Documentation for the Graph Pyramid Drawing Application ${ }^{1}$

Mabel Iglesias Ham, Adrian Ion and Walter G. Kropatsch

Abstract

The aim of this document is to support an easy orientation in the application developed so far for the pyramid drawing problem. This application is based on an algorithm that uses paths by means of the equivalent contraction kernels to draw the edges. The drawing shows a planar graph which preserves topology but also geometry of the original image. Also, it can deal properly with the presence of multiple edges and self loops which commonly appear in the top level of irregular pyramids. Using only straight lines, the self loops would disappear and multiple edges overlap. The functionality of detecting and drawing a set of generators in the top of the pyramid has been added, by means of computing a fake new level by a last contraction using a spanning tree, and finally reconstructing the remaining loops in the previous last level. For supporting the studies to measure new topological invariants the edges have been classified in contracted, removed and surviving edges using a code of colors. Details about the input text file, set of classes, and comments about future work have been included.

[^0]
Contents

1 Introduction 2
2 Recall: Graph Pyramids 3
3 Application Functionality 4
4 About the Input Text File 6
5 Structure of Classes, Implementation Details 10
6 Improvement and Next Steps 11

1 Introduction

There is one published tool for the interactive visualization of graph pyramids [1]. It was designed to facilitate the studies about the structure of the pyramid and improve understanding of the contraction process using the visualization options. This algorithm uses straight lines, which do not show the whole information: self loops disappear, parallel edges collapse. On the other hand, there are applications where it is important to have a representation of a line drawing compressed, without loss of its geometric structure and topology.

There is a graph drawing community interested in finding high quality drawing algorithms to facilitate the visualization of complex relational networks. This means, for example, few edge bends in straight line drawings, orthogonal line segments for the edges, small display area, minimize crossings, good spatial and angular resolution, or recognizable symmetries. These methods find a distribution of nodes in the plane while we need to maintain a predefined position of nodes. In general, they do not deal with self loops and multiple edges, which occur in pyramids. The most prominent results can be seen in [2]. A novel algorithm for correctly visualizing graph pyramids preserving the geometry and the topology of the original image was presented in [3]. The software presented here is based on the mentioned algorithm and will aid future research in the field.

The aim of this document is to support an easy orientation in the software developed so far. The drawing of the edges follows a path by means of equivalent contraction kernels. It can deal properly with the presence of multiple edges and self loops which commonly appear in top level of pyramids. The functionality of detecting and drawing a set of generators in the top level of the pyramid has been added by means of computing a fake new level by a last contraction using a spanning tree, and finally reconstructing the remaining loops in the previous last level. For supporting the studies to measure new topological invariants the edges have been classified into contracted, removed and survived edges using a code of colors. Details about the input text file, set of classes and some comments about future work has been included.

The report is structured as follows. A brief recall about graph pyramids notions is presented in Section 2. An overview of the functionalities of the application is shown in Section 3. The used file format is described in Section 4. The structure of classes is presented in Section 5. Section 6 concludes with next steps and improvements, and gives an outlook of future functionality to be added.

2 Recall: Graph Pyramids

A graph pyramid P is a stack of successively reduced graphs $P=\left\{G_{0}, \ldots, G_{h}\right\}$. Each level $G_{k}=\left(V_{k}, E_{k}\right), 1 \leq k \leq h$, is obtained by first contracting (contraction process) and then removing (simplification process) edges in the level G_{k-1} below. Contracted edges of a level G_{k-1} define trees called contraction kernels (CK) [4], whose vertices are merged to a single vertex in the level G_{k} above. One vertex of each contraction kernel is called the surviving vertex and is considered to have been survived to the next level. Higher level vertices are related to the original input by equivalent contraction kernels (ECK) which, if applied, would achieve the same reduction in a single step. A path in a level G_{k-1} is called a connecting path if it connects two (surviving) vertices v, w, and is made out of tree parts: a possible empty branch of the contraction kernel containing v, an edge called bridge that bridges the gap between two contraction kernels, and a possibly empty branch of the contraction kernel containing w. The base level bridge corresponding to an edge $e=(v, w)$ in a higher level k, is the bridge in the base level, connecting $E C K(v)$ and $E C K(w)$, and that has not been removed in any simplification up to the level k. The contraction process is controlled by the so called decimation parameters ($S_{k}, N_{k-1, k}$), where $S_{k}=V_{k} \subset V_{k-1}$ is the set of surviving vertices and $N_{k-1, k}$ are the contraction kernels. ($S_{k}, N_{0, k}$) denotes the surviving vertices and equivalent contraction kernels for contracting level 0 to level k.

Successive levels reduce the size of the data by a reduction factor $\lambda>1$. Each level represents a partition of the base level into connected subsets of pixels. The construction of a pyramid is iteratively local. On the base level (level 0) of a pyramid the cells represent single pixels and the neighborhood of the cells is defined by the 4 -connectivity of the pixels. A cell on level $\mathrm{k}+$ 1 (parent) is a union of neighboring cells in level k (children). Every parent computes its values independently of other cells on the same level.

A level of a dual graph pyramid consists of a pair $\left(G_{k}, \overline{G_{k}}\right)$ of plane graphs G_{k} and its geometric dual $\overline{G_{k}}$. The vertices of G_{k} represent the cells on level k and the edges of G_{k} represent the neighborhood relations of the cells. The edges of $\overline{G_{k}}$ represent the borders of the cells on level k, including so called pseudo edges needed to represent neighborhood relations to a cell completely enclosed by another cell. Finally, the vertices of $\overline{G_{k}}$ represent junctions of border segments of $\overline{G_{k}}$. The sequence $\left(G_{k}, \overline{G_{k}}\right), 0 \leq k \leq h$ is called (dual) graph pyramid (DGP). For more details and formal definitions of the terms defined in this section see for example [4].

3 Application Functionality

The main window of the application is shown in Fig. 1.

Figure 1: Main window of the application. Real image used to build the pyramid is shown.

The image shown in the window is the real image used to build the pyramid. This image is displayed as background and the level 0 graph is shown on top of it. The level of the graph that is being shown is specified in top of the drawing and also in the up right part of the window (Text: "Draw Level:"). Bellow, there are a number of buttons and labels which are described afterwards.

The software allows to read a text file with one pyramid information computed beforehand, and to draw each level using information of the Contraction Kernels. To draw a particular level of pyramid is enough to write the level number in the previously mentioned field and to press Enter. The button named Open TXT File is used to open the text file that contains the description of the pyramid.

In each level, the set of edges are drawn differentiating between the edges that will be contracted (red ones), the edges to be removed in the simplification process (black ones) and the ones that will survive to the next level
(green ones). In the right part of the window this code of colors is described. The nodes that were selected as surviving ones in each contraction kernel are marked with a square as shown in Fig. 2.

Figure 2: Level 1 of the pyramid. Each edge is drawn with different color. Contracted edges (red), Surviving edges (green) and Removed edges (black). Surviving nodes are marked with squares.

A new pyramid level has been added to obtain the generators. This new level is constructed by contracting the last level of the given pyramid by one spanning tree as shown in Fig. 3 in red lines.

This new graph (Fig. 4), is made only out of self loops. In this level, the generators of the homology groups are a subset of the self loops. There is an option to draw the generators in the previous level, where edges still fit on boundaries, using the button named Draw Generators. This button alternatively switches between Draw Generators and Do Not Draw Generators. When the option to Draw Generators is selected and the user is drawing the previous level, the generators are drawn as shown in Fig. 5.

Initially, the application only drew each level without the background image. Now, the user can select the background image using the button

Figure 3: Red edges show the spanning tree computed in the last level of pyramid (Level 6). The edges in this tree will be contracted to the marked surviving node and the rest of the edges survive.
named Load Image File which will load the file and adjust the sizes to fit in the graph coordinates. Also, another button was added, named Save Panel Image, that allows to save a .png file of the image visualized in the window.

Finally, there are two more buttons to zoom in and out, that will allow seeing a more detailed part of a graph when it is bigger.

4 About the Input Text File

In the following the file format for the input graph pyramid is described. For a complete example see Section the Appendix.
\% Comment lines are always preceeded with the percent symbol.

Figure 4: New level graph added on top of given pyramid, composed only of self loops and used to compute generators.
\% Number of levels of the pyramid
7
\% Number of Nodes of G_{0}, the graph representing the base level
\% of the pyramid
150
\% List of X Y coordinates
1016
1610
2210
2810
\%
... more XY coordinates

Figure 5: Set of generators are drawn with bold lines and are identified by the different cycles that they conform.
\% Number of edges of G_{0}
279
\% List of edges formed by three numbers describing an edge like:
\% index of node1 in list of nodes of G_{0}, index of node2,
$\%$ and index of the corresponding edge in the list of edges
$\%$ of previous level graph (bridge).
\% Comment: In first level the index of bridge $=-1$
0 1-1
12-1
2 3-1
34-1
4-1
\%
... more edges
\% Number of contraction kernels of the level 0
98
\% List of contraction kernels as:
\% First number means the index of surviving node of the tree $\%$ in the list of nodes from graph G_{0} (always),
\% then a list of indexes of the contracted edges
\% in the list of edges from the actual graph
0
312
54
76
98
1110
\% more CK
\% Number of edges of graph G_{1}
158
\% List of edges with the same format than in previous level
\% but with bridges different to -1
030
353
575
797
9119
\% ... more edges
\% Number of contraction kernels of the level 1
47
\% List of contraction kernels...

5 Structure of Classes, Implementation Details

The application has 11 classes:

1. PyramidsFrame
\%Main window
2. MyPanel
\%Drawing region within the main window
3. Pyramid
\%Pyramid description and functionality
4. Graph
\%Graph description for levels of pyramid
5. Node
\%Node description for graphs
6. Edge
\%Edge description for graphs
7. ContractionKernel
\%Contraction kernel(CK) description for pyramid information
8. TreeNode
\%Data structure for nodes in CK
9. SpanningTree
\%Spanning tree functionality for self loops level creation
10. SquarePoint
\%Aditional class supporting the drawing
11. Utils
\%General utility class

They are divided in the first 2 used by the main frame and the drawing panel, followed by the class that stores the structure of a pyramid (3). A pyramid structure contains a Graph (4) in each level that uses a definition for Nodes and Edges $(5,6)$. Also, the pyramid uses a definition for Contraction Kernels on each level (7), which uses a tree structure with a node definition in the class TreeNode (8). For building the last level of the pyramid the Spanning Tree functionality has been defined in a separate class (9). Finally for supporting the drawing there is a definition for points that reaches an interconnection square (10) and a final class for general functionalities (11). The relations between the main classes are shown in Fig. 6.

The pyramid class has a method to load the pyramid information from a text file and to build the instance of the object. Also, there are other methods to compute all the steps of the drawing algorithm and to add the last level of pyramid (new contraction kernel by means of spanning tree and the last self loops made graph). The SpanningTree class also has the functionality of setting a flag for the edges that connects the final generators, in order to be visualized later. The whole sources have been commented.

6 Improvement and Next Steps

There are a lot of processes that can be computed in parallel as the computation of the Equivalent Contraction Kernel, measuring orders in the internal algorithm, etc. Java also provides very friendly classes to implements this, but, it is necessary to improve the memory demand of the actual application to be able to manipulate the set of new threads that will appear in the parallel running. In general the actual code can be optimized in time and space, and this will be done gradually giving more priority to further improvements in functionality so far.

The application will be enriched by a new functionality that will compute cohomology generators in the last level and also down project them to previous level till the base. For that, the application needs some more information in the input file as the edges of the corresponding face for each removed edge. This information can be added at the end of the line that describes and edge, maybe as a set of indexes of edges from the same level that bounds the face.

The application is planned to be extended to the visualization of 3D irregular pyramids, to support the computation of topological invariants in 3D too.

Figure 6: Relations between main classes in the application.

References

[1] Kerren, A.: Interactive Visualization of Graph Pyramids. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, (2006) 1862-4405
[2] Duncan, C.A., Kobourov, S.G. and Sander, G.: Graph Drawing Contest Report. Proceedings of Graph Drawing Symposium. Volume 4875 of Springer Berlin /Heidelberg, (2007) 395-400
[3] Iglesias-Ham, M., Ion, A., Kropatsch, W. G. and García-Reyes, E. B.: Delineating Homology Generators in Graph Pyramids. Proceedings. Progress in Pattern Recognition, Image Analysis and Applications, 13th Iberoamerican Congress on Pattern Recognition, CIARP 2008, Havana, Cuba, September 9-12, Volume 5197 of Springer, LNCS, (2008) 576-584
[4] Kropatsch, W. G.: Building Irregular Pyramids by Dual Graph Contraction. IEE-Proc. Vision, Image and Signal Processing, Volume 142, No. 6, (1995) 366-374

Appendix	6416
	7016
In this section we are showing a com-	7616
plete example of an input text file for	8216
this application. The description on	1022 1622
it refers to the graph pyramid that	2222
has been used in this technical report.	2822
Note that for a better organization of	3422
the document, this section uses dou-	4022
ble column style.	$\begin{array}{ll} 46 & 22 \\ 52 & 22 \end{array}$
	5822
\% Comment lines are always preceeded	6422
\% with the percent symbol.	7022
	7622
\% Number of levels of the pyramid	8222
	8822
	1028
	1628
\% Number of Nodes of G_{0}, the graph	2228
\% representing the base level of the	2828
\% pyramid	3428
150	4028
	4628
	5228
\% List of X Y coordinates	5828
1016	6428
1610	7028
2210	7628
2810	8228
3410	8828
4010	1034
4610	1634
5210	2234
5810	2834
6410	3434
7010	4034
7610	4634
8210	5234
8816	5834
1616	6434
2216	7034
2816	7634
3416	8234
4016	8834
4616	1040
5216	1640
5816	2240

2840	7058
3440	7658
4040	8258
4640	8858
5240	1064
5840	1664
6440	2264
7040	2864
7640	3464
8240	4064
8840	4664
1046	5264
1646	5864
2246	6464
2846	7064
3446	7664
4046	8264
4646	8864
5246	1670
5846	2270
6446	2870
7046	3470
7646	4070
8246	4670
8846	5270
1052	5870
1652	6470
2252	7070
2852	7670
3452	8270
4052	
4652	
5252	\% Number of edges of G_{0}
5852	279
6452	
7052	
7652	\% List of edges formed by three
8252	\% numbers describing an edge like:
8852	\% index of node1 in list of nodes
1058	$\%$ of G_{0}, index of node2, and
1658	$\%$ index of the corresponding edge
2258	\% in the list of edges of previous
3458	\% level graph (bridge).
4058	\% Comment: In first level the index
4658	\% of bridge = -1
5258	
5858	
6458	$12-1$

$23-1$	44 45-1
3 4-1	4546 -1
4 5-1	4647 -1
5 6-1	47 48-1
$67-1$	48 49-1
78 -1	$4950-1$
8 9-1	$5051-1$
9 10-1	$5152-1$
$1011-1$	$5253-1$
11 12-1	$54-55-1$
$1213-1$	55 56-1
$014-1$	$5657-1$
14 15-1	57 58-1
$1516-1$	58 59-1
$1617-1$	59 60-1
17 18-1	$6061-1$
18 19-1	$6162-1$
19 20-1	62 63-1
20 21-1	63 64-1
21 22-1	64 65-1
22 23-1	65 66-1
23 24-1	66 67-1
24 25-1	68 69-1
25 13-1	$6970-1$
26 27-1	$7071-1$
27 28-1	$7172-1$
28 29-1	$7273-1$
29 30-1	73 74-1
$\begin{array}{llll}30 & 31 & -1\end{array}$	$7475-1$
$3132-1$	$7576-1$
$\begin{array}{llll}32 & 33-1\end{array}$	$7677-1$
$\begin{array}{llll}33 & 34 & -1\end{array}$	77 78-1
34 35-1	7879 -1
35 36-1	$7980-1$
$3637-1$	$8081-1$
37 38-1	$8283-1$
38 39-1	83 84-1
4041 -1	84 85-1
$4142-1$	$8586-1$
42 43-1	$8687-1$
43 44-1	87 88-1

$88 \quad 89$-1
89 - 90
9091 -1
91 92-1
92 93 -1
$93 \quad 94-1$
$94 \quad 95-1$
$96 \quad 97-1$
97 98-1
9899 -1
$99 \quad 100-1$
100101 -1
101 102-1
102 103-1
$103104-1$
$104105-1$
105 106-1
$106 \quad 107$-1
107108 -1
108109 -1
110111 -1
$111112-1$
$112113-1$
113114 - 1
114115 -1
$115116-1$
$116117-1$
117 118-1
$118 \quad 119$-1
119120 -1
120121 -1
$121 \quad 122-1$
122 123-1
$124 \quad 125-1$
$125 \quad 126$-1
$126 \quad 127-1$
127128 -1
$128 \quad 129$-1
$129 \quad 130-1$
$130 \quad 131$-1
$131 \quad 132-1$
$132 \quad 133-1$
$133134-1$
134135 -1
$135 \quad 136$-1
$136 \quad 137$-1
$124138-1$
$138 \quad 139-1$
$139 \quad 140-1$
140141 -1
$141 \quad 142$-1
$142143-1$
$143144-1$
144145 -1
145146 -1
146147 -1
147148 -1
$148 \quad 149-1$
$149 \quad 137$-1
0 26-1
2640 -1
$40 \quad 54-1$
54 68-1
$68 \quad 82$-1
82 96-1
$96 \quad 110$-1
$110 \quad 124-1$
1 14-1
$14 \quad 27-1$
2741 -1
4155 -1
$55 \quad 69$ - 1
$69 \quad 83-1$
83 97-1
97111 -1
111125 -1
125138 -1
2 15-1
$15 \quad 28$-1
2842 -1
4256 -1
$5670-1$

70	84	-1	88 10 -1 84 98 -1 102
98	112	-1	116

$106120-1$	\% list of nodes from graph G_{0}
$120134-1$	\% (always), then a list of indexes
$134147-1$	\% of the contracted edges in the
11 24-1	\% list of edges from the actual
24 37-1	\% graph
$3751-1$	0
51 65-1	312
$6579-1$	54
79 93-1	76
$93107-1$	98
$107121-1$	1110
$121135-1$	1312
$135148-1$	1615
12 25-1	1817
25 38-1	19
$3852-1$	20
$5266-1$	2221
66 80-1	23242
80 94-1	24252253
$94108-1$	25
$108122-1$	27152
$122136-1$	28
$136149-1$	29
13 39-1	30
$3953-1$	3231
$5367-1$	3534
$6781-1$	38263
81 95-1	39272273
$95109-1$	41
$109123-1$	42
$123137-1$	43
	44
	45
\% Number of contraction kernels of	46
\% the level 0	47213
98	48
	49
\% List of contraction kernels as:	50
\% First number means the index of	54144145
\% surviving node of the tree in the	55155
	56165

5956	122
60	123278
61215	127119
62225	128
63	129
64	130
65255256	131
66	132
71175	133
72	134
73196	135
74	136
77	138130
78246	139
80266	140
81275276	141
82147	143135
83157	144
84167	145
85177	148139140
86	149
88	
89	\% Number of edges of graph G_{1} 158
90	
91	
100	
101	\% List of edges with the same format $\%$ as in the previous level but with
102	
103218	\% bridges different to -1
104228	030
105238	353
106248	575
107258	797
108	9119
110149	111311
111159	02713
112	181918
113	192019
114	202220
115	222322
116	

232423
242524
251325
272827
293029
324732
383938
414240
424341
434442
444543
464745
474846
484947
495048
545552
567154
596057
606158
616259
626360
646562
656663
717268
737470
777874
808177
828378
838479
848580
858681
888984
899085
909186
10010195
10210397
10310498
10410599
105106100
106107101
107108102

110111104
111112105
112113106
113114107
115116109
122123116
128129121
129130122
130131123
131132124
132133125
$\begin{array}{llll}133 & 134 & 126\end{array}$
134135127
135136128
138139131
139140132
140141133
141143134
143144136
144145137
145148138
148149141
149123142
054143
5482146
82110148
110138150
2741153
4155154
5583156
83111158
111138160
1628162
2842163
4256164
5684166
84112168
127139170
316171
1629172
2943173

7185176
85113178
113127179
127140180
1830182
3044183
5972185
7286186
86100187
100114188
114128189
128141190
518191
3245193
4559194
5973195
73101197
101115198
115129199
1932202
3246203
4660204
6074205
7488206
88102207
102116208
116130209
130143210
720211
6189216
89103217
103131219
131144220
3548223
6290226
104132229
132145230
922231
2235232
3549233
4963234

6377235
7791236
91105237
105133239
2350243
5064244
6478245
$78 \quad 106247$
106134249
1124251
2465254
65107257
107135259
135148260
2538262
3866264
6680265
80108267
108122268
122136269
136149270
1339271
3981274
81123277
\% Number of contraction kernels of $\%$ the level 1

47
\% List of contraction kernels...
0
712
1345155
207897
2310
2512148
27
28
418081

42	73
439192	
44	
45107108109	\% List of edges
46113114115	070
50232425132139	7133
56	0276
6633	20239
71	232511
$77 \quad 303144134135$	251313
303144134135	$27 \quad 2814$
80151	414218
151	424319
81	434420
848100	444521
8541100	465022
89	567127
	718534
102	
103	777836
104	808137
10649	848540
107	888942
7677	897743
1107677	
111	10210346
112	10310447
113	10410648
5	10610750
116	11011152
122153	11111253
	11211354
1237374	
128102103	11312855
129	11511656
130	12212357
13261	12812958
1356364	12913059
8	13013260
616768	13213562
14167071	13512265
	13814166
	14114569
\% Number of edges of graph G_{2}	14512372

```
011075
110 13878
274179
4111182
111 138 83
4 3 2 8 8 4
284285
4 2 5 6 8 6
56 84 87
8411288
718593
85113 94
204498
128 141 104
4645106
45 115 110
115129111
46 88 116
88 102 117
102116 118
116 130 119
7 20 121
77 89 122
89 103 123
104132 128
132145129
2350138
5078 140
78 106 141
66 107 145
107 135146
2566 149
66 80 150
80122 152 % Number of edges of graph G}\mp@subsup{G}{3}{
1381 156
4 4
81 123 157
% Number of contraction kernels of
% the level 2
29
% List of edges in level 3
0 70
7 123 1
2066 3
```

41427	\% Number of contraction kernels of \% the level 3
42438	
43209	
567112	
718513	12
777814	
897718	```% List of contraction kernels... 857```
10210319	
10310620	8938
10610722	102343540
11111224	103
11211325	111
11312826	1131429
12212328	1222345204243
12812929	123
12913030	128
13013531	13018
13512233	138023
13814134	141
14112335	
013837	\% Number of edges of graph G_{4} 18
04139	
4111140	
11113841	
434243	\% List of edges in level 4
425644	$138 \quad 1231$
5611246	89899
718547	10210310
8511348	10310211
12814150	11111313
11612953	11312815
7810255	12212316
10211656	12813017
11613057	13012219
72058	13814121
778959	14112322
8910360	12211125
7810665	11113826
6610766	858530
10713567	8511331

```
128 141 32
    89 103 17
102 130 36
89 103 39
    % Number of contraction kernels of
    % the level 5
% Number of contraction kernels of
8
% the level 4
10
% List of contraction kernels...
85
% List of contraction kernels... }8
85 102
89 103
102 113
1 0 3 ~ 1 2 8
111 11 130 6
113 1417
128
1 3 0
1 3 8 0
1 4 1
% Number of edges of graph G5
1 5
% List of edges in level 6
89 89 0
102 103 1
103 102 2
% List of edges in level 5 130 113 3
89 89 1
113 1284
102 103 2
128 130 5
103 102 3
1411418
1111134
85 85 10
113 128 5
8511311
128 1307
128 141 12
130 111 8
10213013
138 1419
89 103 14
141 138 10
111 138 12
85 85 13
8511314
128 141 15
102 130 16
```


[^0]: ${ }^{1}$ Partially supported by the Austrian Science Fund under grants P18716-N13 and S9103-N13.

