
PRIP-TR-112
Combining an Optical Flow Feature

Detector with Graph-Based Segmentation

Martin Stubenschrott, Walter Kropatsch,
Yll Haxhimusa

Institute of
Computer Aided Automation

Pattern
Recognition &
Image
Processing

Group

Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: stubenschrott@gmx.net
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-112 June 6, 2007

Combining an Optical Flow Feature Detector with Graph-Based Segmentation 1

Martin Stubenschrott, Walter Kropatsch, Yll Haxhimusa

Abstract

Object tracking is the complex task to follow a given object in a video stream. This paper
describes an algorithm which combines an optical flow based feature tracker with color
segmentation. The aim is to build a feature model and reconstruct lost feature points when
they are lost due to occlusion or tracking errors. These feature points are tracked from one
frame to another with the Lucas & Kanade optical flow algorithm. Additionally, we seg-
ment each frame with the Felzenszwalb-Huttenlocher graph-based segmentation algorithm.
Optical flow and segmentation are then combined to track an object in a video scene. By
using this strategy, also occlusion and slight rotation or deformation can be handled. The
tracker is then evaluated on an artificial video sequence with moving balls but also on real-
world sequences of a moving person. For all video sequences, ground truth data is available
and compared to our results.

1Partially supported by the Austrian Science Fund under grant FWF-P18716-N13. This work
is part of the twist project (Tracking with Structure in Computer Vision - http://www.prip.
tuwien.ac.at/Research/twist/twist.php). We would like to thank Advanced Computer
Vision Gmbh. for their video material.

http://www.prip.tuwien.ac.at/Research/twist/twist.php
http://www.prip.tuwien.ac.at/Research/twist/twist.php

1 Introduction

Image segmentation [FH04, MMTB+06, HK03, HK04] and optical flow [HS80] are two
very common tasks in image processing. Image segmentation partitions an image into
visually distinct region. For this to work well, it is preferable to have regions of similar
color and/or texture. Finding the optical flow of two images can be interpreted as finding
the most probable pixel position of the first frame in the second frame. Unfortunately,
this requires just the opposite of image segmentation: The more unique some small part
of the image is, the better it can be matched in the next frame.

Thus, optical flow and image segmentation complement each other: Optical flow has
problems with homogeneous regions, which can be handled well by image segmentation.
However, segmentation has problem with fuzzy borders which can be handled by optical
flow.

This paper provides a framework for a feature-based object tracker which is improved
by segmentation information. Features are tracked from one frame to the next with
an optical flow algorithm. While the actual optical flow can work quite well without
segmentation, segmentation information helps following the entire object instead of just a
few single feature points of it. Also segmentation information is essential, when we need
to reconstruct some lost feature points.

Combination of these two basic image processing algorithms is not new. Indeed one
motivation for this work was the paper Exploiting Texture-Motion Duality in Optical Flow
and Image Segmentation by Michael G. Ross [Ros00]. It uses flow information to pro-
vide better segmentation results and vice versa. While this paper combines optical flow
and segmentation, it is rather focused on improving segmentation results than in object
tracking. Jeongho Shin et al. [SKK+05] proposed an optical-flow based feature tracker
algorithm which could track non-rigid objects in real world scenes. Their experiments
showed that a feature based object tracker can work well, however they did not take seg-
mentation information into account. Therefore their tracked ,,objects” are rather tracked
points, our work tries to track a fully outlined object.

1.1 Object tracking methods

Current object tracking approaches can be roughly categorized into five main classes de-
pending on the target representation [CSE05]: Model-based, appearance-based, contour-
based, feature-based and hybrid methods.

Model-based object tracking needs a priori knowledge of the objects’ shape. This can
work well for very specific tasks, but is not extendible for general scenes.

Appearance-based techniques track objects by the appearance of the connected region,
which may include color or texture information. This approach has problems with
deformations, occlusion or rotation of the object.

Contour-based methods usually track only the outline of the object, which reduces
computational load, but still has similar problems as appearance-based methods.

1

Feature-based tracking uses features of a video object to track part of if. The problem
of this approach is grouping these features together to determine which of them
belong to the same object. Our proposed algorithm falls into this tracking class.

As usual, there is not a strict border between these techniques, and therefore [CSE05]
denotes a hybrid-based approach as the fifth large group of current object tracking meth-
ods.

1.2 Goals

The goal of this work is to examine different ways how an optical-flow based feature
tracker can be combined with segmentation. The result should be a good object tracker
with high-level segmentation.

For this to work, we need to put effort on a basic outlier detection which discards
wrongly detected feature points. Those need to be reconstructed in a lost feature point
restoration process. Also an occlusion detection system is part of my goals, which finds
an even fully occluded object, once it appears again.

1.3 Overview

We begin in Section 2 with a short description, how our segmentation algorithm works.
In Section 3, we give an overview of the optical flow calculation. With this knowledge,
we are ready to give a detailed description of how these two techniques are combined in
Section 4, where we create an object tracker. This tracker is later evaluated in Section 5
with an artificial and with a real-world video sequence.

2 Segmentation

The purpose of segmentation is to cluster visually similar, neighboring regions together.
It is quite difficult, if not impossible, to find one perfect segmentation which is neither
too coarse, nor too fine for all applications.

The segmentation is done with the Felzenszwalb-Huttenlocher segmentation algo-
rithm [FH04] which belongs to the class of graph-based segmentation algorithms. Its
runtime efficiency is O(n log n) for n image pixels. A sample segmentation can be seen
in Figure 2b. Each segment is colored randomly and transparently overlayed over the
original image. In this example, the person at the bottom-right of the image is segmented
very well, but there are some minor patches on the floor, which should not be there in a
perfect segmentation.

Graph-based techniques use a graph G = (V, E) with vertices vi ∈ V representing
pixels of an image, and (vi, vj) ∈ E representing the edges between neighboring pixels.
Each edge has a weight w((vi, vj)), which measures the (dis-)similarity between neighbor-
ing image pixels. This weight is usually obtained by the color differences between pixels,
in our case the Euclidean distance of the red, green and blue color values is used. Now
the idea is to create connected components C1, . . . , Ck which consist of edges with low

2

weights (=look similar) and have high weights (=strong boundaries) to other connected
components. Felzenszwalb and Huttenlocher therefore introduce three concepts:

� Internal difference of a component C ⊆ V

Int(C) = max
e∈MST (C,E)

w(e)

Int(C) is the largest weight within a component (MST denotes the minimum span-
ning tree of this component)

� Difference between two components C1, C2 ⊆ V

Dif(C1, C2) = min
v1∈C1,v2∈C2,(v1,v2)∈E

w((v1, v2))

Dif is the minimum weight edge connecting C1 and C2 or ∞ if there is no such
edge

� Minimum Internal Difference of two components C1, C2 ⊆ V

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2))

τ(Ci) is a threshold function whose value decreases as the component gets larger.
Usually it is defined as τ(Ci) = k

|Ci| , where k is a constant factor, and |Ci| the size
of the component in pixels.

Using these concepts the segmentation algorithm can be defined as:

1. Sort edges by non-decreasing edge weight

2. Start with an initial segmentation, where each vertex vi is in its own component Cvi

3. vi and vj are the vertices, which are connected by the edge with the lowest weight.
If vi and vj are already in the same component, then continue. Otherwise merge
the two components where vi and vj belong to, if and only if MInt(Cvi

, Cvj
) ≥

Dif(Cvi
, Cvj

).

4. Repeat step 3 for all other edges in order

While this algorithm works well for artificial images, for real world examples with noise
and other small artifacts, results can be greatly improved by some simple pre- and post-
processing steps:

� Preprocessing is done with a Gaussian filter which smooths the image to remove
artifacts.

� Postprocessing is done by merging small components to its neighboring component.
The minimum component size m can be adjusted.

3

3 Optical Flow

Optical flow was defined by Horn and Schunck as the distribution of apparent velocities
of movement of brightness patterns in an image [HS80]. While this method can provide a
high density of velocity vectors by minimizing a global energy function, it is very vulnerable
to noise. In our experiments, we could achieve better results with the local Lucas &
Kanade [LK81] method which can handle noise much better.

Instead of calculating a flow for the whole image like the Horn & Schunck algorithm
does, this method calculates a pixel displacement vector for a single pixel. More formally,
for a given pixel u in an image I, we find the corresponding location v = u+ d in the new
image J . d is the displacement vector, which can be calculated by minimizing the error
function:

ε(d) = ε(dx, dy) =
ux+ωx∑

x=ux−ωx

uy+ωy∑
y=uy−ωy

(I(x, y)− J(x + dx, y + dy))
2

ωx and ωy are integers which define the size of the integration window, where the flow
vectors are calculated.

For best results, a pyramidal implementation [Bou03] was chosen. More exactly, a
regular pyramid where each level is 1/4 of the size of its previous level. Therefore the
pyramid with 4 levels of an image I of size 640 × 480 consists of 5 images I0, I1, I2, I3

and I4 with sizes 640× 480, 320× 240, 160× 120, 80× 60 and 40× 30.
The error function is first calculated for the deepest pyramid level Ld. The result

serves as an initial guess for the next level Ld − 1, where the calculation is performed
again. This is done until we reach the finest level L0 of the image. Using a pyramidal
approach has the advantage that the actual integration window size can be kept quite
small, but also larger motions can be handled well.

The actual calculation for each pyramid level is done by calculating a spatial gradient
matrix G of the image derivatives Ix and Iy. Now the perfect optical flow vector for
this level dL of G is calculated in an iterative Newton-Raphson fashion. For the exact
mathematical formulation, have a look at [Bou03].

It is important to note that all computations are done on subpixel basis, which yields
better results over time. The image brightness for subpixels is calculated using bilinear
interpolation.

4 The tracking algorithm

In Section 2 we have explained how we perform the image segmentation with the Felzen-
szwalb & Huttenlocher algorithm. Section 3 covered the calculation of feature points from
one frame to another with the Lucas & Kanade optical flow algorithm.

This section covers the collaboration of these techniques to create a complete object
tracker. The principal idea is to track many (in our experiments 500 was a good compro-
mise between speed and robustness) feature points and to build a feature model which
detects the main direction of the moving object and corrects outliers.
The full algorithm can be summarized in these steps (Fig. 1 and 2):

4

1. A segmentation of the first frame is done with the Felzenszwalb & Huttenlocher
algorithm, resulting in a set S of m regions.

2. The user selects n segments S1, . . . , Sn ⊆ S within the interested object (1 ≤ n ≤
m).

3. f feature points F1, . . . , Ff ⊆ F are computed within the selected segments. Consult
Section 4.1 for details.

4. Calculate the optical flow for all feature points with the Lucas & Kanade feature
tracker (Section 4.2). Also perform validity checks for new feature points and esti-
mate wrongly detected feature points. Feature points are categorized into sets Fg

for good feature points, Fe for estimated feature points and Fl for lost feature points
(Fg,Fe,Fl ⊆ F ; Fg ∪ Fe ∪ Fl ≡ F).

5. Reconstruct lost feature points (Section 4.3).

6. Segment the new frame, and with the help of good feature points Fg, find segments
which are likely to be part of the tracking object.

7. Repeat steps 4-6 for all remaining frames

4.1 Feature point selection

In step 3, the algorithm tries to extract good feature points, which can be easily tracked.
These points have big eigenvalues in the G matrix according to [ST94]. Remember, G
is the spatial gradient matrix of the image derivatives Ix and Iy. Unfortunately, the
segmentation process selects regions which are usually quite uniform, and therefore good
feature points are rare inside the region. Let us assume we found x good feature points,
then we choose maxF − x additional feature points randomly inside the region. maxF is
the maximum number of feature points, in our experiments this was set to 500.

Also note that we need to avoid choosing points which lie at the border between
the segment and the background. These points would be too likely to be tracked on
the background in the next frame, therefore we want feature points which clearly are
located within the object and not at the border. We ensure this by eroding the active
segmentation with a 3 × 3 cross-style structuring element. This removes pixels from the
border, and we can use this eroded mask to constrain new feature point positions.

4.2 Feature point calculation

Before doing any new feature point calculation, we calculate the estimated new position
Pnew(i) of feature point Fi with Pnew = Pold + med(k) where med(k) is the medium
direction of the last k frames:

med(k) =

t=old−k∑
t=old

Pt − Pt−1

k

5

First Frame

Segmentation

Next Frame

Segmentation Optical Flow

TrackingObject

Evaluator

Manual selection of interesting segments

Automatic Feature point extraction

Regions Features
Read
next

frame

Figure 1: Workflow of algorithm

6

(a
)

T
he

fir
st

im
ag

e
(f

ro
m

W
a
l
k
3
.
m
p
g
)

(b
)

Fu
ll

se
gm

en
ta

ti
on

(c
)

T
he

us
er

se
le

ct
s

on
e

or
m

or
e

se
gm

en
ts

(d
)

T
he

se
le

ct
ed

ob
je

ct
is

be
in

g
tr

ac
ke

d
(3

0
fr

am
es

la
te

r)

F
ig

u
re

2:
S
te

p
b
y

st
ep

gu
id

an
ce

7

In our experiments it is shown that k = 2 (so just the direction of the last 2 frames)
was enough, as higher values for k cannot cope with fast direction changes. Also more
complex estimation formulas like using weighting newer frames with a higher factor were
tried, but without better results. As it seems, the estimation of new feature positions
is not that important after all, since the pyramidal implementation of the optical flow
algorithm can cope with larger motions anyway.

All good feature point positions of Fg at frame position told are fed into the Lucas &
Kanade feature tracker, and we get new positions of those good feature points of the last
frame.

For an estimated feature point Fe, we try to find a frame in the last e frames where
this feature point was marked as good. Then we calculate the optical flow vector from
this old frame to the current. This turned out to be a highly effective way to handle
occlusion of the feature point. Setting e to higher values has the advantage that long
periods of occlusion can be handled well, but has a much higher computational cost. In
our experiments we set e to 20 as a trade-off between speed and robustness, but this value
can be adjusted for special needs.

For all feature points of Fg and Fe we get new feature point positions with our optical
flow calculations. Unfortunately, not all of these new positions are usable, therefore we
need to reject some new feature points:

� Each feature point has an associated error value which is basically the color difference
of the old and the new pixel. If this error is over a certain threshold τF , it is rejected.

� The median direction (direction vectors are rounded to the nearest integer for the
median value) for all remaining good points is calculated. All points which differ
more than τM percent from the median direction are rejected. Larger τM values can
cope better with non-rigid objects, but are more affected by optical flow errors. We
chose 20% as our threshold, but again, this depends on the actual application.

Each feature point Fi has a counter attached, which is incremented each time the point
is not found or rejected in the new frame. If Fi was found however, the counter is reset
to 0. Depending on the value of this counter, Fi can be:

� Moved to set Fg if it is reset to 0

� Moved to the set of estimated points Fe, if it reached 1

� Moved to the set of lost points Fl, if it reached e. Therefore we try to find an
estimated point maximum e frames, otherwise we need to create a new feature
point which can hopefully be better tracked (section 4.3).

4.3 Feature point restoration

Whenever feature points are declared lost, they are not immediately restored, but only
when |Fl| > |F|

l
. l > 0 is a factor which defines how many points must be lost before

reconstructing feature points. l = 4 (which was our experimental setting) means, the full
restoration process is started when 25% of all feature points are lost.

8

The algorithm for finding suitable feature points is exactly the same as in the original
feature point selection (Section 4.1).

5 Evaluation

The implementation and evaluation of the system was done on Linux in C++, using the
excellent OpenCV1 image processing toolkit. On a 2.8Ghz Intel Pentium 4, it usually ran
with 1-2 frames per second, depending on frame size, number of features and the number
of look-back frames e. Some example videos which show the capabilities (and problems)
of our tracker can be downloaded from: http://www.prip.tuwien.ac.at/Research/

twist/software.php

5.1 Input

The input to the system is a video with a fixed camera position. However, since the
tracking system uses segmentation instead of background subtraction, it can usually cope
with slightly moving cameras as well.

The tracked object may also be partly or fully occluded for some time, although
currently just for e frames. If it is longer occluded, it is lost and cannot be automatically
detected anymore.

Preferably, the object should be as rigid as possible, because otherwise different parts
of an object may have completely different optical flows. Since we combine segmentation
with optical flow information, it is often also possible to track non-rigid objects like people
accurately.

5.2 Output

After we have found a segmentation of the tracked object, visualization is shown directly
on the input video. The segmentation of the object is overlayed with a transparent color
and a bounding box of the object is drawn around it. Moreover, also the bounding box of
an available ground truth data is drawn with a different color, so the observer can quickly
see the difference of the expected and our bounding box. For debugging purposes, we also
draw the feature points in different colors, depending whether they belong to Fg, Fe or
Fl (Figure 3).

5.3 Parameters used

During our tests, the following parameters were used:

� Felzenszwalb-Huttenlocher segmentation algorithm:

– α = 0.5 (Gaussian smoothing parameter)

– k = 300

1http://www.intel.com/technology/computing/opencv/

9

http://www.prip.tuwien.ac.at/Research/twist/software.php
http://www.prip.tuwien.ac.at/Research/twist/software.php

– Minimum component size m: 20

� Lucas & Kanade optical flow algorithm:

– window size: ωx = ωy = 5

– pyramidal implementation: regular pyramid, 4 levels

� Tracking algorithm:

– Threholds: τF : 100, τM : 20%

– Erosion: 3× 3 cross style structuring element, 3 runs

– Number of feature points: 500

– Look-back frames e: 20

The use of good parameters for the segmentation is essential. Sometimes, an object melted
with the background, and it was impossible to perform a tracking operation. Changing
α, k or m sometimes helped here, but not always.

The optical flow and tracking algorithm parameters did not really have much effect
when they were altered.

5.4 Results

While overlaying our tracking and segmentation over the original video may look nice,
we need to prove how good (or bad) our results are. This can only be done with a video
sequence where ground truth data is available.

Freely available video sequences with annotated ground truth data are very hard to
find, but the CAVIAR project has some nice real world videos with hand selected bounding
boxes for each frame in XML format2. Credit for these videos goes to the EC Funded
CAVIAR project/IST 2001 37540.

We also evaluated the tracker on the MUSCLE Brenchmark from http://muscle.

prip.tuwien.ac.at/data_description/ACV1/ACV_TRACKINGBENCHMARK.HTML. Credit
for these videos goes to the Advanced Computer Vision GmbH - ACV. They have ground
truth annotated videos of moving circles. While segmentation is much easier for these
videos because they are artificial without any noise or soft gradients, it can be quite
difficult to handle occlusion for these blobs.

We compared the annotated bounding boxes of an object with our results and got the
following evaluation criteria:

� Overlap
This is just the comparison of overlapping bounding boxes. While more accurate
calculation of overlap of the segmented region with ground truth data would be
favorable, none of the ground truth data provided more information than simple
bounding boxes. In the case of the MUSCLE benchmark, one could approximately

2The videos and the XML files for the ground truth can be downloaded from: http://groups.inf.
ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

10

http://muscle.prip.tuwien.ac.at/data_description/ACV1/ACV_TRACKINGBENCHMARK.HTML
http://muscle.prip.tuwien.ac.at/data_description/ACV1/ACV_TRACKINGBENCHMARK.HTML
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

calculate the circles from the bounding boxes, not only would this be inaccurate,
but it wouldn’t take occlusion into account either.

Also the exact overlap values for the MUSCLE benchmark would be identical for
our experiments. In the case of a circle with radius r = 20, but our segmentation
incorrectly segments a smaller circle with r = 18 within the ground truth circle.

Exact overlap is:

Oc =
182 · π
202 · π

= 0.81

For the bounding boxes, the overlap is:

Ob =
(18 · 2)2

(20 · 2)2
= 0.81

� Percentage of successfully tracked frames
This measurement just uses a threshold of the overlapping percentage to classify if
the object was successfully tracked or not in a frame. It was chosen as low as 25%.
This may sound like a very low threshold, but as we compare the overlapping area
of the bounding boxes, it is very common to have 40% overlapping bounding boxes
which still look well tracked. Of course this threshold can be changed, if you need
more confidence for a tracked object.

In Table 1 we have summarized some results for the CAVIAR benchmark. The results
vary, and objects with strong borders like in Browse1.mpg could be tracked very well.
On the other side, the tracking object of OneStopMoveNoEnter1cor.mpg or Walk2.mpg

was completely lost after some time and could not be recovered. This however, was not
caused by the feature tracker, but by bad segmentation results. Often, not only the
moving person but also parts of the background were segmented as one connected region.
This did not just lead to bad results for the overlap statistics, but when we needed to
reconstruct lost feature points, they were sometimes taken on the background. Therefore,
for real world scenes our proposed tracker would need a better segmentation algorithm,
or at least a mechanism to make sure, that reconstructed feature points are not taken on
the background but within the tracking object.

Filename ObjID Frames Succ. Tracked Overlap
Browse1.mpg 1 1–200 90.12% 70.26%
OneLeaveShop1cor.mpg 0 1–90 97.78% 85.51%
OneStopMoveEnter2cor.mpg 0 1–300 99.00% 54.26%
OneStopMoveNoEnter1cor.mpg 4 1300–1664 37.36% 30.43%
Walk2.mpg 0 1–50 26.00% 15.90%
Walk3.mpg 0 50–185 100.00% 80.21%

Table 1: Tracking performance for the CAVIAR benchmark

In the MUSCLE benchmarks, the results are better (Table 2), as the segmentation
was not a real problem here. The ball could usually be fully tracked throughout the video

11

(Fig. 3). However, the ground truth files were not that exact and contained bounding
boxes of the ball even if it was occluded. Therefore the Successfully tracked column is not
always at 100%, even if the ball is successfully tracked in each frame.

The overlap column shows an average overlap of about 70%. We expected higher
values, since this artificial video has a high contrast between the balls and the back-
ground. Yet unfortunately, the Felzenszwalb segmentation does not segment the ball as
one component but puts the contour of the ball into an own component (Fig. 4).

Filename ObjectID Frames Successfully Tracked Overlap
CASE13 00001.AVI 2 2–1200 100.00% 80.06%
CASE14 00002.AVI 3 2–510 99.41% 73.47%
CASE14 00003.AVI 7 2–650 93.07% 67.79%
CASE16 00004.AVI 13 2–1357 98.49% 59.89%
CASE16 00005.AVI 44 2–1000 99.90% 62.01%
CASE16 00005.AVI 45 2–450 100.00% 61.70%

Table 2: Tracking performance for the MUSCLE benchmark

6 Outlook and Conclusion

We could see that combining an optical flow based feature tracker with a segmentation
can lead to a usable object tracker. The most important aspect of this work was building
and maintaining the feature model. This was done with three sets for found, estimated
and lost feature points. Using this model, also dealing with occlusion was quite successful.

However, there are still some problems and improvements, which are beyond the scope
of this work. The Felzenszwalb and Huttenlocher segmentation algorithm does not really
work well if there is no strong border between object. And even if there is a strong border
like in the MUSCLE benchmark, the segmentation results could be better. However, on
the other side, it could serve quite a usable segmentation for many input videos, so there
must be some proof that other segmentation algorithms really work that much better.

Another field for improvement is the feature restoration process. It works well as long
as the segmentation process does not segment the background as part of the object.

A third improvement would be to eliminate the manual process of initially selecting
a tracking object. In the current implementation this is done by clicking into the desired
object, future implementations could use background subtraction or other techniques to
make the tracker fully automated.

Apart from these problems, the tracker works reasonably well and even handles defor-
mations and rotation of the object to a certain degree.

References

[AB85] Edward H. Adelson and James R. Bergen. Spatiotemporal Energy Mod-
els for the Perception of Motion. J. of the Optical Society of America A,

12

2(2):284–299, 1985.

[Bou03] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Fea-
ture Tracker - Description of the Algorithm. Part of OpenCV Documenta-
tion, 2003.

[CSE05] A. Cavallaro, O. Steiger, and T. Ebrahimi. Tracking Video Objects in
Cluttered Background. Circuits and Systems for Video Technology, IEEE
Transactions on, 15(4):575–584, 2005.

[FH04] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Graph-Based
Image Segmentation. International Journal of Computer Vision, 59(2):167–
181, 2004.

[HK03] Yll Haxhimusa and Walter G. Kropatsch. Hierarchy of Partitions with Dual
Graph Contraction. In B. Milaelis and G. Krell, editors, DAGM-Symposium
2003, volume 2781 of Lecture notes in computer science, pages 338–345,
Germany, 2003. Springer.

[HK04] Yll Haxhimusa and Walter G. Kropatsch. Segmentation Graph Hierarchies.
In Ana Fred, Terry Caelli, Robert P.W. Duin, Aurelio Campilho, and Dick
de Ridder, editors, Proceedings of Joint International Workshops on Struc-
tural, Syntactic, and Statistical Pattern Recognition S+SSPR 2004, volume
3138, pages 343–351, Lisbon, Portugal, 2004. Springer, Berlin Heidelberg,
New York.

[HS80] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow.
Technical report, MIT, Cambridge, MA, USA, 1980.

[JR93] Jean-Michel Jolion and Azriel Rosenfeld. A Pyramid Framework for Early
Vision: Multiresolutional Computer Vision. Springer, 1993.

[LK81] B.D. Lucas and T. Kanade. An Iterative Image Registration Technique with
an Application to Stereo Vision. In IJCAI81, pages 674–679, 1981.

[MMTB+06] R. Marfil, L. Molina-Tanco, A. Bandera, J. A. Rodriguez, and F. San-
doval. Pyramid Segmentation Algorithms Revisited. Pattern Recognition,
39(8):1430–1451, August 2006.

[Ros00] Michael G. Ross. Exploiting Texture-Motion Duality in Optical Flow and
Image Segmentation, April 2000.

[SA91] E. Simoncelli and E. Adelson. Computing Optical Flow Distributions using
Spatio-Temporal Filters, 1991.

[SKK+05] Jeongho Shin, Sangjin Kim, Sangkyu Kang, Seong-Won Lee, Joonki Paik,
Besma Abidi, and Mongi Abidi. Optical Flow-Based Real-Time Object
Tracking using Non-Prior Training Active Feature Model. ELSEVIER Real-
Time Imaging, 11:204–218, June 2005.

13

[ST94] Jianbo Shi and Carlo Tomasi. Good Features to Track. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’94), Seattle, June
1994.

[WDD00] Yiwei Wang, John F. Doherty, and Robert E. Van Dyck. Moving Object
Tracking in Video. In AIPR ’00: Proceedings of the 29th Applied Imagery
Pattern Recognition Workshop, page 95, Washington, DC, USA, 2000. IEEE
Computer Society.

14

Figure 3: The tracked (partly occluded) ball in the MUSCLE benchmark. Green are found
feature points, blue estimated feature points and red lost feature points. The orange color
shows our segmented tracking object with its green bounding box. The red bounding box
is from the ground truth data and incorrect, since it does not honor the occlusion of the
object.

Figure 4: The Felzenszwalb algorithm yields three components for the ball, while one
component would be preferable.

15

	Introduction
	Object tracking methods
	Goals
	Overview

	Segmentation
	Optical Flow
	The tracking algorithm
	Feature point selection
	Feature point calculation
	Feature point restoration

	Evaluation
	Input
	Output
	Parameters used
	Results

	Outlook and Conclusion

