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Abstract

This report presents an automatic method for registering follow-up hemangioma images
taken during clinical trials in specific time intervals. The method finds interest points in
two images on the basis of edge points and matches corresponding interest points using
SIFT features. Under the assumption that hemangioma regions are planar, these corre-
spondences are used to determine a homography between the two images by means of
RANSAC. Experimental results are reported for image pairs acquired at the same time
and for image pairs acquired during follow-up showing hemangiomas at different times.
Registration errors on the images are acceptable for subsequent processing, however, gross
changes of hemangiomas deteriorate the performance and are subject to ongoing research.



1 Introduction

Cutaneous hemangiomas are benign vascular tumors made up of newly-formed blood ves-
sels in the skin. They are a common disease in infancy with a frequency of about 10 %
[3]. Until now the natural course of hemangiomas or their response to a certain therapy
was assessed only by clinical examination. Dermatologists usually make scorings where
they try to estimate the degree of regression or enlargement of the lesion. An automatic
system based on photos taken of a specific hemangioma in given intervals would be useful
to support the physician detecting and quantifiying the changes of a hemangioma in an
objective manner. A necessary prerequisite of such a system is the registration of consec-
utive images to compare them in a meaningful way.
Image registration is the process of geometrically aligning two images taken from different
viewpoints and, in our case, also taken at different times. This report presents an auto-
matic method for registering hemangioma images taken during clinical trials in specific
time intervals.

1.1 State of the Art

Several approaches for the registration of dermatological images were proposed in the past
dealing mainly with images of skin lesions representing melanoma or psoriasis. Maglo-
giannis [8] and Pavlopoulos [11] both propose a similar hybrid method using the log-polar
transformation for estimating scaling and rotation parameters and a sign change similarity
criterion in combination with a hill-climbing optimization scheme for translation estima-
tion. Ersbøll et al. [9] work with statistical shape analysis after lesion segmentation to do
a first rigid alignment under the assumption of image scale constancy. Afterwards small
internal displacements are corrected by a combined registration and alignment scheme.
The SHARP-algorithm presented in [2] segments the lesions in the images and uses the
first and second order moments of the resulting binary images to determine the rotation
and translation parameters.

1.2 Our Contribution

The methods outlined above are not capable to handle certain properties of typical he-
mangioma follow up images: differences of view point during image acquisition typically
exceed a range that can be accounted for by 2D rotations and translation in the image
plane, the change in image scale can be high, and hemangiomas change appearance during
the period of follow up examinations, making a robust approach necessary. In Fig. 1 these
cases are illustrated: Fig. 1(a) and Fig. 1(b) show a pair, for which reliable matching
is only possible for a small part of the hemangioma due to the healing process between
examinations and rotation between images is appr. 170◦. Fig. 1(c) and Fig. 1(d) are ex-
amples for a large scale change, and Fig. 1(e) and Fig. 1(f) show a pair of images where
the viewpoint change is high.
Because of these issues, our approach is based on the detection and matching of distinctive
interest points, by means of local features. The resulting correspondences are used for a
robust estimation of the transformation between images by RANSAC. To obtain reliable
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Figure 1: Three image pairs representing images of the same hemangioma taken at dif-
ferent times.

matches of interest points we use SIFT features [7] for description of interest points and
determination of correspondences between images. Under the assumption that heman-
giomas are planar, the transformation between images is defined as a homography which
is estimated by the detected point correspondences.
The method has several advantages over existing approaches for dealing with hemangioma
data: SIFT is a rotation and scale-invariant descriptor which allows the reliable match-
ing of points under different views, the modeling of the transformation between images
with a homography can represent any projective relation between the images, and finally
RANSAC can cope with partially incorrect or missing matches between interest points
caused by changed hemangioma appearances.
The feature-based image registration method can be divided into four main steps [13].
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They also roughly set the structure of the report:

1. Feature detection: Interest points are detected in both images (Section 2).

2. Feature matching: Interest points are matched by means of their feature descrip-
tions (Section 3).

3. Transform model estimation: Matched interest points are used to compute the
parameters of the mapping function which is in our case a homography (Section 4).

4. Image resampling and transformation: The image is finally transformed using
the computed mapping function and usually bilinearly interpolated.

In Section 5 several experiments performed on the data gathered with the algorithm
proposed are presented and discussed. A conclusion is finally given in Section 6.

2 Detection and Description of Interest Points in He-

mangioma Images using SIFT

As mentioned above, the first task is to find distinctive interest points in the images to
be registered. In this section first the original SIFT method is described followed by the
motivation and explanation of our adaptation for interest point detection.

2.1 Scale Invariant Feature Transform

The scale-invariant feature transform (SIFT) presented by Lowe [7] is a scale and rotation
invariant local descriptor of features in images and has proven to be a robust and therefore
widely used method [10]. It consists of four major steps:

1. Scale-space extrema detection: The detection of interest points works on dif-
ferent octaves, i.e. different resolutions of the image. For each octave a Gaussian
scale space is computed by repeatedly convolving the image with a Gaussian filter
kernel and subsequently Difference-of-Gaussians images are created by subtracting
the blurred images with adjacent scales. Candidate locations for interest points are
then detected at extrema of the Difference-of-Gaussians images.

2. Keypoint localization: For each initial keypoint (interest point) position a inter-
polated more exact position is determined by a 3D quadratic function. Furthermore,
unstable extrema with low contrast are rejected.

3. Orientation assignment: In order to achieve rotation invariance of interest point
descriptors, to each interest point a main orientation determined by means of peaks
in an orientation histogram of surrounding gradient orientations is assigned. All
future operations are performed relative to the main orientation.
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4. Keypoint descriptor: Again the local gradient data is used to create a set of
histograms over a window centered on the keypoint. Usually a set of 16 histograms,
aligned in a 4x4 grid, each with 8 orientation bins is used. This results in a feature
vector of 128 elements for each interest point.

2.2 Interest Points based on Canny Edge Detector

For our task the standard SIFT method has to be modified on some points, to account
for the specific nature of the image data. The interest point detection is constrained to a
region covering the hemangioma, only the green color component of the images is taken
into account, and Canny edges are used for the interest point localization.

1. Constraining interest points to the hemangioma region: The analysis is con-
strained to a region of interest, including the hemangioma. Segmentation of the heman-
gioma region is done by a pixel-wise classification method proposed in an earlier work [12].
Once the image has been segmented, only interest points inside or near the hemangioma
region are accepted. This ensures that the planarity assumption for the homography esti-
mation gives a good estimate of the actual surface, accounts for a better chance of reliable
matches in the close vicinity of the hemangioma and reduces computational costs.
In detail, interest points are only accepted if:

1. they are located in the frame encompassing the segmented hemangioma region,
enlarged by 40 pixels on each side.

2. they are not located in a background region, i.e. not located in a region that has
been detected as non skin by the heuristic described in [12]. Note that thereby also
the ruler is excluded and differences in its placement do not affect the registration.

2. Local image representation: The standard SIFT method works on gray-value
images, but in our case the green channel of the RGB-images is a more reasonable choice.
As mentioned in [12], this representation shows higher differences between hemangioma
regions and healthy skin which can also be seen in Fig. 2 where the gray-value represen-
tation and the green channel representation of a hemangioma image is shown. Therefore,
the whole registration process works on normalized green channel images.

3. Interest point localization: In the original SIFT method interest points (called
keypoints) are localized at extrema in the Difference-of-Gaussians scale space. However,
this interest point localization procedure generates an unsatisfactory number of distinctive
interest points and correct matches on our images. The reason is that Difference-of-
Gaussians tends to have more extrema at intensity variations inside the hemangioma than
at the exact hemangioma border. However, the most reliable interest points lie at the
hemangioma border because the inner hemangioma parts change to a higher degree from
one time to another. Therefore, in our method interest points are detected along edges in
the images. Edge detection is accomplished by means of the Canny edge detector [1] and
interest points are finally localized at edge pixels showing the highest gradient magnitude
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(a) (b)

Figure 2: (a) Gray-value representation and (b) green channel representation of a RGB
hemangioma image.

in a neighborhood of N pixels. By empirical tests a value of N = 3 combined with a
low threshold of 0.1 and a high threshold of 0.2 for the Canny edge detection method has
proven to be adequate for obtaining a high number of distinctive interest points. The
improvement achieved by this method is evaluated in Section 5.1. In this experiment
more matches are rated as correct by using the method described above (∼41 %) than by
using the usual Difference-of-Gaussians approach (∼16 %).
In Fig. 3 the results of the individual steps of our interest point localization procedure are
shown for the image of Fig. 1(e). Fig. 3(a) shows the segmentation of the hemangioma
area (green border) and resulting rectangular region of interest (blue frame). For interest
point localization only the green channel of this frame is used which is shown in Fig. 3(b).
Non skin regions like the ruler in the upper left corner are ignored. Next, the Canny edge
detector is applied resulting in the edge image shown in Fig. 3(c). Finally, interest points
are detected at edge pixels having the highest gradient magnitude in a neighborhood of
3 pixels, marked as black spots in Fig. 3(d). Thus, a total number of 1441 interest points
are detected in the image.

3 Matching of Interest Points in Two Hemangioma

Images

Once the interest points have been localized, they have to be matched in a robust way.
Like in the standard SIFT method, our interest points are described by accumulating the
orientations in a region around the interest point location. We are using a 4x4 descriptor
array with 8 orientation bins in each, resulting in a 128-element feature vector for each
interest point.
The task of the matching step is to find for every interest point of the first image (the
sensed image) the corresponding interest point of the second image (the reference im-
age). A simple way to determine the correspondences is to match interest points whose
descriptor vectors have the lowest Euclidean distance to each other. However, many in-
terest points of the sensed image might not have any corresponding interest point in the
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Figure 3: Individual steps of the interest point localization procedure.

reference image and vice versa. As described by Lowe in [7], a convenient measure for the
quality of a match is not only the distance to the nearest neighbor in the reference image
but also the distance to the second nearest neighbor. A “good” match for an interest point
in the sensed image shows a low distance to its first nearest neighbor and a comparatively
high distance to its second nearest neighbor in the reference image.
With our method the interest points are matched in a similar way. Although RANSAC
is capable of handling a large portion of incorrect matches, a preselection of the matches
with highest confidence can improve the stability. Therefore, matches are determined
by means of lowest Euclidean distance of interest point descriptors, sorted in terms of
the distance between the nearest and the second nearest neighbor, and finally only the
“best” n matches are accepted. The number n of accepted matches should thereby be
chosen dependent on the size of the hemangioma in the sensed image: in an image pair
containing a large hemangioma more matches could be reliably detected than in an image
pair containing a small hemangioma. Therefore, the value n is determined by n = 2

√
msi,

rounded to the nearest integer value, where msi is the number of interest points detected
in the sensed image. This function has been decided for by empirical tests achieving the
best performance on the given data. It gives enough matches for small hemangiomas
(small msi) but avoids too many unreliable matches for large hemangiomas (large msi) as
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well. In the provided images msi can vary from about 50 up to about 1500, corresponding
to a n-value of 14 to 77. The function is shown in Fig. 4 for an interest point number
range of 1 to 2000.

Figure 4: Function for determining the number n of accepted matches.

Fig. 5 shows exemplarily the matching result between the image from Fig. 3 and the
corresponding image from the following examination. In this case 76 matches are initially
accepted. However, it can be seen that still many of these matches are incorrect. The
overcoming of this problem is described in the next section.

Figure 5: Determined corresponding interest points between two consecutive images.
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4 Robust Homography Estimation Based on Interest

Point Matches

The final step in the image registration procedure is the computation of the homography
that maps the sensed image onto the reference image. In general, with a homography the
transformation of all points lying on a plane in the scene shown in the sensed image to the
same points in the reference image can be described. This means that the hemangiomas
are assumed to be planar, which is not correct in all cases, but a reasonable simplification.
An evaluation of the error made by this assumption and the possible use of more flexible
transformation models is subject of ongoing research.
This section describes the method for the robust estimation of the homography between
the hemangiomas contained in the sensed and reference image. In Section 4.1 the general
mathematical method for homography estimation is explained. A reliable remedy for the
problem of incorrect matches (outliers) is given in Section 4.2.

4.1 Homography Estimation from a Set of Point Matches

A homography has eight degrees of freedom and is represented by a non-singular ho-
mogeneous 3x3 matrix. Thus, it can be exactly defined by a set of four corresponding
points with at most two of them being collinear. For a set of more than four matches, the
homography can be estimated by the normalized Direct Linear Transform (DLT) which
minimizes the algebraic error [6].
Given n matches of points {psi

i ↔ pri
i } between the sensed image (si) and the reference

image (ri), a homography H is estimated by the normalized DLT in the following way:

1. Normalization of psi
i : Compute a similarity transformation T transforming the

points psi
i = (xsi

i , ysi
i , 1)T to a new set of points p̃si

i such that the centroid of the points
p̃si

i is at (0, 0, 1)T and their average distance is
√

2. The similarity transform T has the
form

T =

√2/d̂ 0 −
√

2x̂/d̂

0
√

2/d̂ −
√

2ŷ/d̂
0 0 1


with

x̂ =
1

n

n∑
i=1

xsi
i , ŷ =

1

n

n∑
i=1

ysi
i , d̂ =

1

n

n∑
i=1

√
(xsi

i − x̂)2 + (ysi
i − ŷ)2

2. Normalization of pri
i : Likewise, compute a similarity transformation T ′ transform-

ing pri
i to p̃ri

i .
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3. Direct Linear Transformation: For each match {p̃si
i ↔ p̃ri

i } the homography H̃ is
given by p̃ri

i = H̃p̃si
i . This can be written in the form

Aih =

 0
T −p̃siT

i yri
i p̃siT

i

−p̃siT

i 0
T −x̃ri

i p̃siT

i

−ỹri
i p̃siT

i x̃ri
i p̃siT

i 0
T

 h1

h2

h3

 = 0

Ai is a 3x9 matrix and h is a 9-element vector made up of the entries of the matrix H̃,

h =

h1

h2

h3

 , H̃ =

h1 h2 h3

h4 h5 h6

h7 h8 h9



with hi the i-th element of h. Since only two rows of Ai are linearly independent, each
match gives two equations in the entries of H̃. We therefore use only the first two rows
of Ai and assemble the n 2x9 matrices into a single (2n)x9 matrix A. The solution h is
the unit singular vector corresponding to the smallest singular value of A obtained by a
Singular Value Decomposition.

4. Denormalization: Denormalize H̃ with H = T ′−1H̃T .

To transform an image point psi
i of the sensed image it has to be represented by ho-

mogeneous coordinates psi
i = (xsi

i , ysi
i , 1)T . The transformation is achieved by pri

i = Hpsi
i

and division of the resulting point pri
i by its homogeneous component.

4.2 Robust Detection of Outliers

As mentioned above, the matching of interest points also produces false matches that have
to be detected and discarded. Since every match is equally considered for homography
estimation by the DLT algorithm, it is not robust against these so called outliers, i.e. even
one outlier can disturb the registration result to a high degree. Therefore, a necessary
requirement of the final homography estimation method is a robust detection of inliers
and outliers in the present interest point matches.
RANSAC (RANdom SAmple Consensus) is a robust model fitting method which is able
to cope with a large portion of outliers [4]. Therefore, its scheme is applied on the interest
point matches to obtain outlier-tolerant homography estimations. The underlying idea
is to randomly and repeatedly choose four matches out of the set of putative matches,
compute a homography for each set of four matches and finally take the homography H
that has the largest number of inliers in the remaining set. An inlier in this case is defined
as a match where the interest point in the sensed image is located within a given distance
to the matching interest point in the reference image after a transformation with H.
On our images best results were achieved by iterating 2000 times and allowing a maximum
distance of 5 pixels for the inlier decision (in a typical image 5 pixels correspond to ∼0.375
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for i=1 to 2000 do
. select a random sample of 4 matches out of all matches and compute the
homography H
if (absolute value of the determinant of H between 0.1 and 10) then

. calculate the distance d to all other matches

. compute the number of inliers as the number of matches for which d < 5
if (H has number of inliers larger than the present best homography) then

. mark H as best homography
else if (number of inliers is equal) then

. choose the homography with the lower standard deviation of inliers
end

end

end
. re-estimate the best homography from all matches classified as inliers using the
normalized DLT

Algorithm 1: The RANSAC-algorithm for estimating a homography from putative
matches between two hemangioma images.

mm). To increase robustness only homographies with an absolute value of the determinant
in the range of 0.1 to 10 are allowed. If the determinant of a homography or its inverse is
close to zero, it corresponds to a degenerated case. The full algorithm is summarized in
Alg. 1.
Once the final homography is computed, the last step in the registration process is to
transform the sensed image onto the reference image. In practice, this is done by com-
puting the inverse of the homography, transforming each image point of the new image
onto the sensed image and computing its image value by bilinear interpolation. In Fig. 6
the final results for the images Fig. 1(e) and Fig. 1(f) are shown. Fig. 6(b) shows the re-
maining inliers determined by RANSAC of the initial matches depicted in Fig.6(a). In
this example 31 of the 76 initial matches are classified as inliers. The final transformed
sensed image can be seen in Fig. 6(c). The difference between the transformed image and
the reference image is shown in Fig. 6(d).

5 Experiments

For experiments in total 63 different images taken at the Vienna General Hospital using
an analog photo camera and digitalized with a scanner were available. All images have a
resolution of 512x768 pixels and a bit depth of 8 bits per color channel.
At first, an comparative evaluation of Canny edge interest points and standard Difference-
of-Gaussians interest points is given in Section 5.1. For an evaluation of the image reg-
istration method under “perfect” conditions with unchanged hemangioma appearances
experiments were conducted on a set of 20 image pairs, each pair showing the same he-
mangioma at the same time, i.e. only a few seconds between image acquisitions. The
results are shown and discussed in Section 5.2. In order to assess the amount of deteriora-
tion for registrations of consecutive images (i.e. with a period of several months between
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(a)

(b)

(c) (d)

Figure 6: (a) between sensed image (left) and reference image (right), (b) detected in-
liers, (c) transformed sensed image and (d) image displaying the difference between the
transformed sensed image and the reference image.

image acquisitions), tests on four image series are reported in Section 5.3.

5.1 Comparison of Difference-of-Gaussians Interest Points and
Canny Edge Interest Points

As described in Section 2.2 interest points are detected at Canny edge points having a
local maximum of gradient magnitudes. In this section the improvement achieved by this
method compared to the original Difference-Of-Gaussians localization is demonstrated by
a simple test where we have compared the number of correct matches of three image pairs
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of consecutive hemangioma images. For every image pair the best 40 matches having the
lowest euclidean distance are determined and the correct matches are counted for both
methods by visual inspection. As can be seen in Table 1, with our localization method
∼41 % of the matches are rated as correct whereas with the DoG localization method
(using the standard parameter values defined in [7]) only ∼16 % are rated as correct. As
a conclusion, on our images Canny interest points are much more stable than Difference-
of-Gaussians interest points.

Image
Pair

Correct
Matches
DoG

Correct
Matches
Canny

1 7/40 16/40
2 7/40 21/40
3 5/40 12/40
Total 19/120 49/120
Percent ∼16 % ∼41 %

Table 1: Comparison of Difference-of-Gaussians interest points and Canny edge interest
points by manually determined correct matches.

5.2 Precision of the Image Registration Method on Heman-
gioma Images taken at the same Time

In order to increase reliability two or more images of a hemangioma were taken during
an examination. 20 of such image pairs are used for testing the precision of the pro-
posed image registration method. The registration error is measured using three different
metrics:

1. Distance Error of Inliers: The average pixel distance of transformed inliers to
the real points of the matches classified as inliers.

2. Distance Error of 5 Test Points: For each image pair 5 matches are manually
placed and the average pixel distance achieved with the estimated homography is
measured.

3. Border Error: Both the sensed and reference image are segmented and the border
error [5] between the transformed sensed segmentation and the reference segmenta-

tion is measured. Border error is computed as Area(Rss∪Rrs)−Area(Rss∩Rrs)
Area(Rrs)

where Rss

and Rrs are the segmented regions of the transformed sensed segmentation and the
reference segmentation, respectively.

The results of the test are listed in Table 2. Additionally to the proposed error metrics
for each image pair the number of detected interest points in the sensed and reference
image, the resultant number of initial matches and the fraction of these matches classified
as inliers are indicated. It can be seen that the average distance error of the 5 test points
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Image Pair Interest
points
sensed
image

Interest
points
refer-
ence
image

Initial
Matches

Inliers Average
Distance
Error of
Inliers

Average
Distance
Error of
5 Test
Points

Border
Error

1 590 659 49 48 1.69 px 3.28 px 10.78 %
2 391 489 40 40 0.55 px 1.51 px 7.85 %
3 1441 1343 76 76 0.73 px 1.63 px 1.76 %
4 142 84 24 20 2.98 px 2.74 px 8.93 %
5 225 294 30 30 0.70 px 2.41 px 3.30 %
6 393 360 40 39 2.07 px 2.28 px 3.69 %
7 165 144 26 26 0.71 px 1.82 px 4.53 %
8 1009 1172 64 64 1.63 px 1.67 px 3.41 %
9 225 273 30 22 2.43 px 2.64 px 7.51 %

10 117 154 22 18 2.64 px 1.66 px 8.66 %
11 325 290 36 36 1.82 px 1.33 px 6.72 %
12 916 1109 61 61 1.61 px 3.15 px 10.02 %
13 224 208 30 30 1.27 px 3.26 px 17.05 %
14 89 66 19 18 2.00 px 2.45 px 3.29 %
15 326 313 36 35 2.11 px 2.58 px 7.96 %
16 326 157 36 35 1.44 px 2.66 px 14.09 %
17 354 339 38 33 2.31 px 2.94 px 10.82 %
18 66 117 16 16 0.61 px 2.62 px 13.71 %
19 152 227 25 22 2.05 px 1.35 px 15.68 %
20 320 351 36 36 0.81 px 2.18 px 6.15 %

Average 389.8 407.5 36.7 35.3 1.61 px 2.31 px 8.30 %

Table 2: Results of the proposed image registration method on 20 image pairs, each pair
showing the same hemangioma at the same time.

lies at 2.31 pixels (∼0.175 mm) which is not a large increase compared to the distance
error of the inliers (1.61 pixels or ∼0.125 mm). Another indication of accuracy is the
fraction of the initial matches classified as inliers. On average 35.3 of the 36.7 initial
matches are classified as inliers which corresponds to a percentage of ∼96 %.
In Fig. 8-11 for each registration the sensed image, the reference image and the difference
image between the transformed sensed and the reference image is shown. The numbering
of difference images corresponds to the numbering of the 20 image pairs in Table 2. It can
be seen that the difference images show small disparities in the range of ∼0.1 inside and
around the hemangioma region (note that larger local differences are caused by highlights
on the hemangiomas). The only exceptions are Fig. 8(1), 9(10), 10(14) and 10(16) where
larger differences up to a value of ∼0.35 arise at the hemangioma border because the
assumption of hemangioma planarity is violated.

13



5.3 Precision of the Image Registration Method on Heman-
gioma Images taken at different Times

To assess the accuracy of the proposed method of consecutive images of the same heman-
gioma taken at different times we applied our algorithm on four different image series.
Each image series consists of four or five images, resulting in a total of 13 registrations
marked by two characters, patient (1,2,3,4) and position in the sequence of registrations
(A,B,C,D). For instance, 2C indicates the registration of the images from the third and
the fourth examination of patient 2. The same error metrics as in Section 5.2, apart from
border error, are measured and listed in Tab. 3. Additionally, a further error metric
measuring the consistency of three circularly concatenated registrations is used, which is
illustrated in Fig. 7. In this experiment two images from examination 1 (Image A and
Image A’ ) and one from the subsequent examination 2 (Image B’ ) are used. The three
homographies H1, H2 and H3 between the images are computed and the composite ho-
mography H = H3H2H1 is build. In the absence of error, H is the identity matrix and
every point in Image A is not displaced by a transformation with it. Inevitably, there is
an error which can be measured by the average displacement of points in Image A. There-
fore, a set of reference points is equally placed in 10 pixel distances inside the hemangioma
region of Image A (green points in Fig. 7) and transformed by the composite homography
H. The error is computed as the average Euclidean distance between reference points and
their corresponding transformed points, listed as Average Reference Points Displacement
in Tab. 3. This error is not stated for the registrations 3C, 4B and 4C because in this
cases only one image from examination 1 is available.

Figure 7: Illustration of the scheme for testing consistency of three circularly concatenated
registrations.
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Image series Interest
Points
Sensed
Image

Interest
Points
Refer-
ence
Image

Initial
Matches

Inliers Average
Dis-
tance
Error of
Inliers

Average
Dis-
tance
Error of
5 Test
Points

Average
Reference
Points
Displace-
ment

1A 500 590 45 17 3.03 px 7.96 px 2.41 px
1B 590 671 49 28 2.79 px 3.96 px 8.67 px
1C 671 664 52 31 2.90 px 6.45 px 5.79 px
2A 1441 945 76 30 3.30 px 7.39 px 2.00 px
2B 945 1350 61 15 2.77 px 8.77 px 5.42 px
2C 1350 1497 73 35 2.41 px 12.94 px 5.67 px
2D 1497 187 77 7 1.41 px 354.84 px 440.38 px
3A 393 266 40 12 3.61 px 3.95 px 3.60 px
3B 266 191 33 18 2.57 px 4.92 px 3.76 px
3C 191 550 28 16 2.70 px 5.21 px
4A 363 477 38 8 3.33 px 10.08 px 11.50 px
4B 477 213 44 11 3.97 px 4.69 px
4C 213 767 29 6 0.94 px 196.43 px

Average 684.38 643.69 49.62 18.00 2.75 px 48.27 px 48.92 px
Average (with-
out 2D and 4C)

653.36 674.00 49.00 20.09 3.03 px 6.94 px 5.43 px

Table 3: Results of the proposed image registration method on 4 image series with overall
13 registrations.

Not surprisingly, the results are worse than for the image pairs tested in Section 5.2
since the content of the images changes from one time to another. Nevertheless, the
average distance error of 5 test points and the average reference points displacement
never exceeds 12 pixels (∼0.9 mm), with the exception of the registrations 2D and 4C.
In this two cases the hemangiomas have changed too much to obtain reliable matches
and a meaningful homography. By excluding these two very bad results we achieve an
average reference points displacement of 5.43 pixels (∼0.4 mm). The results of the match
detection deteriorate, indicated by a lower fraction of initial matches finally classified as
inliers (∼41 %).
In Fig. 12-14 for each registration the sensed image, the reference image and the difference
image between the transformed sensed and the reference image is shown. Naturally,
compared to the difference images of image pairs showing the same hemangioma at the
same time of Fig. 8-11, higher differences occur since the appearance of a hemangioma
changes from one time to another. For example, in Fig. 13(1C) differences occur at the
regressing regions of the reference image. In Fig. 14(2C) the lower parts of the hemangioma
are not correctly registered, indicated by higher differences in this border region compared
to the other border regions of the difference image. The reason for such local errors is
an irregular distribution of matches (and therewith inliers) in the hemangioma region,
i.e. regions not represented sufficiently by matches are neglected by the homography
estimation and tend to local misregistrations.
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The accuracy of the registrations is expected to be adequate for an automatic analysis of
hemangioma changes over time which is part of future work. The potential to improve the
registration result by local non-rigid refinements, and the involved risk of over registration
if changes of the hemangioma are large, is subject of ongoing research.

6 Conclusion

In order to support dermatologists in the analysis of the development of cutaneous he-
mangiomas a correct registration of hemangioma images is an essential preprocessing step
for accurate assessment methods. The main challenges of the data are high variations
of hemangioma appearance, changes of illumination conditions and different viewpoints
between hemangioma images. Under the assumption that particular regions of the he-
mangioma do not change heavily from one examination to the next, SIFT features allow
for a reliable match of subsets of interest points and homographies can be estimated based
on these unaltered regions. Provided that the hemangiomas are close to planar, the use
of homographies as transformation model is an appropriate choice because it allows any
projective relation between hemangiomas to be registered.
Experimental results show that the majority of the images can be registered without con-
siderable errors. The average reference point displacement of 5.43 pixels represents an
acceptable error if it is taken into account that this error is accumulated by three differ-
ent registrations and on average the hemangiomas in the tested images have a height and
width of about 200 and 180 pixels, respectively. Nevertheless, the conducted tests have
also shown that registrations on image pairs containing strongly changed hemangiomas
sometimes result in a failure of the registration. The visual control of registration results
by a human expert is inevitable to detect such erroneous registrations. However, these
infrequent cases could be manually registered by user-defined matches between the two
images. Although experiments were only conducted on hemangioma images it must also
be stated that the proposed method can be applied to other types of lesions as well (e.g.
melanoma or psoriasis).
In future work the development of an automatic system for change detection supporting
the dermatologist in the analysis of hemangioma changes in follow-up studies is planned.
For this purpose, an automatic registration of hemangioma images is essential and the
proposed method is expected to be accurate enough in most cases. Future work will focus
on the improvement of registration results by local refinements at hemangioma borders
and by the use of more flexible transformation models.
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(1)

(2)

(3)

(4)

(5)

Figure 8: Difference images (1)-(5) of totally 20 registered image pairs showing the same
hemangioma at the same time. The colorbar is shown at the top.
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(6)

(7)

(8)

(9)

(10)

(11)

Figure 9: Difference images (5)-(11) of totally 20 registered image pairs showing the same
hemangioma at the same time.
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(12)

(13)

(14)

(15)

(16)

(17)

Figure 10: Difference images (12)-(17) of totally 20 registered image pairs showing the
same hemangioma at the same time.
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(18)

(19)

(20)

Figure 11: Difference images (18)-(20) of totally 20 registered image pairs showing the
same hemangioma at the same time.

(1A)

(1B)

Figure 12: Difference images (1A)-(1B) of totally 13 registered image pairs showing the
same hemangioma at different times. The colorbar is shown at the top.
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(1C)

(2A)

(2B)

(2C)

(2D)

(3A)

Figure 13: Difference images (1C)-(3A) of totally 13 registered image pairs showing the
same hemangioma at different times.
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(3B)

(3C)

(4A)

(4B)

(4C)

Figure 14: Difference images (3B)-(4C) of totally 13 registered image pairs showing the
same hemangioma at different times.
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