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Abstract

This report explores the combination of the Minimum Description Length (MDL) approach
and Sparse Markov Random Fields Appearance Models (SAMs). SAMs are a method to
locate a structure that is learnt from annotated training data in a new and unseen image.
However, to achieve this result it is necessary to provide the SAMs with manual annotations
of the images (landmarks) for a large set of training examples, which is a time consuming
and error-prone requirement. The goal of this work is to become independent from manual
annotations and to obtain the annotations automatically by using an MDL based approach.
We report experimental results for different types of data (synthetic data, 2D X-rays and
3D CTs) and the method was modified to reach the best possible results for each of them.
The resulting approach allows to construct SAMs in a fully automated fashion.
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Chapter 1

Introduction

This report documents the effort to combine two powerful principles: Min-
imum Description Length (MDL) based shape model building and Sparse
MRF Appearance Models (SAMs) [1]. The former approach was modified
and tested extensively to automatically build sparse shape models for med-
ical X-ray images. Based on these models, SAMs were used to locate the
structures in new (unknown) pictures.

1.1 Motivation

Automatically locating geometric structures in images is a challenge in com-
puter vision and at the same time important in medical science [2] Achieving
an automatic localization of anatomical structures in medical images provides
a crucial initialization step to segmentation methods like ASMs [3], AAMs
[4] or graph-cuts [5] [6].

Sparse MRF Appearance Models (SAMs; see Ch. 2.2) enable an auto-
matic mapping of a model learnt from a set of training images to a new,
unseen image. However, this process is based on a preassigned annotation of
training images from which a statistical model of shape and appearance is
built. The annotation consists of a selection of interest points - or landmarks
- (see Ch. 2.1) that are detected in each image. For a set of these inter-
est points correspondences have to be established across all training images,
or volumes. These points are called landmarks and allow for the consistent
identification of positions in all images (e.g. landmark number one always
marks the left index finger tip in each picture).

At this point a problem arises: Currently the annotation is done by manu-
ally clicking on landmarks (which is problematic and extensive in 3D; see Ch.
1.2), hence there is a need for an automatic generation of these annotations.
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1.2 Fundamental Concepts and Terms

Before describing the method in detail, it is necessary to explain a few fun-
damental concepts and terms.

Shapes and Landmarks. A shape is defined as a collection of correspond-
ing border points or the characteristic surface configuration of an object:
an outline or a contour [7]. It can further be seen as sets of landmarks.
Landmarks (LMs) are salient points of an object or structure. They can be
used as points of correspondence on each image (e.g. landmark number one
always marks the left index finger tip in each picture). According to [7] there
are three kinds of LMs:

• Anatomical LMs - points that have some biological meaning in organ-
isms and are marked by an expert (e.g. a doctor).

• Mathematical LMs - points that arise out of some mathematical or
geometrical calculation (e.g. extremum points).

• Pseudo-LMs - artificially created points along a border or between other
LMs.

Until recently, the state of the art for acquiring LMs for the training
of SAMs has been to manually place them on the pictures (i.e., anatomical
LMs)[1]. This procedure costs time and effort in 2D and the results are partly
subjective and therefore sub-optimal [8]. When expanding the dimension to
3D or even 4D (including time as fourth dimension) it becomes unfeasible
because of the circumstances to navigate within a 3D space in order to an-
notate volumes. It should also be kept in mind that annotations made by
human experts include the possibility of errors which make it even harder to
achieve a proper standard of reference that is used to evaluate the results of
medical image processing, and can introduce a significant amount of noise in
the resulting models.

Hypotheses and Models. A (point) hypothesis represents a single prob-
ability distribution or function [9], e.g. the polynomial 4x3 − 9x2 + x − 3
to sample a set of coordinate points. A model refers to a set of hypotheses,
e.g. the set of all polynomials of third-degree. Speaking of sampling points,
there are three ways of retrieving a model for a given data set. Consider the
three parts of Fig. 1.1: on the left side (Fig. 1.1(a)) the function does not re-
veal any information about the points so it does not fit the data points good
enough. In this case, the points are obviously sampled in a too simple way,
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which is described as underfitting. In contrast to this, Fig. 1.1(b) shows
an exact interpolation of the data points. Although in this specific exam-
ple the points are sampled perfectly, it will immediately become insufficient,
as soon as another data point is added lying clearly outside of the function
graph. This phenomenon is called overfitting. Finding a trade-off between
a too simple and too complex models leads to a much better description and
prediction of the data (see Fig. 1.1(c)).

(a) (b) (c)

Figure 1.1: Examples for (a) underfitting, (b) overfitting and (c) trade-off
polynomials to sample a dataset. The data points are not only taken from a
polynomial but also perturbed by noise. [9]

By combining the information from the annotations of the training images
a statistical model of shape and appearance is built. An ideal model has
several ideal properties: [10]

• Generalization: the model represents any instance of the object (im-
ages), not only those from the training process.

• Specificity: the model describes only valid instances of the object.

• Compactness: the variation in the model is described with as few pa-
rameters as possible.

The MDL principle (see Ch. 2.3) is an approach to implement these de-
mands. It finds regularities in data sets and thus compresses the data. See
[11] for an extensive explanation of this method. Having created a repre-
sentative model with help of the MDL principle, SAMs can be applied to
automatically locate anatomic structures in test images. This means that no
tedious, time-consuming and manual selection of interest points is necessary,
allowing to apply SAMs more efficiently to new modalities.

The remaining report is structured as follows: Ch. 2 presents the methods
that are used in this work. It describes different kinds of interest points
(Ch. 2.1), Sparse MRF Appearance Models (Ch. 2.2), the MDL principle

4



(Ch. 2.3) and finally Principal Component Analysis (Ch. 2.4). In Ch. 3 we
explain the implementation of these methods. The experiments including
their setup as well as results are given in Ch. 4 and the final conclusion can
be found in Ch. 5.
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Chapter 2

Methods

2.1 Interest Points

An interest point is a point in an image that can be described by a clear
mathematically definition, a particular position in the image or a surrounding
image structure. Only such interest points can be computed with a high
degree of reproducibility and are therefore locally and globally stable.

2.1.1 Symmetry Interest Points

In medical images there are various anatomical structures (like bones or veins)
that are of interest to medical experts and reveal a shape with a certain degree
of symmetry regarding at least one axis. This (local) symmetry cannot only
be found in normal X-ray images but also in 2D slices of a 3D data set (like
an MRI) [1].

Other interest points which are detected by popular approaches like the
Canny edge detector (which retrieves edges in images that the points are
taken from; introduced in [12]) and the Difference of Gaussians (DoG) are
used for edges or corner-like structures, but they do not deal with local
symmetry (a comparison between the Canny edge detector and symmetry
interest points can be seen in Fig. 2.1(a) and Fig. 2.1(b)).

To retrieve interest points of local symmetry, the Gradient Vector Flow
(GVF) field is used (for more details see [13]). It increases the capture range
of active contours and is even able to detect weak structures while preserving
a robustness to a high amount of noise in the image. The GVF of an image
I can either be computed from a binary edge map or directly from the gray
level image as GV F (I) = G = u+ i ∗ v, resulting in the complex matrix and
field G. The field magnitude |G| is largest in areas of high image gradient.
The field will point towards or away from the local symmetry center of the
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(a) (b)

Figure 2.1: Interest points retrieved by (a) Canny edge detector and (b)
symmetry interest points as local minima from GVF.

structure. Therefore the symmetry interest points are defined as the local
minima of |G| [1].

2.2 Sparse Markov Random Field Appear-

ance Models

Sparse Markov Random Field Appearance Models (SAMs) are an approach
for fast and reliable structure detection as well as segmentation in medical
images.

Segmentation approaches like Active Shape Models (ASMs), Active Ap-
pearance Models (AAMs), Active Features Models (AFMs), graph-cuts and
snakes require a reasonable initialization of the model search: For ASMs and
AAMs the images (or objects of interest) need to be overlapped, graph-cuts
require manually placed points inside and outside of the object of interest,
whereas snakes rely upon spatial constraints for a precise description of the
object of interest [1].

Markov Random Fields MRFs incorporate graphs with M nodes and
N fields or labels for each node. The nodes represent objects and the labels
provide associated qualities. The labels of two adjacent nodes are fully con-
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Figure 2.2: The MRF graph consisting of M = 4 objects with N = 3 labels
each. The sub-graph symbolized by thick lines is the goal which is equal to
the maximization of the sum of label and edge qualities.

nected by N2 edges, each of them being assigned a weight to encode quality.
To identify the adjacency of two objects, there is an additional graph A with
A edges, representing the adjacencies between objects. Using the MAX-SUM
problem solver, the goal can be achieved which is to select one label for each
object to maximize the sum of label and edge qualities which results in a
sub-graph (see Fig. 2.2).

In the MAX-SUM problem of second order a sum of bivariate functions
of discrete variables is maximized. The result of the MAX-SUM problem
is finding a configuration for a Gibbs distribution with maximal probability
which means the same as finding a maximum posterior configuration of an
MRF with discrete variables [1]. Additionally it permits to define several
labels while still keeping the processing time within reasonable bounds [1].
Apart from the MAX-SUM solver there are other efforts to solve the multi-
label problem for MRF, e.g. second order cone programming, sequential
tree-reweighted max-product message passing or belief propagation methods
[1]. However, none of them (including the MAX-SUM problem) solves the
problem exactly because it is NP-hard [1]. In the case of the graph being a
tree, the global optimum can be found – otherwise the MAX-SUM problem
takes several approximations into account to reach a possibly optimal solution
[1].

Sparse Appearance Models SAMs obtain information from images us-
ing local descriptors around interest points and along edges between these
points. There is no PCA model used in order to obviate the need for a large
number of training sets and the global character of PCA-based models. With
help of a Delaunay triangulation of the model’s interest points (symmetry in-
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(a) (b) (c)

Figure 2.3: Applying Sparse MRF Appearance Models to synthetic images.
(a) The selected model points including the connecting edges between adja-
cent points. (b) Building the MRF: the visualization during the computation
of statistical models (the edges’ lengths, relative angles and local descriptors).
(c) The resulting image, predicting and mapping the selected points to an
unseen image.

terest points, see Ch. 2.1.1), the shape model is constructed. In addition,
statistical models of the edges’ lengths, relative angles and local descriptors
are computed, which altogether result in models that are locally deformable
and rotation invariant [1].

In each of the n model images, M interest points are manually selected
describing the anatomical structure to be found. One model image is used to
compute the Delaunay triangulation of its M interest points, which results in
adjacencies of model points that generate or can be described by the graph
A. A solution S corresponds to a mapping of the M selected model points
(representing the objects of the MRF graph) to a subset of the N target
interest points (representing the labels) [1].

Constructing Sparse Random Markov Field Appearance Models
Using a given SAM and a target image, the MRF is applied to describe
the confidences that a model point or edge should be matched to a certain
interest point or edge in the target image [1]. Due to the fact that in this
case a maximization problem has to be solved, all confidences or qualities are
located within [−∞, 0]. The descriptor distances are normalized to having a
maximum of 0 and a median of −1, whereas the length and angle confidences
are in the interval [−1, 0] [1].

The quality of a (model point, target point)-match is equal to the negative
distance between the model point descriptor Dm and the local target descrip-
tor. To achieve all two-way distances between model and potential target it
is necessary to compute correspondences which result in the M ×N matrix
C. The edges’ qualities in the model are stored in E, where the quality of an
edge e between two labels ni, nj in E is computed by comparing its length
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le and relative angles βe1, βe2 to the corresponding Gaussian distributions of
the model edge (see [1] for more detail).

It is possible that in one location of a medical structure in the target
image no interest point can be found where the model would expect one.
Therefore it is important to include the chance of leaving out a model point
which is enabled by adding one artificial target interest (dummy) point [1].

2.3 Minimum Description Length

The MDL principle was first introduced by Jorma Rissanen in 1978 [14]. In
contrast to Bayesian inference which is formulated in a probabilistic frame-
work, the MDL principle can be viewed as purely data driven [15]. Another
closely related approach called Minimum Message Length (MML) was in-
troduced in 1968 by Wallace and Boulton and is based on making a priori
assumptions as well. MML had been misleadingly confused with MDL not
only once (for more details see [16]).

The idea of the MDL approach was to formalize Occam’s Razor which
basically states that the simpler the solution to a problem, the better it
is. It means that among a set of equally competing hypotheses explaining
a problem, the one with the fewest assumptions and requirements shall be
chosen. Therefore, interpreting the simplest solution as the one with the
shortest description, the best hypothesis is the most compressed one [15].
Setting compressing data equal to learning it is clear that the more the data
can be compressed, the more we learned about the data.

Occam’s Razor led to the following concept: the more regularities there
are in a data set, the more the data can be compressed and therefore de-
scribed by fewer symbols [9]. The length of the shortest possible description
of data is its Kolmogorov complexity [15]. In order to find the hypothesis
that compresses the data the most, one must choose a computer language
to write a program of shortest length which describes the data. The choice
of the computer language is not important because the shortest program in
either language varies only by a constant which can be disregarded in case of
sufficient long data. As it is shown in [9] no computer program can be found
that returns the shortest program which represents the data. Furthermore, in
practice there are only small data sets and consequently the constant factor
carries authority.

This ideal principle of MDL is not applicable in practice [9]. Rather
description methods should be used that are less expressive than general-
purpose computer languages [9] but limiting enough to describe the length of
the shortest representation of the data as well as general enough to compress
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as many regular sequences as possible.
An advantage of MDL is that when being used for model selection, it

avoids overfitting of the data. It provides a trade-off between too simple and
too complex models.

There are two versions of the practical MDL principle: the two-part code
and the one-part code. In the former version, to achieve the best hypothe-
sis Hi for describing the data D, the sum in Eq. (2.1) must be minimized,
where L(H) is the length of the hypothesis and L(D|H) is the length of the
description of the data when coded by the hypothesis.

L(H) + L(D|H) (2.1)

It is not enough to minimize only one summand, because when finding a
good fit (small L(D|H)) it is usually a complex hypothesis (with a large
L(H)), whereas a simple hypothesis (small L(H)) has a rather bad fit (large
L(D|H)) [9].

In the one-part code version of the MDL principle (also called refined
MDL in [9]), the aim is not to find a single hypothesis, but rather a full
model H (which means a set of hypotheses) for encoding the data. The
condition is not split in two parts, but only a single one-part code with
lengths L(D|H), where this codelength will also be small whenever there is
a hypothesis H ∈ H that fits the data well (small L(D|H)). In refined MDL
there is a second concept called parametric complexity COMP(H) which
indicates a model’s ability to fit random data [9]. Model selection based on
refined MDL is still a trade-off between the goodness of fit (described by

L(D|Ĥ), where Ĥ is the distribution in H which minimizes the codelength)
and the complexity term COMP(H).

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique for dimen-
sionality reduction that can be used in areas like face recognition and image
compression.

Considering a 3D scatterplot (as shown in Fig. 2.4(a)) with the data
X = (x y z) as an n×3-matrix. n is the number of points and x, y and z are
columns representing the coordinates x = (x1, ..., xn)T , y = (y1, ..., yn)T and
z = (z1, ..., zn)T . The first step is to normalize the data points x = xi−x with
i ∈ {1, ..., n} (similarly for y and z) where x is the mean of the x-coordinates
(y and z likewise). This guarantees that the scatterplot is centered at the
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(a)

(b)

Figure 2.4: 2.4(a) The normalized 3D scatterplot with the eigenvectors (blue
lines). 2.4(b) The resulting subspace when projecting the data onto the two
eigenvectors with the largest variance.
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point of origin. The next step is to calculate the covariance matrix c:

c =

 cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)


Having calculated the eigenvectors and eigenvalues of c, the rotated basis

F = (e1, ..., em) is constructed where ei (i ∈ {1, ...,m}) are the eigenvec-
tors sorted by the corresponding eigenvalue in descending order (in this case
m = 3 because there are 3 dimensions and therefore 3 eigenvectors; the
eigenvectors can also be seen in Fig. 2.4(a)). In case only the first p eigen-
vectors out of e1, ..., ep, ..., em (leaving out the last m− p ones with smallest
eigenvalues) are selected, the other dimensions are disregarded and the di-
mensionality of the data is therefore reduced. See Fig. 2.4(b) for an example
where the data points are projected onto the first two eigenvectors.

The MDL principle uses PCA to build a statistical model of shape vari-
ation. In order to achieve this model, all sets of landmarks (one set repre-
senting the salient landmarks of a picture) are aligned to exclude rotation,
translation and scaling variation. Then shape vectors are generated where
each vector includes the coordinates of the landmarks of a picture. After this
step PCA is performed on the shape vectors, resulting in a statistical shape
model. This shape model contains the mean shape as well as a set of modes
(the eigenvectors of the covariance matrix which are plausible deformations
of the shape).

PCA is also used in several other parts of medical image processing:
ASMs, AAMs, PCA-SIFT, structural tensor, etc. However, these are not
part of this project and therefore not explained any further.
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Chapter 3

Employing MDL-based
annotations for SAMs

This section deals with the concrete implementation of the MDL principle
as well as the SAMs approach. Sec.3.1 describes the implementation of the
interest points that are used in this work. The functionality of the MDL prin-
ciple is described in Sec.3.2, the application of models in SAMs is explained
in Sec.3.3.

3.1 Interest Points

During the progress of this project several different kinds of interest points
were needed to meet different demands. The main types were symmetry
interest points (Ch. 2.1.1) and points retrieved from the Canny edge detector
(Ch. 2.1.1).

Depending on the type of image, different types of interest points turned
out to be the best solution (see Tab. 3.1).

image type interest points
2D synthetic images Canny edge detector
2D hand X-ray images symmetry interest points
3D hand CT images symmetry interest points

Table 3.1: The different kinds of images and the best selection of landmarks
for them.
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3.2 MDL based Correspondences of Landmarks

The implementation of the MDL principle by [8] was used as starting point
in this project. It starts after the preparation of the images that delivers
the interest points for the images (for details see Ch. 3.3. In addition, a
local descriptor is computed for each landmark (e.g. SIFT, steerable filters).
Among all retrieved interest points (which will be treated as landmark can-
didates) m are selected out of one example image Ii (i ∈ 1, ..., n) and their
indices (referring to the actual coordinates) are stored in an m × n matrix
genome which includes m interest points’ indices for each of the n images.
A subsequent initial match finds the corresponding (or in this first step: the
closest) landmarks in all other images I1, ..., In.

After this initial step the optimization starts. n − 1 images are used
to build a model for shape as well as the local textures around each of the
landmarks. The shape model is constructed out of the current landmarks
in each image. This model is then fitted to the remaining image Ik and the
resulting deviation from the shape model is calculated. Each landmark is
replaced by the candidate point with the smallest cost, which emerges as a
combination of texture and shape costs. The shape costs are however not only
the distances to the shape model but also the distances to what the model
is able to reconstruct (e.g. considering a strong variation in one direction of
the shape model that is built out of n− 1 images: In this case it is “cheaper”
to choose candidate points out of Ik that differ within the same orientation).
According to [8] it is shown that although this is no brute force minimization
of the MDL criterion, the model is minimized anyway.

The optimization procedure runs until convergence or until a maximum
number of iterations is reached, yielding the best genome (the m×n-matrix,
including all m corresponding landmarks for each image Ii, i ∈ {1, ..., n}).

3.3 Using SAMs with the automatically ob-

tained models

In this project the Sparse MRF Appearance Model implementation by [1]
was used as a basis. First of all the parameters for the SAMs as well as
for the MDL approach are loaded from an external settings file. Then the
process continues by preparing all n images and computing interest points,
local descriptors as well as several more attributes for each image Ii. All
data is stored in a structure including the image data for all n images, the
calculated interest points, features for each point and other attributes for
each image Ii. Afterwards the results from the MDL step are loaded which
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are stored in an m×n matrix containing m corresponding interest points for
all n images. Having created a representative model with help of the MDL
principle, Sparse MRF Appearance models can be applied to automatically
locate anatomic structures in test images which means that no tedious, time-
consuming and manual selection of interest points is necessary.

In the original version each image was loaded and the user had to man-
ually select several landmarks on each one, paying attention to click on the
landmarks in the same order in each picture. This step was eliminated be-
cause the MDL principle already provides the corresponding landmarks for
all pictures. Then the graph representing the model points’ neighbourhoods
is computed as well as the adjacencies between the model points (nodes) and
angles between model edges (concatenating two model points) which results
in a Delaunay triangulation of the model points.

During the final step of the process a leave-one-out test with all training
images is run. During this evaluation n− 1 images are used to compute the
SAMs and another one that will be treated as unseen and therefore target
image It. The trained knowledge is now mapped to the unknown image (see.
Fig 2.3). The result of the SAMs is a set of corresponding interest points for
the target image It.
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Chapter 4

Experiments

For evaluation three different kinds of data were used: synthetic 2D images,
X-rays of human hands and CTs of human hands. The MDL principle was
evaluated for both 2D datasets using a set of images and interest points which
represented the ground truth (these images were annotated manually). The
median and mean error of the distance of resulting landmarks to ground
truth landmarks were used to measure the performance of the approach for
2D objects.

In addition to the error rates, the results were also visualized. At this
point it is important to compare the initialization with the optimization
result. In the images after the initizalization step, the landmarks result
from the computation of the shortest distances, i.e. the correspondence to
a point in the first image is initialized by choosing the closest point in the
second image. Descriptors or other features are not regarded in this case,
therefore the landmarks seem to be arranged similarly in all images (regarding
the distances between the landmarks), but do not cover the same areas or
objects. The visualization of the MDL result (after the optimization) reveals
corresponding landmarks, i. e. landmarks that represent the same area in all
pictures.

When assessing the initialization and optimization result for the 3D dataset
- where currently no expert ground truth is available - it is necessary to de-
cide whether or not the images seem plausible. Holes, implausible topology
changes, and distorted structures are an indication of erroneous correspon-
dences.
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4.1 Setup

4.1.1 Synthetic 2D Images

20 synthetic images were created showing a rectangle which grows in width
from image 1 to image 20 (see Fig. 6.2). These simple images were used to
get acquainted with the MDL procedure and the parameters governing its
behavior. It was tested whether MDL is able to find reasonable landmarks,
i. e. whether the landmarks representing corners are consistently selected in
all images.

The Canny edge detector was applied to the images to retrieve interest
points along edges and corners and MDL was used to find correspondences
between these points. The results of the MDL approach for this dataset
was not used for the SAMs because it was rather meant to test the MDL
behaviour.

4.1.2 Hand X-Rays

20 X-ray images of human hands were used to evaluate the MDL results
and SAM behavior. The images had a size of about 300 × 500 pixels each.
To extend the data set, not only 10 X-rays of human left hands were used
but also 10 X-rays of human right hands were mirrored and treated as left
hands. The images captured only healthy hands. In each image around 300
symmetry interest points were found.

Initial tests showed that the MDL principle works best with about 20
to 30 selected points equally distributed over each image. The hand images
revealed much better results when having selected symmetry interest points
instead of points retrieved by the Canny edge detector because symmetry
interest points Therefore the former are used for tests and experiments with
these kind of images.

The goal of the MDL step was to find 30 corresponding points in each of
the 20 images. To evaluate the results, the mean and median deviation of
the model points to ground truth data was calculated. The MDL result was
used for the SAMs to replace the initial step of manually selecting landmarks
out of a set of interest points. SAMs were then applied to use the model
points retrieved by the MDL procedure and find them in a new and unseen
target image. Finally the mean and median error between the ground truth
and by the SAMs retrieved landmarks was calculated.
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4.1.3 Hand CT images

The third and most complex dataset consisted of 6 CT volumes of human
hands. Symmetry interest points were used as model points in this case. For
each volume between 1650 and 1850 symmetry interest points were found.
Several experiments showed that good MDL results could be achieved by
using only 25 landmarks. Since these volumes required a lot of memory, it
was necessary to reduce the original sizes of the volumes (see Tab.4.1) and
run this series of tests on a more powerful computer. A machine with a
memory capacity of 16 GB finally enabled the MDL procedure to be run.

volume no. original size modified size
1 384× 384× 303 76× 185× 103
2 384× 384× 309 76× 185× 98
3 384× 384× 296 76× 185× 96
4 384× 384× 387 76× 192× 113
5 384× 384× 340 76× 185× 108
6 384× 384× 326 76× 185× 117

Table 4.1: The 6 CT hand volumes and their original as well as modified
size.

4.2 Results

For each dataset a search over the parameter space was conducted to achieve
the best outcome. In addition, several tests were made to find the best
interest point detector for each of the datasets.

4.2.1 2D synthetic images

Iteration mean median
(init) 0 5.09 4.96

200 2.44 0.05

Table 4.2: The calculated mean and median landmark error for the iteration
and the optimization for 4 manually selected landmarks on the synthetic 2D
dataset.

On 2D synthetic images interest points retrieved from the result of the
Canny edge detector works best. The MDL results for a selection of 4 interest
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Figure 4.1: The error rates for the MDL procedure on the synthetic 2D
data at the initialization (iteration 0) and after the optimization (iteration
200). The blue bars represent the mean landmark error, whereas the red bars
represent the median landmark error.
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points (on one corner each) after only 200 iterations can be seen in Tab. 4.2
and is also illustrated in Fig. 4.1. The initialization is visualized in Fig. 6.1
and a plot of the MDL result can be found in Fig. 6.2). The four selected
corner points are found in all images except from 4 images in the last row.

Correctly retrieving the four corner points was a challenge because in
the initial phase of the project, the parameters for the optimization progress
were not set accordingly to the shape and texture weight. After a series
of experiments, the best results could be achieved when setting the texture
weight to 10 and the shape weight to 1 because then the features were put
more emphasis on. That is especially important when dealing with corners!

4.2.2 Hand X-ray images

When dealing with real 2D images (like X-ray images of human hands),
symmetry interest points are the best choice to produce good results because
they preserve the structure of the objects in the images. Besides, the selection
of interest points is also important because in this case the MDL approach
works best for a selection of 20 to 30 points equally distributed over each
image.

Two experiments were conducted to demonstrate the differences within
the MDL optimization process. Both of them used a set of 20 X-ray hand
images with a selection of 30 landmarks and stopped after 10,000 iterations.

Random selection of initial landmarks In the first experiment the
landmarks with which the MDL is initialized were chosen randomly. This
initialization can be seen in Fig. 4.2 (a). After the initialization step the
mean landmark error was 22.90 and the median landmark error was 19.821
(the visualization of the initialization step can be seen in Fig. 4.2). Then the
optimization method was started: The corresponding error rates can be seen
in Tab. 4.3 and are also visualized in Fig.4.6. The initialization step took
8 seconds, optimization procedure for 10,000 steps took 286 seconds. The
visualization of three chosen images can be found in Fig. 4.3.

Manual selection of initial landmarks In the other experiment the ini-
tial landmarks were selected manually. This guaranteed a better distribution
of landmarks over the whole image (see Fig. 4.4 (a)). After the manual se-
lection, the optimization was performed as with the randomly selected land-
marks. A visualization of 3 images after the initialization step can be seen in
Fig. 4.4 with a mean landmark error of 22.80 and a median landmark error
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(a) (b) (c)

Figure 4.2: The initialization of the MDL dataset for a random selection of
landmarks. Images 1 (a), 2 (b) and 15 (c) are shown. Note how the landmarks
cover different sections of the hand X-ray, especially the four landmarks in
image (c) outside of the hand object.

(a) (b) (c)

Figure 4.3: The visualization of the (initially randomly selected) correspond-
ing landmarks after 10,000 iterations of the MDL optimization. Images 1 (a),
2 (b) and 15 (c) are shown. Note the correspondences between the points of
the three images to see the improvement.
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of 20.83. The initialization procedure took 277 seconds, the optimization for
10,000 steps procedure took 373 seconds.

(a) (b) (c)

Figure 4.4: The initialization of the MDL dataset for a manual selection of
landmarks. The landmarks were selected in image 1. Images 1 (a), 2 (b)
and 15 (c) are shown. Note how the landmarks cover different sections of the
hand X-ray, especially the landmark that is supposed to be on the middle
finger in image (c)

The MDL result after 10,000 steps of the optimization is shown in Fig. 4.5.
The error rates can be found in Tab. 4.3 or Fig. 4.6. As you can see, both
error rates for manually and randomly selected landmarks in the initialization
step of the MDL procedure are decreasing and close to each other.

The SAMs are then tested with both of the MDL results. First the MDL
result for the manual selection of landmarks is used to build the SAMs.
During the subsequent leave-one-out-test the error rates are computed for
each image by mapping the image that is currently regarded as target image
to the others. The resulting mean and median landmark error for this match
is then computed and stored for this leave-one-out-test. The error rates are
illustrated in Fig. 4.7 (a). The visualization of the SAM result can be seen
in Fig. 4.9.

The other experiment evaluated the SAMs’ success when using the MDL
result of randomly selected landmarks. The error rates for the leave-one-out-
tests are given in Fig. 4.7 (b) and are computed the same way as above. A
visualization of the SAM result is shown in Fig. 4.8.

As you can see in Fig. 4.7, the SAMs that are build out of the MDL
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(a) (b) (c)

Figure 4.5: The visualization of the (initially manually selected) correspond-
ing landmarks after 10,000 iterations of the MDL optimization. Images 1 (a),
2 (b) and 15 (c) are shown. Note the correspondences between the points of
the three images to see the improvement.

Iteration
manual selection auto selection
mean median mean median

(init) 0 22.80 20.83 22.90 19.82
1 22.78 20.74 23.24 20.44

1000 11.40 8.17 11.28 9.37
2000 10.62 7.45 10.03 7.77
3000 10.67 7.66 13.19 12.03
4000 10.67 7.15 10.06 7.68
5000 12.80 8.20 10.77 9.00
6000 12.46 7.61 9.63 7.15
7000 11.70 6.72 10.45 7.38
8000 9.49 7.58 11.28 7.88
9000 9.83 7.52 10.09 7.00

10000 9.01 6.60 10.18 7.31

Table 4.3: Hand X-ray images: the calculated mean and median landmark
error during the iteration steps of the optimization for 30 randomly and
manually selected landmarks.

result with manual selected landmarks showed a better results with only two
outliers (picture 5 and 20). The other experiment with the MDL result of
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(a)

(b)

Figure 4.6: The error rates for the MDL procedure. Iteration 0 symbolizes the
errors after the initialization. (a) shows the calculated mean landmark error
for the manual (red line) and random (blue line) selection of landmarks. (b)
illustrates the median landmark error for the manual (red line) and random
(blue line) selection of landmarks.
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(a)

(b)

Figure 4.7: The calculated error rates while mapping the knowledge retrieved
from the SAMs to each of the images. The blue bars represent the mean
landmark error, whereas the red bars represent the median landmark error.
(a) The error rates for the SAMs built out of the MDL result for manually
selected landmarks and (b) for randomly selected landmarks.
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randomly selected landmarks as basis for the SAMs had three outliers with
a mean landmark error greater than 30 (picture 10, 12 and 18) and another
enormous outlier (picture 15) which caused the mean landmark error for this
leave-one-out-test to boost to 150.

(a) (b) (c)

Figure 4.8: The result of three leave-one-out-tests. The knowledge computed
by SAMs that are built out of the MDL result for 30 randomly selected
landmarks is mapped to image 1 (a), image 2 (b) and image 15 (c). Note the
high amount of correctly placed corresponding landmarks.

As you can see in Tab. 4.3, the error rates for both random and manual
selections of landmarks are decreasing and close to each other. As a result,
the manual selection of landmarks did not show significant improvements
apart from 2 more outliers compared to the random selection.

4.2.3 Hand CT volumes

Final tests with the MDL procedure on the CT hand volumes showed similar
results for a random selection of 25 or 50 landmarks (the total amount of
symmetry interest points varied between 1650 and 1850 retrieved in each
volume). Due to memory capacity a restriction to 25 landmarks was selected.
A manual selection of landmarks was not tested because no ground truth
data, i.e. volumes that are manually annotated by experts was available.
Writing a tool to solve this problem is out of the scope of this project. Screen
shots of the 6 original volumes can be found in Fig. 6.15 and Fig. 6.16.

To evaluate the MDL results volume 1 was mapped to each of the other
volumes and afterwards visually inspected. It was not possible to compute
error rates because no ground truth data was available.
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(a) (b) (c)

Figure 4.9: The result of three leave-one-out-tests. The knowledge computed
by SAMs that are built out of the MDL result for 30 manually selected
landmarks is mapped to image 1 (a), image 2 (b) and image 15 (c). Note
the high similarity between (a) and (b), whereas in (c) there are some more
differences which results in the according error rates (see Fig. 4.7).

As you can see in Fig. 6.17 the MDL initialization is far away from an
optimum result because of the holes (like in Fig. 6.17(c) or Fig. 6.17(g)).
In contrast to this, the result of the MDL procedure after 10,000 iterations
shows a smooth surface (e.g. see Fig. 6.18(c) or Fig. 6.18(g)) that bears a
high resemblance to the original volume 1 (see Fig. 6.15(a) and Fig. 6.15(b)).

Unfortunately, several experiments with the SAMs revealed a huge prob-
lem: The 3D CT hand volumes (i.e. the number of interest points in each
volume, the number of model landmarks and the corresponding number of
edges between them) are too complex for the MAXSUM-solver. Even re-
ducing the selection of landmarks to 25 per volume only yielded degenerate
results. To compute the edges, adjacencies, etc. out of 5 images and map it
to the sixth one took more than 24hours. In addition, the points that are
computed by the SAMs collapsed to only 5 to 6 unique points although this
should be prohibited by model costs. Consequently, future work will concen-
trate on the SAMs for real 3D data and improve this approach to achieve
useful and valuable outcomes.
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Chapter 5

Conclusion and Outlook

The MDL and SAM principles are two powerful tools in medical image pro-
cessing. Having created a representative model with help of the MDL prin-
ciple, Sparse MRF Appearance models can be applied to automatically lo-
cate anatomic structures in test images which means that no tedious, time-
consuming and manual selection of interest points is necessary. Therefore
the aim of this project was to combine both technologies to quickly achieve
representative models of 2D and 3D images and retrieve the same structures
in new and unseen images based on the a priori knowledge.

Evaluation of experiments with three different kinds of data (two 2D and
a 3D dataset) showed excellent results of the MDL principle with low and
thus acceptable error rates. Using the MDL results for SAMs also presented
successful results for 2D datasets.

However, further research will focus on 3D volumes because the SAMs did
not deliver useful results. This work was the first approach to apply SAMs to
real 3D datasets. It will also be necessary to develop an evaluation framework
for real 3D volumes to further improve the hitherto existing system.
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Chapter 6

Appendix

This Chapter includes the complete results of all experiments. Descriptions
are given below each image.
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Figure 6.1: 20 synthetic images with 4 manually selected landmarks (as a
selection of all points computed by the Canny edge detector) after the ini-
tialization (before the optimization starts). The 4 landmarks were selected
in image number 1 as corner points.
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Figure 6.2: The MDL result of 20 synthetic images. The corresponding
landmarks are marked as red dots in each of the 20 synthetic images. The
optimization stopped after 200 iterations. The according error rates can be
found in Tab. 4.2

32



Figure 6.3: The initial (random) selection of 30 landmarks in image 1.The
red dots symbolize the selected ones, the blue dots represent all retrieved
symmetry interest points.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.4: MDL-initialization of 20 X-ray images of human hands. The red
dots symbolize the selected landmarks.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.5: MDL result of 20 X-ray images of human hands after 10,000
iterations for a random selection of 30 landmarks. The red dots symbolize
the corresponding landmarks, the blue dots represent all retrieved symmetry
interest points.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: SAM result of X-ray images no. 1-6 of human hands with the
MDL model as starting point. The red dots symbolize the corresponding
landmarks.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: SAM result of X-ray images no. 7-12 of human hands with the
MDL model as starting point. The red dots symbolize the corresponding
landmarks.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.8: SAM result of X-ray images no. 13-20 of human hands with the
MDL model as starting point. The red dots symbolize the corresponding
landmarks, the blue dots represent all retrieved symmetry interest points.
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Figure 6.9: The initial (manual) selection of 30 landmarks chosen in image 1.
The red dots symbolize the selected ones, the blue dots represent all retrieved
symmetry interest points.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.10: MDL-initialization of 20 X-ray images of human hands with
a manual selection of 30 landmarks. The red dots symbolize the selected
landmarks, the blue dots represent all retrieved symmetry interest points.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.11: MDL result of 20 X-ray images of human hands after 10,000
iterations for a manual selection of 30 landmarks. The red dots symbolize
the corresponding landmarks, the blue dots represent all retrieved symmetry
interest points.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: SAM result of X-ray images no. 1-6 of human hands with the
MDL model as starting point. The red dots symbolize the corresponding
landmarks.
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: SAM result of X-ray images no. 7-12 of human hands with the
MDL model as starting point. The red dots symbolize the corresponding
landmarks.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.14: SAM result of X-ray images no. 13-20 of human hands with
the MDL model as starting point. The red dots symbolize the corresponding
landmarks.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: The original 3D Hand CTs number 1 to 3 with front and back
view each visualized with OSIRIX [17]). a, b: volume 1. c, d: volume 2. e,
f: volume 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: The original 3D Hand CTs number 4 to 6 with front and back
view each. a, b: volume 1. c, d: volume 2. e, f: volume 3.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.17: The initialization of the 3D Hand CTs before the optimization
process. 25 landmarks were selected out of about 1600 interest points). Vol-
ume 1 was mapped to volume 2 (a, b), volume 3 (c, d), volume 4 (e, f),
volume 5 (g, h) and volume 6 (i, j).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.18: The results of the MDL procedure for the 3D Hand CTs after
10000 iterations. 25 landmarks were selected out of about 1600 interest
points. Volume 1 was mapped to volume 2 (a, b), volume 3 (c, d), volume 4
(e, f), volume 5 (g, h) and volume 6 (i, j).
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