
contraction of the i-cell with index 2. The (i + 1)-cell with index 3 is only
bounded by the contracted i-cell which leads to an invalid configuration (b).
In a similar way the contracted i-cell was the only cell being incident to the
(i− 1)-cell with index 2 which also leads to an invalid configuration after the
contraction.

4.1.3 Condition 3: Self-Loops

As [Brun and Kropatsch, 1999a] show, the contraction of a self-loop is not
allowed. In a general sense, a self-loop is an i-cell that is bounded two or
more times by at least one (i − 1)-cell. This means that a cell may not be
contracted if it is bounded by a specific cell more than once. E.g. an edge
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that is connected to the same vertex on both endpoints or a face that is
bounded twice by the same edge.

Condition 3 Let c be an i-cell of a combinatorial map G. And let c be
bounded by two (i − 1)-cells b1 and b2. c may only be contracted if

b1 6= b2.

[Brun and Kropatsch, 1999a] show further that multiple contraction op-
erations may only be applied simultaneously on a combinatorial map if the
contracted i-cells do not form a circuit.

4.1.4 Condition 4: Common (i − 2)-cells

The two (i−1)-cells bounding the i-cell are merged during a contraction. The
fourth condition validates this merging process by ensuring that the resulting
(i − 1)-cell is non-ambiguous.

Condition 4 Given a combinatorial map G. Let ci be an i-cell of G with
i ≥ 2 that is bounded by exactly two (i− 1)-cells c1 and c2. Also let B1 be the
set of (i − 2)-cells bounding c1 and let B2 be the set of (i − 2)-cells bounding
c2. ci may only be contracted if

B1 = B2.

This condition can also be derived from the definition of the contraction
operation: a contraction of an i-cell consists of the removal of the i-cell and
the merging of the two bounding (i − 1)-cells. The merging removes one of
these two (i − 1)-cells. The surviving cell inherits the incidence relations of
both (i − 1)-cells, but the bounding relations are unchanged.

This means that the bounding relations of the surviving cell would depend
on which of the two cells survives the contraction operation if they have
different bounding relations. The result of the contraction would therefore be
ambiguous since the contraction operation does not define which cell should
survive. This is not allowed.

The bounding relationship diagram of such an invalid contraction is shown
in Fig. 4.3. The i-cell with index 2 is chosen for contraction although its
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a) contraction of the (i)-cell with index 2

(i+1) i (i-1)

1

2

11

3

2

(i-2)

1

2

33

b) (i − 1)-cell with index 2 is chosen to survive the contraction
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c) (i − 1)-cell with index 3 is chosen to survive the contraction

Figure 4.3: Contraction of an i-cell that violates the “common (i − 2)-cells”
condition. (a) shows the bounding relationship diagram before the contrac-
tion of the i-cell with index 2. The (i−1)-cells with index 2 and 3 are merged
during the operation but have different bounding relations. (b,c) show the
different results of the configuration depending on which of these two cells is
chosen to survive.

bounding (i−1)-cells have different bounding relations. This leads to different
and invalid results of the contraction operation if either of the two cells is
chosen to survive.

If the (i − 1)-cell with index 2 is chosen (Fig. 4.3b), then the bounding
relation to the (i− 2) cell with index 3 is lost and this cell gets disconnected.
If the (i−1)-cell with index 3 is chosen, then the i-cell with index 1 becomes
bounded by the (i − 2)-cell with index 3 via the surviving (i − 1)-cell with
index 3 (Fig. 4.3c).
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Fig. 4.4 gives an example of such an i-cell that may not be contracted
because of this condition: a volume that is bounded by two faces. This
volume cannot be contracted since the bounding faces do not share the same
edges - one face has an additional edge. If the volume would be contracted
the resulting face would either have this additional edge or not, depending
on which face would be chosen to survive.

a) volume before the contraction

b) result of contraction if the upper face survives c) result of contraction if the lower face survives

Figure 4.4: (a) shows an example of a volume that is not contractible because
the two bounding faces are not bounded by the same edges. In this example
the upper face has an additional edge. The face resulting from the contraction
will be different depending on which of the two faces the volume is contracted
to (b,c).
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4.1.5 Condition 5: Background vertex

The fifth condition only applies to edges. When encoding the data as vertices,
an additional vertex is added to the map representing the infinite background
(see section 2.5). All vertices on the border of the initial grid-like map are
adjacent to the background and therefore connected via an edge to this back-
ground vertex.

Contracting an edge is equivalent with merging two data nodes when
using this representation of data. So the contraction of an edge that is
connected to the background vertex would result in merging a data node with
the background. Within this report it is assumed that the data encoded by a
3D combinatorial map is read from a three dimensional matrix encoding the
voxels of a 3D image. Each of these voxels is part of one connected component
and none is part of the infinite background region. For this reason condition
5 prohibits the contraction of an edge that is connected to the background
vertex.

Condition 5 Let e be a 1-cell of a combinatorial map G that is bounded by the
two 0-cells v1 and v2. Also let vBG be the 0-cell representing the background.
e may only be contracted if

v1 6= vBG ∧ v2 6= vBG

Note that this condition is not necessary if the 3D image is allowed to con-
tain voxels that belong to the infinite background. This can be implemented
by assigning specific values (e.g. a specific color) to all voxels belonging to
the background region as well as to the background vertex itself.

4.1.6 Edge Contraction

The contraction of an edge consists of removing the selected edge and merg-
ing the two vertices the edge connects. Since the data representation used
within this report encodes the voxels as vertices, the edge contraction is used
to merge two data nodes that belong to the same component. E.g. two vox-
els that have the same value when implementing a connected component
algorithm.

Condition 1 (Dual Degree) does not need to be checked since the dual-
degree of an edge is always 2 (An edge is always bounded exactly twice by
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vertices). Condition 4 (Common (i − 2)-cells) only applies to i-cells with
i ≥ 2 and is therefore not relevant for 1-cells. Conditions 2, 3 and 5 must be
validated before contracting the edge: An edge may only be contracted if the
operation removes no other i-cell from the map but the contracted edge itself
and one of the vertices bounding the edge. An edge may not be contracted
if it is a self-loop or if it is connected to the background vertex.

a) initial configuration

b) configuration after the edge contraction

Figure 4.5: Contraction of an edge. (a) shows the initial combinatorial map
before the contraction. After the contraction the two vertices are merged
(b).

Fig. 4.5 shows an example of an edge contraction. All darts belonging to
the edge are removed and the permutations of the surviving darts belonging
to the two vertices are adjusted to form a single vertex.

Applying a contraction operation will remove all darts of the contracted
i-cell from the set of darts D. In addition the permutations β1, β2 and β3

are adjusted to encode the relations of the surviving cells.

In the case of an edge contraction β2 and β3 will remain unchanged, since

41



a 1-cell De is defined as the set of all darts that can be obtained by applying
β2 and β3 in any possible combination on any dart of that 1-cell. Therefore β2

or β3 will return a surviving (non-surviving) dart when applied on a surviving
(non-surviving) dart. β1 is adjusted for all darts whose β1 successor is a dart
of the contracted edge. In this case the first dart of the β1 cycle that does
not belong to the contracted edge will be selected as the new β1 successor.

Proposition 4.1 Given a combinatorial map G and an edge De ∈ G. The
contraction of the edge G′ = G/De produces a valid combinatorial map if
conditions 2, 3 and 5 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′ is a permutation on D′ since it is either equal to β1(d) (if
β1(d) points to a surviving dart) or equal to the first dart of the cycle
β?

1(d) that does not belong to the contracted edge. There is always
such a surviving dart in the cycle β?

1(d), since condition 3 disallows
the contraction of self-loops and cycles and because condition 2 disal-
lows the contraction of an edge if it is the only edge bounding a face.
Thus there must be a surviving edge for each face in G after an edge
contraction and therefore also a surviving dart in each cycle β?

1(d).

• β′

2(d) and β ′

3(d), d ∈ D′, are involutions since β ′

2(d) = β2(d) and β ′

3(d) =
β3(d).

�

4.1.7 Face Contraction

A face that is bounded by exactly two edges can be reduced to a single edge
that is topologically equivalent to the face. Such a face contraction is used to
reduce the complexity of a combinatorial map. The operation removes the
face and merges the bounding edges.

Conditions 1 to 4 have to be checked when selecting a face for contraction:
Only faces bounded by exactly two different edges may be contracted, the face
itself and one of the two bounding edges must be the only i-cells eliminated
from the map by the contraction, and both edges bounding the face must be
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1

2

3

a) initial configuration

b) configuration after the face contraction

Figure 4.6: Contracting a face. The face bounded by two edges (a) is con-
tracted into a single edge (b).

bounded by the same vertices. Condition 5 (Background vertex) is irrelevant
as it only applies to edges. An example of a face contraction can be seen in
Fig. 4.6.

As with the edge contraction, only one permutation must be adjusted for
the contraction of a face Df . β1 and β3 remain unchanged as a face is defined
by F = (Df , β1, β3).

Since only faces with a dual-degree of two may be contracted, the β2

successor can always be set to the β2-β1-β2 successor for any dart having a
non-surviving β2 successor (See Fig. 4.6).

That way the first face around the opposite edge of the contracted face
is selected.
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Proposition 4.2 Given a combinatorial map G and a face Df ∈ G. The
contraction of the face G′ = G/Df produces a valid combinatorial map if
conditions 1 to 4 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′, is a permutation on D′ since β ′

1(d) = β1(d).

• β′

2(d), d ∈ D′, is an involution as it is either set to β2(d) or to
β2(β1(β2(d))). Condition 1 allows the contraction of a face only if it
is bounded exactly twice by edges. Further, condition 3 ensures that
the face is not bounded by the same edge twice. For such faces β1 is
an involution (see Fig. 4.6). Therefore β2(β1(β2(d))) is an involution if
β2(d) ∈ Df . Thus β ′

2 is an involution in both cases.

• β′

3(d), d ∈ D′, is an involution since β ′

3(d) = β3(d).

�

Proposition 4.3 Given a combinatorial map G and a face Df ∈ G. The
contraction of the face G′ = G/Df will not change the genus of the bounding
surfaces if conditions 1 to 4 are fulfilled.

Proof: It can be shown that a face contraction will produce a topolog-
ically equivalent map if all conditions are fulfilled by comparing the Euler
characteristic of the bounding surfaces. This is done by comparing the Euler
Characteristic χ = v − e + f for the initial map to the Euler Characteristic
χ′ = v′ − e′ + f ′ after the operation has been applied.

Since vertices are used to represent voxels in this report, the contraction
of a face corresponds to the removal of an edge. Because of condition 1
this edge is incident to a face twice, and because of condition 3 it must be
incident to two different faces. Further the removal of an edge is defined
as the removal of this edge and the merging of its two incident faces. No
other i-cells will be removed as this would violate condition 2. Thus v ′ = v,
e′ = e − 1, and f ′ = f − 1. χ′ is therefore equivalent to χ:

χ′ = v′ − e′ + f ′ = v − (e − 1) + (f − 1) = v − e + f = χ.

Therefore the genus of the bounding surfaces is not changed by the oper-
ation. �
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4.1.8 Volume Contraction

A volume may be contracted if it is bounded by exactly two faces. This
operation can be imagined as “flattening” a pillow-like object. Like the face
contraction this operation is used to simplify a given combinatorial map
without changing the topological relations within the map.

1

2

3

a) initial configuration

b) configuration after the volume contraction

Figure 4.7: The pillow-like volume in the combinatorial map is selected for
contraction (a). The outline of the bounding faces is visualized by the dotted
lines. (b) shows the resulting map after the contraction.

As with the contraction of a face, conditions 1 to 4 have to be met by a
volume in order to be contractible. Therefore only volumes that are bounded
by exactly two different faces may be contracted and the the volume itself
and one of the two bounding faces must be the only i-cells eliminated from
the map by the contraction. Further, both faces bounding the volume must
be bounded by the same edges.

Fig. 4.7 displays a combinatorial map before and after a volume contrac-
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tion.

A volume Dv is defined by the two permutations β1 and β2. Thus these
permutations will not change due to a volume contraction. β3 is adjusted for
all darts having a non-surviving β3 successor.

Due to the fact that only volumes that are bounded by exactly two faces
may be contracted, β3 is set to the β3-β2-β3 successor in these cases. This
corresponds to β3-connecting the two outer sides of both faces of the volume,
thus creating a new face. The inner sides of the faces are removed as being
part of the contracted volume.

Proposition 4.4 Given a combinatorial map G and a volume Dv ∈ G. The
contraction of the volume G′ = G/Dv produces a valid combinatorial map if
conditions 1 to 4 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′, is a permutation on D′ since β ′

1(d) = β1(d).

• β′

2(d), d ∈ D′, is an involution since β ′

2(d) = β2(d).

• β′

3(d), d ∈ D′, is an involution since β3(β2(β3(d))) is an involution and
β′

3(d) is either set to β3 or β3(β2(β3(d))).

�

Proposition 4.5 Given a combinatorial map G and a volume Dv ∈ G. The
contraction of the volume G′ = G/Dv will not change the genus of the bound-
ing surfaces if conditions 1 to 4 are fulfilled.

Proof: Again the dual operation - the removal of a vertex - is examined.

Because of condition 1 this vertex is incident to edges twice, and because
of condition 3 it must be incident to two different edges. Further the removal
of a vertex is defined as the removal of this vertex and the merging of its
two incident edges. No other i-cells will be removed as this would violate
condition 2. Thus v′ = v−1, e′ = e−1, and f ′ = f . χ′ is therefore equivalent
to χ:
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χ′ = v′ − e′ + f ′ = (v − 1) − (e − 1) + f = v − e + f = χ.

Therefore the genus of the bounding surfaces is not changed by the oper-
ation. �

4.1.9 Simplification of a Cube

This section describes how a combinatorial map can be simplified using con-
traction operations in the example of a 2 × 2 × 2 cube being reduced to a
single vertex (Fig. 4.8). In this example six steps are necessary to reduce the
configuration and all three defined contraction operations are applied to the
map during this simplification process.

1. The initial configuration is a cube consisting of 8 vertices, 12 edges, 6
faces, and 2 volumes - one volume inside and one volume outside of
the cube (see Fig. 4.8a). In this configuration there are no contractible
faces, as each of the faces has a dual-degree of four - it is bounded by
four edges. The inner volume is not contractible as its dual-degree is
six, being bounded by all six faces. Finally all edges are contractible
as they fulfill all conditions. The four vertical edges with index 5, 6, 7
and 8 are chosen for contraction as the first simplification step.

2. The contraction of the edges reduced the number of edges to eight and
the number of vertices to four. Further, it reduced the dual-degree of
the four vertical faces to two. They are now bounded only by two edges:
1&9, 2&10, 3&11 and 4&12. As they also fulfill the other conditions
they can be contracted in the next simplification step (see Fig. 4.8b).

3. After the contraction of the four faces there are four edges and two
faces left. Additionally the inner volume is now bounded only by the
two remaining faces, meaning that its dual-degree is two and is eligible
for contraction (see Fig. 4.8c).

4. The volume contraction removed the inner volume from the configu-
ration and reduced the number of faces to one. This face is not con-
tractible as its dual-degree is four, but each of the edges may be con-
tracted (see Fig. 4.8d). The edges with index 1 and 3 are contracted
in this step.

47



Outline of a face
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Edge with label n

n

a) Step 1: the 4 vertical edges of the cube are selected for contraction.

b) Step 2: the 4 vertical faces are contracted. c) Step 3: the volume is contracted.

d) Step 4: 2 edges are selected for contraction. e) Step 4: The final face gets contracted.

f) Step 5: The remaining edge c) Final configuration: The cube
is selected for contraction. is reduced to a single vertex

Figure 4.8: Example of the simplification of a cube using contraction opera-
tions. The initial configuration (a) is reduced in six steps to a single vertex
(g). This is done by the successive application of edge contractions (a,d,f),
face contractions (b,e) and one volume contraction (c).
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5. As a result of the two edge contractions, the final face now has a dual-
degree of two, being bounded only by the two remaining edges. It is
therefore chosen for contraction (see Fig. 4.8e).

6. The cube is now reduced to a single edge connecting two vertices (see
Fig. 4.8f). This edge is contracted in the last simplification step, leaving
a single vertex (see Fig. 4.8g).

Table 4.1 shows the number of i-cells in this example after each simpli-
fication step. The initial configuration consists of 28 i-cells (8 vertices, 12
edges, 6 faces and 2 volumes). This number gets reduced to two remaining
i-cells (one vertex and one volume) in the final configuration.

Vertex Edge Face Volume

Initial configuration 8 12 6 2
Step 1 4 8 6 2
Step 2 4 4 2 2
Step 3 4 4 1 1
Step 4 2 2 1 1
Step 5 2 1 0 1
Step 6 1 0 0 1

Table 4.1: Number of i-cells after each simplification step.

Note that step 5 and step 6 actually violate condition 2 by removing
the last face and edge from the combinatorial map and are therefore not
allowed. For the clarity of this example it is assumed that this configuration
is part of a larger combinatorial map in which the remaining vertex is still
incident to other edges and faces. A more detailed discussion about minimal
configuration can be found later in this report.

When selecting candidates for a simplification there is often more than
one possibility. Fig. 4.9 presents such an alternative way to simplify the
initial configuration. In step 4b (Fig. 4.9a) edge 2 is selected for contraction
instead of the face. This is allowed since edge 2 is bounded by two vertices.
This leads to an alternative final configuration consisting of one vertex, one
edge, one face and one volume (Fig. 4.9b). The cube is represented by the
single remaining vertex which is incident to edge 4. This edge is a self-loop
that bounds the only face.
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a) Step 4b: edge 2 is selected for contraction. b) Final configuration

Figure 4.9: Alternative example for the simplification of the cube from
Fig. 4.8. Instead of selecting the face for contraction, edge 2 is selected
in step 4 (a). This reduces the cube to a final configuration consisting of one
vertex that is incident to one edge, one face and one volume (b).

4.2 Removal Operation

According to [Damiand and Lienhardt, 2003, Brun and Kropatsch, 1999a]
the removal operation is the dual counterpart to a contraction. Each con-
traction operation is equivalent to a removal operation in the dual graph and
each removal operation is equivalent to a contraction operation in the dual
graph. Table 4.2 shows this relation between both operations.

Contraction Operation Removal Operation in the dual graph

Volume Contraction Vertex Removal
Face Contraction Edge Removal
Edge Contraction Face Removal

Table 4.2: Relation of the contraction and removal operations in the primal
and dual graph.

Thus a removal operation is defined as the removal of the i-cell and the
merging of two (i + 1)-cells being incident to this i-cell. When merging the
two (i+1)-cells, one of them gets effectively removed from the combinatorial
map. E.g. when removing a face, the two incident volumes are merged into
a single volume.

A removal operation merges two (i + 1)-cells. Therefore only cells of
dimension i ≤ 2 can be removed in a 3D combinatorial map. The three pos-
sible removal operations are: vertex removal, edge removal, and face removal.
Specific definitions are provided for these three removal operations.
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Definition 16 (Vertex Removal) Let G = (D, β1, β2, β3) be a 3D com-
binatorial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the
removal of a selected 0-cell V = (Dv, β2β1, β3β1). G′ = G \ Dv is defined by

1. D′ = D \ Dv

2. ∀d ∈ D′, β′

1(d) =

{
β1(d) : β1(d) /∈ Dv

β1(β1(d)) : β1(d) ∈ Dv

3. ∀d ∈ D′, β′

2(d) =

{
β2(d) : β2(d) /∈ Dv

β2(β1(d)) : β2(d) ∈ Dv

4. ∀d ∈ D′, β′

3(d) =

{
β3(d) : β1(d) /∈ Dv

β3(β1(d)) : β3(d) ∈ Dv

Definition 17 (Edge Removal) Let G = (D, β1, β2, β3) be a 3D combina-
torial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the removal
of a selected 1-cell E = (De, β2, β3). G′ = G \ De is defined by

1. D′ = D \ De

2. ∀d ∈ D′, β′

1(d) =

{
β1(d) : β1(d) /∈ De

β1(β2(β1(d))) : β1(d) ∈ De

3. ∀d ∈ D′, β′

2(d) = β2(d)

4. ∀d ∈ D′, β′

3(d) = β3(d)

Definition 18 (Face Removal) Let G = (D, β1, β2, β3) be a 3D combina-
torial map and let G′ = (D′, β′

1, β
′

2, β
′

3) be the resulting map after the removal
of a selected 2-cell F = (Df , β1, β3). G′ = G \ Df is defined by

1. D′ = D \ Df

2. ∀d ∈ D′, β′

1(d) = β1(d)

3. ∀d ∈ D′, β′

2(d) =

{
β2(d) : β2(d) /∈ Df

β2(β3(β2(d))) : β2(d) ∈ Df

4. ∀d ∈ D′, β′

3(d) = β3(d)
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The properties of these 3 operations will be discussed later in this chapter.

The bounding relations from the merged (i+1)-cells to the removed i-cell
get removed while the bounding relations to all other i-cells are inherited by
the newly created (i + 1)-cell. Fig. 4.10 shows the bounding relationship
diagram of the removal of an i-cell.

(i+2) (i+1) i

1

2

1

3

2

1
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(i-1)
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3

a) configuration before the removal

(i+2) (i+1) i
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3
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(i-1)

1
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b) removal of the (i)-cell with index 2

(i+2) (i+1) i

1

2

1

2

1

3

(i-1)

1

2

3

c) final configuration after the removal

Figure 4.10: Removal of an i-cell. (a) shows the bounding relationship dia-
gram before the removal operation. The two (i + 1) cells with index 2 and
3 are merged. In the final configuration (c) the bounding relations from the
(i + 1)-cells 2 and 3 are inherited by the surviving cell with index 2.

A removal operation can be imagined as the merging of two neighboring
(i+1)-cells by removing the boundary between these two cells. E.g. creating
a larger volume by removing the face that separates two volumes or creating
a larger face by removing the edge that separates two faces.
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Due to the dual relation between the contraction and the removal op-
eration, the conditions defined for the contraction operation apply to the
removal operation accordingly.

4.2.1 Condition 6: Degree

This condition corresponds to condition 1 for contraction operations, the
“dual-degree” condition. An i-cell may only be removed if it is incident
exactly two times to (i + 1)-cells. E.g. an edge may only be removed if it is
incident exactly twice to faces. Note that a face always fulfills this condition
in 3D as it is always incident exactly two times to volumes.

Condition 6 Let c be an i-cell of a given combinatorial map G =
(D, β1, β2, β3). c may only be removed if

δ(c) = 2.

4.2.2 Condition 7: Bounding and Incidence Relations

Condition 2 (Bounding and Incidence Relations) also applies to removal oper-
ations. When selecting an i-cell for removal it must be ensured that only this
cell gets removed from the map as a result of the operation. Thus condition 2
is extended to be valid for removal operations as well.

Condition 7 Let ci be an i-cell of a given combinatorial map G =
(D, β1, β2, β3) and let Cj be the set of all j-cells of G with j 6= i. ci may
only be contracted or removed if

∀cj ∈ Cj, D(cj) 6⊆ D(ci).

4.2.3 Condition 8: Bridges

A bridge is an i-cell that is the only path between two connected com-
ponents of the combinatorial map. Thus the removal of such a bridge
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would disconnect the two connected components and is therefore not al-
lowed [Brun and Kropatsch, 1999a].

The representation of a bridge in the dual combinatorial map is a self-
loop. Therefore removing a bridge is equivalent to the contraction of a self-
loop in the dual combinatorial map [Brun and Kropatsch, 1999a], which is
disallowed by condition 3. Thus the “Bridges” condition is the symmetrical
counterpart to the “Self-Loops” condition.

A bridge can be detected be examining the two incident (i+1)-cells when
validating this condition. Due to condition 6, the degree of the i-cell to be
removed must be 2 which means that the i-cell is two times incident to (i+1)-
cells. If it is incident to the same (i + 1)-cell twice, then the i-cell is a bridge
and cannot be removed.

Condition 8 Let c be an i-cell of a combinatorial map G. And let c be
incident to exactly two (i + 1)-cells b1 and b2. c may be removed only if

b1 6= b2.

4.2.4 Condition 9: Common (i + 2)-cells

The ninth condition can be directly deduced from condition 4 using the
symmetry between contraction and removal operations:

Condition 9 Given a combinatorial map G. Let ci be an i-cell of G with
i ≤ 1 that is incident to exactly two (i+1)-cells c1 and c2. Also let B1 be the
set of (i + 2)-cells being incident to c1 and let B2 be the set of (i + 2)-cells
being incident to c2. ci may only be removed if

B1 = B2.

Fig. 4.11 shows an i-cell that cannot be removed because of condition 9.
The middle vertex is incident to two edges and is therefore a candidate for
removal, but the two edges are not incident to the same faces and therefore
the removal is not allowed: The left edge is incident to an additional face (the
capsule-like face only being bounded by the left edge twice). When removing
the vertex this would lead to an ambiguous result as the new configuration
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would either have this additional face or not, depending on which edge is
chosen to survive (Fig. 4.11b,c).

ci
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a) configuration before the removal of vertex ci

c1 c2

b) result of removal if edge c1 survives c) result of removal if edge c2 survives

Figure 4.11: (a) shows an example of a vertex ci that cannot be removed as it
would violate condition 9. The left edge (c1) is incident to an additional face.
Thus the result would be different depending on which edge would survive
as the merged edge (b,c).

4.2.5 Condition 10: Connected Vertices

The tenth condition only applies to the removal operation and has no coun-
terpart regarding the contraction operation. It ensures that vertices do not
“break apart” as the result of a removal operation.
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Condition 10 Let G be a combinatorial map G = (D, β1, β2, β3), V be 0-cell
V = (Dv, β2β1, β3β1) and F be a 2-cell F = (Df , β1, β3). F may only be
removed if

(Dv \ Df , β2β1, β3β1) is connected.

As described in section 3.1, a vertex is defined as V = (D′, β2β1, β3β1)
given a 3D combinatorial map G = (D, β1, β2, β3). As such, a vertex is
defined as the set of all darts that can be reached by any combination of the
permutations β2β1 and β3β1.

For a combinatorial map to be consistent, the opposite must be true as
well: all darts belonging to the same vertex must be reachable from any dart
of this vertex by a combination of the permutations β2β1 and β3β1. The
removal of a face might remove the only path from one dart of the vertex
to another using these two permutations, effectively dividing the vertex and
making the combinatorial map inconsistent. Thus such a removal is not
allowed.

This special case will be discussed in more detail in section 6.4.

4.2.6 Vertex Removal

The removal of a vertex consists of removing this vertex from the combina-
torial map and merging the two edges it separates. Conditions 6 to 9 must
be checked before removing a vertex: The vertex must be incident to exactly
two different edges, the vertex and one of the two incident edges must be the
only i-cells removed from the map as a result of the removal operation, and
both edges incident to the vertex must themselves be incident to the same
faces.

If the data that the combinatorial map describes is encoded by vertices,
then the removal of vertices is not allowed at all. Removing a vertex in this
case would remove a data node from the map.

An example of a vertex removal can be seen in Fig. 4.12. All darts
associated with the vertex are removed from the map and the remaining
darts of the two edges are connected to form a single edge.

Due to the way a vertex Dv is defined, all three permutations have to be
adjusted for this operation (See Fig. 4.12).
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1

2

3

a) initial configuration

b) configuration after the vertex removal

Figure 4.12: Removal of a vertex. The initial configuration shows two edges
that are separated by a vertex. This vertex is only incident to these two
edges (a). After the removal the two edges are merged into a single edge and
all darts belonging to the vertex are removed from the map (b).

Proposition 4.6 Given a combinatorial map G and a vertex Dv ∈ G. The
removal of the vertex G′ = G \ Dv produces a valid combinatorial map if
conditions 6 to 9 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′, is a permutation on D′ since it is either equal to β1(d)
(if β1(d) points to a surviving dart) or equal to β1(β1(d)). Condition 6
allows a removal of a vertex only if it is incident exactly twice to an
edge and condition 8 ensures that it is incident to two different edges.
Thus Dv cannot be the only vertex of an edge self-loop and β1(β1(d))
is defined and a valid permutation.

• β′

2(d), d ∈ D′, is an involution on D′ as it is either equal to β2(d)
or equal to β2(β1(d)). β2(β1(d)) is an involution if the vertex that d
belongs to, is incident twice to an edge. This is ensured by condition 6.
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• β′

3(d), d ∈ D′, is an involution on D′ because it is either equal to β3(d)
or equal to β3(β1(d)) which is also an involution.

�

4.2.7 Edge Removal

An edge may be removed only if it is incident to exactly two faces. By
removing the separating edge these two faces will become a single face. Con-
ditions 6 to 9 must be fulfilled before an edge may be selected for removal.
This means that the edge must be incident to exactly two different faces,
the removal of the face may not remove any other i-cells from the map but
the edge itself and one of the two faces incident to the edge. Finally both
faces incident to the removed edge must be incident to the same volumes.
Fig. 4.13 shows a combinatorial map before and after this operation.

1 2 3

a) configuration before the removal of the edge.

b) configuration after the removal.

Figure 4.13: Removal of an edge. (a) shows an edge that is incident to exactly
two faces. It can be removed to merge the two faces into a single face (b).

As with the edge contraction, only the permutation β1 needs to be ad-
justed for the removal of an edge De. All pairs of β2- and β3-connected darts
are either removed completely as being part of the removed edge or will com-
pletely survive the operation. β1 is set to the β1-β2-β1 successor for those
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darts whose β1 successor is part of the removed edge. This corresponds to
selecting the second edge around a vertex if the first edge was removed.

Proposition 4.7 Given a combinatorial map G and an edge De ∈ G. The
removal of the edge G′ = G \ De produces a valid combinatorial map if con-
ditions 6 to 9 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′, is a permutation on D′ since it is either equal to β1(d)
or equal to β1(β2(β1(d))) which is an involution if the edge is incident
exactly twice to a face. This is always the case because an edge removal
is only allowed if condition 6 is fulfilled.

• β′

2(d) and β ′

3(d), d ∈ D′, are involutions on D′ since they are not
changed by the operation.

�

Proposition 4.8 Given a combinatorial map G and an edge De ∈ G. The
removal of the edge G′ = G \ De will not change the genus of the bounding
surfaces if conditions 6 to 9 are fulfilled.

Proof: To show that an edge removal does not change the genus of the
bounding surfaces, the corresponding contraction of a face in the dual is ex-
amined by comparing the Euler Characteristic before and after the operation.

Because of condition 6 this face is bounded by edges twice, and because
of condition 8 it must be bounded by two different edges. Further, the
contraction of a face is defined as the removal of this face and the merging
of its two bounding edges. No other i-cells will be removed as this would
violate condition 7. Thus v′ = v, e′ = e − 1, and f ′ = f − 1. χ′ is therefore
equivalent to χ:

χ′ = v′ − e′ + f ′ = v − (e − 1) + (f − 1) = v − e + f = χ.

Therefore the genus of the bounding surfaces is not changed by the oper-
ation. �
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4.2.8 Face Removal

The last operation described in this section is the face removal. This op-
eration joins two volumes that are separated by a face. Note that condi-
tion 6 (Degree) does not need to be checked since a face is always incident
to volumes exactly twice in a connected 3D combinatorial map. Condition 9
(Common (i + 2)-cells) is not relevant for 2-cells as well since it applies only
to i-cells with i ≤ 1. Conditions 7 (Bounding and Incidence Relations), 8
(Bridges) and 10 (Connected Vertices) must be validated before selecting a
face for removal: The removed face and one of the incident volumes must
be the only i-cells removed from the map, the face must be incident to two
different volumes, and it must be ensured that the removal of the face will
not create an invalid vertex.

Fig. 4.14 shows an example of such a face removal. In this figure only
the removed face is drawn in complete detail. The other faces bounding the
merged volumes are simplified for the clarity of the example. All darts of
the face are removed and the β2 involutions are corrected to create a single
volume.

β2 is the only permutation changed by the removal of a face F =
(Df , β1, β3) as it is the only permutation that is not part of the definition
of a face. β2-β3-β2 is used wherever β2 points to a dart that is part of the
removed face. This corresponds to skipping the removed face and selecting
the next face around the edge.

Proposition 4.9 Given a combinatorial map G and a face Df ∈ G. The
removal of the face G′ = G \ Df produces a valid combinatorial map if con-
ditions 7, 8, and 10 are fulfilled.

Proof: G′ is a valid combinatorial map as it complies to definition 10:

• D′ is a finite set of darts as D′ is a subset of D.

• β′

1(d), d ∈ D′, is a permutation on D′ as it is equal to β1(d).

• β′

2(d), d ∈ D′, is an involution as it is either equal to β2(d) or equal to
β2(β3(β2(d))) which is also an involution.

• β′

3(d), d ∈ D′, is a involution on D′ as it is equal to β3(d).

�

60



1 2 3

a) configuration before the removal of the edge.

b) configuration after the removal.

Figure 4.14: Removal of a face. The face between the two volumes gets
selected for removal (a). All darts of this face are removed and the two
incident volumes are joined by setting the β2 involutions accordingly (b).

Proposition 4.10 Given a combinatorial map G and a face Df ∈ G. The
removal of the face G′ = G \ Df will not change the genus of the bounding
surfaces if conditions 6 to 9 are fulfilled.

Proof: In a similar way as for an edge removal it can be shown that
a face removal will not change the genus of the bounding surfaces if all
conditions are fulfilled. This is done by examining the dual operation of an
edge contraction.

Because of condition 6 this edge is bounded by vertices twice, and because
of condition 8 it must be bounded by two different vertices. Further, the
contraction of an edge is defined as the removal of this edge and the merging
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of its two bounding vertices. No other i-cells will be removed as this would
violate condition 7. Thus v′ = v − 1, e′ = e − 1, and f ′ = f . χ′ is therefore
equivalent to χ:

χ′ = v′ − e′ + f ′ = (v − 1) − (e − 1) + f = v − e + f = χ.

Therefore the genus of the bounding surfaces is not changed by the oper-
ation. �
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Chapter 5

3D Combinatorial Pyramids

This chapter describes the process of building a 3D combinatorial pyramid
using the operations defined in the previous chapter.

Section 5.1 shows how an initial map is created from 3-dimensional data.
In section 5.2 an algorithm for constructing the complete pyramid from such
an initial map is introduced, using contraction and removal operations. Fi-
nally, the last section of this chapter extends the concept of connecting walks
introduced by [Brun and Kropatsch, 1999b], thus presenting a method for
calculating the receptive field of any vertex in the top level of a 3D combi-
natorial pyramid.

5.1 Describing 3D Data

The first step in building a combinatorial pyramid is the creation of an initial
map representing the data. This map is the base level of the pyramid.

In 2D this is done by converting the data in a grid-like 2D combinatorial
map (see section 2.5). This method is suitable for data that is provided as
a labaled 2D matrix (e.g. images). Each pixel is represented by a vertex in
such a grid-like combinatorial map.

This method can be extended for labeled volumetric data, if the data can
be accessed as a 3D matrix, e.g. stacks of images, the output of a 3D scanner,
or movies. Time or the index of the frame is used as the third dimension
when using movies as input data.
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In these cases a grid-like 3D combinatorial map can be built where each
voxel is represented by a vertex in the map. The adjacency of the six neigh-
bors of each voxel is encoded by edges connecting the corresponding vertices
within the map. The background in which the object is embedded is rep-
resented by an additional vertex. Each vertex on the border of the grid is
connected to this background-vertex by one edge.

Fig. 5.1 shows an example of such a conversion. A 3 × 3 × 3 object is
transformed into a 3 × 3 × 3 grid-like combinatorial map. The background
vertex is not shown in this figure for the clarity of this example.

a) a 3x3x3 object b) 3D combinatorial map of the object

Figure 5.1: Example of a grid-like 3D combinatorial map representing volu-
metric data. A 3 × 3 × 3 object (a) is converted into a combinatorial map
(b). Each voxel is encoded by a vertex in the grid. Neighboring voxels are
connected by an edge to encode this adjacency.

Each vertex that does not lie on the border of such a grid is incident to
6 edges, 12 faces and 8 volumes. Fig 5.2a shows the configuration of such
a vertex within the grid-like combinatorial map. Each vertex is represented
by 24 darts when using a 3D combinatorial map G = (D, β1, β2, β3). Two
darts are needed for each face: one for each edge that bounds the face and
is incident to the vertex.

In Fig. 5.2b the correct β1-, β2- and β3-connections for such a grid can be
seen in the example of one corner of a volume being incident to the vertex.
β3 is set to the dart belonging to the same face but the opposite vertex of the
edge. β2 connects the two darts belonging to two subsequent faces around
an edge and the opposite vertices of the edge. Finally the β1 successor is set
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a) one vertex within the initial map b) β1-, β2- and β3-connections

Figure 5.2: Detailed view of a vertex within the initial 3D combinatorial map.
(a) shows the darts needed to encode the 6 edges, 12 faces and 8 volumes
each vertex is incident to. (b) shows the β1-, β2- and β3-connections within
the grid in the example of 3 faces defining the corner of one volume the vertex
is incident to.

to the dart belonging to the next edge around the border of the face.

5.1.1 Size of the Initial Combinatorial Map

Since the number of darts needed to represent each vertex within the grid
is known as well as the number of edges, faces and volumes each vertex is
incident to, the size of such a grid-like map depends only on the size of the
volumetric data. Thus the size of the initial map for a n1 × n2 × n3 object
can be calculated using only n1, n2 and n3.

The number of such vertices is equal to the number of elements in the
n1 × n2 × n3 matrix plus one additional vertex representing the background.
Therefore the number of vertices nve(G) for a combinatorial map G repre-
senting a n1 × n2 × n3 object is defined by

nve(G) = n1 ∗ n2 ∗ n3 + 1.

The number of darts nd(G) cannot be directly calculated by multiplying
the number of vertices by 24 (the number of darts needed to represent a
vertex within the grid) as the number of darts is different for vertices on the
faces, edges and corners of the grid as well as for the background vertex. So
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the total number of darts is determined by calculating the number of darts
for each type of vertex and adding up these numbers.

The number of darts of a vertex that does not lie on the border of the
grid is 24. There are (n1 − 2) ∗ (n2 − 2) ∗ (n3 − 2) such vertices. The
number of darts for a vertex on a face of the grid is also 24. There are
2 ∗ (n1 − 2) ∗ (n2 − 2) + 2 ∗ (n1 − 2) ∗ (n3 − 2) + 2 ∗ (n2 − 2) ∗ (n3 − 2) such
vertices in a grid. A vertex on an edge of the grid is only incident to 5 edges
and therefore consists of 18 darts. The number of such vertices on an edge
of the grid is calculated by 4 ∗ ((n1 − 2) + (n2 − 2) + (n3 − 2)). Finally there
are 8 vertices on the corners of the grid which consist of 12 darts.

The number of darts of the background vertex can be calculated in similar
way. It consists of 4 darts for each vertex on a face, 4 darts for each vertex
on an edge and 3 darts for each vertex on a corner of the grid. Thus the total
number of darts nd(G) in an initial grid is given by

nd(G) = 24 ∗ (n1 − 2) ∗ (n2 − 2) ∗ (n3 − 2)

+(24 + 4) ∗ [2 ∗ (n1 − 2) ∗ (n2 − 2)

+2 ∗ (n1 − 2) ∗ (n3 − 2)

+2 ∗ (n2 − 2) ∗ (n3 − 2)]

+(18 + 4) ∗ 4 ∗ [(n1 − 2) + (n2 − 2) + (n3 − 2)]

+(12 + 3) ∗ 8.

Additionally, an upper bound can be specified for nd(G) approximating
the real number of darts. This is done by calculating the number of vertices
needed for a (n1 + 1)× (n2 + 1)× (n3 + 1) grid without a background vertex
and multiplying this number by 24.

nd(G) ≈ (n1 + 1) ∗ (n2 + 1) ∗ (n3 + 1) ∗ 24

The number of edges ne(G) is determined by calculating the number
of edges for a grid in which each vertex is incident to 6 edges and then
subtracting 1 edge for each vertex on an edge of the grid and 2 edges for an
edge on the corner of the grid.
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ne(G) = (n1 + 1) ∗ n2 ∗ n3

+n1 ∗ (n2 + 1) ∗ n3

+n1 ∗ n2 ∗ (n3 + 1)

−4 ∗ (n1 + n2 + n3) + 8

The number of faces nf (G) and the number of volumes nvo(G) are calcu-
lated in the same way.

nf (G) = (n1 + 1) ∗ (n2 + 1) ∗ n3

+(n1 + 1) ∗ n2 ∗ (n3 + 1)

+n1 ∗ (n2 + 1) ∗ (n3 + 1)

−4 ∗ (n1 + n2 + n3)

−4 ∗ (n1 − 1 + n2 − 1 + n3 − 1)

nvo(G) = (n1 + 1) ∗ (n2 + 1) ∗ (n3 + 1)

−4 ∗ (n1 − 1 + n2 − 1 + n3 − 1) − 8

The number of edges ne(G), the number of faces nf (G), and the number
of volumes nvo(G) can be approximated in a similar way, namely by the
number of edges, faces and volumes within a n1 × n2 × n3 grid (without a
background vertex) where each vertex is incident to 6 edges, 12 faces and 8
volumes. Thus the subtraction of edges, faces or volumes for vertices on the
border of the grid is removed from the original formula.

ne(G) ≈ (n1 + 1) ∗ n2 ∗ n3

+n1 ∗ (n2 + 1) ∗ n3

+n1 ∗ n2 ∗ (n3 + 1)

nf (G) ≈ (n1 + 1) ∗ (n2 + 1) ∗ n3

+(n1 + 1) ∗ n2 ∗ (n3 + 1)

+n1 ∗ (n2 + 1) ∗ (n3 + 1)

nvo(G) ≈ (n1 + 1) ∗ (n2 + 1) ∗ (n3 + 1)
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Table 5.1 contains the exact values of nd, nve, ne, nf and nvo for initial
maps of different sizes. As can be seen in the fourth row approximately 24
million darts are needed to represent a 100x100x100 object. The grid for one
second of a movie with 25 frames per second and a resolution of 640x480
consists of about 185 million darts.

These numbers illustrate the importance of reducing such initial maps to
their minimal, topologically equivalent form.

size nd nve ne nf nvo

2x2x2 120 9 20 18 7
3x3x3 576 28 80 84 32

10x10x10 25.272 1.001 3.188 3.402 1.215
100x100x100 24.228.072 1.000.001 3.028.808 3.057.912 1.029.105
640x480x25 186.955.872 7.680.001 23.370.628 23.702.397 8.011.770

Table 5.1: Number of darts, vertices, edges, faces and volumes in the initial
grid-like maps of different sizes.

The approximated numbers of nd, nve, ne, nf and nvo for the same maps
are listed in Table 5.2. As can be seen, the error of the approximation is
large for small maps (nd is overestimated by a factor of 5,5 for the 2× 2× 2
map), but becomes less significant for larger maps.

size nd nve ne nf nvo

2x2x2 648 9 36 54 27
3x3x3 1.536 28 108 144 64

10x10x10 31.944 1.001 3.300 3.630 1.331
100x100x100 24.727.224 1.000.001 3.030.000 3.060.300 1.030.301
640x480x25 192.392.304 7.680.001 23.375.200 23.711.545 8.016.346

Table 5.2: Approximated number of darts, vertices, edges, faces and volumes
in the initial grid-like maps of different sizes.
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5.2 Building the Pyramid

This section describes the process of building a 3D combinatorial pyramid
using the contraction and removal operations defined in the previous chapter.

The pyramid is built level by level. Each level is a reduced, but
topologically equivalent map based on the previous level. Once a level
is reached that cannot be simplified anymore, the pyramid is complete.
Thus the top level contains the minimal combinatorial map which rep-
resents the original data topologically correct [Grasset-Simon et al., 2005,
Brun and Kropatsch, 1999b].

The simplification of each level is divided into two parts:

1. Merging of adjacent voxels that belong to the same component

2. Eliminating redundant i-cells

The first step will be referred to as an “algorithm step” throughout this
report, while the second step will be called a “simplification step”.

While it is possible to apply each contraction or removal operation im-
mediately to a map, [Kropatsch, 1995] suggests the use of contraction and
removal kernels as a more effective method. This concept can be used in the
following way for building 3D combinatorial pyramids:

During each step, i-cells are selected for contraction (removal) and added
to a contraction (removal) kernel. After a step has selected all i-cells, this
contraction (removal) kernel is applied to the map to create a temporary
combinatorial map. The next step will then select other i-cells for contraction
(removal) based on the temporary map and will again build a contraction
(removal) kernel. Once all steps have been completed for a level, the last
temporary map built this way will be used as the next level of the pyramid.
All other temporary maps are discarded.

5.2.1 Algorithm Step

Adjacent voxels are connected by an edge within the combinatorial map.
Merging two such voxels can therefore be achieved by contracting the con-
necting edge.
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comb map ∗ a l go r i thm st ep (comb map ∗map) {
// con t rac t i on ke rne l to ho ld a l l s e l e c t e d edges
c on t r a c t i o n k e r n e l c k e r n e l ;

// Create an I t e r a t o r t ha t w i l l p roces s a l l edges
// presen t in the map
e d g e i t e r a t o r e d g e i t = map−>edges . begin ( ) ;

// i t e r a t e through a l l edges
for ( e d g e i t ; e d g e i t !=map−>edges . end ( ) ; e d g e i t++) {

// r e t r i e v e the va l u e s o f both v e r t i c e s
value value1 = edge i t−>value ( ) ;
va lue value2 = edge i t−>g e t n ex t v e r t e x ()−>value ( ) ;

// a l gor i thm s p e c i f i c d e c i s i on to con t rac t an edge
// e . g . a connected component a l gor i thm compares
// the va l u e s o f two v e r t i c e s
i f ( va lue1 == value2 ) {

// i f the edge was s e l e c t e d by the a l gor i thm
// the o ther cond i t i on s must be checked as we l l
// the cond i t i on s are checked wi th r e s p e c t to the
// edges a l r eady in the con t rac t i on ke rne l .
i f ( edge i t−>va l i d a t e (EDGE CONTRACTION, c k e r n e l ) ) {

// and add the edge to the k e rne l i f the
// cond i t i on s were met
// t h i s f unc t i on a l s o checks t ha t the
// edges form a f o r e s t
c ke rne l−>add ( e d g e i t ) ;

}
}

}

// f i n a l l y c r ea t e a temporary map by app l y ing the
// con t rac t i on ke rne l i f i t i s not empty
i f ( ! c k e rne l−>empty ( ) ) {

comb map ∗tmp map = new comb map(map, c k e r n e l ) ;
} else {

// o the rw i s e re turn the o r i g i n a l map
tmp map = map ;

}

return tmp map ;
}

Listing 5.1: Algorithm step
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The selection of edges to be contracted in this step depends solely on the
algorithm used. E.g. when implementing a connected component algorithm
based on labeled voxels, the algorithm will select all edges connecting two
vertices that represent voxels with the same label.

Additionally, the conditions presented in section 4.1 have to be validated
to ensure that the selected edges are eligible for contraction. Because a ker-
nel is used to apply multiple edge contractions simultaneously to the com-
binatorial map, it is not sufficient to check these conditions for each edge
independently. Instead, the conditions must be validated for the candidate
edge with respect to the edges already in the kernel and it must be ensured
that adding the candidate edge does not invalidate the conditions for an edge
that is already part of the kernel.

Condition 1 (Dual-Degree): Contracting an edge will not change the dual-
degree of any other edge of the map. This condition can therefore be validated
locally for each edge.

Condition 2 (Bounding and Incidence Relations): This condition must be
validated with respect to the edges already in the kernel. To ensure that the
contraction of a candidate edge will remove only the edge itself and one of
the two bounding vertices, all incident i-cells are examined. If any of these
incident i-cells consists only of darts that either belong to the candidate
edge or that are already in the contraction kernel, then this i-cell would be
removed as a side effect and therefore the operation is disallowed.

Condition 3 (Self-Loops): This condition must be validated with respect
to the edges already in the kernel. [Brun and Kropatsch, 1999a] show that
the edges in the kernel must be a forest to validate this condition.

Condition 4 (Common (i − 2)-cells): This condition does not apply to
edges as it is only defined for i-cells with i ≥ 2.

Condition 5 (Background vertex): It is sufficient to validate this condition
for each edge locally, as the contraction of an edge does not change which
edges are connected to the background vertex.

Listing 5.1 gives a C++ implementation of the algorithm step. The func-
tion algorithm step takes an existing combinatorial map as its argument
and returns the temporary map created after applying the contraction kernel.
The contraction kernel is built by first selecting all candidate edges by the
algorithm. If they also fulfill all conditions defined for an edge contraction,
they are added to the kernel.
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5.2.2 Simplification Step

Simplification steps are used to eliminate redundant i-cells from a given com-
binatorial map. For 2D combinatorial maps [Brun and Kropatsch, 1999a]
showed that such redundant i-cells are either parallel edges or edges that
are empty self-loops. Empty self-loops are eliminated by an edge removal
while parallel edges can either be eliminated by an edge removal or by a face
contraction.

When extending this concept to 3D, parallel faces and empty face self-
loops are also considered redundant cells. Therefore parallel cells and empty
self-loops are defined for cells of any dimension.

Definition 19 (Parallel i-Cell) Given a combinatorial map G and an i-cell
c ∈ G. c is a parallel i-cell if there is an i-cell c′ ∈ G such that

• ∃ (i + 1)-cell ci ∈ G, δ̄(ci) = 2, ci is bounded by c and c′;

• Bc = Bc′ where Bc is the set of (i − 1)-cells bounding c and Bc′ is the
set of (i − 1)-cells bounding c′.

Definition 20 (Empty i-Cell Self-Loop) Given a combinatorial map G
and an i-cell c ∈ G. c is an empty self-loop if there is an (i + 1)-cell ci ∈
G, δ̄(ci) = 1 such that

• c bounds ci;

• δ̄(c) = 2;

• c is bounded by exactly one (i − 1)-cell cj ∈ G.

Using these two definitions a redundant i-cell is defined as an i-cell that
is either a parallel i-cell or an empty i-cell self-loop:

Definition 21 (Redundant i-Cell) Given a combinatorial map G and an
i-cell c ∈ G. c is a redundant i-cell if it is either a parallel i-cell or an empty
i-cell self-loop.

Based on these definitions, four kinds of redundant i-cells exist in a 3D
combinatorial map: parallel edges, parallel faces, empty edge self-loops and
empty face self-loops. Fig 5.3 shows examples of these four types of redundant
i-cells.
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a) parallel edge b) empty edge self-loop

c) parallel face d) empty face self-loop

Figure 5.3: Examples of redundant i-cells: an empty face bounded by parallel
edges (a), an empty face bounded by an edge self-loop (b), an empty volume
bounded by parallel faces (c), and an empty volume bounded by a face self-
loop (d).

For reasons of completness examples of non-empty cells are shown as
well even though they are not considered redundant cells according to defin-
ition 21. Non-empty parallel i-cells can be seen in Fig. 5.4 and examples of
non-empty self-loops are shown in chapter 6 in Fig. 6.5.

Parallel edges and empty edge self-loops are eliminated by the
contraction of a face and the removal of an edge as introduced
by [Brun and Kropatsch, 1999a]. To deal with parallel faces and empty face
self-loops two additional operations are used. The contraction of a volume is
introduced to deal with parallel faces and the removal of a face is used to re-
move faces that form an empty self-loop. Therefore the four operations edge
removal, face removal, face contraction, and volume contraction are used to
simplify a combinatorial map. Table 5.3 contains an overview of these four
operations.
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a) non-empty parallel edges d) non-empty face self-loop

Figure 5.4: non-empty parallel i-cells: non-empty parallel edges (a) and non-
empty parallel faces (b).

operation i-cell eliminated

edge removal empty edge self-loops
face contraction parallel edges

face removal empty face self-loops
volume contraction parallel faces

Table 5.3: Operations used to eliminate different kinds of redundant i-cells
in a 3D combinatorial map.

5.2.3 Simplification with Contraction Operations

Parallel edges and parallel faces can both be identified using the dual-degree
of an i-cell. The dual-degree of an i-cell that is bounded by parallel (i − 1)-
cells equals two. This means that the same algorithm can be used when
simplifying a map using either face contractions or volume contractions.

Again it must be ensured that the conditions for a contraction are valid
with respect to the i-cells already in the contraction kernel.

Condition 1 (Dual-Degree): Contracting an i-cell will not change the
dual-degree of any other i-cell of the map with the same dimension. This
condition can therefore be validated locally for each i-cell.

Condition 2 (Bounding and Incidence Relations): This condition must be
validated with respect to the i-cells already in the kernel. To ensure that the
contraction of a candidate i-cell will remove only the i-cell itself and one of
the two bounding (i−1)-cells, all incident cells are examined. If any of these
incident cells consists only of darts that either belong to the candidate i-cell
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or that are already in the contraction kernel, then this cell would be removed
as a side effect and therefore the operation is disallowed.

Condition 3 (Self-Loops): This condition must be validated with respect
to the i-cells already in the kernel. The the i-cells in the kernel must be a
forest to validate this condition [Brun and Kropatsch, 1999a].

Condition 4 (Common (i − 2)-cells): This condition can be validated
locally as the contraction of an i-cell will not remove any other cell but the
i-cell itself and one of the two bounding (i − 1)-cells. Thus the (i − 2)-cells
bounding a cell will not be changed by the contraction of the i-cells in the
kernel.

Condition 5 (Background vertex): This condition is only relevant for
edges and does not need to be checked for an i-cell of a higher dimension.

A C++ version of a function simplify by contraction implementing
such an algorithm is displayed in listing 5.2. This function takes the combi-
natorial map that is to be reduced and the type of i-cells as its arguments
and returns a simplified map. First, the i-cells that are candidates for a con-
traction are selected by iterating through all i-cells of the map and choosing
those with a dual-degree of two. If these candidates meet the other conditions
for a contraction operation, they are added to the contraction kernel. After
all i-cells have been processed this way, the contraction kernel is applied to
the map to create the reduced map.

5.2.4 Simplification with Removal Operations

Both removal operations are used to eliminate empty self-loops from the
combinatorial map. Self-loops are defined as i-cells that are bounded by the
same (i− 1)-cell twice. E.g. an edge with the same vertex on both endpoints
or a volume bounded by a single face that itself is bounded by one edge twice.

This means that the dual-degree of an empty self-loop equals two, being
bounded by one (i− 1)-cell twice. Additionally, the degree of the i-cell must
also equal two (see condition 6). E.g. an edge cannot be removed if it is
incident to three or more faces, even if it is an empty self-loop.

Because a removal kernel is used it must be ensured that the conditions
are valid with respect to the i-cells already in the kernel when adding an
i-cell. This is done in an analogous way to the contraction operation and the
use of a contraction kernel.
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comb map ∗ s imp l i f y by c on t r a c t i o n (comb map ∗map, int i ) {
// con t rac t i on ke rne l to ho ld a l l s e l e c t e d i−c e l l s
c on t r a c t i o n k e r n e l c k e r n e l ;

// Create an I t e r a t o r t ha t w i l l p roces s a l l c e l l s o f
// dimension i pre sen t in the map
c e l l i t e r a t o r c e l l i t = map−>c e l l s ( i ) . begin ( ) ;

// i t e r a t e through a l l i−c e l l s
for ( c e l l i t ; c e l l i t !=map−>c e l l s ( i ) . end ( ) ; c e l l i t ++) {

// s e l e c t those i−c e l l s t h a t have a dua l d e g r e e
// o f 2 as cand ida te s f o r a con t rac t i on
i f ( c e l l i t −>dua l deg ree ( ) == 2 ) {

// i f the c e l l was s e l e c t e d by the a l gor i thm
// the o ther cond i t i on s f o r a con t rac t i on o f
// a c e l l o f dimension i must be checked as we l l .
// the cond i t i on s are checked wi th r e s p e c t to the
// c e l l s a l r eady in the k e rne l
i f ( c e l l i t −>va l i d a t e (CONTRACTION, i , c k e r n e l ) ) {

// and add the c e l l to the k e rne l i f the
// cond i t i on s were met
// t h i s f unc t i on a l s o ensures t ha t the c e l l s
// in the k e rne l form a f o r e s t
c ke rne l−>add ( c e l l i t ) ;

}
}

}

// f i n a l l y c r ea t e a temporary map by app l y ing the
// con t rac t i on ke rne l i f i t i s not empty
i f ( ! c k e rne l−>empty ( ) ) {

comb map ∗tmp map = new comb map(map, c k e r n e l ) ;
} else {

// o the rw i s e re turn the o r i g i n a l map
tmp map = map ;

}

return tmp map ;
}

Listing 5.2: Simplification step using contraction operations
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Condition 6 (Degree): Removing an i-cell will not change the degree of
any other i-cell of the map with the same dimension. This condition can
therefore be validated locally for each i-cell.

Condition 7 (Bounding and Incidence Relations): This condition must be
validated with respect to the i-cells already in the kernel. To ensure that
the removal of a candidate i-cell will remove only the i-cell itself and one of
the two incident (i + 1)-cells, all incident cells are examined. If any of these
incident cells consists only of darts that either belong to the candidate i-cell
or that are already in the removal kernel, then this cell would be removed as
a side effect and therefore the operation is disallowed.

Condition 8 (Bridges): This condition must be validated with respect to
the edges already in the kernel. [Brun and Kropatsch, 1999a] show that it is
sufficient to ensure that the dual-cells of the cells in the removal kernel are a
forest.

Condition 9 (Common (i + 2)-cells): This condition can be validated
locally as the removal of an i-cell will not remove any other cell but the i-cell
itself and one of the two incident (i + 1)-cells. Thus the (i + 2)-cells incident
to a cell will not be changed by the removal of the i-cells in the kernel.

Condition 10 (Connected Vertices): This condition must be checked with
respect to the i-cells already in the kernel, but it is sufficient to validate it in
the case of face removals. When testing whether a vertex is still connected
after the removal of a face, only those darts may be considered that are not
already in the kernel. This means that each surviving dart of the vertex
must be reachable from every other surviving dart of the vertex using any
combination of β2β1 and β3β1 without traversing a dart that belongs to the
removed face or that is already in the kernel.

The algorithm for simplifying a combinatorial map with removal oper-
ations can then be designed in a similar way to the simplification using
contraction operations. This is done by selecting empty self-loops instead of
i-cells bounded by parallel (i− 1)-cells and using a removal kernel instead of
a contraction kernel.

Listing 5.3 contains a C++ version of this algorithm. The function
simplify by removal takes a combinatorial map and the type of i-cells to
be removed as its arguments and returns a combinatorial map in which all re-
movable and empty self-loops have been eliminated. Again, candidate i-cells
are selected by iterating through all i-cells of the map. If empty self-loops
are detected, they are tested against the other conditions for the removal of
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comb map ∗ s imp l i f y by remova l ( comb map ∗map, int i ) {
// removal k e rne l to ho ld a l l s e l e c t e d i−c e l l s
r emova l ke rne l r k e r n e l ;

// Create an I t e r a t o r t ha t w i l l p roces s a l l c e l l s o f
// dimension i pre sen t in the map
c e l l i t e r a t o r c e l l i t = map−>c e l l s ( i ) . begin ( ) ;

// i t e r a t e through a l l i−c e l l s
for ( c e l l i t ; c e l l i t !=map−>c e l l s ( i ) . end ( ) ; c e l l i t ++) {

// s e l e c t those i−c e l l s t h a t have a dua l d e g r e e
// o f 2 , a degree o f 2 and t ha t are bounded by
// the same ( i−1)− c e l l tw i ce
i f ( ( c e l l i t −>dua l deg ree ( ) == 2 )

&& ( c e l l i t −>degree ( ) == 2 )
&& ( c e l l i t −>bound ing c e l l s w i t h s ame l ab e l ( ) ) ) {

// i f the c e l l was s e l e c t e d by the a l gor i thm
// the o ther cond i t i on s f o r a removal o f a
// c e l l o f dimension i must be checked as we l l .
// the cond i t i on s are checked wi th r e s p e c t to the
// c e l l s a l r eady in the k e rne l
i f ( c e l l i t −>va l i d a t e (REMOVAL, i , r k e r n e l ) ) {

// and add the c e l l to the k e rne l i f the
// cond i t i on s were met
// t h i s f unc t i on a l s o checks t ha t the dual−c e l l s
// o f the c e l l s in the k e rne l are a f o r e s t
r k e rn e l−>add ( c e l l i t ) ;

}
}

}

// f i n a l l y c r ea t e a temporary map by app l y ing the
// removal k e rne l i f i t i s not empty
i f ( ! r k e rn e l−>empty ( ) ) {

comb map ∗tmp map = new comb map(map, r k e r n e l ) ;
} else {

// o the rw i s e re turn the o r i g i n a l map
tmp map = map ;

}

return tmp map ;
}

Listing 5.3: Simplification step using removal operations
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an i-cell and then added to the removal kernel. Finally, the removal kernel
is applied to the map and the resulting combinatorial map is returned.

5.2.5 Building the next level

Using the algorithm step and the simplification steps introduced in the pre-
vious sections, an algorithm for building the next level of a pyramid can be
designed.

1. Contract all edges that connect vertices belonging to the same compo-
nent (algorithm step)

2. Contract all faces bounded by parallel edges (simplification step)

3. Contract all volumes bounded by parallel faces (simplification step)

4. Remove all empty edge self-loops (simplification step)

5. Remove all empty face self-loops (simplification step)

The algorithm step will only be executed once when building a new level.
Steps 2-5 will be repeated until no more candidates for a simplification can
be found within the map. This way it is ensured that each new level will not
contain any redundant cells.

Listing 5.4 shows a C++ implementation of this algorithm. The function
build next level will create the next level of the pyramid based on the map
it receives as its argument. This is done by applying all steps as described
above. Each step produces a temporary map that is discarded after the
next step has been executed. The last of these temporary maps is kept and
returned as the next level of the pyramid.
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comb map ∗ bu i l d n e x t l e v e l ( comb map ∗map) {
// temporary maps ho l d ing the in t e rmed ia t e maps
comb map ∗tmp map , ∗tmp map2 ;

// the a l g o r i t hm s t e p i s app l i e d once
tmp map = a lgo r i thm st ep (map ) ;

// f l a g s e t to t rue i f a s im p l i f i c a t i o n was performed
bool s imp l i f i e d ;

// app ly the s im p l i f i c a t i o n s t e p s u n t i l no more
// cand ida te s are found
do {

s imp l i f i e d = f a l s e ;

// s imp l i f y map us ing face and volume con t ra c t i on s
for ( int=2; i <=3; i++) {

tmp map2 = s imp l i f y by c on t r a c t i o n ( tmp map , i ) ;

// check whether the map has been changed
i f ( tmp map2 != tmp map) {

// s e t f l a g and d i s card o ld temporary map
s imp l i f i e d = true ;
d e l e t e ( tmp map ) ;
tmp map = tmp map2 ;

}
}

// s imp l i f y map us ing edge and face removals
for ( int=1; i <=2; i++) {

tmp map2 = s imp l i f y by remova l ( tmp map , i ) ;

// check whether the map has been changed
i f ( tmp map2 != tmp map) {

// s e t f l a g and d i s card o ld temporary map
s imp l i f i e d = true ;
d e l e t e ( tmp map ) ;
tmp map = tmp map2 ;

}
}

} while ( s imp l i f i e d ) ;

// re turn the l a s t temporary map as the
// next l e v e l o f the pyramid
return tmp map ;

}

Listing 5.4: Building the next level of a pyramid
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5.3 Receptive Fields

Once a combinatorial pyramid has been built, connecting walks can be
used to calculate the receptive field of any dart within the pyramid
[Brun and Kropatsch, 2003].

The concept of connecting walks has been introduced by
[Brun and Kropatsch, 1999b] for 2D combinatorial pyramids. It is
used when creating a new combinatorial map G′ by applying multiple
contraction or removal operations simultaneously onto a combinatorial map
G using a contraction- or removal-kernel. Each surviving dart is associated
with another surviving dart by traversing some non-surviving darts. This
traversal is non-ambiguous and is used to find the βn-successors for each
dart in G′.

At the same time, a connecting walk associates one surviving dart unam-
biguously with each non-surviving dart. Each non-surviving dart traversed
during a connecting walk is assigned to the surviving dart at the end of the
connecting walk. This mapping of non-surviving darts to surviving darts is
used by [Brun and Kropatsch, 2003] to calculate the receptive field of darts
within a combinatorial pyramid.

[Damiand and Lienhardt, 2003] extend this concept to any dimension and
multiple operations. The dimension i of a non-surviving cell and the type
of operation (contraction or removal) that removed the i-cell from the map
is saved for each dart of the cell. This information is then used to calculate
the connecting walk for each dart d and permutation βn, using the following
algorithm.

operation dimension of the cell permutation sequence

contraction 1 β1 βp
1(d)

contraction 2 β2 β2(β1(d))
contraction 3 β3 β3(β2(d))

removal 1 β1 β1(β2(d))
removal 2 β2 β2(β3(d))

Table 5.4: Permutation sequences for the construction of a connecting walk.

Starting from a surviving dart d the βn successor is checked. If it is
a surviving dart, the connecting walk is complete. If it is a non-surviving
dart, then the information about the dimension of the i-cell and the type of
operation is used to select the correct permutation sequence from Table 5.4
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dar t type ∗ s u r v i v i n g da r t ( dar t type ∗dart , int perm index ){

// r e t r i e v e the succe s sor o f the permutat ion s p e c i f i e d
dar t type ∗ tmp dart = dart−>permutation ( perm index ) ;

// check whether i t was removed or con t rac t ed
// the s e f unc t i on s re turn the dimension o f the
// removed/ con t rac t ed c e l l or NOTREMOVED,
// NOTCONTRACTED otherw i s e
int removed = tmp dart−>r emoved by ce l l ( ) ;
int contracted = tmp dart−>c o n t r a c t e d by c e l l ( ) ;

// Apply the co r r e c t permutat ion sequences
// u n t i l a s u r v i v i n g dar t i s re turned
while ( removed!=NOTREMOVED

| | contracted !=NOTCONTRACTED) {

// c a l l r emova l succes sor or con t r a c t i on su c c e s s o r
// r e c u r s i v e l y depending on the opera t ion
i f ( removed!=NOTREMOVED)

tmp dart = remova l succe s so r ( tmp dart , removed ) ;
else

tmp dart = con t r a c t i o n s u c c e s s o r ( tmp dart ,
cont racted ) ;

removed = tmp dart−>r emoved by ce l l ( ) ;
cont racted = tmp dart−>c o n t r a c t e d by c e l l ( ) ;

}

return tmp dart ;
}

Listing 5.5: Retrieving the surviving dart using connecting walks

(these permutation sequences correspond to the permutations defined for
each operation in chapter 4). The connecting walk is completed if applying
these permutations returns a surviving dart. Otherwise, the procedure is
repeated until a surviving dart is found.

Since the permutation sequences in Table 5.4 consist of more than one
subsequent permutation, the darts have to be checked after the application
of each permutation. If such an intermediate dart has been removed from
the map due to a different operation, the correct sequence for this operation
has to be applied before continuing with the original sequence. This leads to
the recursive algorithm presented in listings 5.5 & 5.6.
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dar t type ∗ r emova l succe s so r ( dar t type ∗dart ,
int dimension ) {

// app ly the co r r e c t sequence f o r removed i−c e l l s
// based on the dimension o f the c e l l
switch ( dimension ) {

case 1 :
// app ly the f i r s t permutat ion
tmp dart = tmp dart−>permutation (BETA 2 ) ;

// check i f the re turned dar t was removed due to
// the same opera t ion and dimension
// the s e f unc t i on s re turn the dimension o f the
// removed/ con t rac t ed c e l l or NOTREMOVED,
// NOTCONTRACTED otherw i s e
int removed = tmp dart−>r emoved by ce l l ( ) ;
int contracted = tmp dart−>c o n t r a c t e d by c e l l ( ) ;

// i f not , the s u r v i v i n g d a r t f unc t i on i s c a l l e d
// r e c u r s i v e l y u n t i l the second dar t o f removal
// opera t ion f o r t h i s dimension i s re turned
while ( removed != 1) {

i f ( removed!=NOTREMOVED)
tmp dart = remova l succe s so r ( tmp dart , removed ) ;

else
tmp dart = con t r a c t i o n s u c c e s s o r ( tmp dart ,

cont racted ) ;

removed = tmp dart−>r emoved by ce l l ( ) ;
cont racted = tmp dart−>c o n t r a c t e d by c e l l ( ) ;

}

// app ly the second permutat ion and re turn the dar t
return ( tmp dart−>permutation (BETA 1 ) ) ;

case 2 :
. . .

}
}

Listing 5.6: Recursively calculating the successor for a removal operation

Listing 5.5 defines a function surviving dart that will return the surviv-
ing dart for a specified dart and permutation βn by implementing the connect-
ing walk. Depending on the contraction or removal operations encountered,
the recursive functions removal successor and contraction successor are
called until a surviving dart is found.
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removal successor and contraction successor will apply the permu-
tation sequence from Table 5.4 depending on the dimension of the removed
or contracted cell. removal successor and contraction successor are
called recursively if the sequence contains a dart that was eliminated by a
different operation. Listing 5.6 shows the implementation of the function
removal successor for dimension 1.

1

2

Dart removed by 

- an edge contraction

- a face contraction

Connecting walk 

of dart 1 and 2

a) 2 edges and 1 face are selected for contraction

b) configuration after the contractions

Figure 5.5: Connecting walk of a dart. (a) shows a map that is reduced by
two edge contraction (darts 3 & 5) and one face contraction (darts 2 & 4).
The β2 successor of dart 1 is set to dart 6 (b) using the connecting walk.

Fig. 5.5 shows an example of such a connecting walk. The original config-
uration has been reduced using an edge contraction and a face contraction.
The β2 permutation of the dart with index 1 is set to the surviving dart with
index 6 using the connecting walk. The original β2 successor - dart 2 - was
removed from the map by the face contraction. Therefore the permutation
sequence β2(β1(d)) is used to construct the connecting walk. By applying β1

on dart 2, the dart with index 3 is obtained. Since this dart was removed
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by an edge contraction the second permutation from the β2(β1(d)) sequence
is not immediately applied. Instead, the sequence of an edge contraction -
βn

1 (d) is used first, which leads to the dart with index 4. As this dart was
removed by the face contraction, β2 (the second permutation of the β2(β1(d))
sequence) can be applied now. The resulting dart 6 is a surviving dart. Thus
the connecting walk is complete and the β2 successor of dart 1 is set to dart
6.
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Chapter 6

Configurations and Topological
Relations

The previous chapter described the process of building a combinatorial pyra-
mid with the operations defined in chapter 4.

In the first section of this chapter, minimal combinatorial maps obtained
by these operations are discussed. It will be shown that these operations are
suitable to create minimal maps where each connected component is reduced
to a single vertex if the original configuration does not contain face self-loops.
The second and third section studies the properties of minimal configurations
and provides the means for interpreting them. Finally the last section will
examine configurations that cannot be encoded by a 3D combinatorial map.

6.1 Minimal 3D Combinatorial Maps

It will be shown in this section that the operations introduced in chapter 4
together with their 10 conditions will reduce a 3D combinatorial map to its
minimal form if the map does not contain face self-loops. For this purpose
the definition of a minimal 3D combinatorial map is introduced. Within
this report, a 3D combinatorial map is considered to be minimal, if each
connected 3D component is represented by exactly one vertex.

Definition 22 (Minimal 3D Combinatorial Map) Given a 3D combi-
natorial map G. G is a minimal 3D combinatorial map if every connected
3D component of G is encoded by exactly one vertex of G.
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Theorem 6.1 Given a combinatorial map G = (D, β1, β2, β3), such that 6 ∃
2-cell f ∈ G, f is a face self-loop. G can be reduced to an equivalent minimal
3D combinatorial map.

This theorem uses the definition of a face self-loop (see definitions 20
and 24).

Proof: Given a combinatorial map G = (D, β1, β2, β3), such that 6 ∃ 2-cell
f ∈ G, f is a face self-loop.

To prove that G can be reduced to an equivalent minimal 3D combinato-
rial map, it will shown that a connected component k ∈ G can be reduced to
a single vertex using edge contractions. This result can be directly applied
to every connected component of G.

To show that a connected component k ∈ G can be reduced to single
vertex, two cases are considered:

• Let there be only one vertex in G with the label of k. In this case k is
already minimal.

• Let there be n vertices in G with the label of k. In this case there
must be an edge connecting two vertices with the label of k, since k is
a connected component: Let K be the set of all vertices in G with the
label of k. ∃ 0-cell v1, v2 ∈ K, v1 6= v2;∃ 1-cell e ∈ G, such that v1 and
v2 are incident to e.

It will be shown, that the number of vertices with the label of k can be
reduced to n − 1 by the contraction of e.

It will be shown, the the 5 conditions for the contraction of e are fulfilled
if G does not contain a face self-loop.

Further it will be shown that the resulting map after the contraction
G′ = G/D(e) will still not contain a face self-loop. Thus the procedure
can be repeated until k consists of only vertex.

G′ = G/D(e) is an equivalent map as the contraction of an edge will
not change the connected component adjacency relations or inclusion
relations.

The contraction of an edge eliminates the edge and merges the two inci-
dent vertices. Thus the contraction of e will merge v1 and v2, reducing the
number of vertices with the label of k by one and the number of vertices with
the label of k is n − 1.
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The contraction of e is allowed, if the 5 conditions for a contraction op-
eration are fulfilled. It can easily be seen, that conditions 1, 3, 4, and 5 are
fulfilled:

• Condition 1 (Dual Degree): δ̄(e) = 2 is fulfilled as the dual-degree of
an edge is always two.

• Condition 3 (Self-Loops): e cannot be a self-loop, since v1 6= v2. There-
fore this condition is fulfilled.

• Condition 4 (Common (i−2)-cells): This condition only applies for the
contraction of a i-cell, i ≥ 2. Thus the 1-cell e fulfills this condition.

• Condition 5 (Background vertex): This condition is fulfilled since e is
incident to v1 and v2.

To fulfill the Condition 2 (Bounding and Incidence Relations) it must
be shown, that there is no cell c ∈ G, c 6= e, c 6= v1, c 6= v2, such that
D(c) ⊆ D(e). For this condition the 4 cases are considered:

• Let c be a 0-cell. Since c 6= v1, c 6= v2 and v1 and v2 are incident to
e, there cannot be another 0-cell also being incident to e. If c is not
incident to e it follows that D(c) 6⊆ D(e).

• Let c be a 1-cell. Since c 6= e and since a 1-cell cannot be incident to
another 1-cell it follows that D(c) 6⊆ D(e).

• Let c be a 2-cell. If D(c) ⊆ D(e), then e must be the only edge incident
to c. Thus c is only bounded by e. Since e is not a self-loop, this can
only be the case if c is a face self-loop. As G does not contain face
self-loops, the condition is fulfilled.

• Let c be a 3-cell. If D(c) ⊆ D(e), then e must be the only edge incident
to c. Thus c is only bounded by a face that again is only bounded by
e. Since e is not a self-loop, this can only be the case if c is bounded
by a face self-loop. Since G does contain face self-loops, this cannot be
the case and the condition is fulfilled.

It remains to be shown that the the combinatorial map G′ = G/D(e)
created by the contraction of e will also not contain a face self-loops. G does
not contain face self-loops. A face self-loop is a face that is incident to one
edge twice. Since the contraction of an edge cannot change the number of

88



times that a face is incident to an edge, the contraction of e cannot create a
face self-loop in G. �

Note that only edge contractions are used to obtain a minimal 3D com-
binatorial map. The other operations introduced in this report can then
be applied to the minimal 3D combinatorial map to eliminate redundant
elements, thus reducing the number of i-cells present.

Theorem 6.1 shows that a combinatorial map can be reduced to a minimal
combinatorial map if only edge contractions are used. It does not apply to
a combinatorial map that is obtained by using other contraction or removal
operations before all edges are contracted, as it cannot be guaranteed that
face self-loops will not occur in such a combinatorial map. Still it might
be advantageous for certain algorithms to select only a subset of edges for
contraction in a first step to create an intermediate map and then using the
other operations to reduce the number of i-cells in such this intermediate
map. E.g. for building a pyramid. In the experimental results both variants
of reducing a 3D combinatorial map will be shown.

According to theorem 6.1 a 3D combinatorial amp that does not contain
face self-loops can be reduced to a minimal 3D combinatorial map. The size of
the final 3D combinatorial maps obtained by this reduction process is known
in advance as it depends only on the number of connected components in the
volumetric data. Since each connected component is encoded by a exactly
one vertex in the minimal 3D combinatorial map, the size of a minimal 3D
combinatorial map G encoding n connected components can be specified by

nv(G) = n + 1.

The number of vertices corresponds to the number of connected compo-
nents n plus one vertex for the background region.

6.2 Minimal Configurations

In the previous section minimal 3D combinatorial map have been defined
and it has been shown that such minimal maps can be obtained using edge
contractions.

Additionally it is also of interest to examine combinatorial maps that are
minimal in terms of i-cells to study their properties with a focus on the cells
needed to encode a given configuration and on how to identify them. For
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this purpose the a minimal configuration is defined as a combinatorial map
encoding a given configuration with the minimal number of i-cells.

Definition 23 (Minimal 3D Configuration) Given a combinatorial map
G. G is a minimal configuration if the number of i-cells c ∈ G is minimal and
there is no combinatorial map G′ encoding the same topological configuration
as G.

In this work a topological configuration is identified by the represented
objects, the encoded adjacency and inclusion relations as well as the Euler
characteristic of the bounding surfaces.

Within this report, minimal configurations are examined with respect to
the contraction and removal operations introduced in chapter 4.

As will be shown in this section, there may be more than one minimal
configuration for edges and volumes within a 3D combinatorial map. The
reason for this is the strict bounding- and incidence-relation discussed in
chapter 4. E.g. an edge must have a face and a volume it is incident to
and must be bounded by vertices twice (In the case of an edge self-loop,
the edge is bounded by the same vertex twice). This means that at least
one cell of each dimension is needed for a valid combinatorial map. The
number of additional cells and their dimension defines the different minimal
configurations for edges, faces and volumes.

Proposition 6.1 Given an nD combinatorial map G = (D, β1, . . . , βn). G
contains at least one i-cell of each dimension 0 ≤ i ≤ n.

Proof: Given an nD combinatorial map G = (D, β1, . . . , βn) and a dart
d ∈ D. According to proposition 2.2 d belongs to exactly one i-cell of each
dimension. Thus G also contains at least one i-cell of each dimension. �

It follows from proposition 6.1 that a minimal 3D combinatorial map
contains at least four i-cells (one i-cell of each dimension). For this reason
the method to find minimal configurations for an edge, a face, and a volume
used in this section, is to examine if the configurations can be encoded using
only one i-cell of each dimension. If this is not the case, the minimal number
of i-cells that must be added to the configuration is determined.

6.2.1 Edges

A combinatorial map must contain at least one i-cell of each dimension. To
encode two different vertices connected by an edge, the minimal number of
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i-cells is therefore five (2 vertices, 1 edge, 1 face, and 1 volume).

As will be shown, there is no such combinatorial map using five i-cells that
can be obtained using the contraction and removal operations introduced in
this report. Therefore combinatorial maps with six i-cells are considered
minimal. Three such configurations with one additional i-cell are presented
here.

The number of cells used for each of these configurations is shown in
Table 6.1. All three configurations consist of six cells. Four darts are needed
for the configurations “edge 1” and “edge 2” while six darts are necessary
for “edge 3”.

configuration darts vertices edges faces volumes

edge 1 4 2 1 1 2
edge 2 4 2 2 1 1
edge 3 6 2 2 1 1

Table 6.1: Number of cells and darts for the three minimal representations
of an edge.

According to definition 23, a combinatorial map is called minimal if the
number of i-cells is minimal. Further, according to proposition 6.1, a combi-
natorial map must contain at least four i-cells (one i-cell for each dimension).
Therefore a configuration that contains at least one edge connecting two ver-
tices must consist of at least five i-cells: 2 vertices, 1 edge, 1 face, and 1
volume.

Proposition 6.2 Given a 3D combinatorial map G = (D, β1, β2, β3) that
encodes two different vertices and one edge connecting both vertices. G con-
tains at least six i-cells if there is no dart d ∈ D with β3(d) = d ∨ β2(d) = d.

Proof: Additionally to the two vertices and the one connecting edge, G
must contain at least one face and one volume. To prove that G contains at
least six i-cells, it is sufficient to show that no valid combinatorial map can be
created with these five i-cells if there is no d ∈ D with β3(d) = d∨β2(d) = d.

The face in the configuration must be bounded by at least one edge. If
more than one edge is used to bound the face, then this additional edge
means that G contains at least six i-cells. To bound a face with only one
edge, two possibilities exist:
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1. The edge bounding the face is a self-loop. This is not possible for this
configuration, since the only edge in the configuration connects two
different vertices and is therefore no self-loop.

2. The face is bounded twice by the same edge. In this case the face is a
face self-loop, with an inner and an outer volume (see Fig. 6.1). Note,
that there must be an inner volume since β3(d) = d is not allowed
by proposition 6.2. Thus an additional volume is introduced to the
configuration and the total number of i-cells for this configuration is at
least six.

�

According to proposition 6.2, configurations with six i-cells are considered
minimal. Three such configurations “edge 1”, “edge 2”, and “edge 3” are
discussed here. The difference between these configurations is determined by
the way the face is bounded.

For “edge 1” this face is bounded by the only edge twice. Thus forming
an capsule like and empty face self-loop (Fig. 6.1a) with an inner and an
outer volume. Therefore two volumes are present in this map. The face self-
loop is indicated in the bounding relationship diagram by the 2 on the arrow
connecting the face and edge (Fig. 6.1b).

In both other configurations - “edge 2” and “edge 3” - an additional
edge is introduced to bound the face. The difference between these two
combinatorial maps is the kind of edge used to bound the face. “Edge 2” uses
a parallel edge connecting the two vertices (Fig. 6.1c). The face is incident
to the same volume on both sides and both edges connect to both vertices
(Fig. 6.1d). The additional edge in the configuration “edge 3” is a self-loop,
connecting to the same vertex on both endpoints. The face bounded by these
two edges can be imagined as a conical surface (Fig. 6.1e). The bounding
relationship of configuration “edge 3” is shown in Fig. 6.1f.

These three configurations cannot be simplified without either creating
an invalid combinatorial map or changing the topological meaning of the
configuration. The additional volume in “edge 1” is defined by a face self-loop
which could be removed by a face removal. However, this would remove the
only face from the configuration and is therefore not allowed by condition 7.

Using a face contraction to eliminate the parallel edge present in “edge 2”
would also remove the only face and is therefore disallowed by condition 2.
Contracting either of the edges would merge the two vertices thus changing
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21

2

11 1

2

a) edge 1 b) bounding relationship diagram for edge 1

1 2 11 1

22

c) edge 2 d) bounding relationship diagram for edge 2

21 2 11 1

22 2

e) edge 3 f) bounding relationship diagram for edge 3

Figure 6.1: The 3 minimal representations that consist of at least one edge
connecting two vertices (a,c,e) and their bounding relationship diagrams
(b,d,e).

the configuration from encoding two adjacent voxels to a single voxel. The
resulting configuration would be an edge self-loop that is bounded by the
only remaining vertex twice.

Finally configuration “edge 3” is also not reducible. Removing the edge
self-loop is disallowed by condition 1 as its degree is one. Contracting the
second edge that connects the two vertices is again not allowed as it would
merge the two vertices and thus the configuration would not contain two
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vertices connected by an edge anymore.

6.2.2 Faces

There is exactly one minimal configuration containing at least one face. This
configuration consists of one cell of each dimension and no additional cells
are needed. It is therefore minimal according to proposition 6.1 The number
of darts for this configuration is two as is shown in Table 6.2.

1 2 11 12

a) face 1 b) bounding relationship diagram for face 1

Figure 6.2: The minimal representation of a face (a) and its bounding rela-
tionship diagram (b).

configuration darts vertices edges faces volumes

face 1 2 1 1 1 1

Table 6.2: Number of cells and darts for the minimal representation of a face.

To encode a face using 3D combinatorial maps, only one cell of each
dimension is needed. The face is bounded by an edge self-loop that connects
to the same vertex on both sides. The face is incident to one volume that
touches the face on both sides.

This configuration is not reducible as it already consists of only 1 cell of
each dimension. Thus no i-cell can be removed without creating an invalid
combinatorial map and it is therefore minimal according to definition 23 and
proposition 6.1.
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6.2.3 Volumes

In this section minimal configurations are examined that contain at least
one volume that is completely bounded by at least one face. According
to proposition 6.1 such a configuration must contain at least five i-cells: 1
vertex, 1 edge, 1 face, and 2 volumes (the inner and the outer volume). As
will be shown, there is no combinatorial map obtained by the contraction and
removal operations defined in this report that contains exactly five i-cells and
encodes such a configuration.

Instead two combinatorial maps with six i-cells are presented. Both con-
sist of four darts and six cells. (Table 6.3).

1 11 12

22

a) volume 1 b) bounding relationship diagram for volume 1

21

2

11 1

2

c) volume 2 d) bounding relationship diagram for volume 2

Figure 6.3: The minimal representations of a volume (a,c) and their bounding
relationship diagrams (b,d). The outer volume is indicated in the bounding
relationship diagrams by the dotted lines.

Proposition 6.3 Given a 3D combinatorial map G = (D, β1, β2, beta3) that
encodes 2 volumes and at least one face separating the two volumes. G con-
tains at least 6 i-cells if there is no dart d ∈ D with β3(d) = d ∨ β2(d) = d.
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configuration darts vertices edges faces volumes

volume 1 4 1 1 2 1 (2)
volume 2 4 2 1 1 1 (2)

Table 6.3: Number of cells and darts for the two minimal representation of a
volume. The number of volumes present in these configurations is two if the
outer volume is also counted.

Proof: The configuration contains at least two volumes and one face.
Additionally one edge and one vertex are needed to satisfy proposition 6.1.
Thus at least five i-cells are needed for this configuration. In order to prove
that an additional i-cell is needed, it is sufficient to show that the bounding
relations cannot be satisfied by these five cells if β3(d) = d and β2(d) = d are
not allowed.

The face must be bounded by an edge. This edge must be a self-loop,
because there is only one vertex in the configuration meaning that the edge
must be bounded by this vertex twice. Since β2(d) = d is not allowed, a
face bounded by an edge self-loop cannot separate two volumes (it can be
imagined as one half of a globe incident to the same volume on both sides.).

Thus an additional face must be introduced to the configuration (the
second half of the globe) to separate the two volumes and the configuration
therefore contains six i-cells. �

Using proposition 6.3, configurations with six i-cells are considered min-
imal according to definition 23. Two such configurations “volume 1” and
“volume 2” are presented here. Additionally, a combinatorial map without
the restriction β2(d) 6= d that uses only five cells is discussed.

Similar to the minimal configurations of an edge, the difference between
both combinatorial maps is defined by the kind of edge present. In the first
configuration the volume is bounded by one vertex and one edge. The edge
is a self-loop that connects to the only vertex twice, thus dividing the face
bounding the volume into two parallel faces (Fig. 6.3a).

“Volume 2” is bounded by an edge that is not a self-loop, thus connecting
two different vertices, adding an additional vertex to the map. This edge is
bounding the only face twice, therefore the face is a face self-loop. Note that
this configuration is identical to the “edge 1” configuration for an edge, and
that it is also identical to its dual configuration.

Neither “volume 1” nor “volume 2” can be simplified. A reduction of the
first configuration would require the elimination of the parallel faces using
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a volume contraction. This operation would remove the inner volume, thus
the configuration would not contain an inner volume separated by at least
one face from the outer volume anymore.

The additional vertex in “volume 2” can only be removed by merging both
vertices with an edge contraction. However, this operation would remove the
only edge from the combinatorial map which is not allowed by condition 2.

Both configurations are minimal because they only use one i-cell of each
dimension plus one additional i-cell for the second volume and one additional
i-cell to satisfy the bounding relations (a face for “volume 1” and a vertex for
“volume 2”). Therefore the total number of i-cells present in these configu-
rations is six. Both configurations are minimal as there is no configuration
consisting of only five i-cells that can be obtained by the operations used in
this report (proposition 6.3).

1

2

3

outline of the volume

1

2

11 12

a) combinatorial map b) bounding relationship diagram

Figure 6.4: The combinatorial map (a) and bounding relationship diagram
(b) of a volume using 5 i-cells.

Fig. 6.4 shows a configuration that uses exactly one i-cell of each di-
mension plus the additional 3-cell to represent two volumes separated by a
face. This is done by removing one of the faces from configuration “volume
1” without merging the inner and outer volume: the inner volume is then
bounded by one face which is itself bounded by a single edge self-loop being
bounded by one vertex (This configuration can be imagined like a balloon
filled with air whose opening is closed tightly in order to prevent the air from
escaping).

Such a configuration can be encoded by a combinatorial map. The β2

permutation of the darts belonging to the bounding face are set to themselves:
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β2(d) = d. Note that this is still an involution and therefore valid. Fig. 6.4
shows an example of a combinatorial map encoding such a volume.

This configuration is more minimal than configuration “volume 1” and
“volume 2” as it needs one i-cell less. But it cannot be obtained by the
operations used in this report, as the removal of a face is defined by removing
the face and merging the two incident volumes. Thus this configuration is
not considered.

6.3 Topological Relations

Combinatorial maps are a suitable representation method for encoding the
topological relations that define the structure of the processed data. In this
section the way such relations are encoded in minimal configurations and
how to identify them using pseudo elements is examined. Pseudo elements
are non-empty self-loops.

Definition 24 (Pseudo Element) Given a combinatorial map G and an
i-cell c ∈ G. c is a pseudo element, if it is an non-empty self-loop. c is a
non-empty self-loop if there is an (i + 1)-cell ci ∈ G, δ̄(ci) > 1 such that

• ci is bounded by c;

• δ̄(c) = 2;

• c is bounded by exactly one (i − 1)-cell cj ∈ G.

Given a combinatorial map G and an i-cell c ∈ G. c is a pseudo element
if it is either a non-empty parallel

Based on this definitions, two kinds of pseudo elements exist in a 3D
combinatorial map: non-empty edge self-loops and non-empty face self-loops.
Fig 6.5 shows examples of these two types of pseudo elements.

In a more intuitive way pseudo elements can be seen as i-cells that de-
fine the topological structure encoded by a combinatorial map: a minimal
configuration consists of 0-cells (vertices) encoding the objects, i-cells with
i ≥ 1 (edges, faces, and volumes) encoding the structure of the objects and
additional i-cells with i ≥ 1 needed to fulfill the boundary and incidence
relations.
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a) non-empty edge self-loop b) non-empty face self-loop

Figure 6.5: Examples of pseudo elements: non-empty edge self-loop (a) and
non-empty face self-loop (b).

In 2D combinatorial maps, the two relations “adjacency” - two neighbor-
ing regions - and “contains” - a region or a set of regions that is completely
enclosed by another region - can be identified. When working with 3D com-
binatorial maps, “surrounds” is introduced as a third topological relation.

Table 6.4 lists these relations and the pseudo elements used to identify
them. They are directly related to the three basic configurations of an object
in 3D: simplex, tunnel and hole, as discussed in [Illetschko et al., 2006a]. A
simplex is a solid object that is adjacent to other objects. A tunnel represents
a ring-like object that surrounds other objects and the hole represents an
object enclosing other objects.

The representation of these topological relations in a minimal configura-
tion as well as the methods to identify and discriminate them is discussed in
the next sections.

6.3.1 Adjacency

Adjacency describes the fact that two objects are neighbors. A 3D object is
adjacent to another object, if they have a common face that separates them.

In a minimal 3D combinatorial map each connected object is represented
by one vertex. The adjacency of two objects is then expressed by an edge
connecting two vertices. Thus the representation of adjacency in a minimal
configuration is equivalent with the representation of the connecting edge.
These configurations have been studied in section 6.2.
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object relation pseudo elements

simplex object is
adjacent to
other objects

“adjacency” is represented by
edges connecting the vertices that
represent the adjacent objects.

tunnel object sur-
rounds other
objects

“surrounds” is represented by a
face bounded by an edge self-
loop. The surrounding object is
represented by the vertex on the
boundary. The surrounded ob-
jects are enclosed by the face.

hole object en-
closes other
objects

“encloses” is represented by a vol-
ume. The outer object it repre-
sented by the only vertices on the
boundary. The inner objects are
enclosed by the volume.

Table 6.4: Topological relations in a 3D combinatorial map.

It is sufficient to iterate through all edges of a given combinatorial map,
in order to identify all adjacency relations encoded by this map. All edges
connecting two different vertices indicate an adjacency relation.

To identify all objects being adjacent to a specific object, an algorithm
similar to the calculation of the degree of a vertex can be used. The algorithm
iterates through all darts belonging to the vertex that represents the object of
interest. If an unmarked dart is encountered, the edge is investigated and all
darts of this edge are marked. Marked darts are ignored in the subsequent
iterations. For each edge found this way, the vertices connected by this
edge are evaluated. If this edge connects two different vertices, an adjacency
relation has been identified.

A C++ implementation of this algorithm is shown in listing 6.1. The
function adjacent to takes one vertex as its argument. It will then print all
adjacency relations between the object represented by this vertex and other
objects onto the screen.

6.3.2 Surrounds

This relation describes an object with a tunnel best imagined as a donut or
a ring. As such it surrounds another object or a set of objects.

100



void ad j a c en t t o ( int ve r t ex 1 ) {
// ge t one dar t o f the v e r t e x and i n i t i a l i z e the f l a g
// f o r a l l da r t s b e l ong ing to the v e r t e x
dart = g e t d a r t o f v e r t e x ( ve r t ex 1 ) ;
r e s e t ma rk s o f v e r t e x ( ve r t ex 1 ) ;

// i t e r a t e through a l l da r t s b e l ong ing to the v e r t e x
do {

// examine edge i f an unmarked dar t i s encountered
i f ( dart not marked ( dart ) ) {

// ge t the the oppo s i t e v e r t e x by f o l l ow i n g
// the be t a 3 permutat ion
int ve r t ex 2 = dart−>beta 3 ( ) ;

// i f the v e r t i c e s are not i d e n t i c a l , then
// an adjacency r e l a t i o n has been found
i f ( ve r t ex 1 != ve r t ex 2 ) {

cout << ‘ ‘ ad jacent to ‘ ‘ << ve r t ex 2 << ‘ ‘\n’’ ;
}

// mark a l l da r t s b e l ong ing to the same edge
tmp dart = dart ;
do {

mark dart ( tmp dart ) ;
tmp dart = beta 2 ( tmp dart ) ;
tmp dart = beta 3 ( tmp dart ) ;

} while ( tmp dart != dart ) ;
}

// ge t the next dar t o f t h i s v e r t e x
dart = ge t n ex t da r t ( ) ;

} while ( dart ) ;
}

Listing 6.1: Identifying the adjacency relations of an object

In a minimal configuration the ring-like outer object and the inner object
are both represented by a single vertex. Both objects are adjacent, so these
vertices are connected by an edge. The “surrounds” relation itself is repre-
sented by a face. This face is bounded by an edge self-loop and a bridge.
The vertex incident to the edge self-loop and the bridge represents the outer
object while the vertex of the inner object is incident only to the bridge.
Thus this configuration can be imagined as a face with one vertex on the
boundary and one vertex in the middle.

The face and the non-empty edge self-loop bounding this face are the

101



pseudo elements of this configuration.

1

2

3

a) combinatorial map

21 2 11 1

22 2

b) configuration c) bounding relationship diagram

Figure 6.6: The minimal representation of the “surrounds” relation. The
pseudo elements are drawn in red in the bounding relationship diagram (c).

Fig. 6.6b shows an image of this configuration. This configuration cannot
be reduced without changing the relation or creating an invalid combinatorial
map. Removing the connecting edge is not allowed as it is a bridge. Thus its
removal would disconnect the inner vertex and remove the adjacency between
both objects. Eliminating the edge self-loop would remove the “surrounds”
relation and is therefore not allowed.

Note that this configuration is equivalent with “edge 3”, the third minimal
representation of an edge. This can be verified by comparing the bounding
relationship diagram of the surrounds relation (Fig. 6.6c) with the diagram
of “edge 3” (Fig. 6.1f).

The six darts needed for the combinatorial map of this configuration as
well as their permutations are shown in Fig. 6.6a.

An algorithm can be designed to detect “surrounds” relations within a
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combinatorial map using the pseudo elements. This algorithm is shown in
listing 6.2. The pseudo elements of this relation are the face containing
the inner object and the non-empty edge self-loop bounding this face. The
algorithm iterates through all edges of the map. In a minimal configuration
edge self-loops are detected by comparing both endpoints. A self-loop is
detected, if the two vertices are identical.

Since only non-empty self-loops indicate a “surrounds” relation an addi-
tional test is required. If one of the faces that is bounded by the self-loop
contains vertices that do not belong to the self-loop, it is non-empty. This
test can be further simplified since an empty edge self-loop consists of only
one vertex. Therefore it is sufficient to test, whether more than one vertex
is incident to one of the bounded faces.

// Create an I t e r a t o r t ha t w i l l p roces s a l l edges
e d g e i t e r a t o r e d g e i t = map−>edges . begin ( ) ;

// i t e r a t e through a l l edges
for ( e d g e i t ; e d g e i t !=map−>edges . end ( ) ; e d g e i t++) {

// ge t both v e r t i c e s bounding the edge
int ve r t ex 1 = edge i t−>c e l l (VERTEX) ;
int ve r t ex 2 = edge i t−>beta 3 ()−> c e l l (VERTEX) ;

// i f the v e r t i c e s are i d e n t i c a l , then t h i s i s an
// edge s e l f l o o p
i f ( ve r t ex 1 == ver t ex 2 ) {

// i f the s e l f −l oop bounds a non−empty face
// then i t i s a surrounds−r e l a t i o n :
// i t e r a t e through a l l f a c e s i n c i d en t to the edge
f a c e i t e r a t o r f a c e i t = edge i t−>f a c e s ()−>begin ( ) ;
f a c e i t e r a t o r l a s t f a c e = edge i t−>f a c e s ()−>end ( ) ;
for ( f a c e i t ; f a c e i t != l a s t f a c e ; f a c e i t++) {

// the s e l f −l oop i s non−empty i f the bounded
// face has more then on ve r t e x
i f ( f a c e i t −>number o f v e r t i c e s ( ) > 1 ) {

cout << ‘ ‘ non−empty s e l f −loop at ver tex ‘ ‘
<< ve r t ex 1 << ‘ ‘\n’’ ;

}
}

}
}

Listing 6.2: Algorithm for detecting “surrounds” relations in a combinatorial
map
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6.3.3 Contains

The third topological relation describes an object completely inside an outer
object. This outer object can be imagined as a closed box containing another
object.

There are two equivalent, minimal representations of the “contains” rela-
tion. They are related to the two configurations “volume 1” and “volume 2”
presented as the minimal configurations of a volume. In both cases the inner
object is represented by a single vertex. The “contains” relation is indicated
by a volume that completely encloses this inner vertex. The volume itself is
bounded by faces that themselves are bounded only by vertices belonging to
the outer object. According to the minimal configurations of a volume, there
are two different ways this volume can be represented.

The configuration “volume 1” uses a single vertex. In the first representa-
tion of the “contains” relation, the outer object is therefore also represented
by a single vertex. This vertex is incident to an edge self-loop that divides
the face bounding the volume into an “upper” and a “lower” half.

21 11 1

2 22

3

22

3

a) configuration b) bounding relationship diagram

Figure 6.7: The first minimal representation of the “contains” relation. The
pseudo elements are drawn in red in the bounding relationship diagram (b).
The volume surrounding the entire configuration is shown as well for the
completeness of the diagram (dotted lines).

The adjacency of the inner and the outer object is represented by an edge
connecting both vertices. The bounding relations are satisfied by an addi-
tional face added to this configuration. This face is spanned by the two edges
- the self-loop bounding the faces of the volume, and the edge connecting the
vertices. Note that this configuration is therefore a combination of the “sur-
rounds” configuration and “volume 1”. Fig. 6.7a shows this configuration.
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The additional face also divides the volume into two parts. Both volumes
are bounded by an outer face defined only by the edge self-loop and the
inner face that contains the connecting edge and the inner vertex. These
two empty volumes are the pseudo elements of this configuration. Fig. 6.7b
contains the bounding relationship diagram of this configuration. The two
symmetrical volumes indicating the “contains” relation are drawn in red.

Combinatorial maps encode the orientation of faces around an edge. This
can be used to build an algorithm to identify this “contains” relation in a
minimal configuration. It utilizes the algorithm for detection of the surrounds
relation. Once such a non-empty edge self-loop indicating the “surrounds”
relation is found in the map, the previous and subsequent face incident to
that edge are examined. If both are empty faces bounded only by the edge
self-loop, it is a “contains” relation.

The second representation of the “contains” relation is related to “volume
2”. In this case the outer object is represented by two vertices. They cannot
be merged as the edge connecting them is also the only bounding edge of the
face defining the volume. An edge contraction would therefore remove the
bounding face as a side effect which is disallowed by condition 2.

The single vertex representing the inner object is therefore connected to
both outer vertices by an edge to express the adjacency relation. Again an
additional face must be added to satisfy the bounding relations of the com-
binatorial map. This face is spanned by the three edges connecting the three
vertices (Fig. 6.8b). The combinatorial map of this configuration consists of
10 darts (Fig. 6.8a).

The pseudo elements of this configuration are the volume enclosing the
inner vertex and its bounding face (Fig. 6.8c). This face is a non-empty face
self-loop. Therefore the algorithm for detecting the “surrounds” relation can
be reused to detect the “contains”-relation. The detection of non-empty edge
self-loops is replaced by the detection of non-empty face self-loops.
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a) combinatorial map
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b) configuration c) bounding relationship diagram

Figure 6.8: The second minimal representation of the “contains” relation.
The pseudo elements are drawn in red in the bounding relationship diagram
(c). The volume surrounding the entire configuration is shown as well for the
completeness of the diagram (dotted lines).

6.4 Invalid Configurations

The last section of this chapter studies configurations that cannot be repre-
sented by the 3D combinatorial maps used in this report.

There are two constraints for configurations represented by a combinato-
rial map. According to conditions 2 and 7 the cells represented by the map
must satisfy strict bounding- and incidence-relations. This restriction is true
for any 3D combinatorial map regardless of the permutations used and it
leads to the minimal configurations discussed in the previous sections of this
chapter.

The second restriction is related to the permutations of the 3D combi-
natorial maps used in this report as proposed by [Braquelaire et al., 2003].
Condition 10 showed that the removal of a face can lead to an invalid
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configuration due to the way vertices are defined in a combinatorial map
G = (D, β1, β2, β3).

A vertex is defined by V = (Dv, β2β1, β3β1). Therefore there must be
a path from each dart d1 ∈ Dv to every other dart d2 ∈ Dv using the
permutations β2β1 and β3β1.

Using β2β1 and β3β1 to obtain all darts belonging to a vertex means
that all faces incident to a vertex must have at least one common edge with
another face being incident to the same vertex. A face is incident to a vertex
if one of its corners is incident to this vertex. The corners are defined by
two subsequent edges around the boundary of the face. β3β1 is an involution
whose cycle contains a dart for both edges of such a corner.

β2β1 will also return a dart of the second edge of such a corner, but from
the next face around the edge that belongs to the same volume. β2 and β3 are
identical if an edge is only incident to one face. This means that the results
of β2β1 and β3β1 are also identical in this case. If both edges that define the
corner of a face, are incident only to this face, then only the two darts of this
corner can be obtained by both permutations and the face becomes isolated
with respect to these permutations.

Thus every corner of a face that is incident to a vertex must have at least
one edge in common with another corner of a face that is also incident to
that vertex, or it must be the only corner of a face being incident to that
vertex. Otherwise the combinatorial map would be invalid because not all
darts of the vertex can be obtained by β2β1 and β3β1.

Fig. 6.9 gives an example of a configuration that violates this constraint.
Fig. 6.9a shows part of a valid configuration consisting of a vertex that is
incident to four faces. Each of the faces has a common edge with two of
the other faces. Therefore each of the darts belonging to the vertex can be
reached using the permutations β3β1 and β2β1. The same configuration is
displayed in Fig. 6.9b after removing face F1. F2 and F4 now have only one
edge in common with another face of the vertex, but this configuration is still
valid since the faces are connected via F3. Fig. 6.9c shows the configuration
after removing a second face F3. There is no path using β3β1 and β2β1 from
F2 to F4. So this configuration violates the definition of a vertex and is
therefore invalid.
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a) Vertex incident to 4 faces

b) After removal of F1 c) Invalid configuration after removal of F3

Figure 6.9: Invalid combinatorial map created by the removal of faces: In
the initial configuration (a) a path to each dart exists using the permutations
β3β1 and β2β1. Such a path still exists after the removal of face F1 (b). After
removing a second face - face F3 - the remaining faces F2 and F4 are isolated,
as no such path exists from darts of F2 to darts of F4 (c).
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Chapter 7

Experimental Results

In this chapter the experimental results of this report are presented.

The first section examines the process of building a 3D combinatorial
pyramid in the example of four representative configurations. This is done
using the algorithm introduced in section 5.2. The purpose of these exper-
iments is to examine pyramids built this way and to study the top level
maps.

In the second section Minimal maps are investigated, demonstrating that
a minimal 3D combinatorial map can be obtained for the configurations used
in the first section by contracted all candidate edges in the first step. The
differences between minimal maps and the maps obtained in the first set of
experiments will be discussed.

The final section examines the performance of the reduction process for a
3D combinatorial pyramid by comparing the computational costs of building
3D combinatorial pyramids both in terms of bottom-up construction times
and memory needed by pyramids of different sizes.

7.1 Construction of 3D Combinatorial Pyra-

mids

7.1.1 Experimental Setup

In order to study 3D combinatorial pyramids, the C++ framework “COMA”
was implemented for this report. This framework provides the functionality
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for working with 2D and 3D combinatorial maps and pyramids. As such it
implements all operations introduced in this report. [Illetschko et al., 2006b]
describes this framework in detail.

It was decided to implement COMA even though a framework
for 3D combinatorial maps already exists: “Moka - Modeleur de
Cartes” [Damiand and Vidil, 2006]. Moka implements the 3D topological
map which is a minimal combinatorial map associated to an image using the
model and operations defined in [Damiand, 2001]. Differences between this
work and the specific model and set of operations introduced in this report
led to the decision for the implementation of COMA.

The main differences between these two works are the set of opera-
tions that are used to simplify a 3D combinatorial map and the the final
combinatorial maps obtained by these operations. In the model described
by [Damiand, 2001] voxels are represented by volumes instead of vertices.
Thus the removal of a face is used to merge adjacent voxels and the removal
of edges and vertices is used to simplify the maps. This corresponds to the
contraction of edges used in this report to merge adjacent voxels and the use
of face contractions and volume contractions to simplify the maps.

However, different methods are used to deal with i-cells that do not ful-
fill condition 3 (resp. condition 8) which disallows the contraction of self-
loops (resp. the removal of bridges). While this report uses a second set
of operations (edge removal and face removal) to deal with these cases,
[Damiand, 2001] allows the removal of such i-cells. The possible discon-
nection of connected components as a result of the removal of such bridges
is dealt with the use of an inclusion tree that is built in parallel. This addi-
tional data structure is used to retrieve the complete topological information
from the minimal combinatorial maps obtained. On the other hand, using
the operations described in this report creates a minimal combinatorial map
that encodes all topological relations present in the data and thus pseudo
elements can be used to identify specific topological relations.

Another difference is the use of the shifting operation by [Damiand, 2001].
This operation is used to deal with specific cases where a combinatorial map
still contains redundant i-cells and is therefore not minimal, but a simpli-
fication is not allowed because the conditions are not fulfilled by any i-cell
within the combinatorial map. The shifting operation then transforms the
combinatorial map into a topologically equivalent combinatorial map where
these i-cells can be eliminated. The use of such an operation has not been
studied in this report, but will be the focus of further work based on the
results presented here.
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For the experiments presented in this chapter, the volumetric data is
read as a stack of images that is converted into an initial map according to
section 5.1. Based on this initial map a pyramid is built using the algorithm
proposed in section 5.2. For the algorithm step a connected component
algorithm is used that merges voxels of the same color.

The connected components algorithm is modified, as it would otherwise
merge all neighboring voxels of the same color in one step. This would lead
to very low pyramids that would only consist of few levels. Instead the
modified algorithm selects at most one edge to be contracted for each vertex.
All other edges of a vertex will be kept until the next level. All simplifaction
steps will be applied before the next level is constructed. This means that it
is not guaranteed that the top level map will contain a minimal combinatorial
map, since not all candidate edges are contracted in the first step. Indeed it
will be seen that one configuration is not reduced to a minimal combinatorial
map. The construction of minimal combinatorial maps will be demonstrated
in the next section with the second set of experiments.

Three methods are used to examine the top levels of each pyramid.

1. The receptive field of each vertex in the top level is visualized to validate
the components they represent;

2. The whole map is visualized together with the pseudo elements indi-
cating the topological relation within the data;

3. The bounding relationship diagram is generated for the top level to
study the configuration.

The visualization of the combinatorial maps is done by using the “ray-
booster” software. This software was provided by the Computer Graphics
Group of the Institute of Computer Graphics and Algorithms of the Uni-
versity of Technology Vienna. A detailed description of this software is
provided by [Grimm et al., 2004b, Grimm et al., 2004a, Bruckner, 2004]. It
reads voxel files generated by the COMA framework and creates a 3D view
of the data.

Voxel files are generated for the receptive fields of each vertex in the top
level of the pyramids as well as for the complete combinatorial map. The
pseudo elements present in these visualizations are indicated by manually
adding white faces and edges. For this purpose the COMA framework cre-
ates an output that indicates which vertices are part of a “surrounds” or a
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“contains” relation. Faces are then added for the “surrounds” relation and
edges for the “contains” relation.

The bounding relationship diagrams are also generated by the COMA
framework.

7.1.2 Simplex

darts vertices edges faces volumes

level 0 (initial map) 120 9 20 18 7
level 1 32 5 8 5 2
level 2 6 3 3 1 1
level 3 (final map) 4 2 2 1 1

Table 7.1: Reduction of a simplex configuration. The table lists the number
of darts and cells at each level of the pyramid.

a) initial configuration b) final combinatorial map

241 2 -514241 1

9-318

c) visualization of the top level d) bounding relationship diagram of the top level

Figure 7.1: Reduction of a simplex configuration shown as the initial map
representing the data (a), the final combinatorial map of the top level (b), the
3D visualization of the top level (c), and the bounding relationship diagram
of the top level (d).
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The first configuration represents a simplex. A single solid 2× 2× 2 cube
that is only adjacent to the background.

The initial map consists of a 2 × 2 × 2 grid, where each vertex has the
same color. This map can be seen in Fig. 7.1a. The background vertex is
only symbolized to enhance the figure’s clarity.

The initial map consists of 120 darts representing 9 vertices, 20 edges, 18
faces, and 7 volumes. This map is reduced in three levels to its minimal form
of 4 darts, 2 vertices, 2 edges, 1 face, and 1 volume. The number of darts
and cells at each level of the pyramid are listed in table 7.1.

The two vertices at the top level (Fig. 7.1b) represent the simplex object
and the background. These two are adjacent to each other which is indicated
by the two edges connecting both vertices. The final map is identical to the
first minimal configuration of an edge - “edge 2” - and is therefore one of
the minimal configurations to represent two adjacent objects. This can be
verified by comparing the bounding relationship diagram of the top level
(Fig. 7.1d) with the one for “edge 2” (Fig. 6.1d).

Note, that the top level map is also a minimal combinatorial map, as the
only connected component in the configuration is reduced to a single vertex.

The visualization of the top level (Fig. 7.1c) shows the complete cube. So
both, the data and the topological relations, are shown correctly in the final
map of the pyramid.

7.1.3 Tunnel

darts vertices edges faces volumes

level 0 (initial map) 352 19 51 52 20
level 1 224 10 30 36 16
level 2 112 6 16 18 8
level 3 56 4 9 9 4
level 4 (final map) 24 3 5 4 2

Table 7.2: Reduction of a tunnel configuration. The table lists the number
of darts and cells in each level of the pyramid.

The second experiment shows the reduction of a 3×3×2 ring-like object:
the tunnel configuration. The ring surrounds an inner object. Thus the
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c) bounding relationship diagram of the top level

Figure 7.2: Reduction of a tunnel configuration shown as the initial map
representing the data (a), the final map of the top level (b), and the bounding
relationship diagram of the top level (c). The “surrounds” relation is pointed
out in the diagram by the cells and arrows in red.

expected result is a combinatorial map encoding the adjacency of these two
objects as well as the “surrounds” relation of the outer object.

The initial 3 × 3 × 2 grid is shown in Fig. 7.2a. This map represents 19
vertices, 51 edges, 52 faces, and 20 volumes using 352 darts and is simplified
in four levels. The final map consists of 24 darts encoding 3 vertices, 5 edges,
4 faces, and 2 volumes (Fig. 7.2b). Table 7.2 contains the number of darts
and cells for each level of the pyramid.

Three vertices are present in the combinatorial map at the top of the
pyramid. They represent the ring (vertex 17), the inner object (vertex 14),
and the background (vertex 19). The edges connecting these vertices show
the adjacency of each object to the other two. The inner object is connected
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a) visualization of the top level

b) receptive field of vertex 17 c) receptive field of vertex 14

Figure 7.3: Visualization of the tunnel configuration. (a) shows the visual-
ization of the top level. The white face indicates the “surrounds” relation
of the green ring. The receptive fields are visualized using the Raybooster
software (b&c).

to the background by two edges. This represents the fact that it touches
the background on both sides of the ring. The fifth edge (label -679) is
a self-loop. This edge self-loop and the connecting edge -751 span a face
(label 372) that connects the ring with the inner object. This is the pseudo
element indicating the “surrounds” relation of the ring (Fig. 7.2c). The final
map of the pyramid is also a minimal combinatorial map, as it encodes each
connected component with one vertex.

Fig. 7.3a shows the visualization of the top level. A white face that cuts
the green ring illustrates the pseudo element identifying the “surrounds”
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relation of the green ring. The receptive fields of the two vertices in the
final map are visualized in Fig. 7.3b&c. The receptive field of vertex 17
produces the ring while the receptive field of vertex 14 is the inner object of
the configuration. This shows the correctness of the data represented by the
vertices.

7.1.4 Hole

darts vertices edges faces volumes

level 0 (initial map) 576 28 80 84 32
level 1 374 16 49 58 25
level 2 162 9 23 25 11
level 3 80 6 13 13 6
level 4 24 4 5 4 3
level 5 (final map) 16 4 5 3 2

Table 7.3: Reduction of a hole configuration. The table lists the number of
darts and cells in each level of the pyramid.

This experiment demonstrates the reduction of a configuration with a
“contains” relation. The input data represents a 3× 3× 3 cube that encloses
an inner object.

The initial map for this configuration consists of 576 darts, 28 vertices,
80 edges, 84 faces, and 32 volumes (Fig. 7.4a). A pyramid six levels high is
built to reduce this configuration to its top level combinatorial map shown
in Fig. 7.4b. This map contains 16 darts, 4 vertices, 5 edges, 3 faces, and 2
volumes. Table 7.3 lists the number of darts and cells at each level of the
pyramid.

The top level map encodes four vertices. One vertex represents the back-
ground (vertex 28), two vertices are representing the outer box (vertex 17 &
26) and one represents the inner object (vertex 14). The adjacency relations
within the data are expressed by the five edges. The background (edges -823
& -980) and the inner object (edges -751 & -755) are adjacent to the two
vertices representing the outer cube. An additional edge (label -827) shows
the adjacency of the two halves of the outer box. This edge cannot be con-
tracted because it is the only edge bounding face 372. Contracting the edge
would violate condition 2 (Bounding and Incidence Relations) by removing
the face as a side effect and thus the operation is disallowed.

116



11

-975

-9
7
9

-1035

-9
9
1

-735

-7
5
5

-7
4
3

-6
7
9

-6
8
3

-675

-6
9
1

-6
9
5

12

15

-987

-1047

-1
0
0
3

-747

-7
6
7

-687

-7
0
3

-7
0
6

2

5-435

-3
2
3

-4
4
3

-3
7
8

-3
8
3

-375

-3
9
1

-3
9
5

3

6-447

-4
6
7

-387

-2
7
1

-4
0
6

-1
0
3
9

-1095

-1
0
5
1

-795

-8
1
5

-8
0
3-7
3
9

-7
5
1

-1107

-1
0
6
3

-807

-8
2
7

-7
6
3

-494

-5
1
5

-5
0
3

-4
3
8

-4
5
1

-506

-5
2
7

-4
6
3

19 20 21

10

1

22 23 24

272625

13

16 17 18

4

7 8 9

28

14

-7
4
3

7
4
3

72
2

-6
7
8

-660

1023

-72
1

-7
4
2

6
7
7

-6
7
7

-6
9
3

7
4
0

689

75
5

-733

-7
54

a) initial configuration b) final combinatorial map

373 2 -755689 17

14-751

-827

-823

-980

372

73

73

26

2

2

28
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Figure 7.4: Reduction of a hole configuration shown as the initial map rep-
resenting the data (a), the final combinatorial map of the top level (b), and
the bounding relationship diagram of the top level (c). In the diagram the
“contains” relation is pointed out by the cells and arrows in red.

One of the three faces (label 372) is the pseudo element of this configu-
ration that indicates the “contains” relation. It is a face self-loop bounded
only by the edge connecting the two vertices of the outer box. The face
defines volume 373 that completely encloses the inner object. This config-
uration is topologically equivalent to the second minimal “contains” config-
uration as can be seen by comparing their bounding relationship diagrams
(Fig. 7.4c & 6.8c).

Note, that the top level map of this pyramid is not a minimal combina-
torial map, as the outer box is encoded by two vertices. This demonstrates,
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a) visualization of the top level b) receptive field of vertex 14

c) receptive field of vertex 17 d) receptive field of vertex 26

Figure 7.5: Visualization of the hole configuration. (a) shows the visualiza-
tion of the top level. The white edge indicates the “contains” relation of the
outer box. The receptive fields are visualized using the Raybooster software
(b,c&d).

that a minimal combinatorial map might not be obtained if other operations
than the contraction of an edge are applied, before all connected components
have been reduced to a single vertex.

The visualization of the top level is shown in Fig. 7.5a. The outer box
is divided into two parts. This corresponds to the fact that it is represented
by two vertices in the combinatorial map. The white edge indicates the
“contains” relation of the outer box. The receptive fields of vertex 17 & 26
compose the 3 × 3 × 3 cube with a hole in the middle (Fig. 7.5c&d). The
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receptive field of vertex 14 shows the inner object (Fig. 7.5e).

7.1.5 Two Rings

darts vertices edges faces volumes

level 0 (initial map) 800 37 109 116 44
level 1 506 19 64 79 34
level 2 262 10 31 41 20
level 3 156 6 18 25 13
level 4 74 4 10 12 6
level 5 (final map) 36 3 6 6 3

Table 7.4: Reduction of two rings. The table lists the number of darts and
cells in each level of the pyramid.

468

816

1

6

-1279

-850

457

2

-539461

2

2

2

2

2

Figure 7.6: Bounding relationship diagram for the final map of two rings.
The background vertex and all cells bounded by it are suppressed in the
diagram. The pseudo elements are pointed out by the red cells and arrows.
The diagram contains one redundant pseudo element that is indicated by the
dotted lines.

The fourth experiment shows the reduction of two objects that are inter-
twined like two rings of a chain. In addition to being adjacent to each other,
both rings also surround each other. The expected result of this experiment
is therefore a map encoding the adjacency relation and both “surrounds”
relations.

The initial map consists of a 4× 3× 3 grid that contains both rings. The
two objects have a different geometric shape, but are topologically equiva-
lent to a ring. The grid-like base level of the pyramid contains 800 darts
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a) visualization of the top level

b) receptive field of vertex 1 c) receptive field of vertex 6

Figure 7.7: Visualization of the final map of two rings. (a) shows the visu-
alization of the top level. Both rings surround each other. This is indicated
by two white faces, each cutting one ring. The receptive fields are visualized
using the Raybooster software (b&c).

representing 37 vertices, 109 edges, 116 faces, and 44 volumes. It is reduced
in five levels to a minimal combinatorial map of 36 darts encoding 3 vertices,
6 edges, 6 faces, and 3 volumes. The number of darts and cells at each level
of the pyramid are listed in Table 7.4.

Fig. 7.6 shows the bounding relationship diagram of the final map of this
pyramid. In order to bring out the relations of the two rings more clearly,
the background vertex (vertex 37) is not shown in this diagram as well as all
other cells bounded by it.

The diagram shows that the final combinatorial map consists of two ver-
tices. Each represents one of the two rings. The adjacency between the two
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objects is encoded by one edge connecting them (edge -1279). Each vertex
is also incident to an additional edge that is an edge self-loop (edges -850
& -539). Both self-loops are the boundary of a face (faces 461 & 468) to-
gether with the edge -1279 that connects both rings. These faces are the
pseudo elements for the “surrounds” relation of each ring around the other
one. Thus the topological relations are correctly encoded by this final map.
Note that there is a third face in the diagram (label 816) that represents a re-
dundant pseudo element for one of the “surrounds relations” as it is bounded
by the same edges as face 468. It cannot be removed from the map as it does
not fulfill the conditions of either a removal or a contraction: It cannot be
contracted because it is has a dual-degree of 3 which violates condition 1.
A face removal is also not allowed since the face is not an empty self-loop.
The final map is a minimal combinatorial map, as it encodes each connected
component with a single vertex.

Fig. 7.7 shows the visualizations of this experiment. Fig. 7.7a contains
the top level with both rings. The two “surrounds” relations are indicated
by the two white faces. Each cuts one of the two rings showing that each ring
surrounds the other one. The receptive fields of both vertices are displayed
in Fig. 7.7b&c. The visualization shows that both objects are correctly rep-
resented by the vertices in the the final map.

In this experiment the data and the topological relations have been cor-
rectly represented, but an additional face was found in the final map. This
face is redundant but cannot be eliminated from the map by the operations
used in this report, as it does not fulfill the conditions for a face contraction
or a face removal.

7.2 Minimal 3D Combinatorial Maps

The second set of experiments demonstrates that a minimal combinatorial
map can always be obtained for any combinatorial map that does not contain
volumes bounded by only one face. This is done by contracting all edges
connecting vertices that belong to the same connected component before
any simplification step is applied.

While such minimal 3D combinatorial maps will encode each connected
component using a single vertex, it is not ensured that the number i-cells
encoded by such a map is minimal. To illustrate this, the configurations from
the last section are used again for these experiments. Each configuration will
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be reduced to a minimal 3D combinatorial map. The resulting map is then
compared to the top level map obtained by the pyramids used in the first set
of experiments.

7.2.1 Simplex

The simplex configuration contains exactly one connected component. a
minimal 3D combinatorial map must therefore consist of two vertices: one
vertex encoding the only connected component and one vertex encoding the
background.

darts vertices edges faces volumes i-cells

initial map 120 9 20 18 7 54
top level of the pyramid 4 2 2 1 1 6
minimal combinatorial map 4 2 1 1 2 6

Table 7.5: Number of darts and cells for maps encoding the simplex config-
uration. The numbers are listed for the initial map, a map obtained by a
pyramid using all 5 operations and a minimal combinatorial map obtained
by contracting all candidate edges in the first step.

Table 7.5 lists the result of the reduction. As can be seen in the third row
that lists the values for the minimal combinatorial map, the map was indeed
reduced to 2 vertices and it is therefore minimal.

The second row contains the number of cells encoded by the top level map
from the first experiment. As can be seen, both use exactly 6 cells in total,
so they are equivalent in terms of cells encoded by the map. However, the
type of cells is different. The pyramid produced a final map in which the two
vertices are connected by two edges that bound a single face and volume.
The minimal combinatorial map produced in this experiment encodes one
edge connecting both vertices. This edge bounds an empty face self-loop
that separated two volumes.

7.2.2 Tunnel

Again the tunnel configuration from the first set of experiments is used. A
minimal combinatorial map is created using only edge contractions in the
first step and the two final maps are compared. Table 7.6 shows the number
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of darts and cells for the initial map, the final map of the tunnel configura-
tion from the last section, and the minimal combinatorial map produced by
applying all edge contractions first.

darts vertices edges faces volumes i-cells

initial map 352 19 51 52 20 142
top level of the pyramid 24 3 5 4 2 14
minimal combinatorial map 54 3 7 1 6 26

Table 7.6: Number of darts and cells for maps encoding the tunnel config-
uration. The numbers are listed for the initial map, a map obtained by a
pyramid using all 5 operations and a minimal combinatorial map obtained
by contracting all candidate edges in the first step.

As can bee seen, the tunnel configuration is reduced to minimal 3D com-
binatorial map in both cases, but the number of other cells differs. However,
even by applying all edge contractions in the first step, the total number of
cells is reduced from 142 in the initial map, to 26 in the minimal combinato-
rial map, which is a reduction factor of more than 5. The map obtained by
the pyramid is also minimal and it contains the least number of cells, as it
is reduced to 14 cells.

7.2.3 Hole

The hole configuration is of special interest for this experiment, as it was
not reduced to a minimal 3D combinatorial map by the pyramid. Table 7.7
shows the number of darts and cells for all three maps.

darts vertices edges faces volumes i-cells

initial map 576 28 80 84 32 224
top level of the pyramid 16 4 5 3 2 14
minimal combinatorial map 124 3 15 24 12 54

Table 7.7: Number of darts and cells for maps encoding the hole configu-
ration. The numbers are listed for the initial map, a map obtained by a
pyramid using all 5 operations and a minimal combinatorial map obtained
by contracting all candidate edges in the first step.

This table shows, that the hole configuration is indeed reduced to a mini-
mal 3D combinatorial map by applying all edge contractions as the first step.
It also reduced the number of cells from 224 in the initial map to 54. This is
a reduction factor of more then 4.
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The map produced by the pyramid is not minimal, as it consists of 4
vertices. This is one more vertiex than connected components (including the
background vertex).However, it is smaller in terms of encoded cells of any
dimension. Using the pyramid the inital map was reduced to 14 cells which
is a reduction factor of 16.

7.2.4 2 Rings

The final configuration from the first set of experiments is the 2 rings config-
uration. Table 7.8 lists the number of darts and cells for the inital map, the
map produced by the pyramid, and the minimal combinatorial map created
by applying all edge contractions in the first step.

darts vertices edges faces volumes i-cells

initial map 800 37 109 116 44 306
top level of the pyramid 36 3 6 6 3 18
minimal combinatorial map 116 3 12 22 15 52

Table 7.8: Number of darts and cells for maps encoding the 2 rings config-
uration. The numbers are listed for the initial map, a map obtained by a
pyramid using all 5 operations and a minimal combinatorial map obtained
by contracting all candidate edges in the first step.

As is expected, the configuration is again reduced to a minimal 3D com-
binatorial map. The map obtained encodes 2 connected components and the
background using exactly 3 vertices. As for the hole configuration and the
tunnel configuration, the total number of cells is higher than for the map
produced by the pyramid. For this configuration the pyramid created a min-
imal combinatorial map encoding 18 cells, while the map produced in this
experiment encodes 52, which is a factor of about 3.

All 4 configurations from the first set of experiments were successfully
reduced to a minimal 3D combinatorial map. This demonstrates that every
3D combinatorial map can be reduced to a minimal combinatorial map by
using edge contractions to reduce all connected components to a single vertex
before applying the simplification steps.
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7.3 Performance

The last set of experiments examines the performance of 3D combinatorial
pyramids by studying the resources used to build such pyramids as well as
the time needed to construct them. For this purpose combinatorial pyramids
for initial maps of different sizes that represent the same configuration are
compared.

7.3.1 Size of Combinatorial Pyramids

level 3 × 3 × 3 5 × 5 × 5 10 × 10 × 10 20 × 20 × 20 40 × 40 × 40

0 496 (496) 1.356 (1.356) 5.640 (5.640) 29.720 (29.720) 192.640 (192.640)

1 772 (276) 2.004 (648) 9.820 (4.180) 52.944 (23.224) 351.660 (159.020)

2 776 (4) 2.372 (368) 10.728 (908) 66.980 (14.036) 449.256 (97.596)

3 784 (8) 2.628 (256) 12.156 (1.428) 77.356 (10.376) 518.000 (68.744)

4 796 (12) 2.728 (100) 12.584 (428) 85.148 (7.792) 574.056 (56.056)

5 804 (8) 2.768 (40) 12.864 (280) 87.448 (2.300) 589.832 (15.776)

6 2.788 (20) 13.004 (140) 88.616 (1.168) 599.724 (9.892)

7 2.808 (20) 13.108 (104) 89.596 (980) 606.512 (6.788)

8 2.828 (20) 13.200 (92) 90.340 (744) 611.632 (5.120)

9 2.848 (20) 13.268 (68) 90.868 (528) 615.908 (4.276)

10 91.396 (528) 619.696 (3.788)

11 91.920 (524) 623.408 (3.712)

12 92.444 (524) 627.040 (3.632)

13 92.964 (520) 630.628 (3.588)

14 93.488 (524) 634.192 (3.564)

15 637.760 (3.568)

16 641.328 (3.568)

17 644.896 (3.568)

Table 7.9: Memory allocated by pyramids of different sizes. The memory is
specified in kilobytes. Two numbers are given for each pyramid and level:
the total amount of memory of the complete pyramid up to this level and
the memory used for the combinatorial map of this level (in brackets).

Table 7.9 lists the allocated memory for five different pyramids. Each
pyramid is initialized with a grid-like combinatorial map as the base level.
These maps represent the same simplex configuration, but with different sizes
(3 × 3 × 3, 5 × 5 × 5, 10 × 10 × 10, 20 × 20 × 20 and 40 × 40 × 40).

The pyramids are then built using the algorithm introduced in section 5.2
to reach the minimal combinatorial map for the simplex configuration. This
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Figure 7.8: Size of combinatorial pyramids. (a,b) show the memory allocated
(total and per level) by pyramids of different sizes. The total amount is shown
using a logarithmic scale (a). (c) displays the number of darts and i-cells at
each level of a pyramid that reduces a 40 × 40 × 40 combinatorial map.
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results in a pyramid 6 levels high for the smallest map and 18 levels are
needed for the 40 × 40 × 40 map.

Note, that it is not easily possible to calculate the memory needed by
COMA for a map of a given size, even though it is known that COMA uses 80
bytes for each dart object. The reason is that COMA uses additional memory
for internal data structures (e.g. arrays of i-cells, the voxels represented by
the vertices, the connecting walks for non-surviving darts, etc.). Therefore
it is not sufficient to calculate the number of darts using the formula from
section 5.1 and multiplying it by 80 bytes.

Instead the allocated memory is measured after each level is completed.
Table 7.9 gives the amount of memory for each level and pyramid by spec-
ifying two numbers: the total amount used by the pyramid up to this level
and the amount of memory used for the new level alone. Charts displaying
the memory allocation of all pyramids are shown in Fig. 7.8a&b.

The 3 × 3 × 3 pyramid uses 496 kilobytes for the initial map and the
complete pyramid is stored in 804 kilobytes. Thus the complete pyramid is
built using less then a megabyte. On the other hand, nearly 200 megabytes
(192.640 kilobytes) are needed for the base level of the largest configuration.
The complete pyramid that reduces this 40 × 40 × 40 map is stored in 645
megabytes (644.896 kilobytes).

For each of the pyramids the first levels are the most memory intensive,
but after the construction of these first levels, the combinatorial maps are
significantly reduced. For the smallest map two levels are needed to reduce it
to a combinatorial map that has only 4 kilobytes, which resembles a reduction
factor of 100. The same factor is reached after five levels for the largest
pyramid. In this case the initial map of about 200 megabytes is reduced to
a map that uses only 15,7 megabytes.

It can also be seen that the amount of memory needed for the internal data
structures of COMA becomes less dominant for larger maps: The 3 × 3 × 3
map uses 496 kilobytes and consists of 576 darts. The memory usage per
dart is therefore 496kb/576 ≈ 0, 86kb which is ten times the size of the
dart object itself (80 bytes). On the other hand the 40 × 40 × 40 map uses
about 200 megabytes for 1.569.672 darts. Thus the memory usage per dart
is 192.640kb/1.569.672 ≈ 0, 12kb which is only a factor of ∼ 1, 5.

The reduction process is examined in more detail for the 40 × 40 × 40
combinatorial map. Table 7.10 and Fig. 7.8c show the number of darts and
cells of each level. The numbers for the initial map depend on the size of the
grid. Thus ∼1,6 million darts are needed to represent all cells of level 0.
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level darts vertices edges faces volumes

0 1.608.672 65.601 201.204 205.725 70.122

1 809.312 32.801 101.264 104.225 35.762

2 409.632 16.401 51.294 53.475 18.582

3 209.792 8.201 26.309 28.100 9.992

4 112.096 4.101 13.875 15.530 5.756

5 63.248 2.051 7.658 9.245 3.638

6 32.176 1.026 3.934 4.856 1.948

7 15.408 514 1.938 2.388 964

8 7.440 258 948 1.170 480

9 3.560 130 455 565 240

10 1.568 66 204 254 116

11 728 34 94 122 62

12 320 18 43 55 30

13 146 10 20 26 16

14 48 6 9 9 6

15 26 4 5 5 4

16 6 3 3 1 1

17 4 2 2 1 1

Table 7.10: Number of darts and cells for a 40× 40× 40 combinatorial map.
A pyramid of 17 levels is built to reduce this map to its minimal form.

The size of the final level depends on the number of represented objects
and their topological relations. For a simplex configuration this is a map
representing two objects (the solid object and the background) and their
adjacency. This combinatorial map corresponds to one of the minimal con-
figurations of an edge presented in chapter 6.

In this case the top level map is identical to the configuration “edge 2”. It
consists of only four darts encoding 2 vertices, 2 edges, 1 face, and 1 volume.
So the reduction factor for this pyramid is 1.608.672/4 ≈ 400.000.

7.3.2 Bottom-up Construction Times

The bottom-up construction times of 3D combinatorial pyramids are mea-
sured in a similar way as the memory allocation. Pyramids are built for
initial maps of different sizes. Since each of these maps represents the same
simplex configuration, the build times should depend only on the size of the
first level.

Table 7.11 lists the build times for four different pyramids. The sizes of
the initial maps are 5×5×5, 10×10×10, 20×20×20 and 40×40×40. For
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Figure 7.9: Detailed bottom-up construction times for combinatorial pyra-
mids with an initial map of different sizes (a-d). The total time (given in
seconds) to construct a new level is specified as well as the times for each
step of the algorithm. (e) gives a comparison of the accumulated build times
for these pyramids.
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each level and pyramid two measured times are presented: the total build
time accumulated up to this level and the time needed to create the new level
alone.

level 5 × 5 × 5 10 × 10 × 10 20 × 20 × 20 40 × 40 × 40

0 0,094s (0,094s) 0,578s (0,578s) 4,766s (4,766s) 37,812s (37,812s)

1 0,125s (0,031s) 0,828s (0,250s) 7,125s (2,359s) 57,578s (19,766s)

2 0,140s (0,015s) 0,968s (0,140s) 8,281s (1,156s) 69,734s (12,156s)

3 0,156s (0,016s) 1,062s (0,094s) 8,906s (0,625s) 76,625s (6,891s)

4 0,156s (0,000s) 1,125s (0,063s) 9,359s (0,453s) 80,187s (3,562s)

5 0,156s (0,000s) 1,140s (0,015s) 9,609s (0,250s) 82,265s (2,078s)

6 0,156s (0,000s) 1,140s (0,000s) 9,656s (0,047s) 83,343s (1,078s)

7 0,156s (0,000s) 1,140s (0,000s) 9,687s (0,031s) 83,843s (0,500s)

8 0,156s (0,000s) 1,140s (0,000s) 9,702s (0,015s) 84,093s (0,250s)

9 0,156s (0,000s) 1,140s (0,000s) 9,702s (0,000s) 84,218s (0,125s)

10 9,702s (0,000s) 84,296s (0,078s)

11 9,702s (0,000s) 84,359s (0,063s)

12 9,702s (0,000s) 84,374s (0,015s)

13 9,702s (0,000s) 84,405s (0,031s)

14 9,702s (0,000s) 84,421s (0,016s)

15 84,421s (0,000s)

16 84,421s (0,000s)

17 84,421s (0,000s)

Table 7.11: Bottom-up times of combinatorial pyramids of different sizes.
For each pyramid and level two times are specified: The accumulated total
build time up to this level and the time for the level alone (in brackets).

These times show that the construction of the first levels takes up most of
the total built time. For all four pyramids the first level alone is responsible
for ∼50% of the total time. For the 5 × 5 × 5 pyramid ∼90% of the entire
reduction process is spent at the first two levels. The same percentage is
reached after four levels for the 40 × 40 × 40 pyramid. This corresponds to
the sizes of the pyramids as shown in the previous section.

Fig. 7.9a-d present diagrams of detailed times for each pyramid. These
diagrams contain the times for each level of the pyramid given as the total
time and the different steps of the algorithm used to build each level.

It can be seen that the ratio of times used by each of the steps remains
the same throughout all levels of the pyramids. Simplifying each level with
contraction operations accounts for ∼75% of the total time. The algorithm
step uses ∼20% and the simplification with removal operations as well as
the overhead (deletion of temporary maps and allocation of memory) is ne-
glectable.
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Fig. 7.9e compares the accumulated total bottom-up construction times
of all four pyramids. Again it can be seen, that most of the total processing
time is reached after the first few levels have been built. Thus the processing
times seem to be mainly dependent on the size of the maps.

In order to reduce the time necessary to build a combinatorial pyramid,
an important step is to deal with the construction times of the first levels.
One possible optimization utilizes the fact that the base level of a pyramid
is always grid-like. Therefore it is not necessary to completely build these
initial maps each time. Grids for maps of a size that is often used can be
saved in a pre-built form instead. This way only the actual values of the
processed data must be associated with the vertices within the grid. The
time needed to construct the base level is then reduced to the time necessary
to read the pre-defined grid from a file and linking n1 × n2 × n3 values to
vertices.

As the construction of the first level accounts for ∼ 50% of the total time,
such an optimization of the base level can significantly reduce the bottom-up
contruction time of the complete combinatorial pyramid.

Another aspect of efficient algorithms in terms of processing time is the
possibility to use parallel computation. As [Brun and Kropatsch, 1999b]
have shown, parallel algorithms can be designed for 2D combinatorial maps
using contraction and removal kernels. Although this report does not provide
a formal prove, it is expected that these results also apply to the extensions
for 3D presented here.

Studying the optimization of the base level construction as well as the
use of parallel algorithms will be the subject of further works based on this
report.
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Chapter 8

Conclusion and Outlook

Within this report the properties of minimal 3D combinatorial maps are
studied with a strong focus on the process of creating minimal maps, as well
as methods for identifying and distinguishing the topological relations present
within volumetric data. For this purpose the definition of combinatorial maps
as defined by [Brun and Kropatsch, 1999a, Damiand, 2001] is used with the
extensions to 3D by [Braquelaire et al., 2003].

8.1 Minimal 3D Combinatorial Maps

For these combinatorial maps, operations are defined to produce a minimal
3D combinatorial map that preserves adjacency and inclusion relations. This
is done by merging neighboring voxels that belong to the same component
using edge contractions. Additionally the elimination of redundant cells is
studied.

For this task, six specific operations that are based on the contrac-
tion and removal operations described by [Brun and Kropatsch, 1999a,
Grasset-Simon et al., 2005] are defined in chapter 4. Edge contraction is
used to merge vertices that represent voxels of the same component. The
resulting maps contain redundant elements in the form of parallel edges and
faces as well as empty edge- and face self-loops. Parallel cells are removed by
the use of face and volume contractions while empty self-loops are eliminated
with edge and face removals.

10 formal conditions are formulated in chapter 4 that specify if these
operations may be applied. Using these conditions ensures that the resulting
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combinatorial map will be consistent, valid, and that the information about
adjacencies and inclusions is preserved. Using the Euler Characteristic It is
shown that, if the conditions are fulfilled, the operations used to simplify the
combinatorial maps do not change the genus of the bounding surfaces.

Based on the defined operations and their conditions an algorithm for
building 3D combinatorial pyramids is constructed in chapter 5. Pyramids
built with this algorithm contain a reduced 3D combinatorial map with re-
spect to the 10 conditions as their top level.

Finally it is shown in chapter 6 that any 3D combinatorial map provided
that does not contain face self-loops can be reduced to a minimal 3D com-
binatorial map. A minimal 3D combiantorial map is a combinatorial map in
which each connected component is encoded by a single vertex.

Chapter 7 demonstrates the creation of minimal 3D combinatorial maps
for four representative configurations (simplex, tunnel, hole, and two rings).
In each case the initial combinatorial map has been successfully reduced to
a minimal map.

The first conclusion is therefore that 3D combinatorial maps can be re-
duced to their minimal form where each connected component is represented
by a single vertex while preserving information about adjacency relations and
inclusions.

8.2 Minimal Configurations and Pseudo Ele-

ments

In the second part of this report minimal representations within minimal
configurations are examined. A configuration is considered minimal if the
number of cells contained in the configuration is minimal. It is shown in
chapter 6 that more than one minimal configuration exists to represent edges
and volumes. Based on these results the three topological relations adjacency,
surrounds and contains are discussed.

Although these relations have been found to have multiple minimal rep-
resentations as well, each can be unambiguously identified by their pseudo
elements. Algorithms for this detection of topological relations are presented
in chapter 6.

The reduced maps of four configurations examined in the experimen-
tal results contain the correct pseudo elements for the encoded topological
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relations of the input data. This verifies that the maps were correctly re-
duced without destroying the topological structure and shows the usefulness
of pseudo elements for the identification process.

Thus the second conclusion of this report is the existence of multiple min-
imal representations for i-cells and topological relations and the possibility
to interpret the topological structure of the data based on pseudo elements.

8.3 Minimal Combinatorial Maps for analyz-

ing 3D Data

Chapter 5 defines methods for calculating upper bounds specifying the size of
initial 3D combinatorial maps. These numbers show that the initial grid-like
maps are very large when compared to the original data. This results in a
high demand on memory and other resources when building the base level of
a pyramid as is confirmed by the experimental results.

At the same time it is shown that the size of a minimal maps depend
only on the number of represented connected components. Minimal maps
will contain exactly one vertex for each represented connected component
and one additional vertex representing the background. This is confirmed by
the last set of experiments. Initial maps of different sizes that represent the
same configuration were all reduced to a final map of only 4 darts containing
one vertex for each connected component.

The third conclusion is therefore the potential of working with minimal
3D combinatorial maps shown by these results. Due to their reduced size
they are optimized in terms of memory and time needed to process them
while at the same time providing all information about the structure of the
data.

8.4 Outlook

The process of building a pyramid to minimize a 3D combinatorial map is
also studied by the second set of experiments. In each case the creation of the
first levels of the pyramid was mainly responsible for the total computation
time.
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The C++ library used for the experiments of this report is not capable
of processing 3D data in real time (when compared to typical definitions of
real time like 25 frames per second and a resolution of 640 by 480). However,
depending on the demands of the application it is sufficient for processing
data off line. Still, one of the future fields of research will be the optimization
of the simplification process with a focus on the first levels of the pyramid.

Another focus of further studies will lie on the process of building the
pyramids, motivated by the existence of multiple minimal representations
for i-cells and topological relations within minimal combinatorial maps. This
suggests that the order of applying the operations used to reduce the maps
will produce different, but topologically equivalent, minimal maps. Studying
different strategies for applying the operations in a certain order with the
goal of finding an optimal strategy will therefore be of interest.

This report has a particular focus on defining operations and conditions to
minimize 3D combinatorial maps while maintaining the topological relations.
These operations and the resulting maps have been studied in the examples
of small representative configurations. Experimenting with larger amounts
of data like movies or the output from 3D scanners will be the next step
toward using 3D combinatorial maps in the field of image analysis.

This report shows that minimizing 3D combinatorial maps is possible and
the potential of this concept. Therefore the research of algorithms based on
3D combinatorial maps is of further interest. As a first step, successful 2D
segmentation algorithms (e.g. [Haxhimusa et al., 2005b]) can be extended to
work on volumetric data. Finally, 3D combinatorial pyramids can provide
the basis for new algorithms as proposed by [Ion et al., 2005] as they allow
for the advantages of an irregular pyramid while giving the possibility to
access information about the topological structure of volumetric data.
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