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Abstract

This thesis presents an automatic method for the assessment of the development of cuta-
neous hemangiomas in digital images. The overall method provides two measurements on
photographs taken during follow-up examinations: (1) the current skin area affected by
the lesion and (2) the percentage/area of the hemangioma showing a regression, a so-called
graying. For both analyses a pixel-wise classification scheme is applied to the images. The
actual area measurement is accomplished through an image scale computation by means
of a ruler attached to skin and visible in the images. Image registration is included in
the assessment procedure to align follow-up images providing a direct comparison of color
values necessary for a reliable detection of regressions. For image registration a robust
feature-based method is presented that is able to deal with changing hemangioma appear-
ances during follow-up. Experimental results are reported for the individual algorithms
presented as well as for the whole procedure applied to follow-up images. In general, the
proposed procedure working on follow-up images is expected to provide a more accurate
and objective evaluation of the course of disease than the current clinical practice of manual
measurement during an examination.
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Chapter 1

Introduction

The aim of the work presented in this master thesis is to provide dermatologists with
a tool for assisting them in the assessment of skin lesion development, in particular the
development of cutaneous hemangiomas. Since up to now the actual size and development
was estimated through visual scoring by specialists by means of a small number of reference
values [27] that are related to but do not measure the actual extent of lesions and affected
areas, the assessment procedure can be made more accurate and objective by the use of
computer vision methods on digital hemangioma images. Two analyses are made on the
data:

1. The surveying of the area affected by the hemangioma by means of a ruler visible
in the images.

2. The detection and surveying of regression (healing) regions.

The surveying of the area affected by the hemangioma is accomplished by image
segmentation and determination of the image scale based on the ruler visible on the skin.
In general, this procedure only surveys the clearly reddish, mostly unregressed regions
of the hemangioma and can be applied to single images. In contrast, the detection and
surveying of regressing regions describes a change over time, and therefore includes a
comparison to the image data from the first examination, making an image registration
of the individual images necessary to account for different view points.
In Section 1.1 a brief medical description of cutaneous hemangiomas is given, followed by a
detailed motivation of the proposed work in Section 1.2. The provided clinical image data
is described in Section 1.3. A brief overview of related work is given in Section 1.4. The
overall workflow of the proposed procedure for assessment of hemangioma development
is presented in Section 1.5. The main contribution of the thesis is stated in Section 1.6.
Finally, Section 1.7 gives a structural overview of the thesis.

1.1 Cutaneous Hemangiomas

Cutaneous hemangiomas are benign tumors made up of newly-formed blood vessels in
the skin and the most common benign vascular tumors in infancy with a frequency of
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about 10 % [10]. Due to their potency for rapid proliferation they may threaten vital
structures by tumor compression or tumor obstruction and/or may impair vital functions
such as breathing, vision, hearing, ingestion or excretion [6]. Lesions occurring in the
face or neck may cause psychological problems in the very young patients (typical age
of patients is 6 - 24 months) and their parents. Safe and effective treatment modalities
at the earliest time possible can stop further proliferation, induce regression and prevent
complications [27]. In the past various different treatment methods have been described
including steroids, cryotherapy, embolization, sclerotherapy, surgery and laser therapy
[40]. During treatment, and during clinical trials comparing the performance of different
treatment strategies, the accurate monitoring of the progress of hemangioma growth and
regression is essential. More accurate measurements of the change provide better feedback
during therapy, and allow for more significant results given a limited number of patients
included in clinical trials.

1.2 Motivation

During the period of treatment of a hemangioma, besides the clinical examinations, pho-
tos of the hemangioma along with a ruler attached to the skin are taken to record its
current appearance and area. An example for such a series of follow-up images is shown
in Figure 1.1, presenting also the characteristic form of healing during the treatment. At
the first examination (Figure 1.1(a)), the majority of the hemangioma shows a typical
reddish saturated color caused by the excess of blood vessels and almost no regression
has started yet. Only a small regression region is indicated by a so-called graying in the
center of the hemangioma. At the second examination 8 weeks later (Figure 1.1(b)), the
regression covers almost the whole hemangioma. Further 5 weeks later (Figure 1.1(c)),
the whole hemangioma can be classified as regressing.

State of the art: In current clinical practice, the present hemangioma area is estimated
by a simple manual measurement of the height and width of the lesion during a clinical
examination. The degree of regression is reported by a visual estimation of the fraction of
the hemangioma showing a graying of the typical reddish hemangioma color. Evidently,
this way of assessment is (1) inaccurate since only the diameters and not the shape of
hemangioma are considered in its surveying and (2) subjective since the estimation of the
regressing hemangioma fraction has the tendency to vary strongly between dermatologists.

Contribution: Therefore, the motivation of the thesis was to make the assessment of
the hemangioma’s course of disease more accurate and objective by applying computer
vision methods on digital images of the form shown in Figure 1.1. Generally, the benefit
of such an assessment is twofold. Firstly, it can be used in clinical studies evaluating the
efficacy of various treatment modalities for hemangiomas. In this context, the significance
of the results is increased by a more accurate and objective evaluation. Secondly, the
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(a) (b)

(c)

Figure 1.1: A follow-up series of hemangioma images.

assessment can be used during treatment to validate or invalidate the efficacy of the
chosen treatment modality.

1.3 Data Description

The images used in this thesis have been kindly provided by Dr. Harald Maier from the
Division of Special and Environmental Dermatology at the Medical University of Vienna.
The photos were taken using an analog photo camera and digitized with a scanner. All
images have a resolution of 512x768 pixels and a bit depth of 8 bits per color channel. In
order to increase reliability there are always two or more images taken of the hemangioma,
i.e. there are at least two images of a specific hemangioma at a specific examination date.
All images are labeled with a five-digit code in the lower right corner to uniquely identify
them.
Because of the circumstance that nearly all patients in the study are infants who normally
do not keep still when being photographed and the bad illumination in the examination
room, the quality of the images is partially poor. Two examples are shown in Figure 1.2.
In Figure 1.2(a) parts of the hemangioma are situated in an inadequately illuminated
region and Figure 1.2(b) is generally of low sharpness.

1.4 Related Work

This section gives a short survey about related work on the use of computer vision meth-
ods on digital images of skin lesions. An overview of the specific approaches for skin
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(a) (b)

Figure 1.2: Poor quality hemangioma images.

lesion segmentation and registration are given in the respective chapters of the thesis,
thus segmentation methods are discussed in Section 2.2.1 and registration methods for
follow-up studies in Section 3.1.3.
To our knowledge, no research has been done before on the image-based assessment of
cutaneous hemangiomas. Nonetheless, various other types of skin lesions were covered.
Especially, the automatic image-based classification of melanoma in benign and malignant
lesions has been studied extensively in literature starting as early as 1987 [4]. An overview
of work published until the year 2000 is given in [8]. Recent approaches are summarized in
[5]. Classification of melanoma is thereby typically based on the ABCD rule (Asymmetry,
Border irregularity, Color variegation and Diameter) used by dermatologists [32].
Another skin lesion type covered is psoriasis [18]. In psoriasis assessment, a psoriasis
area and severity index (PASI) [39] is used to evaluate the degree of disease. A vari-
able thresholding technique for area computation as part of this assessment method is
proposed by Roening et al. [34]. The automatic change detection in follow-up psoriasis
images is addressed as well: Maletti and Ersbøll propose a method for change detection
in both registered [28] and unregistered images [29], each one by applying the Multivari-
ate Alteration Detection Transform (M.A.D.) on the data. In [14] two other methods
for change detection are explored: simple image subtraction and Principle Component
Analysis (PCA). A method for area computation using Active Contour Models (ACMs)
is presented in [22] and applied on images of leg ulcers.
However, the described methods cannot be applied directly to cutaneous hemangiomas,
because the sole measurement of affected skin area cannot be used as a complete assess-
ment method for this lesion type, since the regression process starts with color changes
(graying) in certain hemangioma regions and not with their complete disappearance. The
change detection scheme proposed by Maletti and Ersbøll [28][29] shows suitable results
on psoriasis images but is designed for the detection of texture changes, whereas changes
in hemangioma images are indicated by differing color values during follow-up. Nonethe-
less, the method proposed in this thesis is considered to be applicable on other lesion
types as well, although experiments were only conducted on hemangioma images. Both
the segmentation of the affected skin area and the detection of regression regions are
based on a pixel-wise classification by a previously trained classifier, thus the method
could be adapted to other lesion types if an adequate number of annotated training data
is available.
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1.5 Workflow

This section describes the whole workflow for the assessment of hemangioma development.
Additionally, some terms are defined here that will consistently be used in the remainder
of the thesis.
The workflow is illustrated in Figure 1.3. Here four follow-up images of a specific heman-
gioma are given and the determination of the hemangioma area and the measurement
of regions showing a regression in Image 4 is exemplarily shown. In Figure 1.3 the he-
mangioma region is indicated by a white area whereas the expanding regression during
follow-up is indicated by a gray area. The following steps are conducted:

1. Hemangioma Segmentation: The image regions of Image 1 belonging to the
hemangioma, called hemangioma regions are determined. In Figure 1.3, this seg-
mentation is indicated by the black border around the white area.

2. Registration and Transformation: The transformation aligning Image 1 with
Image 4 is determined to define a region of interest (ROI) corresponding to the
expected location of the hemangioma in Image 4. This new region is again indicated
by a black border. It is calculated based on the hemangioma segmentation in Image
1 and the transformation of Image 1 to Image 4.

3. Regression Detection: The regions showing a regression (the regression regions)
are determined in the ROI, including a comparison of color values between Image 4
and the transformed Image 1.

Figure 1.3: Illustration of the workflow for the assessment of hemangioma development.
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4. Image Scale Computation: The ruler visible in Image 4 is used to determine the
image scale. By combining the information of image scale and regression/hemangioma
regions, the current area of both the hemangioma and the regression regions is ob-
tained.

1.6 Main Contribution

The thesis proposes a method to automatically assess the development of cutaneous he-
mangiomas in follow-up images. Thereby, on the clinical side a more accurate assessment
of medication effects can be achieved. This allows for a reliable evaluation of treatment
methods, providing higher accuracy and consistency than the standard manual assess-
ment. Furthermore, the method is of general interest in the field of automatic and image-
based assessment of skin lesions: the use of a pixel-wise classification scheme on follow-up
images of skin lesions is new and this concept makes the method highly adaptable to other
kinds of lesions, e.g. melanoma, psoriasis or wounds.

1.7 Thesis Structure

The remainder of the thesis is organized as follows: The measurement of hemangioma
size (i.e. step 1 and 4) is covered in Chapter 2. The method for registration of follow-up
images (step 2) is treated in Chapter 3. Chapter 4 describes the method for regression
detection (step 3). Experimental results of both the individual methods and the whole
assessment procedure are reported and discussed in Chapter 5. A conclusion is given in
Chapter 6.
Parts of this thesis were already published elsewhere: the segmentation and area mea-
surement of the hemangioma region was presented in [42]. The registration method used
for the alignment of follow-up images was presented in [43].
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Chapter 2

Measurement of Hemangioma Size

This chapter deals with the area measurement of the region affected by a hemangioma
on a single image. It achieves an independent measurement for a single acquisition time
point and is also a necessary prerequisite for the detection of regressions occurring during
follow-up examinations (Chapter 4). During image acquisition (e.g. during a clinical
trial) all hemangiomas are photographed along with a ruler to determine the scale of the
image. The problem can be divided into two main tasks:

1. Determining the scale of the images by means of the ruler visible in the image.

2. Segmentation of the skin area belonging to the hemangioma.

This chapter is organized as follows: Section 2.1 explains in detail the algorithm
used for determining the scale of the images. In Section 2.2.1 first various segmentation
algorithms are evaluated for our purpose, followed by a presentation of the complete seg-
mentation process, divided into Preprocessing (Section 2.2.2) and Pixel-wise Classification
(Section 2.2.3).

2.1 Image Scale Computation

All images show a ruler with 4 bold lines at 1 cm distance steps beside the hemangioma.
Therefore, the task of the algorithm is to compute the Euclidean distance between two
lines to obtain the spatial resolution of the images. The area of the hemangioma is
then simply calculated by multiplying the number of hemangioma pixels by the area of
one pixel. We neglect the error due to the fact that normally both hemangioma and
ruler are not situated on a planar surface parallel to the image plane. Although this
assumption of planarity is naturally violated by the shape of the hemangioma and skin,
during image acquisition only small patches of skin (average hemangioma area is ∼0.6
cm2) are photographed and a maximum closeness between hemangioma and ruler as well
as an optimal camera viewpoint is taken into consideration by the photographer. Thus,
this kind of simplification is assumed to be a reasonable approximation.
The main steps of the algorithm are:

1. Segment the ruler.
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2. Calculate the ruler orientation and rotate it in a horizontal position.

3. Get the number of pixels between two lines by scanlining through the ruler.

1. Segmenting the ruler: First we have to segment the ruler. Since all rulers are
white and differ extremely from the rest of the image, this can simply be done by global
thresholding with the H and V channel of the HSV color model. Small regions not
belonging to the ruler can also remain by this operation, so we take only the largest
region in the computed mask (Figure 2.1(a) and Figure 2.1(b)) .

2. Rotation into horizontal position: In the next step we determine the orientation
of the region describing the ruler. For this purpose we calculate the angle between the
x-axis and the major axis of the ellipse that has the same second-moments as the region
(the ellipse with the same orientation as the ruler). Once we have this angle, we can
rotate the ruler into a horizontal position (Figure 2.1(c)).

3. Scanlining: For robustness we use three scanlines to determine the number of pixels
between two marks (a scanline is a vector containing the pixel values of a specific line
(y-value) of an image from left to right). The first scanline is on the midpoint between
the top and bottom y-value of the ruler. The two others are 10 pixels above and below,
respectively (Figure 2.1(d)). To determine the scale we take the maximum number of
pixels between two marks in all of the three scanlines. With this method we use the
part of the ruler which lies most normal to the camera and has the smallest curvature
and therefore has to be the most accurate measurement. Occasionally it can happen that
one or more marks are not recognized in the scanline (e.g. when the ruler has a strong
curvature), hence too large distances with more than 200 pixels between two marks are
rejected (in all images used by us no greater distance than 155 pixels could be found). If n
denotes the number of pixels corresponding to one centimeter, the area of one pixel in the
image is 100/n2 mm2. The example given in Figure 2.1 results in a maximum distance
of 138 pixels between two marks, i.e. one pixel of the image has an area of ∼0.00525 mm2.

2.2 Segmentation of Hemangiomas

The task of the segmentation algorithm is to find the regions in an image belonging to the
hemangioma. In Section 2.2.1 we give an overview of several existing methods proposed
in the literature dealing with the segmentation of skin lesions, explain the shortcomings of
them for our purpose and finally justify the use of our classification-based segmentation.
After that our segmentation method is described in detail, divided into a preprocessing
step (Section 2.2.2) and a classification step (Section 2.2.3).
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(a) (b)

(c) (d)

Figure 2.1: Example for determining the scale of an image.

2.2.1 Evaluation of Methods for Skin Lesion Segmentation

Global thresholding: A thresholding operation is used for the segmentation of skin
lesions in [13] and [16]. However, finding reliable parameter values for thresholding op-
erations without user interaction working well with all of our images cannot be done.
This is mainly caused by the low contrast between skin and hemangioma regions, since
hemangiomas mainly appear in red.

Intensity image thresholding: A more promising method for our purpose is given
in [41]. Here an image showing a melanoma is first transformed into an intensity image
where the intensity at a pixel shows the visual difference of that pixel to the background
(i.e. the skin). Then a threshold value is determined from the average intensity of the
p% highest gradient pixels in the intensity image obtained to find approximate lesion
boundaries. Finally the lesion boundary is refined using edge information in the image.
The problem of this algorithm for our task is chosing an eligible value for p. For an
image containing a large hemangioma this value should be taken larger than for an image
containing a small lesion. For a set of images with small variance of lesion sizes a failure
made here can be compensated in the refining step. But hemangioma sizes vary strongly
from one image to another. In Figure 2.2 this problem is demonstrated with an image
containing a small spot-shaped hemangioma (Figure 2.2(a)) and an image containing a
comparatively large hemangioma (Figure 2.2(b)). For the small hemangioma image a
percentile p=0.01% looks adequate (Figure 2.2(c)). Segmenting the other image with
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Results of intensity image thresholding of two images with different values for
p. The results in (c)/(d) and (e)/(f) are obtained with the same parameters, respectively.
Note, each of the two parameter values gives satisfying results only for one of the images.

this percentile detects the borders too far inside the hemangioma (Figure 2.2(d)). For
that image a percentile p=25% is optimal (Figure 2.2(e)). However, this value is too
large for the image containing the small hemangioma (Figure 2.2(f)). Nevertheless, the
intensity image describing the visual difference between skin and hemangioma is a useful
feature for our purpose and is used slightly modified as a feature for the classification step.

Region-based methods: Further possibilities for segmenting skin lesions are region-
based segmentation algorithms. With region-based algorithms not only the color values
of pixels but also their spatial relationships are considered. Split-and-merge is a widely
used region-based segmentation algorithm [21]. It first splits an image into homogeneous
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sub-regions and then merges together regions with similar average color values. Round
et al’s work on segmentation of skin lesions is basically an application of the split-and-
merge algorithm [36]. Schmid and Fischer presented a region-based approach working
with two-dimensional histogram analysis and the fuzzy c-means clustering technique [38].
For our purpose we tested the region-based method explained in [17] on our images. The
algorithm proposed in this work first splits the image into smaller regions until all the
regions meet the homogeneity criteria set by a threshold. Second, the small split regions
are grouped by DBSCAN clustering algorithm to form the final regions. The results of
applying this method on two of our images are shown in Figure 2.3.
The method was rejected due to the reason that after the clustering process it is very dif-
ficult to decide which clusters belong to the hemangioma and which do not. Although the
clustering of Figure 2.3(a) induces a large cluster containing the major part of the heman-
gioma (Figure 2.3(b), note that the black regions are detected to be non-skin before, see
Section 2.2.2), there are several clusters near the border of the hemangioma which cannot
be classified easily. A solution to this problem would be to change the parameters of the
algorithm to merge together regions having more different color values. This would give
us a single cluster containing the whole hemangioma. But although the image of Figure
2.3(c) was clustered with the same parameters as the image of Figure 2.3(a), the result
(Figure 2.3(d)) shows clusters where skin and parts of the hemangioma were merged to-
gether. It was impossible to find a set of parameters working well with most of the images.

(a) (b)

(c) (d)

Figure 2.3: Result of DBSCAN clustering of two images.

As a conclusion, the problem of all color segmentation algorithms is to determine
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which of the segmented regions are hemangioma regions. Making use of specific a priori
knowledge about the general appearance of hemangiomas is difficult because of several
reasons:

• Hemangiomas can consist of several unconnected regions, so more than one region
has to be classified as hemangioma.

• Hemangiomas do not have a specific shape.

• The hemangioma size in the images differs to a high extent.

Due to the difficulties faced by existing approaches mentioned previously we propose
a different method: we use a classifier for segmenting the images that classifies each pixel
in the image as hemangioma or non hemangioma on the basis of its color values and the
surrounding skin region. In the following we describe the process to determine the type
of classifier and set of features suitable for our purpose.

2.2.2 Preprocessing

Before the classification step the images have to be preprocessed to improve the accuracy
of the classifier and to reduce computation time. To remove noise a median filter is
applied on the images. Furthermore, image regions containing no skin are masked out
and the images are normalized in such a way that skin has nearly the same color values
in all images, i.e. the skin serves a reference color to account for different illumination
situations during image acquisition.

Noise Removal

The task of the noise removal process is to reduce small structures in the images. Smooth-
ing the images causes less color variations in the skin and hemangioma and makes thereby
the segmentation process more robust. With low-pass filtering an image is smoothed by
replacing each pixel by a weighted sum of its neighbors. However, with median filtering,
the value of an output pixel is determined by the median of the neighborhood pixels. The
advantage of this method in contrast to low-pass filtering is that it preserves the edges of
the image while reducing the noise. In this work we use a median filter with a window
size of 5 × 5, i.e. the value of an output pixel is determined by the median of all pixel
included in 5 × 5 window surrounding the particular pixel. By testing this window size
turned out to be the best compromise between reducing noise and preserving relevant
information in the images (note that the window size of 5× 5 is significantly smaller than
the typical hemangioma size of appr. 200× 200 pixels).

Non-Skin Masking

A simple test for masking out non-skin regions is used after the median filtering to exclude
regions that likely are not part of the skin or the hemangioma (e.g. the ruler or dark areas
in the background). This step is necessary for a robust determination of the skin color.
Our method is based on a heuristic proposed in [19] but substantially simpler. We only
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check two criteria for each pixel (R, G and B are the red, green and blue color values of
the RGB color model):

1. R < G

2. R < B

If one of the criteria is satisfied, the particular pixel is marked as non skin. This test
makes use of the fact that skin has usually a reddish color and therefore shows a greater
red portion than green and blue portion. By applying this method on 122 test images
we got an almost perfect result for 96 images (classification error less than 1%). The rest
shows an average classification error of about 5%. The non-skin masking never causes
problematic results for the subsequent steps, because the hemangioma and the bigger part
of the skin are never masked out. Figure 2.4 shows the non skin masking results of three
particular images (non skin regions are marked blue). Non skin masking of the image in
Figure 2.4(a) produces a nearly perfect result (Figure 2.4(b)). Worse results are achieved
in Figure 2.4(c) and (e). The failure of Figure 2.4(d) is mainly caused by a red cloth in
the dark background of the image. In Figure 2.4(e) some parts of the skin are erroneously
masked out in a rather badly illuminated region of the image. Here the skin loses its
reddish appearance. Note that these errors do not affect the hemangioma measurement.

Normalization with Skin Color

To achieve more accurate classification results despite differences of illumination between
the images a normalization with the skin color has to be done on the images. We determine
the color value of the skin in an image and subtract this value from all pixels with the
aim of having nearly the same color value of (0,0,0) for skin pixels in all images. The
necessity of this step is shown in Table 2.1 where we have computed the classification
result (false positive and false negative rate, for a definition see Section 5.1.3) of a single-
layer perceptron (see Section 2.2.3) for 15 images without normalization and compared it
with the results achieved with normalization. The same feature set as for the classification
step (see Section 2.2.3) was used and all images were reduced to a resolution of 256x384
and randomly divided into a training set (30%) and a test set (70%). For normalization
we have tested three different variants of computing the skin color:

1. Manual Normalization: the user chooses three 3x3 windows near the border of
the hemangioma and the mean color value of all windows is chosen to be the skin
color (this is only for testing, since we want an automated procedure with no user
interaction).

2. Median Normalization: the median value for each color channel in the image is
chosen.

3. Histogram Normalization: a 3D histogram of the RGB color channels is created
and the maximum RGB value, which has a brightness greater than 120, is chosen.
This threshold was decided to be the most appropriate by empirical tests.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Non skin masking results of three images.

Both Median and Histogram Normalization make use of the fact that after non skin
masking the majority of the remaining pixels in an image represents skin. As can be seen
in Table 2.1, without normalization the perceptron is not able to find a useful decision
boundary. The perceptron has set a decision boundary that classifies nearly all pixels as
non hemangioma and therefore we get a false positive rate of 0.0% and a false negative
rate of 99.8% without normalization. With normalization we obtain more usable decision
boundaries resulting in a total error rate (false positive rate plus false negative rate) of
20.8% (Manual Normalization), 21.6% (Median Normalization) and 20.5% (Histogram
Normalization) in the test set. Although median and histogram normalization accom-
plish nearly the same results, the subjective visual result on particular images is better
with histogram normalization. It can also be seen that the manual normalization does
not achieve better results than the histogram normalization (20.5% against 20.8% total
error rate in the test set) which is an indication that the histogram normalization works
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Test Set Training Set
False Pos. False Neg. Sum False Pos. False Neg. Sum

No Norm. 0.0% 99.8% 99.8% 0.0% 99.8% 99.8%
Manual Norm. 6.0% 14.8% 20.8% 6.0% 14.5% 20.5%
Median Norm. 6.1% 15.5% 21.6% 6.0% 15.2% 21.2%
Histogram Norm. 5.8% 14.7% 20.5% 5.8% 14.4% 20.2%

Table 2.1: Classification results after various normalization methods.

accurately.

2.2.3 Pixel-wise Classification

As mentioned before, segmentation is achieved by a pixel-wise classification based on the
pixel’s color values. In this section first various classifiers are discussed and the final choice
for the single-layer perceptron is argued. Next, a detailed description of its classification
and training technique is given. Finally, the selection of an appropriate set of features is
described.

Choice of the Classifier

To get satisfactory classification results the data to be classified (i.e. the color values)
have to show some form of clusters, where a cluster describes data values belonging to
the same class. To test that we first normalized the RGB color values of 10 images in
such a way that the skin has nearly the same color values in all images (see Section
2.2.2). By plotting their RGB values in 3D space (Figure 2.5(a), the side views are shown
in Figure 2.5(b)-(d)) it can be seen that the color values of the hemangioma (red) are
mostly separated from the other values (blue).

Single-layer perceptron: The single-layer perceptron is a simple type of binary clas-
sifier having the advantage of a simple and fast classification [35]. Looking at it geo-
metrically a single-layer perceptron classifies the data of Figure 2.5 by putting a plane
in the 3D space that divides the data set into two classes. Therefore an adequate basic
segmentation result can be assumed on our images by applying a single-layer perceptron.
As we see later, this assumption is confirmed, especially if we take more appropriate color
values from other color models.

Neural network: Beside the single-layer perceptron various other classifiers exist. A
neural network (multi-layer perceptron) is an improvement of the traditional single-layer
perceptron with the ability of setting non-linear decision boundaries instead of only linear
ones [2]. In other words, a neural network can put a curved surface in 3D space as decision
boundary. We have tested neural networks for segmenting our images with the conclusion
that the results are not better than by segmenting with a single-layer perceptron. Since
a single-layer perceptron is simpler and faster in classification, we kept the perceptron.
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(a) (b)

(c) (d)

Figure 2.5: 3D plot of normalized RGB color values of 10 images. The red points represent
the color values of the hemangioma pixels.

k-Nearest Neighbor classifier: The k -Nearest Neighbor (k -NN) classifier determines
the k nearest feature vectors of a reference set for every feature vector [7]. The specific
feature value is mapped to the class having the majority in the k nearest feature vectors.
Due to the complex feature distribution a k -NN classifier with k = 5 achieved better
segmentation results than the single-layer perceptron on our images. The k -NN classifier
achieved an average false positive rate of 1.8% and an average false negative rate of 16.1%
on 7 images, where the perceptron achieved an average false positive rate of 5.3% and
an average false negative rate of 16.9% on the same 7 images. Nevertheless, the k -NN
classifier is not practical for our purpose because of its high computation time, since every
pixel of the image has to be classified individually.
Due to the similar results of the neural network and the bad computation time of the
k -NN classifier we decided to use the single-layer perceptron for classification.

The Single-Layer Perceptron

The single-layer perceptron is a simple binary classifier based on a mathematical model
for the behavior of a single biological neuron.
Assume that we have a d -dimensional feature vector x ∈ Rd and two classes ω1, ω2. Our
goal is to find a mapping g : Rd → R with
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g(x) > 0 if x ∈ ω1 (2.1)

g(x) < 0 if x ∈ ω2 (2.2)

g is called the discriminant function and has the form

g(x) =
d∑

i=1

wixi − θ = wTx− θ (2.3)

where

x =


x1

x2

· · ·
xd

 ,w =


w1

w2

· · ·
wd

 (2.4)

w is called the weight vector and θ the bias. If we call o(x) the output of the perceptron,
we have

o(x) = g(wTx− θ) =

{
1 if wTx ≥ θ

−1 if wTx < θ
(2.5)

where g() is the signum function:

sgn(a) =

{
+1 if a ≥ 0

−1 if a < 0
(2.6)

It is common practice to “pull” the bias into the weight vector by introducing addi-
tional coordinates x0 = 1 and w0 = −θ.

ax =


1
x1

x2

· · ·
xd

 , aw =


−θ
w1

w2

· · ·
wd

 (2.7)

Perceptron training

Let STr = {X, t} denote a set of N augmented input vectors X = (x1, . . . ,xN) ∈ R(d+1)×N

and corresponding class labels t = (t1, . . . , tN), ti ∈ {1,−1}, called training set.
Goal: find an augmented weight vector w such that

o(xi) = sgn(wTxi) = ti, 1 ≤ i ≤ N (2.8)

Perceptron Learning Rule: if a training vector xj with tj = 1 is misclassified, add a
multiple of xjtj to w: wnew = w + γxjtj. Likewise, if a training vector xj with tj = −1
is misclassified, subtract a multiple of xjtj from w: wnew = w + γxjtj. The factor γ is
called learning rate.
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Feature Selection

For classification we have to define a set of features showing a big difference between
skin and hemangioma pixels. Possible features for the classification are at first the color
channels of three significant color spaces [23]:

1. RGB: In RGB color space, each color is represented by a three number triple. The
components of this triple specify, respectively, the amount of red, green and blue in
the color.

2. HSV: In the HSV color space, each color is again represented by a three number
triple. The first component, Hue, describes the basic color in terms of its angular
position on a “color wheel”. The Hue is described in terms of degrees. The second
component of the HSV triple is Saturation, which can be thought of as the “pure-
ness” of the color. The third component is Value, which is a measure how “bright”
the color is.

3. CIE 1976 L*a*b*: The CIE 1976 L*a*b* color space was created by the Com-
mission Internationale de l’Eclairage and has the special ability that the color dif-
ferences perceived by the human eye correspond to colorimetrically measured dis-
tances. The L* -axis in this three-dimensional color space is known as the lightness,
the other two coordinates a* and b* represent redness-greenness and yellowness-
blueness, respectively.

Further we have created a 10th feature called abdist representing the color distance
between healthy skin and the hemangioma (a detailed description is given in the next
paragraph). To find an appropriate set of features we have ascertained the false negative
and false positive rate for every meaningful group of features on a test set of 15 normalized
images (Table 2.2). The images were reduced to a resolution of 256x384 before and
randomly divided into a training set (30%) and test set (70%).
It can be seen that the set {G, H, a*, abdist} achieves the best results on the test set and
therefore these features are used for classification. Their use is also justified in Figure 2.6
where the intensity images of the four selected features are shown. It is apparent that
each feature has an observable difference between pixels belonging to the hemangioma
and pixels belonging to the skin.
It must be noticed that for classification the H -values have to be rotated 180 degrees
to facilitate computation with the circular data. In the HSV color model the red color
value lies at 0◦, i.e. similar red color values can have very different H -values. Since
hemangiomas and skin have H -values in this area, they have to be transformed into a
linear range. Although many sophisticated methods for handling circular data are covered
in literature (a detailed overview is given in [12]), for our task a simple rotation of 180
degrees is effective, because the red area is the only relevant one for the classifier.

The Feature abdist : The feature abdist stands for the Euclidean distance between
the skin and the hemangioma in the L*a*b* color space without consideration of the
luminance L* and intensification of the a* component. This feature is adopted from
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Features Test Set Training Set
False Pos. False Neg. False Pos. False Neg.

L a* b* 4.6 % 37.9 % 4.6 % 37.2 %
abdist 6.8 % 25.2 % 6.8 % 25.0 %
a* 6.0 % 31.7 % 6.0 % 31.3 %
G H a* 6.0 % 34.9 % 6.0 % 34.3 %
H S a* 4.7 % 46.3 % 4.7 % 45.5 %
V abdist 5.6 % 27.0 % 5.5 % 26.6 %
G H a* abdist 4.4 % 14.7 % 4.4 % 14.4 %
R G H S V a* 5.0 % 41.5 % 5.0 % 41.0 %
H S abdist 4.3 % 23.9 % 4.3 % 23.6 %
all 4.4 % 17.9 % 4.4 % 17.6 %

Table 2.2: False positive and false negative rate of a set of feature groups of 15 images
trained with a perceptron.

(a) (b)

(c) (d)

Figure 2.6: The intensity images of the four features (a) G, (b) H, (c) a and (d) abdist of
the image in Figure 2.4(a).
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[41] (see Section 2.2.1). In this paper the proposed method works on an intensity image
describing the Euclidean distance between the skin and the lesion.
The advantage of the CIE 1976 L*a*b* color space compared with other color spaces
is that it defines color in such a way that the Euclidean distance between two colors is
proportional to their visual difference. This property is very useful for our purpose, since
the color distance in RGB space between hemangioma and skin regions is not as high as
the perceived difference.
If as, bs denotes the a* and b* values of the skin (obtained from the normalization step,
see 2.2.2) and ap, bp that from a particular pixel, its abdist is computed as follows:

abdist =
√

(2as − 2ap)2 + (bs − bp)2 (2.9)

The difference of the a* channel is multiplied by the factor 2, because the a* value
differs more between hemangioma and skin pixels than the b* value. Finally for contrast
enhancement we apply a Gaussian function of the form G(x) = 1/

√
2πσ(1−exp (x2/2σ2))

with σ = 0.5 on the intensity image. As can be seen in Figure 2.7, this function increases
higher values (hemangioma) and decreases lower values (skin) in the intensity image. For
an example of abdist see Figure 2.6(d).

Treatment of Highlights

Highlights on the hemangioma are normally erroneously detected as healthy skin by the
classifier. This is corrected by closing all holes occurring in the masked region. Since
hemangiomas with large holes of normal skin could not be found in the data, they seem
to be very rare and a possible error resulting from this operation can be neglected. The
effect of hole closing can be seen in Figure 2.8: the highlights detected as non hemangioma
by the classifier (Figure 2.8(a)) are added to the mask by hole closing (Figure 2.8(b)).

In Figure 2.9 two additional final segmentation results of images taken at the first
examination during follow-up studies are shown. The detected hemangioma region is

Figure 2.7: Gaussian function G(x) = 1/
√

2πσ(1− exp (x2/2σ2)) with σ = 0.5
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(a) (b)

Figure 2.8: Result of hole closing on a particular image of a hemangioma.

(a) (b)

Figure 2.9: Segmentation result on images taken at the first examination during follow-up.

used to measure the area of the affected skin at the start of treatment. Moreover, using
the image registration method presented in Chapter 3, this region is aligned to the new
hemangioma region in subsequent images of follow-up. The transformed region allows for
a quantification of size decrease or increase and, additionally, serves as a region of interest
for the regression detection.
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Chapter 3

Registration of Follow-Up
Hemangioma Images

This chapter presents an automatic method for registering hemangioma images taken
during clinical trials at specific time intervals. The registration of follow-up images is a
necessary prerequisite for the detection of regressions (see Chapter 4). It allows for the
establishment of correspondences across the image series, and thereby enables the prop-
agation of the initial hemangioma shape to subsequent images. This makes a definition
of a region of interest for the regression detection possible, allows for shape and area
comparisons, and finally for a direct comparison of corresponding color values. This is
essential for the detection of regression regions exhibiting subtle color differences.
The chapter starts with a general introduction to the field of image registration in Sec-
tion 3.1. In Section 3.2 an overview of our method is given. The method is presented
in detail in the following sections, divided into the detection and description of interest
points (Section 3.2.1), the matching of interest points (Section 3.2.2) and the estimation
of the transformation between the two images (Section 3.2.3).

3.1 Introduction to Image Registration

Image registration is the process of geometrically aligning two images taken from different
viewpoints [45] and, in our case, also taken at different times. In the image registration
process one image is kept unchanged (the reference image) and the other one (the sensed
image) is transformed to be aligned with the reference image. Image registration meth-
ods can be characterized in various ways [45]: concerning the transformation model, a
registration can either be rigid or non-rigid. With rigid registration the transformation
between the two images is globally defined by a linear transformation, whereas non-rigid
registration allows local deformations. Additionally, image registration can be specified
by the type of images or acquisition process: images to be registered can originate from
different viewpoints (multiview analysis), different times (multitemporal analysis) and
different sensors (multimodal analysis). In terms of the basic methodology, registration
algorithms are divided into feature-based methods and area-based methods. Both princi-
ples are explained in the next sections.
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3.1.1 Feature-Based Methods

Feature-based methods use distinctive interest points apparent in both images for estimat-
ing the transformation from the sensed to the reference image. The registration process
is shown with a simple example in Figure 3.1. The following four steps are executed:

1. Feature detection: Interest points are detected in both images. In Figure 3.1
the smiley’s eyes and corners of the mouth are detected as interest points in both
images (red crosses).

2. Feature matching: Interest points are matched by means of their feature descrip-
tions (blue lines).

3. Transform model estimation: Matched interest points are used to compute
the parameters of the mapping function. In the example of Figure 3.1 the four
correspondences can be taken to estimate the scaling and translation of the smiley
from the sensed to the reference image.

Figure 3.1: The four steps of feature-based image registration methods.
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4. Image transformation: The image is finally transformed using the computed
mapping function and usually bilinearly interpolated.

3.1.2 Area-Based Methods

With area-based registration methods no image features are initially detected. Their
principle is to combine the feature detection and feature matching step by comparing
small windows around points in the reference and sensed image. Correspondence of image
points is based on the similarity measure between two given windows, e.g. the normalized
cross-correlation, correlation coefficient or sequential similarity detection [45]. Although
widely used, area-based methods are not well-adapted for the registration of changing
structures like hemangiomas since similarities of corresponding image points become low
in changing image regions of follow-up images.

3.1.3 Methods used for Skin Lesion Registration

Several approaches for the registration of dermatological images were proposed in the past
dealing mainly with images of skin lesions representing melanoma or psoriasis. Maglogian-
nis [26] and Pavlopoulos [33] both propose a similar hybrid method using the log-polar
transformation for estimating scaling and rotation parameters and a sign change similarity
criterion in combination with a hill-climbing optimization scheme for translation estima-
tion. Ersbøll et al. [30] work with statistical shape analysis after lesion segmentation to do
a first rigid alignment under the assumption of image scale constancy. Afterwards small
internal displacements are corrected by a combined registration and alignment scheme.
The SHARP-algorithm presented in [9] segments the lesions in the images and uses the
first and second order moments of the resulting binary images to determine the rotation
and translation parameters.

3.2 Robust Feature-Based Method for Registration

of Follow-Up Hemangioma Images

The methods outlined in Section 3.1.3 are not capable of handling certain properties of
typical hemangioma follow up images: differences of view point during image acquisition
typically exceed a range that can be accounted for by 2D rotations and translation in the
image plane, the change in image scale can be high, and hemangiomas change appearance
during the period of follow-up examinations, making a robust approach necessary. In
Figure 3.2 these cases are illustrated: Figure 3.2(a) and Figure 3.2(b) show a pair for which
reliable matching is only possible for a small part of the hemangioma due to the healing
process between examinations, and rotation between images of appr. 170◦. Figure 3.2(c)
and Figure 3.2(d) are examples for a large scale change, and Figure 3.2(e) and Figure
3.2(f) show a pair of images where the viewpoint change is high.
Because of these issues, our approach is based on the detection and matching of distinctive
interest points by means of local features. The resulting matchings of interest points are
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Three image pairs representing images of the same hemangioma taken at
different times.

used for a robust estimation of the transformation between images by RANSAC. To ob-
tain reliable matches of interest points we use SIFT features [25] for description of interest
points and determination of correspondences between images. Under the assumption that
hemangiomas are planar, the transformation between images is defined as a homography
which is estimated by the detected point correspondences. The basic methodology is il-
lustrated in Figure 3.3.
The method has several advantages over existing approaches for dealing with hemangioma
data: SIFT is a rotation and scale-invariant descriptor which allows the reliable match-
ing of points under different views, the modeling of the transformation between images
with a homography can represent any projective relation between the images, and finally
RANSAC can cope with partially incorrect or missing matches between interest points
caused by changed hemangioma appearances.
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Figure 3.3: Illustration of the feature-based method used for hemangioma image registra-
tion.

3.2.1 Detection of Interest Points in Hemangioma Images

As mentioned above, the first task is to find distinctive interest points in the images to
be registered. In this section first the original SIFT method and the Canny edge detector
are described. Afterwards, the use and adaptation of these methods for interest point
detection in hemangioma images is presented and reasoned.

Scale Invariant Feature Transform

The scale-invariant feature transform (SIFT) presented by Lowe [25] is a scale and rotation
invariant local descriptor of features in images and has proven to be a robust and therefore
widely used method [31]. It consists of four major steps:

1. Scale-space extrema detection: The detection of interest points works on dif-
ferent octaves, i.e. different resolutions of the image. For each octave a Gaussian
scale space is computed by repeatedly convolving the image with a Gaussian filter
kernel and subsequently Difference-of-Gaussians images are created by subtracting
the blurred images with adjacent scales. Candidate locations for interest points are
then detected at extrema of the Difference-of-Gaussians images.

2. Keypoint localization: For each initial keypoint (interest point) position an inter-
polated more exact position is determined by a 3D quadratic function. Furthermore,
unstable extrema with low contrast are rejected.

3. Orientation assignment: In order to achieve rotation invariance of interest point
descriptors, to each interest point a main orientation determined by means of peaks
in an orientation histogram of surrounding gradient orientations is assigned. All
future operations are performed relative to the main orientation.

4. Keypoint description: Again the local gradient data is used to create a set of
histograms over a window centered on the keypoint. Usually a set of 16 histograms,
aligned in a 4x4 grid, each with 8 orientation bins is used. This results in a feature
vector of 128 elements for each interest point.
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Canny Edge Detector

The aim of an edge detector is to provide a binary version of the image where the detected
edges represent the object’s borders. The Canny edge detector was presented by J. Canny
in 1986 and was designed to be an optimal edge detector regarding the tradeoff between
the detection and localization of edges [3]. It consists of the following steps:

1. Noise removal: Convolution of the image I(x, y) with a gaussian kernel Gσ

Is = Gσ ∗ I (3.1)

2. Gradient magnitude computation: Computation of gradients ∇Is and gradient
magnitudes m(x, y) of the smoothed image Is

∇Is =

(
∂Is

∂x
,
∂Is

∂y

)
(3.2)

m(x, y) =

√(
∂Is

∂x

)2

+

(
∂Is

∂y

)2

(3.3)

3. Non-Maximum suppression: Detection of local maxima of gradient magni-
tude by comparison with gradient magnitudes along gradient direction. If ∇Is

||∇Is|| =

(δx, δy) denotes the unit gradient vector, then a pixel at location (x, y) is marked
as local maximum if

m(x, y) > m(x + δx, y + δy) (3.4)

and
m(x, y) > m(x− δx, y − δy). (3.5)

4. Hysteresis thresholding: Thresholding with a high threshold Thi and a low
threshold Tlo to identify the final edge pixels. A local maximum obtained by the
non-maximum suppression is preserved as an edge pixel if its gradient magnitude is
above Thi or its gradient magnitude is above Tlo and one of its neighboring pixels is
an edge pixel.

Interest Point Detection in Hemangioma Images

For our task the standard SIFT method has to be modified on some points, to account
for the specific nature of the image data: the interest point detection is constrained to a
region covering the hemangioma, only the green color component of the images is taken
into account, and Canny edges are used for the interest point localization.
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1. Constraining interest points to the hemangioma region: The analysis is
constrained to the segmented hemangioma region, provided by the method described in
Section 2.2. Only interest points inside or near the hemangioma region are accepted.
This ensures that the planarity assumption for the homography estimation gives a good
estimate of the actual surface, accounts for a better chance of reliable matches in the close
vicinity of the hemangioma and reduces computational costs.
In detail, interest points are only accepted if:

1. they are located in the frame encompassing the segmented hemangioma region,
enlarged by 40 pixels on each side.

2. they are not located in a background region, i.e. not located in a region that has
been detected as non skin by the heuristic described in Section 2.2.2. Note that
thereby also the ruler is excluded and differences in its placement do not affect the
registration.

2. Local image representation: The standard SIFT method works on intensity im-
ages. In our case the green channel of the RGB-images is athe most reasonable choice. As
mentioned in Section 2.2.3, this representation shows higher differences between heman-
gioma regions and healthy skin which can also be seen in Figure 3.4 where the gray-value
representation (mean value of all color channels) and the green channel representation of
a hemangioma image is shown. Therefore, the whole registration process works on green
channel images.

(a) (b)

Figure 3.4: (a) Mean value of all color channels and (b) green channel representation of
a RGB hemangioma image.

3. Interest point localization: In the original SIFT method interest points (called
keypoints) are localized at extrema in the Difference-of-Gaussians scale space. However,
this interest point localization procedure generates an unsatisfactory number of distinctive
interest points and correct matches on our images. The reason is that Difference-of-
Gaussians tends to have more extrema at intensity variations inside the hemangioma than
at the exact hemangioma border. However, the most reliable interest points lie at the
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hemangioma border because the inner hemangioma parts change to a higher degree from
one time to another. Therefore, in our method interest points are detected along edges
in the images. Edge detection is accomplished by means of the Canny edge detector
[3] and interest points are finally localized at edge pixels showing the highest gradient
magnitude in a neighborhood of N pixels. By empirical tests a value of N = 3 combined
with Tlo = 0.1 and Thi = 0.2 (see Section 3.2.1) has proven to be adequate for obtaining a
high number of distinctive interest points. The improvement achieved by this method is
evaluated in Section 5.2.1. In this experiment more matches are rated as correct by using
the method described above (∼41 %) than by using the usual Difference-of-Gaussians
approach (∼16 %).
In Figure 3.5 the results of the individual steps of our interest point localization procedure
are shown for the image of Figure 3.2(e). Figure 3.5(a) shows the segmentation of the
hemangioma area (green border) and resulting rectangular region of interest (blue frame).
For interest point localization only the green channel of this frame is used which is shown
in Figure 3.5(b). Non-skin regions like the ruler in the upper left corner are ignored. Next,
the Canny edge detector is applied, resulting in the edge image shown in Figure 3.5(c).
Finally, interest points are detected at edge pixels having the highest gradient magnitude
in a neighborhood of 3 pixels, marked as black spots in Figure 3.5(d). Thus, a total
number of 1441 interest points are detected in the image.

(a) (b)

(c) (d)

Figure 3.5: Individual steps of the interest point localization procedure.
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3.2.2 Matching of Interest Points

Once the interest points have been localized, they have to be matched in a robust way.
As in the standard SIFT method, our interest points are described by accumulating the
orientations in a region around the interest point location, as illustrated in Figure 3.6.
Gradient magnitudes and orientations are sampled in a 16× 16 array around the interest
point location and weighted by a gaussian window, indicated by the dashed circle. The
scale of all interest points is constantly set to the empirically determined value of 3.2 since
no scale information is given by the edge-based interest point localization (by choosing
this value a sample has a size of 2.4× 2.4 pixels). The content of each 4× 4 subregion is
accumulated in an orientation histogram with 8 bins. For example, the gradients of the
red square subregion produce the orientation histogram on the right side of Figure 3.6.
By using a 4× 4 descriptor array of 4× 4 subregions with 8 orientation bins in each, an
interest point is finally described by a 128-element feature vector.

Figure 3.6: Illustration of the SIFT method for interest point description.

The task of the matching step is to find for every interest point in the sensed im-
age the corresponding interest point in the second image. A simple way to determine
the correspondences is to match interest points whose descriptor vectors have the lowest
Euclidean distance to each other. However, many interest points of the sensed image
might not have any corresponding interest point in the reference image and vice versa.
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As described by Lowe in [25], a convenient measure for the quality of a match is not only
the distance to the nearest neighbor in the reference image but also the distance to the
second nearest neighbor. A “good” match for an interest point in the sensed image shows
a low distance to its first nearest neighbor and a comparatively high distance to its second
nearest neighbor in the reference image.
With our method the interest points are matched in a similar way. Although RANSAC
is capable of handling a large portion of incorrect matches, a preselection of the matches
with highest confidence can improve the stability. Therefore, matches are determined by
means of lowest Euclidean distance of interest point descriptors, sorted in terms of the
distance between the nearest and the second nearest neighbor, and finally only the “best”
n matches are accepted. The number n of accepted matches should thereby be chosen de-
pendent on the size of the hemangioma in the sensed image: in an image pair containing a
large hemangioma more matches could be reliably detected than in an image pair contain-
ing a small hemangioma. Therefore, the value n is determined by n = 2

√
msi, rounded to

the nearest integer value, where msi is the number of interest points detected in the sensed
image. This function has been decided on empirical tests achieving the best performance
on the given data. It gives enough matches for small hemangiomas (small msi) but avoids
too many unreliable matches for large hemangiomas (large msi) as well. In the provided
images msi can vary from about 50 up to about 1500, corresponding to an n-value of 14
to 77. The function is shown in Figure 3.7 for an interest point number range of 1 to 2000.

Figure 3.7: Function for determining the number n of accepted matches.

Figure 3.8 shows exemplarily the matching result between the image from Figure 3.5 and
the corresponding image from the following examination. In this case 76 matches are
initially accepted. However, it can be seen that still many of these matches are incorrect.
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Figure 3.8: Determined corresponding interest points between two consecutive images.

The automatic exclusion of the false matches is described in the next section.

3.2.3 Transformation Estimation Based on Interest Point Matches

The final step in the image registration procedure is the computation of the homography
that maps the sensed image onto the reference image. In general, with a homography the
transformation of all points lying on a plane in the scene shown in the sensed image to the
same points in the reference image can be described. This means that the hemangiomas
are assumed to be planar, which is not correct in all cases. However, it is a reasonable
simplification since (1) not enough correctly matched interest points are provided by
the matching process and (2) matchings are not equally distributed on the hemangioma
region, making non-rigid registration functions inapplicable.
This section describes the method for the robust estimation of the homography between
the hemangiomas contained in the sensed and reference image. The general mathematical
method for homography estimation from a set of point matches is explained below. Next,
the RANSAC scheme for robust outlier detection is explained, followed by a detailed
description of its application on our images.

Planar Homography Estimation

A homography describes the transformation between corresponding points on a plane, seen
from two different perspective views, and is represented by a non-singular homogeneous
3× 3 matrix. If psi = (xsi, ysi, 1)T is a point in the sensed image si and pri = (xri, yri, 1)T

the corresponding point in the reference image ri lying on the same plane, their relation-
ship is described by a homography H with

psi = Hpri where H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (3.6)

and
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pri = HTpsi (3.7)

A homography has eight degrees of freedom. Thus, it can be exactly defined by a set
of four corresponding points with at most two of them being collinear. For a set of more
than four matches, the homography can be estimated by the normalized Direct Linear
Transform (DLT) which minimizes the algebraic error [20].
Given n matches of points {psi

i ↔ pri
i } between the sensed image si and the reference

image ri, a homography H is estimated by the normalized DLT in the following way:

1. Normalization of psi
i : Compute a similarity transformation T transforming the

points psi
i = (xsi

i , ysi
i , 1)T to a new set of points p̃si

i such that the centroid of the points
p̃si

i is at (0, 0, 1)T and their average distance is
√

2. The similarity transform T has the
form

T =

√2/d̂ 0 −
√

2x̂/d̂

0
√

2/d̂ −
√

2ŷ/d̂
0 0 1

 (3.8)

with

x̂ =
1

n

n∑
i=1

xsi
i , ŷ =

1

n

n∑
i=1

ysi
i , d̂ =

1

n

n∑
i=1

√
(xsi

i − x̂)2 + (ysi
i − ŷ)2 (3.9)

2. Normalization of pri
i : Likewise, compute a similarity transformation T ′ transform-

ing pri
i to p̃ri

i .

3. Direct Linear Transformation: For each match {p̃si
i ↔ p̃ri

i } the homography H̃ is
given by p̃ri

i = H̃p̃si
i . This can be written in the form

Aih =

 0
T −p̃siT

i yri
i p̃siT

i

−p̃siT

i 0
T −x̃ri

i p̃siT

i

−ỹri
i p̃siT

i x̃ri
i p̃siT

i 0
T

 h1

h2

h3

 = 0 (3.10)

Ai is a 3× 9 matrix and h is a 9-element vector made up of the entries of the matrix H̃,

h =

h1

h2

h3

 , H̃ =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (3.11)

with hi the i-th element of h. Since only two rows of Ai are linearly independent, each
match gives two equations in the entries of H̃. We therefore use only the first two rows
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of Ai and assemble the n 2× 9 matrices into a single (2n)× 9 matrix A. The solution h
is the unit singular vector corresponding to the smallest singular value of A obtained by
a Singular Value Decomposition.

4. Denormalization: Denormalize H̃ with H = T ′−1H̃T .

To transform an image point psi
i of the sensed image it has to be represented by ho-

mogeneous coordinates psi
i = (xsi

i , ysi
i , 1)T . The transformation is achieved by pri

i = Hpsi
i

and division of the resulting point pri
i by its homogeneous component.

Random Sample Consensus

RANSAC (RANdom SAmple Consensus) is a robust model fitting method which is able
to cope with a large portion of incorrect data samples [11]. Its underlying assumption is
that in a set of observations the number of correct samples (the inliers) being consistent
with the correct model outnumbers the number of incorrect samples (the outliers) being
consistent with an incorrect model because the outliers are randomly distributed.
The RANSAC scheme works as follows: assume that we have M samples from an obser-
vation and N samples are needed to determine the parameters of the model. Then the
following steps are repeated until the performance goal is met or the maximum number
of iterations is reached:

1. Randomly choose a subset of N samples out of the set of M samples and estimate
the parameters of the model.

2. Determine the inliers of this model: number of samples fitting the model within
user-defined tolerance.

3. Choose this model if it shows the maximum number of inliers found so far.

Optionally, in the end the model’s parameters can be re-estimated with all inliers.

Homography Estimation between Hemangioma Images

As mentioned above, the matching of interest points also produces false matches that have
to be detected and discarded. Since every match is equally considered for homography
estimation by the DLT algorithm, it is not robust against these so called outliers, i.e. even
one outlier can disturb the registration result to a high degree. Therefore, a necessary
requirement of the final homography estimation method is a robust detection of inliers
and outliers in the present interest point matches.
For that purpose the RANSAC scheme is applied to our matched interest points. In
our case the number M of total samples is the number of initially detected matches (see
Section 3.2.2). Our model is a homography and the parameters to be estimated are the
9 elements of the 3 × 3 homography matrix. For homography estimation 4 matches are
needed, i.e. N = 4. An inlier in our case is defined as a match where the interest point
in the sensed image is located within a given distance to the matching interest point in
the reference image after a transformation with the homography.
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On our images best results were achieved by iterating 2000 times and allowing a maximum
distance of 5 pixels for the inlier decision (in a typical image 5 pixels correspond to ∼0.375
mm). To increase robustness only homographies with an absolute value of the determinant
in the range of 0.1 to 10 are allowed. If the determinant of a homography or its inverse
is close to zero, it corresponds to a degenerate case. The full algorithm is summarized in
Algorithm 1.
Once the final homography is computed, the last step in the registration process is to
transform the sensed image onto the reference image. In practice, this is done by comput-
ing the inverse of the homography, transforming each image point of the new image onto
the sensed image and computing its image value by bilinear interpolation. In Figure 3.9
the final results for the images of Figure 3.2(e) and Figure 3.2(f) are shown. Figure 3.9(b)
shows the remaining inliers determined by RANSAC of the initial matches depicted in
Figure 3.9(a). In this example 31 of the 76 initial matches are classified as inliers. The
final transformed sensed image can be seen in Figure 3.9(c). The difference between the
transformed image and the reference image is shown in Figure 3.9(d).

for i=1 to 2000 do
. select a random sample of 4 matches out of all matches and compute the
homography H
if (absolute value of the determinant of H between 0.1 and 10) then

. calculate the distance d to all other matches

. compute the number of inliers as the number of matches for which d < 5
if (H has number of inliers larger than the present best homography) then

. mark H as best homography
else if (number of inliers is equal) then

. choose the homography with the lower standard deviation of inliers
end

end

end
. re-estimate the best homography from all matches classified as inliers using the
normalized DLT

Algorithm 1: The RANSAC-algorithm for estimating a homography from putative
matches between two hemangioma images.
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(a)

(b)

(c) (d)

Figure 3.9: (a) Initially detected matches between sensed image (left) and reference image
(right), (b) detected inliers, (c) transformed sensed image and (d) image displaying the
difference between the transformed sensed image and the reference image.
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Chapter 4

Detection of Regressing
Hemangioma Regions

This chapter describes the process for the detection of regressing hemangioma parts in
follow-up images, using the hemangioma segmentation as region of interest and color
differences to the first examination for a pixel-wise classification of the hemangioma region.
In the beginning hemangiomas typically exhibit a saturated red color, whereas during the
course of therapy regressions appear as pale gray regions, a process often referred to as
graying [6]. Usually, these regressions do not occur uniformly on the whole hemangioma,
but start at certain regions and expand during time [6]. According to dermatologists,
the detection and sizing of such regions is an important parameter to assess the healing
process.
As an example, see the two follow-up images in Figure 4.1(a) and Figure 4.1(b). The
image of Figure 4.1(a) was taken at the first examination and the whole hemangioma is
reddish saturated, expect for a small inner region. Image Figure 4.1(b) was taken 6 weeks
later and yet the hemangioma shows regressions in its inner regions. These regressions
are marked with a white border in Figure 4.1(c).

(a) (b) (c)

Figure 4.1: (a),(b) Consecutive images of a hemangioma and (c) regressions marked with
white border.

Since the detection of regressing regions relies on their color, a pixel-wise classification
scheme similar to the classification step in hemangioma segmentation (Section 2.2.3) is
applied to a single image. In addition to the color features, the first examination is taken
into account to achieve a more specific determination of the change due to the regressing
hemangioma for each pixel. Motivated by the hemangioma’s typical healing process de-

37



scribed above, it is assumed that the hemangioma has a red saturated color at the first
examination and that therefore the local color change provides a strong feature for the
classifier. For this purpose the registration introduced in Chapter 3 provides the necessary
correspondence between the current image and the first reference image.
The whole procedure of the proposed method for the detection of regressing hemangioma
regions is depicted in Figure 4.2: consider a series of four follow-up images (Image 1 to
Image 4). Between each consecutive image a homography was computed by the regis-
tration method described in Section 3.2 (H12, H23 and H34). In the first step the region
encompassing the hemangioma is determined by the segmentation method of Section 2.2
(white area). Next, the mask defining the hemangioma region is transformed with the
composite homography H = H34H23H12 to define the region of interest for the classifica-
tion process. In the last step, in this region of interest all pixels are classified in regressing
(gray area in Figure 4.2) and not regressing, using also the differences in color values be-
tween Image 1 and Image 4 computed via the composite homography H (this is indicated
by the double-headed arrow with the minus sign in Figure 4.2).

Figure 4.2: Illustration of the regression detection procedure.

The pixel-wise classification is addressed in Section 4.1, including a description of the clas-
sifier used and the selection of appropriate features. A detailed step-by-step explanation
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of the whole methodology for regression detection is given in Section 4.2.

4.1 Pixel-wise Classification

Similar to the segmentation of saturated hemangioma regions (Section 2.2), a pixel-wise
classification scheme based on color features is used for the regression detection task.
Thereby, the hemangioma region is classified into parts showing a regression and parts
showing no or minor changes compared to the first examination. By using the registration
method presented in Section 3.2, classification does not have to rely solely on the current
color features, but can also use the color information from the image of the first exam-
ination. The change of colors between the sessions is an important and discriminative
feature, which will be shown in Section 5.3.3 later on.
The images in Figure 4.1 point out that the classification of a hemangioma into regressing
and not regressing regions is less distinct than for the hemangioma segmentation method
presented in Chapter 2, since color differences are considerably lower. On this account, a
more sophisticated classifier, the Neural Network [2], is applied to the data. This type of
classifier is introduced in Section 4.1.1. The selection of an appropriate set of features for
regression detection is described in Section 4.1.2.

4.1.1 Neural Networks

Neural Networks [2] are extensions to the simple perceptron introduced in Section 2.2.3.
Whereas a perceptron consists only of one input layer and output layer, one or more
hidden layers of units between the input and output layer are added to a neural network
structure. Thus, in literature neural networks are often also referred to as multi-layer
perceptrons [2]. Figure 4.3 shows a simple example for the structure of a neural network.
The network consists of 4 input units with input values xi, 1 hidden layer with 3 hidden
units having output values νj and 2 output units with output values ok.

Figure 4.3: Example for a neural network structure.
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In the neural network each unit of a layer is connected to each unit of the next layer
and each connection possesses a weight ωij. Additionally, for each unit a bias θ and a
differentiable activation function (e.g. the sigmoid or tanh function [2]) is defined. The
output of a given network is computed as follows: The weights are multiplied with the
corresponding input values and summed up. To this sum the bias of the unit is added and
the actual output value νj is determined by the output of the activation function. These
output values serve as input values for the next units/layer and so on. Thus, the state
of a certain network is defined by its weights and biases. This state has to be trained by
means of a training set with given output values.

Neural Network Training

For neural network training the backpropagation algorithm [2] is applied. With backprop-
agation, the following steps are conducted until the network error is small enough or the
maximum number of epochs is reached:

1. Forward-Pass: Computation of the network output o by a certain input vector x.

2. Determination of network error: The network output o is compared to the
correct output t and the error is computed by means of a certain error metric.
For instance, the output can be assessed by the mean squared error : mse =
1

Nk

∑Nk

k=1 (ok − tk)
2, where Nk is the number of output units.

3. Backward-Pass: The weights are successively adapted on the basis of the network
error, starting from the output layer in direction to the input layer. The weights
and the error metric chosen define an error surface that has to be minimized by
adjustment of the weights. This can be accomplished by miscellaneous optimization
methods, e.g. gradient descent or quasi-newton. A detailed discussion of the various
methods is out of the scope of this thesis, for an overview see [1].

Regularization by Weight Decay

The task of a neural network is not the exact representation of the training data but rather
the building of a statistical model that describes the data as well as possible. In other
words, the network should exhibit a good generalization, that is, to make good predictions
for new inputs. One way to avoid so-called over-fitting of the network is regularization
which adds a penalty Ω to the error function. The error of a network is then given by

error = γ ·mse + (1− γ) · Ω (4.1)

where γ is called the performance ratio defining the extent to which the penalty Ω
influences the error. A simple form of the penalty term Ω is called weight decay, given by

Ω =
1

N

N∑
i=1

ω2
i (4.2)

where N is the number of weights in the network. This type of penalty prevents the
network from producing extreme weights overfitting the training data.
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4.1.2 Feature Selection

As mentioned above, color features are used for classification. For this reason, the individ-
ual components of the three color spaces RGB, HSV and L*a*b* along with the feature
abdist were tested for their suitability (for a description of these features see Section
2.2.3). The change of colors is included in the classification procedure by computing the
difference of the color features between the transformed sensed image and the reference
image, termed difference features in the following. Thus, along with difference features in
total 20 features for classification are available. To deal with varying illumination condi-
tions during image acquisition all features are skin-normalized by the method presented
in Section 2.2.2. Texture features (local entropy, local range and standard deviation [15])
were also tested but abandoned, because they did not provide relevant information for
the classifier during initial experiments.
To enhance the classifier’s performance and classification time, irrelevant and redundant
features have to be removed from the total set of features. A first subset of features was
achieved by applying the feature selection method proposed by Krizek et al. [24]. Their
algorithm removes irrelevant and redundant features by a weight modification of training
samples similar to the AdaBoost algorithm [37]. Features are iteratively selected on the
basis of their discriminative power measured by a simple error function and at every iter-
ation step weights of training samples are modified so that the currently selected feature
appears irrelevant w.r.t. new weights, thus allowing for a more proper determination of
the discriminative power of remaining features.
Using this method on our data, the following features were selected out of the total 20
features:

• Color features

- G and B from RGB

- S from HSV

- a* from L*a*b*

- abdist

• Difference feature

- G and B from RGB

- L* and a* from L*a*b*

However, further experiments have shown that there is still redundancy in this feature
subset and that the performance of the neural network is not altered by a removal of
certain features. Thus, in the end the following four features were selected:

• Color features

- G from RGB

- a* from L*a*b*

- abdist
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• Difference feature

- G from RGB

This choice is plausible, since these color features are also used for the hemangioma
segmentation (see Section 2.2.3). In Figure 4.4 the values of these chosen features are
exemplarily shown for the image of Figure 4.1(c), normalized to the range 0 to 1 for
presentation (black represents 0, white represents 1).

(a) (b) (c)

(d) (e)

Figure 4.4: (a) Original hemangioma image with regressing region marked by white border
and values of features: (b) G, (c) a*, (d) abdist, (e) difference of G between first follow-up
and current image. Values are normalized to the range 0 to 1, thus 0 is represented by
black and 1 is represented by white.

Apparently, differences between regressing and not regressing regions are less distinctive
than for the segmentation of the hemangioma area (see Figure 2.6 for a comparison).
Nevertheless, the experiments in Section 5.3.2 show that the method achieves a similar
accuracy.

4.2 Regression Detection in Registered Hemangioma

Follow-up Images

In this section the whole process of regression detection in follow-up series is described
in detail. Consistent with the illustration shown in Figure 4.2, the following steps were
performed for regression detection in the ith image of a hemangioma follow-up series:

1. Segmentation of hemangioma region in the first image: The hemangioma
region in the first image is determined by the segmentation algorithm presented in

42



Chapter 2. This is needed to define a region of interest for the pixel-wise classi-
fication. Although the pixel-wise detection of regressions could be performed on
the whole image as well, classification performance is increased since only relevant
data has to be classified into regressing and not regressing, i.e. no healthy skin is
involved.

2. Registration of first image with ith image: The first image is registered with
ith image, i.e. the homography H between these two images is computed. For that
purpose the registration algorithm presented in Chapter 3 is used. For robustness, H
is not determined directly by a registration of the first image with the ith image, but
by a concatenated registration of the intermediate images: at first the homography
H1,2 between the first and the second image is determined, next the homography
H2,3 between the second and the third image, and so on until the homography Hi−1,i.
The composite homography is then simply computed by matrix multiplication: H =
Hi−1,i...H2,3H1,2. Since the changes in hemangioma appearance between the first and
the ith image increase more and more during follow-up, this scheme of concatenation
is more robust than a direct registration of the first and ith image.
The need of the homography H is twofold: Firstly, it is used to transform the
segmentation of the first image to define the region of interest in the ith image.
Naturally, this could also be accomplished by hemangioma segmentation in the ith
image, but the segmentation of the first image is more robust and accurate, since
at the first examination the hemangioma shows less regressions and therefore a
comparatively high contrast between skin and hemangioma. And secondly, it is
needed to build difference features for the pixel-wise classification.

3. Feature extraction: After the homography between the first and ith image is
determined, the color features for classification are extracted from the images (see
Section 4.1.2). Due to various illumination conditions during image acquisition,
both the first and the ith image are normalized w.r.t. their skin color by the same
method used for hemangioma segmentation (see Section 2.2.2). The features G, a*
and abdist are then directly extracted from the ith image. The color difference of
the green band in RGB space (G) is computed by image subtraction of the first
image, transformed by H, with the ith image.

4. Pixel-wise classification: The extracted features are used to classify all pixels
in the region of interest in regressing and not regressing, using the neural network
classifier described in Section 4.1.1.
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Chapter 5

Experiments

This chapter deals with the evaluation of the methods presented in the thesis. In Sec-
tion 5.1 the segmentation algorithm described in Chapter 2 is evaluated. Experiments
regarding the registration method proposed in Chapter 3 are reported in Section 5.2. The
regression detection described in Chapter 4 is evaluated in Section 5.3. Detailed informa-
tion about the experiments conducted is given in the respective sections.
Each description is divided into Setup, where the conducted experiment is described in
detail, and Results, where the corresponding results are briefly presented. A detailed
overall discussion about the obtained results and the implications to practice are finally
given in Section 5.4.

5.1 Measurement of Hemangioma Size

The evaluation of the proposed method for hemangioma surveying (Chapter 2) is done
in various tests: first of all the precision of the scale computing algorithm is measured
in Section 5.1.1. Second, in Section 5.1.2 the area measurement is conducted on a set
of synthetic images. Third, the segmentation of hemangioma is evaluated by tests on
120 clinical images manually annotated under the supervision of a dermatologist (Section
5.1.3), and fourth, the accuracy of the whole surveying process is estimated by a compari-
son of 20 image pairs, each showing the same hemangioma at the same time of acquisition,
i.e. the areas should be equal if perfect measurement would have been achieved (Section
5.1.4).

5.1.1 Accuracy of the Scale Computing Algorithm

Setup: For this experiment we computed the Euclidean distance between two marks
of the ruler of 20 images with the algorithm proposed in Section 2.1 and compared it
with manually determined values (Table 5.1). These values are achieved by manually
choosing the longest Euclidean distance between two marks of the ruler visible in the
image. Nevertheless, these values do not necessarily represent the real spatial resolution
of the image since we do not take into account the curvature and position of the ruler just
as in our algorithm. In addition the manually determined Euclidean distance is also not
exact, a failure of 1-2 pixels is possible. However, the experiments reveal the ability of the

44



algorithm to consistently determine the scale w.r.t. the standard of reference annotation
on the images. The effect of image acquisition on the measurement is captured by the
experiments in Section 5.1.4.

Image Pair Computed
Euclidean
Distance
(pixels)

Manually
Determined
Euclidean
Distance
(pixels)

Error (%)

1 130 129 0.78
2 127 124 2.42
3 132 129 2.33
4 136 134 1.49
5 140 138 1.45
6 135 133 1.50
7 139 135 2.96
8 139 139 0.00
9 130 130 0.00

10 133 131 1.53
11 134 141 4.96
12 130 129 0.78
13 145 145 0.00
14 141 151 6.62
15 98 100 2.00
16 140 141 0.71
17 146 146 0.00
18 130 132 1.52
19 141 141 0.00
20 146 146 0.00

Average 1.55

Table 5.1: Comparison between the computed and the manually determined Euclidean
distance between two marks of the ruler in 20 images.

Results: As can be seen in Table 5.1 the average error made by the method is low
(average error rate 1.55%). Larger errors of more than 3 % arise only on image 11 and
14. These are shown in Figure 5.1. In image 11 (Figure 5.1(a)) there can be seen a white
cloth that is segmented together with the ruler. Therefore, in the computed rotated ruler
mask the three scanlines (red) are too far below and erroneously the distance between
the numbers instead of the marks is taken for scale computing (Figure 5.1(b)). The same
problem occurs in image 14 (Figure 5.1(c) and Figure 5.1(d)) but this time caused by the
fact that only about the half of the ruler is visible in the image.
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(a) (b)

(c) (d)

Figure 5.1: Image 11 and 14 of Table 5.1 with corresponding computed ruler masks. The
three scanlines are marked red.

5.1.2 Accuracy of Hemangioma Area Measurement on Synthetic
Images

Setup: The measurement of the hemangioma area was tested on a set of 10 synthetically
generated images. In such images the error in area measurement is not influenced by
geometric distortions and illumination inconsistencies, thus giving us an estimate of the
algorithm’s performance under optimal conditions. In total, 10 images were generated
in the following way: an arbitrary shape representing the hemangioma was painted with
the typical hemangioma color (red portion = 100, green portion = 0, blue portion = 15
of 255) and placed in a skin image along with a randomly rotated ruler. Additionally,
gaussian noise with mean µ = 0 and variance σ2 = 0.5 was added and the images were
smoothed with a 7 × 7 gaussian filter with standard deviation σ = 1.0 to simulate the
smooth transition between skin and hemangioma along the border. In Figure 5.2 three
such synthetic images with detected segmentations marked by a green border are shown.
For the experiments the area of the hemangioma measured with our algorithm is compared
to the real known area and the relative errors were recorded.

Results: The results can be seen in Table 5.2. The average relative error in area mea-
surement is 0.62 %. The scale of the images is correctly measured in all 10 images, thus the
error is only caused by the uncertainty of correct hemangioma border due to the smooth-
ing with the gaussian filter. Generally, relative errors are higher on images with smaller
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(a) (b) (c)

Figure 5.2: Three synthetic hemangioma images with the automatic segmentation marked
by a green border.

Image Real Area (cm2) Measured Area (cm2) Error (%)
1 0.9372 0.9404 0.35
2 0.6013 0.6037 0.40
3 0.4107 0.4136 0.69
4 0.6140 0.6168 0.46
5 1.1407 1.1454 0.41
6 0.7782 0.7814 0.42
7 0.0404 0.0392 2.83
8 0.5108 0.5083 0.48
9 1.3217 1.3234 0.13
10 0.8449 0.8456 0.09

Average 0.62

Table 5.2: Results of area measurement on 10 synthetic hemangioma images.

hemangiomas than on images with larger hemangiomas, since smaller hemangiomas show
a higher portion of border pixels.

5.1.3 Accuracy of the Hemangioma Segmentation Algorithm

Setup: Experiments were performed on a set of 120 images gathered during clinical
examinations. 30 images were used for training and the remaining 90 images served as the
test set. For all images the relative ground truth was obtained by a manual segmentation
in a region of interest under the supervision of a medical expert. To evaluate the accuracy
of the segmentation for every image the following error metrics were applied:

• error rate =
number of misclassified pixels

total number of pixels

• false positive rate =
nr. of false positive pixels

nr. of negative pixels

• false negative rate =
nr. of false negative pixels

nr. of positive pixels

• absolute area difference = |Area(A)− Area(M)|

• border error = Area(A∪M)−Area(A∩M)
Area(M)
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where A and M are the regions obtained by the automatic segmentation and the man-
ual segmentation, respectively. The proposed formula for the border error (adopted from
[19]) is the most significant error metric because it is independent of both the size of the
hemangioma and the size of the region of interest.

Results: The average border error on the 90 test images is 32.1 %, as can be seen in
Table 5.3 where the average errors of all 90 test images are shown. The average error made
in the surveying of the hemangiomas lies at 0.0965 cm2, where the average hemangioma
size is 0.6132 cm2. Generally, the obtained average border error is hardly influenced
by few particular outliers with border errors of more than 100 %. Table 5.4 shows the
distribution of the different border errors of all 90 images. It can be seen that the majority
of the images (54 of 90) could be segmented with a border error of less than 20 % and
only 15 images yield an error of more than 50 %.
In Figure 5.3 some results are depicted. Figure 5.3a-c belongs to the best segmentation
results with border errors of 3.6 %, 5.7 % and 6.8 %, respectively. Figure 5.3d-f belongs
to the worst segmentation results with border errors of 247.7 %, 137.5 % and 141.2 %,
respectively.

5.1.4 Precision of Automatic Measurement of Hemangioma Size

Setup: To assess the precision of the entire procedure of hemangioma size measurement
the hemangioma area on 20 pairs of images, depicting the same hemangioma and taken
within a few minutes, were measured. In the absence of error, both images should have
precisely the same computed hemangioma area. The actual error is estimated by the
absolute area difference and variation coefficient of both measurements. The variation
coefficient of multiple measurements is defined as the their standard deviation divided by
their mean. To have an estimate of the minimal achievable error, given the differences in
image acquisition reference measurements with manual segmentation and scale computing
were made on the same image pairs.

Results: The results of both the automatic and the manual measurements of all 20 im-
age pairs are listed in Table 5.5. The average difference of hemangioma area is 0.0775 cm2

while the average variation coefficient is 8.82 %. This error is mainly caused by variations

Error False Pos. False Neg. Absolute Area Border
Rate Rate Rate Difference Error
6.8 % 5.5 % 11.6 % 0.0965 cm2 32.1 %

Table 5.3: Mean errors on 90 test images.

Border Error 0-20 % 20-50 % > 50 %
Number of Images 54 21 15

Table 5.4: Distribution of border error on 90 test images.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Automatic segmentation (white) and ground truth (black) of 6 images.

in the image acquisition procedure since geometric distortions caused by an improper
camera viewpoint are not considered by the method. The reference measurements with
manual segmentation and scale computing leads to an average difference of 0.0394 cm2

and an average variation coefficient of 4.53 %.

5.2 Registration of Follow-Up Hemangioma Images

This section deals with the evaluation of the method for the registration of hemangioma
follow-up images presented in Chapter 3. At first, a comparative evaluation of Canny edge
interest points and standard Difference-of-Gaussians interest points is given in Section
5.2.1. For an evaluation of the image registration method under “perfect” conditions
with unchanged hemangioma appearances experiments were conducted on a set of 20
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Image Difference Variation Difference Variation
Pair Manual Coefficient Automatic Coefficient

Measurement Manual Measurement Automatic
(cm2) Measurement (%) (cm2) Measurement (%)

1 0.1727 4.58 0.2290 6.45
2 0.0245 7.81 0.0340 11.92
3 0.0277 5.79 0.0155 3.09
4 0.0381 0.64 0.1543 2.97
5 0.0002 0.04 0.0071 2.30
6 0.0129 5.56 0.0225 17.73
7 0.0064 0.70 0.0430 4.96
8 0.1027 3.31 0.2302 8.12
9 0.0027 1.54 0.0023 1.29
10 0.0736 8.38 0.0447 5.78
11 0.0066 2.41 0.0212 8.04
12 0.0139 7.65 0.0243 12.76
13 0.0015 0.03 0.4261 11.21
14 0.0681 5.89 0.1037 9.32
15 0.0109 6.40 0.0783 35.92
16 0.0089 3.56 0.0150 10.70
17 0.0243 8.27 0.0129 4.35
18 0.0647 1.98 0.0042 0.15
19 0.1183 11.93 0.0487 5.43
20 0.0087 4.11 0.0325 16.82
Average 0.0394 4.53 0.0775 8.82

Table 5.5: Differences in manually and automatically determined areas between two im-
ages of the same hemangioma.

image pairs, each pair showing the same hemangioma at the same time, i.e. only a few
seconds between image acquisitions. The results are shown and discussed in Section 5.2.2.
In order to assess the amount of deterioration for registrations of consecutive images (i.e.
with a period of several weeks between image acquisitions), tests on four image series are
reported in Section 5.2.3.

5.2.1 Comparison of Difference-of-Gaussians and Canny Edge
Interest Points

Setup: As described in Section 3.2.1 interest points are detected at Canny edge points
having a local maximum of gradient magnitudes. In this section the improvement by
means of reliable matches using these points instead of the original Difference-Of-Gaussians
interest points is demonstrated by a simple test where we have compared the number of
correct matches of three image pairs of consecutive hemangioma images. For every image
pair the best 40 matches having the lowest Euclidean distance are determined and the
correct matches are counted for both methods by visual inspection.
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Results: As can be seen in Table 5.6, with our localization method ∼41 % of the
matches are rated as correct whereas with the DoG localization method (using the stan-
dard parameter values defined in [25]) only ∼16 % are rated as correct. As a conclusion,
on our images Canny interest points are much more stable than Difference-of-Gaussians
interest points.

Image
Pair

Correct
Matches
DoG

Correct
Matches
Canny

1 7/40 16/40
2 7/40 21/40
3 5/40 12/40
Total 19/120 49/120
Percent ∼16 % ∼41 %

Table 5.6: Comparison of Difference-of-Gaussians interest points and Canny edge interest
points by manually determined correct matches.

5.2.2 Accuracy of Registration on Hemangioma Images taken
at the same Time

Setup: In order to increase reliability two or more images of a hemangioma were taken
during an examination. 20 of such image pairs are used for testing the precision of
the proposed image registration method. The registration error is measured using three
different metrics:

1. Distance Error of Inliers: The average pixel distance of transformed inliers to
the real points of the matches classified as inliers.

2. Distance Error of 5 Test Points: For each image pair 5 matches are manually
placed and the average pixel distance achieved with the estimated homography is
measured.

3. Border Error: Both the sensed and reference image are segmented and the bor-
der error (see Section 5.1.3) between the transformed sensed segmentation and the
reference segmentation is measured.

Results: The results of the test are listed in Table 5.7. Additionally to the proposed
error metrics for each image pair the number of detected interest points in the sensed and
reference image, the resultant number of initial matches and the fraction of these matches
classified as inliers are reported. It can be seen that the average distance error of the 5
test points lies at 2.31 pixels (∼0.175 mm) which is not a large increase compared to the
distance error of the inliers (1.61 pixels or ∼0.125 mm). Another indication of accuracy is
the fraction of the initial matches classified as inliers. On average 35.3 of the 36.7 initial
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Image Pair Interest
points
sensed
image

Interest
points
refer-
ence
image

Initial
Matches

Inliers Average
Distance
Error of
Inliers
(pixels)

Average
Distance
Error of
5 Test
Points
(pixels)

Border
Error
(%)

1 590 659 49 48 1.69 3.28 10.78
2 391 489 40 40 0.55 1.51 7.85
3 1441 1343 76 76 0.73 1.63 1.76
4 142 84 24 20 2.98 2.74 8.93
5 225 294 30 30 0.70 2.41 3.30
6 393 360 40 39 2.07 2.28 3.69
7 165 144 26 26 0.71 1.82 4.53
8 1009 1172 64 64 1.63 1.67 3.41
9 225 273 30 22 2.43 2.64 7.51

10 117 154 22 18 2.64 1.66 8.66
11 325 290 36 36 1.82 1.33 6.72
12 916 1109 61 61 1.61 3.15 10.02
13 224 208 30 30 1.27 3.26 17.05
14 89 66 19 18 2.00 2.45 3.29
15 326 313 36 35 2.11 2.58 7.96
16 326 157 36 35 1.44 2.66 14.09
17 354 339 38 33 2.31 2.94 10.82
18 66 117 16 16 0.61 2.62 13.71
19 152 227 25 22 2.05 1.35 15.68
20 320 351 36 36 0.81 2.18 6.15

Average 389.8 407.5 36.7 35.3 1.61 2.31 8.30

Table 5.7: Results of the proposed image registration method on 20 image pairs, each
pair showing the same hemangioma at the same time.

matches are classified as inliers which corresponds to a percentage of ∼96 %.
In Figure 5.4 for image pairs (1)-(3) the sensed image, the reference image and the differ-
ence image between the transformed sensed and the reference image are shown. It can
be seen that the difference images show small disparities in the range of ∼0.1 inside and
around the hemangioma region (note that larger local differences are caused by highlights
on the hemangiomas). An exception is Figure 5.4(1) where larger differences up to a
value of ∼0.35 arise at the hemangioma border because the assumption of hemangioma
planarity is violated.

5.2.3 Accuracy of Registration on Follow-up Images

Setup: To assess the accuracy of the proposed method for consecutive images of the
same hemangioma taken at different times we applied our algorithm on six different im-
age series. Naturally, the hemangioma appearance changes from one examination date
to another, i.e. the hemangioma regresses more and more during follow-up. Each image
series consists of three to five images, resulting in a total of 18 registrations marked by two
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(1)

(2)

(3)

Figure 5.4: Difference images (1)-(3) of image pairs showing the same hemangioma at the
same time. The colorbar is shown at the top.

characters, patient (1,2,3,4,5,6) and position in the sequence of registrations (A,B,C,D).
For instance, 2C indicates the registration of the images from the third and the fourth
examination of patient 2. The same error metrics as in Section 5.2.2, apart from border
error, are measured and listed in Table 5.8. Additionally, a further error metric measuring
the consistency of three circularly concatenated registrations is used, which is illustrated
in Figure 5.5. In this experiment two images from examination 1 (Image A and Image
A’ ) and one from the subsequent examination 2 (Image B) are used. The three homogra-
phies H1, H2 and H3 between the images are computed and the composite homography
H = H3H2H1 is built. In the absence of error, H is the identity matrix and every point in
Image A is not displaced by a transformation with it. Inevitably, there is an error which
can be measured by the average displacement of points in Image A. Therefore, a set of
reference points is equally placed in 10 pixel distances inside the hemangioma region of
Image A (green points in Figure 5.5) and transformed by the composite homography H.
The error is computed as the average Euclidean distance between reference points and
their corresponding transformed points, listed as Average Reference Points Displacement
in Table 5.8. This error is not stated for the registrations 3C, 4B and 4C because in these
cases only one image from examination 1 is available.
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Image Interest
Points
Sensed
Image

Interest
Points
Refer-
ence
Image

Initial
Matches

Inliers Average
Dis-
tance
Error of
Inliers
(pixels)

Average
Dis-
tance
Error of
5 Test
Points
(pixels)

Average
Reference
Points
Displace-
ment
(pixels)

1A 500 590 45 17 3.03 7.96 2.41
1B 590 671 49 28 2.79 3.96 8.67
1C 671 664 52 31 2.90 6.45 5.79
2A 1441 945 76 30 3.30 7.39 2.00
2B 945 1350 61 15 2.77 8.77 5.42
2C 1350 1497 73 35 2.41 12.94 5.67
2D 1497 187 77 7 1.41 354.84 440.38
3A 393 266 40 12 3.61 3.95 3.60
3B 266 191 33 18 2.57 4.92 3.76
3C 191 550 28 16 2.70 5.21
4A 363 477 38 8 3.33 10.08 11.50
4B 477 213 44 11 3.97 4.69
4C 213 767 29 6 0.94 196.43
5A 320 509 36 21 2.51 3.44 2.70
5B 509 421 45 14 2.91 4.32 6.02
6A 169 375 26 7 2.63 8.37 7.50
6B 375 942 39 9 2.38 8.54 8.70
6C 942 320 61 8 1.79 5.50 6.82

Average 622.89 607.50 47.33 16.28 2.66 36.54 34.73
Average (with-
out 2D and 4C)

593.88 623.810 46.63 17.50 2.85 6.65 5.75

Table 5.8: Results of the proposed image registration method on 6 image series with
overall 18 registrations.

Results: Not surprisingly, the results are worse than for the image pairs tested in Section
5.2.2 since the content of the images changes from one time to another. Nevertheless, the
average distance error of 5 test points and the average reference points displacement
never exceeds 12 pixels (∼0.9 mm), with the exception of the registrations 2D and 4C.
In these two cases the hemangiomas have changed too much to obtain reliable matches
and a meaningful homography. By excluding these two outliers we achieve an average
reference points displacement of 5.75 pixels (∼0.4 mm). The results of the match detection
deteriorate, indicated by a lower fraction of initial matches finally classified as inliers (∼ 38
%).
Figure 5.6 and 5.7 shows exemplarily for the follow-up images of patient 1 and 2 the sensed
image, the reference image and the difference image between the transformed sensed and
the reference image. Naturally, compared to the difference images of image pairs show-
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Figure 5.5: Illustration of the scheme for testing consistency of three circularly concate-
nated registrations.

(1A)

(1B)

(1C)

Figure 5.6: Difference images (1A)-(1C) of patient 1 in Table 5.8 showing the same
hemangioma at different times. The colorbar is shown at the top.
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(2A)

(2B)

(2C)

(2D)

Figure 5.7: Difference images (2A)-(2D) of patient 2 in Table 5.8 showing the same
hemangioma at different times.

ing the same hemangioma at the same time of Figure 5.4, higher differences occur since
the appearance of a hemangioma changes from one time to another. For example, in
Figure 5.6(1C) differences occur at the regressing regions of the reference image. In Fig-
ure 5.7(2C) the lower parts of the hemangioma are not correctly registered, indicated by
higher differences in this border region compared to the other border regions of the differ-
ence image. The reason for such local errors is an irregular distribution of matches (and
therewith inliers) in the hemangioma region, i.e. regions not represented sufficiently by
matches are neglected by the homography estimation and tend to local misregistrations.
Nevertheless, it must again be noted that the combination of SIFT, RANSAC and homog-
raphy transformation model provide for a robust registration of follow-up hemangioma
images with changing appearances. By the design of the algorithm, matching interest
points of (mostly) unchanged hemangioma regions are implicitly detected and used for
homography estimation.
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5.3 Detection of Regressing Hemangioma Regions

This section contains several experiments for the evaluation of the proposed regression
detection method. Initially, the method is applied on a set of synthetic follow-up images
in Section 5.3.1. In Section 5.3.2 the method’s accuracy on real clinical images is tested
by means of various error metrics. The suitability of including the proposed registration
procedure in the detection scheme is shown in Section 5.3.3. Finally in Section 5.3.4 the
method’s precision is evaluated on image pairs showing the same hemangioma at the same
time.

5.3.1 Accuracy of Regression Detection on Synthetic Follow-up
Images

Setup: As a proof of concept, the method proposed for regression detection was tested
on three synthetic image series showing an increasing regression area over time. For each
series a synthetic image of the type described in Section 5.1.2 was taken as initial im-
age. Consecutive images were generated by a random 2-dimensional affine transformation
(translation, rotation and scaling) of the hemangioma area to simulate viewpoint changes.
The regression was simulated by painting a gray region inside the hemangioma area. Again
gaussian noise with mean µ = 0 and variance σ2 = 0.5 was added to the images and they
were smoothed with a 7× 7 gaussian filter with standard deviation σ = 1.0. Each series
consists of four images and for each image of follow-up the percentage of the hemangioma
area showing a graying was measured with the proposed method and compared to the
known real values. The results are listed in Table 5.9. One of the three synthetic follow-up
series is shown in Figure 5.8 where the automatically detected regressions are marked by
a blue border.

Results: The average relative error on the three follow-up series is 2.73 %. Similar to
the results achieved with the area measurement of synthetic images in Section 5.1.2, the

Image Real Measured Error
Percentage Percentage Percentage

1A 3.65 3.53 3.16
1B 14.55 14.87 2.19
1C 24.97 25.23 1.04
2A 11.86 11.35 4.35
2B 38.07 36.95 2.96
2C 55.03 53.50 2.79
3A 10.66 11.19 4.98
3B 14.72 15.12 2.75
3C 66.60 66.82 0.32

Average 2.73

Table 5.9: Results of regression detection on three follow-up series with synthetic images.
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(1A) (1B)

(1C)

Figure 5.8: The second, third and fourth image of a synthetically generated follow-up
series showing increasing regressions (gray regions). The area automatically detected by
the proposed method is indicated by a blue border.

error is comparatively higher on images with smaller regressions, therefore in all three
series the error consecutively decreases.

5.3.2 Accuracy of Regression Detection on Real Follow-up Im-
ages

Setup: For evaluation of the regression detection procedure the algorithm was tested
on the follow-up images of Table 5.8. The follow-up images of patient 2 and 4 were ex-
cluded for of two reasons: (1) image quality impedes a consistent manual annotation of
regressing regions and (2) these series show a misregistration between the last two images
inhibiting an evaluation of the whole image series. Thus, in total 11 single images are
evaluated in terms of the error metrics presented in Section 5.1.3. For an evaluation of
the whole dataset a leave-one-out cross-validation scheme is applied: for every image of
a series a new network is trained with the data from all series except the one containing
the present image and tested on this image. The overall results are shown in Table 5.10.
As described in Section 4.1, a neural network classifier is used. The network consists of
2 hidden layers with 20 and 10 hidden units, respectively. The network is trained by
quasi-newton optimization [2] and training performance is measured by the mean squared
error in combination with a weight decay performance ratio γ = 0.25 to avoid overfitting
(see Section 4.1.1).
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Image Error False Pos. False Neg. Absolute Area Border
Rate (%) Rate (%) Rate (%) Difference (cm2) Error (%)

1A 13.7 12.1 1.7 0.2508 39.9
1B 9.5 5.8 3.8 0.0576 20.7
1C 6.7 2.9 3.8 0.0310 16.3
3A 5.9 4.5 1.5 0.0712 20.0
3B 8.0 2.6 5.5 0.0835 60.2
3C 15.7 13.6 2.1 0.2403 38.6
5A 13.6 1.7 11.8 0.1996 38.6
5B 5.9 2.8 3.1 0.0071 17.4
6A 7.5 3.3 4.2 0.0315 15.9
6B 10.1 3.6 6.5 0.1126 17.6
6C 11.4 1.7 9.7 0.3204 18.2

Average 9.8 5.0 4.9 0.1278 27.6

Table 5.10: Results of the proposed method for regression detection on 4 image series
with overall 11 registrations.

Since the overall goal of the proposed method is the automatic determination of the
area/percentage of the hemangioma showing regression signs, these values are also re-
ported for the same image series. They are listed separately in Table 5.11.

Image Regressing Total Area of Percentage
Area (cm2) Hemangioma (cm2)

1A 1.08 1.08 100.00
1B 1.38 1.38 100.00
1C 1.36 1.36 100.00
3A 0.78 1.03 75.34
3B 0.28 1.06 26.82
3C 1.09 1.11 97.84
5A 0.50 0.65 77.10
5B 0.77 0.77 99.76
6A 1.47 1.66 88.42
6B 2.11 2.20 96.10
6C 2.24 2.31 97.12

Table 5.11: Absolute and relative determined areas of regressing hemangioma regions of
the images from Table 5.10.

Results: The method shows an average border error of 27.6 % which is in the range of
the border error of the hemangioma segmentation method (32.1 %, see Table 5.3). The
average absolute error made in the surveying of the regression region lies at 0.1278 cm2,
where the average size of regression areas in the given data is 1.2015 cm2.
Figure 5.9 shows the results obtained on the single images. Here the region of manual
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detection is marked by a green border whereas the automatically detected region is marked
by a blue border. The largest error occurs in image (3B) with a border error of 60.2 %, but
this image exhibits a strong oversaturation caused by the inadequate image acquisition
process.
Regarding the test reporting the area/percentage of the regressing region, it can be seen
that the fraction of the hemangioma showing a regression increases or remains constant
in all follow-up series. The only exception is the previously mentioned poor-quality image
(3B). For patient 1 the algorithm assesses already the whole hemangioma area of the
first image (1A) as regressing (percentage = 100 %). It must be stated that during
the usual five-week-interval between examinations the child grows and therewith also the
hemangioma on the skin. For that reason at the examinations the child’s current body
height is measured to normalize the data with it. This was not taken into account for
these experiments.

(1A) (1B) (1C)

(3A) (3B) (3C)

(5A) (5B)

(6A) (6B) (6C)

Figure 5.9: Results of the automatic regression detection (green: manual detection, blue:
automatic detection).
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5.3.3 Accuracy of Regression Detection on Follow-up Images
without Registration

Setup: As discussed in Section 4.1.2, the change of hemangioma color values is a dis-
criminative feature for the classifier. To verify this, the experiment reported in Section
5.3.2 was repeated without using difference features, i.e. only G, a* and abdist were used.

Error False Pos. False Neg. Absolute Area Border
Rate Rate Rate Difference Error
16.3% 6.9% 9.4% 0.3486 cm2 50.1%

Table 5.12: Average results of the proposed method for regression detection on 4 image
series with overall 11 registrations (without difference features).

Results: The average errors are listed in Table 5.12. It can be seen, that all error values
deteriorate compared to the values obtained by using registration and difference features.
Border error increases from 27.1 % to 50.1 % and absolute area difference from 0.1278
cm2 to 0.3486 cm2. This is a strong indication that the registration and the thereby
available difference features taking follow-up examinations into account are a necessary
prerequisite for a reliable regression detection.

5.3.4 Precision of Regression Detection on Hemangioma Images
taken at the same Time

Setup: Since the manual determination of regressing regions is an uncertain and diffi-
cult task (even for dermatologists), this experiment deals with the comparison of surveyed
regression regions in image pairs showing the same hemangioma, consistent with the ex-
periment reported in Section 5.1.4. Again the absolute difference and variation coefficient
between the two measurements are calculated. (3B) was excluded from this test because
no second image was available for that case.

Results: All values are listed in Table 5.13. Compared to the hemangioma segmenta-
tion results, the variation coefficient is even less (7.40 % to 8.82 % in Table 5.5). Also
the absolute difference shows a comparable value (0.1134 cm2 to 0.0775 cm2). Although
no manual reference measurements exist for this test, the error is considered to be caused
mainly by variations in the image acquisition procedure, likewise the results for the pre-
cision of the hemangioma segmentation.

5.4 Discussion

As part of the hemangioma assessment procedure, the first task is to determine and
measure the whole skin region affected (Section 5.1). By the design of the algorithm,
errors in area computation arise due to three different reasons:
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Image Series Absolute Area Variation
Difference (cm2) Coefficient (%)

1A 0.0906 6.18
1B 0.0854 4.56
1C 0.2570 14.75
3A 0.1165 9.19
3C 0.0986 6.63
5A 0.0467 7.83
5B 0.1272 13.02
6A 0.1597 7.14
6B 0.0120 0.39
6C 0.1402 4.33

Average 0.1134 7.40

Table 5.13: Differences in automatically determined areas of regression between two im-
ages of the same hemangioma.

1. Error in image scale computation: Tests in Section 5.1.1 have shown that scale
computation is accurate (average error rate of 1.55 %), with very few exceptions
where the ruler was inadequately placed on the skin or photographed. Therefore,
this type of error is assumed to have the lowest impact on area measurement.

2. Error in hemangioma segmentation: Hemangioma segmentation works reliably
and accurately on saturated hemangiomas with no or few regressions, as shown in
Section 5.1.3 where 54 out of 90 test images could be segmented with a border
error of less than 20 %. On the other side, the algorithm can fail completely on
regressing hemangiomas because of the lower contrast between skin and hemangioma
regions. However, typically the first images during follow-up studies exhibit no or
few regressions and can therefore be segmented accurately. The affected skin area
in later examinations can then be determined by the proposed registration method.

3. Variation in image acquisition: For an optimal measurement both ruler and
hemangioma have to be situated parallel to the view plane of the camera. Whereas
this is naturally violated by the fact that hemangioma and skin are never perfectly
planar, errors are also caused by an inadequate positioning of the camera. The tests
made on the image pairs in Section 5.1.4 show that the variation coefficient achieved
with the presented method (8.82 %) is not far away from the one achieved with a
manual surveying (4.53 %). An error of ∼ 4% can be seen as the natural limitation
of the method, i.e. the minimal achievable error rate.

Registration of follow-up images: Experimental results reported in Section 5.2 show
that the majority of the images can be registered without considerable errors. The average
reference point displacement of ∼ 0.4mm accumulated by three subsequent registrations is
acceptable with an average hemangioma diameter of ∼ 14mm. Sources of error are (1) the
necessary assumption of hemangioma planarity due to the homography transformation
model and (2) global or local misregistrations caused by strong changes in hemangioma
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appearance and a thereby high fraction of false matches, either only in specific regions
or on the whole hemangioma. However, the proposed method is designed to deal with
changing hemangioma appearances and the tests show that it is applicable on the given
follow-up data, although robustness of the method decreases in the end of follow-up se-
ries when intervals between examinations go up to 6 months. Here the strong changes
in hemangioma appearance can result in a failure of the registration (see for example
Figure 5.7(2D)).

Regression detection: The tests on the detection of regressing regions (Section 5.3)
also verify that the registration is accurate enough to support the neural network in clas-
sification between regressing and not regressing regions by means of difference features.
With difference features the classifier’s performance is improved, observable by a border
error reduction from 50.1 % to 27.6 %. Nevertheless, an important aspect of regression
detection is the uncertainty of the manual annotation (the so-called ground truth) and
therefore the use of the border error as performance measure. However, by analyzing
the determined absolute areas of the detected regression regions in follow-up series (see
Table 5.11), an enlargement of regressing regions is reported. The uncertainty of ground
truth annotation is overcome by a comparison of determined regression areas, measured
on image pairs showing the same hemangioma at the same time. Because of the similar
error values (variation coefficient of 7.40 % compared to 8.82 % of the hemangioma seg-
mentation method), it is assumed that this error is again mainly caused by variations in
the image acquisition procedure, i.e. different lighting conditions and camera viewpoints,
although no manual reference measurements were available.

Comparison with other methods: As stated earlier, the image-based automatic as-
sessment of cutaneous hemangiomas and the proposed scheme of detecting and measuring
regressions by the use of registered follow-up images was not covered before. Thus, no
direct comparisons to other methods can be made. However, other skin lesion types were
addressed in the past and there are some comparable results despite different input data,
experimental setups and algorithm designs: in [44] border error was used as performance
metric for melanoma segmentation and the authors state that a border error of less than
50% is considered as sufficient by dermatologists. They report a border error of less than
50 % in 55 out of 66 images. In our results for hemangioma segmentation (Table 5.3)
75 out of 90 segmentations have a border error of less than 50 % which corresponds to
the same percentage of 83 %. Regarding the area measurement of skin lesions, in [34]
a method for psoriasis surveying was developed showing an error of less than 4 % to
reference measurements in all cases. Although an exact comparison cannot be made be-
cause of nonexistent reference measurements , it must be noted that in the surveying of
hemangioma/regression regions we obtain higher variation coefficients of 8.8 and 7.4 %,
respectively. However, it is not clear to which extent their method is influenced by the
image acquisition.
Generally, the method can be expected to outperform manual measurements during clin-
ical trials. According to dermatologists, during an examination the hemangioma area is
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simply determined by measuring the hemangioma’s height and width with a tape mea-
sure. The percentage of the hemangioma area showing a graying or desaturation (i.e. the
regression regions) is then estimated by the attending physician. Obviously, this kind of
area measurement using a tape measure is less accurate than an automatic measurement
on digital images. The determination of the regressing regions percentage as part of the
healing process assessment can be made more consistent as well, since estimations of sev-
eral different dermatologists impede an objective evaluation during clinical trials.
Nevertheless, in the future a detailed medical evaluation of the results achieved has to be
done by dermatologists. Moreover, repeated measurements by dermatologists are neces-
sary to quantify the improvement of the presented method.
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Chapter 6

Conclusion

In this thesis a new system for the automatic image-based assessment of cutaneous he-
mangiomas is presented. Cutaneous hemangiomas are a type of skin disease that causes
an increased growth of blood vessels beneath the skin in local regions. The procedure is
able to measure the current area of the affected skin and to detect and survey regions
showing a regression during follow-up. The area measurement is based on the image scale
computation by means of a ruler attached to the skin and visible in the image to be exam-
ined. Both the detected hemangioma and the regression regions can then be surveyed by a
determination of the respective image regions. The accurate measurement of the affected
skin region, and in particular the development of the hemangioma during the follow-up
examinations is crucial during clinical trials and to support an effective treatment.
The motivation for the proposed method was to make the assessment of hemangioma
development more accurate and objective. Thereby the quality of both clinical trials
and long-term studies can be improved by a more consistent evaluation of the effect of
therapies. The current clinical standard for the assessment of the hemangioma’s healing
process is the simple manual measurement of its height and width and an estimation of
the percentage showing a regression by the treating physician. This area estimate does
not account for the irregular shape, which becomes more relevant during regression, and
the percentage estimation is based on a rough visual estimate. The method proposed in
this thesis measures the actual shape and area of the hemangioma and therefore provides
a more accurate measurement of its size, which is not affected by inter- or intra reader
variation, and can quantify even small local structure of the hemangioma. The detection
of regressions is made more consistent by decreasing the subjectivity of a manual regres-
sion quantification caused by differences of opinion between observers.
The segmentation of the hemangioma region is accomplished by a pixel-wise classification
scheme, using the pixel’s color values as input for a single-layer perceptron. Likewise, for
the determination of regions showing a regression a pixel-wise classification is also applied.
Since differences between regressed and unregressed regions are less distinct than the dif-
ferences between hemangioma regions and healthy skin, for this task a more sophisticated
classifier, a neural network (multi-layer perceptron), is used. Moreover, the classification
is supported by a comparison to the first image of the follow-up series by means of dif-
ference features. Difference features are obtained by image subtraction of the examined
image with the first follow-up image, aligned to each other by robust image registration of
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the hemangioma area. The proposed method for image registration has to cope with the
changing hemangioma appearances between examinations. This is achieved by a feature-
based method using SIFT features to obtain reliable matches between consecutive images.
The inevitable occurrence of incorrect matches caused by the varying image content is
mastered by the use of a RANSAC scheme for robust homography estimation describing
the transformation between the two images.
Although no manual reference measurements for an exact quantification of the achieved
improvement were available, the experimental results indicate the applicability on clinical
trials. 60 % of the test images could be segmented with a border error of less than 20%
and the algorithm shows high robustness especially on the first images of follow-up, an
important property for the proposed workflow where the region of interest (i.e. the he-
mangioma region) is determined in the first image and transformed via image registration
for an assessment of the subsequent images. The registration scheme itself shows high
accuracy with an error rate of ∼ 0.4mm on hemangiomas with an average diameter of
∼ 14mm. For the detection of regressions only a limited set of 4 follow-up series were
available. Nevertheless, the obtained border error of 27.6 % and variation coefficient of
7.4 % are comparable to the results of the hemangioma segmentation (32.1 % and 8.82%,
respectively).
In general, the individual methods as well as the whole assessment procedure suffer from
the partial low image quality since the image acquisition process during examinations
is usually less than perfect from a technical point of view: image quality is degraded by
imperfect illumination conditions causing specular reflections (highlights), an inconsistent
illumination of the hemangioma and the inappropriate photo development of digitalizing
analog images with a scanner. Furthermore, an inadequate choice of camera viewpoint is
a significant source of inaccuracy since for area measurement both the hemangioma and
the ruler are assumed to be parallel to the view plane of the camera.
Regarding the usage of the proposed method in clinical practice, it must be stated that
despite the reported robustness, visual human control of the results is necessary. How-
ever, by the design of the procedure, corrections of false results can easily be made by
the physician: since the hemangioma segmentation and regression detection are based on
classification, the output of the respective classifier can be interpreted as the confidence
in the chosen class. Therefore, a correction of the segmentation can be achieved by a
simple adjustment of the threshold dividing the two classes. As a further aspect, parts of
the procedure can be replaced by manual methods. For instance, an incorrect registration
can be compensated by a manual definition of corresponding points in the images.
Although experiments in this thesis were only conducted on follow-up images of cuta-
neous hemangiomas, other kinds of lesions can be examined as well. The classification-
and registration scheme makes the method highly adaptable to other lesion types, pro-
vided that an adequate amount of annotated training data is available. The performance
on cutaneous hemangiomas could be improved as well with a larger amount of follow-up
series.
Future research should focus on a more extensive quantitative comparison of the proposed
method with the manual state of the art assessment, to prepare the application for clinical
practice. Both clinical trials and patients can be expected to benefit from the improved
accuracy and the higher specificity, allowing for the quantification of fine changes during
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the course of the disease.

67



Bibliography

[1] E. Barnard. Optimization for training neural nets. IEEE Transactions on Neural
Networks, 3(2):232–240, 1992.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

[3] J. Canny. A computational approach to edge detection. PAMI, 8(6):679–698, 1986.

[4] N. Cascinelli, M. Ferrario, T. Tonelli, and E. Leo. A possible new tool for clinical
diagnosis of melanoma: The computer. J. Amer. Acad. Dermatol., 16(2):361–367,
1987.

[5] M.E. Celebi, H.A. Kingravi, B. Uddin, H. Iyatomi, Y.A. Aslandogan, W.V. Stoecker,
and R.H. Moss. A methodological approach to the classification of dermoscopy im-
ages. Computerized Medical Imaging and Graphics, 31:362–373, 2007.

[6] K.G. Chiller, D. Passaro, and I.J. Frieden. Hemangiomas of infancy: clinical char-
acteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex.
Eur Arch Otorhinolaryngol, 258:141–149, 2001.

[7] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IT, 13(1):21–27,
January 1967.

[8] G. R. Day and R. H. Barbour. Automated melanoma diagnosis: Where are we at?
Skin Res. Technol., 6:1–5, 2000.

[9] D. Delgado, B. K. Ersbøll, and J. M. Carstensen. S.H.A.R.P: A smart hierarchical
algorithm to register psoriasis. In Proc. of Int. Workshop on Systems, Signals and
Image Processing, pages 43–46, 2004.

[10] B.A. Drolet, N.B. Esterly, and I.J. Frieden. Hemangiomas in children. New England
Journal of Medicine, 341:173–181, 1999.

[11] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981.

[12] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1993.

68



[13] H. Ganster, P. Pinz, R. Rohrer, E. Wildling, M. Binder, and H. Kittler. Auto-
mated melanoma recognition. IEEE Transactions on Medical Imaging, 20(3):233–
239, March 2001.

[14] D.D. Gomez, C. Butakoff, B. Ersbøll, and J.M. Carstensen. Automatic change de-
tection and quantification of dermatological diseases with an application to psoriasis
images. Pattern Recognition Letters, 28(9):1012–1018, 2007.

[15] R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image processing using
MATLAB. Pearson Prentice Hall, New Jersey, 2004.

[16] A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight. Computer image
analysis in the diagnosis of melanoma. J. of the American Academy of Dermatology,
31(6):958–964, December 1994.

[17] W. Guo and Y.A. Aslandogan. Mining skin lesion images with spatial data mining
methods. Technical Report CSE-2003-19, Department of Computer Science and
Engineering, University of Texas at Arlington, July 2003.

[18] T. P. Habif. Clinical Dermatology. The C.V. Mosby Company, 2nd edition, 1990.

[19] G.A. Hance, S.E. Umbaugh, R.H. Moss, and W.V. Stoecker. Unsupervised color
image segmentation with application to skin tumor borders. IEEE Engineering in
Medicine and Biology, 15(1):104–111, January/February 1996.

[20] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, 2nd edition, 2004.

[21] S.L. Horowitz and T. Pavlidis. Picture segmentation by a tree traversal algorithm.
Journal of the ACM, 23(2):368–388, April 1976.

[22] T.D. Jones and P. Plassmann. An active contour model for measuring the area of
leg ulcers. IEEE TMI, 19(12):1202–1210, 2000.

[23] J.M. Kasson and W. Plouffe. An analysis of selected computer interchange color
spaces. ACM Transactions on Graphics, 11(4):373–405, October 1992.

[24] P. Krizek, J.V. Kittler, and V. Hlavac. Feature selection based on the training set
manipulation. In Proc. of ICPR 2006, volume 2, pages II: 658–661, 2006.

[25] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

[26] I. Maglogiannis. Automated segmentation and registration of dermatological images.
Journal of Mathematical Modelling and Algorithms, 2(3):277–294, 2003.

[27] H. Maier and R. Neumann. Treatment of strawberry marks with flashlamp-pumped
pulsed dye laser in infancy. Lancet, 347:131–132, 1996.

69



[28] G. Maletti and B. Ersbøll. Change detection in registered psoriasis lesion image
patterns. Technical report, Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark, DTU, 2003.

[29] G. Maletti and B. Ersbøll. Texture alteration detection in bitemporal images of
lesions with psoriasis. Technical report, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2003.

[30] G. Maletti, B. K. Ersbøll, and K. Conradsen. A combined alignment and registration
scheme of lesions with psoriasis. Information Sciences, 175(3):141–159, 2005.

[31] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In
Proc. of Conference on Computer Vison and Pattern Recognition, pages 257–263.
IEEE Computer Society, 2003.

[32] F. Nachbar, W. Stolz, T. Merkle, A.B. Cognetta, T. Vogt, M. Landthaler, P. Bilek,
O. Braun-Falco, and G. Plewig. The ABCD rule of dermatoscopy: High prospective
value in the diagnosis of doubtful melanocytic skin lesions. J. Amer. Acad. Dermatol.,
30(4):551–559, 1994.

[33] S.A. Pavlopoulos. New hybrid stochastic-deterministic technique for fast registration
of dermatological images. Medical & Biological Engineering & Computing, 42(6):777–
786, 2004.

[34] J. Roening, R. Jaques, and J. Kontinen. Area assessment of psoriatic lesions based
on variable thresholding and subimage classification. In Proc. of Vision Interface’99,
1999.

[35] F. Rosenblatt. The perceptron: A perceiving and recognizing automaton. Report 85-
460-1, Project PARA, Cornell Aeronautical Laboratory, Ithaca, New York, January
1957.

[36] A.J. Round, A.W.G. Duller, and P.J. Fish. Colour segmentation for lesion classi-
fication. In IEEE Proceedings of the Engineering in Medicine and Biology Society,
volume 2, pages 582–585, October/November 1997.

[37] R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, 37(3):297–336, 1999.

[38] P. Schmid and S. Fischer. Colour segmentation for the analysis of pigmented skin
lesions. In Proceedings of the Sixth International Conference on Image Processing
and its Applications, volume 2, pages 688–692, July 1997.

[39] P. C. M. van de Kerkhof. On the limitations of the psoriasis area and severity index
(PASI). British Journal of Dermatology, 126:205, 1991.

[40] J.A. Werner, A.A. Duenne, B.J. Folz, R. Rochels, S. Bien, A. Ramaswamy, and
B.M. Lippert. Current concepts in the classification, diagnosis and treatment of
hemangiomas and vascular malformations of the head and neck. Arch. Dermatol.,
138(12):1567–1576, 2002.

70



[41] L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and
A. Huntley. Segmentation of skin cancer images. Image and Vision Computing,
17(1):65–74, January 1999.

[42] S. Zambanini, G. Langs, R. Sablatnig, P. Donath, and H. Maier. Automatic surveying
of cutaneous hemangiomas. In Proc. of ICPR 2006, volume 1, pages 1022–1025, Hong
Kong, 2006.

[43] S. Zambanini, G. Langs, R. Sablatnig, and H. Maier. Automatic robust registration of
cutaneous hemangiomas for follow-up examinations. In Proc. of 31st AAPR/OAGM
Workshop, volume 224, pages 121–128, Krumbach, Austria, 2007.

[44] Z. Zhang, W.V. Stoecker, and R.H. Moss. Border detection on digitized skin tumor
images. IEEE Transactions on Medical Imaging, 19(11):1128–1143, November 2000.

[45] B. Zitova and J. Flusser. Image registration methods: a survey. IVC, 21(11):977–
1000, 2003.

71


