
PRIP-TR-122
Efficient Computation of Persistent

Homology for Cubical Data
Hubert Wagner, Chao Chen,

Erald Vuçini

Institute of
Computer Graphics and

Algorithms

Pattern
Recognition &
Image
Processing

Group

Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms
Vienna University of Technology
Favoritenstr. 9/1863, 4 Stock
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392

E-mail:
hubert.wagner@ii.uj.edu.pl
chao.chen@ist.ac.at
vucini@prip.tuwien.ac.at

URL: http://www.prip.tuwien.ac.at/

PRIP-TR-122 December 10, 2010

Efficient Computation of Persistent Homology
for Cubical Data

Hubert Wagner, Chao Chen, Erald Vuçini

Abstract

In this paper we present an efficient framework for computation of per-
sistent homology of cubical data in arbitrary dimensions. An existing
algorithm using simplicial complexes is adapted to the setting of cubi-
cal complexes. The proposed approach enables efficient application of
persistent homology in domains where the data is naturally given in a
cubical form. By avoiding triangulation of the data, we significantly re-
duce the size of the complex. We also present a data-structure designed
to compactly store and quickly manipulate cubical complexes. By means
of numerical experiments, we show high speed and memory efficiency of
our approach. We compare our framework to other available implemen-
tations, showing its superiority. Finally, we report persistent homology
results for selected 3D and 4D data sets.

1 Introduction

Persistent homology [10, 11] has drawn much attention in visualization and
data analysis, mainly due to the fact that it extracts topological information
that is resilient to noise. This is especially important in application areas,
where data typically comes from measurements which are inherently inexact.
Although direct application of persistent homology is still at an early stage,
closely related concepts like Size functions [5], contour trees [3, 7], Reeb
graphs [24] and Morse-Smale complexes [13] have been successfully used.

The under-usage of persistence in applications is largely due to its high
computational cost. The standard algorithm [10] takes cubic running time,
which can be prohibitive even for small size data (e.g., 64 × 64 × 64). In
addition to the high time complexity, there are two further issues: (1) the
memory consumption of the currently available implementations, even for
small data sizes, is very large and hence prohibitive for commodity computers,
and (2) the focus of several applications is in data of higher dimensions, e.g.,
4D, 5D or higher. Few implementations for general dimension are available
and the existing ones do not scale well with the increase of dimensions, hence
introducing larger computational times and memory inefficiency.

In this paper, we present an efficient framework that computes persistent
homology exactly1. To our knowledge, this is the very first implementa-
tion that could handle large, high dimensional data, in reasonable time and
memory. We focus on uniformly/regularly sampled data which is common
in visualization and data analysis, i.e. image data consisting of pixels (2D
images), voxels (3D scans, simulations), or their higher-dimensional analogs,
e.g., 4D time-varying data.

In this work, we use the name ’cubical’ for such data.
We depart from the standard method which involves triangulating the

space, and computing persistent homology of the resulting simplicial complex
[10, 11]. We use cubical complexes [14], which do not require subdivision of
the input. The advantage is twofold. First, the size of the complexes is
significantly reduced, especially for high dimensional data (see Section 5).
Second, cubical complexes allow the usage of more compact data-structures.

The standard persistence algorithm requires the computation of a sorted
boundary matrix. This step can be a significant bottleneck, especially in

1We emphasize that our work focuses on computing persistence exactly. There are
approximation methods which trade accuracy for efficiency. See Section 2.

1

terms of memory consumption. In this work we provide an efficient and
compact algorithm for this step, using techniques from (non-persistence) cu-
bical homology [14] (see Section 4).

Finally, in Section 7, we present experimental results. Comparison with
existing packages shows significant efficiency improvement. We also explore
how our method scales with respect to data size and dimension. In conclu-
sion, our framework can handle data of large size and high dimension, and
therefore, makes the persistence computation of cubical data more feasible.

2 Related Work

The first algorithm for computing persistence [11] has cubic running time (in
the complex size, which is larger than input size). Morozov [20] formulated a
worst case scenario for which the persistence algorithm requires cubic time.
When focusing on 0-dimensional homology, union-find data structures can
be used to compute persistence in time O(nα(n)) [10], where α is the inverse
of the Ackermann functions and n is input size. For practical applications,
this approach requires linear time . Milosavljevic et al. [18] compute persis-
tent homology in matrix multiplication time O(nω) where the currently best
estimation of ω is 2.376. Although such algorithm has a better theoretical
complexity, it is unclear whether it is better than the standard persistent
algorithm in a real implementation.

In terms of implementation, Morozov [19] provides a C++ implemen-
tation for standard persistence algorithm. Kerber and Chen [16] devised
a technique which, in practice, significantly improves the matrix-reduction
part of this algorithm. We build upon their work, to improve the overall
performance of the persistence algorithm.

The application of cubical homology is very straightforward in the areas
of image processing and visualization, where cubical data is the typical in-
put. Non-persistent cubical homology has found practical applications in a
number of cases [21, 22].A few attempts of cubical persistence computations
have been made recently [15, 25]. They do not, however, tackle the problem
of performance. In [25], experiments with datasets containing several thou-
sands of cubes are reported. In comparison, real world applications require
processing of data in the range of millions or billions of cubes.

Recently, Mrozek and Wanner [21] showed that cubical persistent homol-
ogy can be used for real-world data. A detailed performance summary is

2

given for 2D and 3D images. One downside of this approach is the depen-
dency on the number of unique values of the image. When such number is
close to size of the input data, the complexity is at least quadratic. In Section
7, we provide comparison results of our method with this algorithm.

We must differentiate between two main types of persistence computa-
tions: exact and approximative (where the persistence is calculated approx-
imately). While we focus on the first type, approximation is less computa-
tionally intensive, and thus is important for large data. Bendich et al. [4]
uses octrees to approximate the input. A simplicial complex of small size is
then used to complete persistence computation. When approximative results
are satisfactory, this approach can be used to efficiently handle large cubical
datasets.

3 Theoretical Background

Simplicial and cubical complexes. In computational topology, simpli-
cial complexes are frequently used to describe topological spaces. A simplicial
complex consists of simplices like vertices, edges and triangles. In general, a
d-simplex is the convex hull of d + 1 points. The convex hull of any subset
of these d+1 points is a face of this d-simplex. A collection of simplices, K,
is a simplicial complex if: 1) For any simplex in K, all its faces also belong
to K, and 2) for any two simplices in K, their intersection is either empty,
or a common face of them.

(a) (b) (c) (d)

Figure 1: Cubical complex triangulations: a) a 2D cubical complex, and b)
its triangulation, c) a 3D cubical complex, and d) its triangulation (only
simplices, which contain V0 are drawn).

Next, we define cubical complexes. An elementary interval is defined as
a unit interval [k, k + 1], or a degenerate interval [k, k]. For a d-dimensional

3

space, a cube is a product of d elementary intervals I:
∏d

i=1 Ii. The number
of non-degenerate intervals in such product is the dimension of this cube.
0-cubes, 1-cubes, 2-cubes and 3-cubes are vertices, edges, squares and 3D
cubes (voxels) respectively. Given two cubes: a, b ⊆ Rd, a is a face of b if
and only if a ⊆ b. A cubical complex of dimension d is a collection of cubes
of dimension at most d. Similarly to the definition of a simplicial complex,
it must be closed under taking faces and intersections.

In this paper, we will use cubical complexes to describe the image. In Fig-
ure 1 we show 2-dimensional and 3-dimensional cubical complexes, describing
a 2D image of size 3× 3 and a 3D image of size 3× 3× 3. The corresponding
simplicial complex representations are also shown. We use one specific trian-
gulation, namely, the Freudenthal triangulation [12, 17]. Such triangulation
is easy to extend to general dimension.

Boundary matrix. For any d-dimensional cell (that is: simplex or
cube), its boundary is the set of its (d − 1)-dimensional faces. This extends
linearly to the boundary of a set of d-cells, namely, a d-chain. In specific, the
boundary of a set of cells is the modulo 2 sum of the boundaries of each of its
element. In general, if we specify a unique index for each simplex, a d-chain
corresponds to a vector in Znd

2 , where nd is the number of d-dimensional cells
in the complex. Furthermore, the d-dimensional boundary operator can be
written as a nd−1 × nd binary matrix whose columns are the boundaries of
d-simplices.

Persistent homology. We review persistent homology [10, 11], focusing
on Z2 homology [23].

Given a topological space X and a filter function f : X → R, persistent
homology studies homological changes of the sublevel sets, Xt = f−1(−∞, t].
The algorithm captures the birth and death times of homology classes of the
sublevel set as it grows from X−∞ to X+∞, e.g., components as 0-dimensional
homology classes, tunnels as 1-dimensional classes, voids as 2-dimensional
classes, and so on. By birth, we mean a homology class comes into being; by
death, we mean it either becomes trivial or becomes identical to some other
class born earlier. The persistence, or lifetime of a class, is the difference
between the death and birth times. Homology classes with larger persistence
reveal information about the global structure of the space X, as described by
the function f .

Persistence could be visualized in different ways. One well accepted idea
is the persistence diagram [8], which is a set of points in two dimensional

4

plane, each corresponding to a persistence homology class. The coordinates
of such point is the birth and death time of the class.

An important justification of the usage of persistence is the stability the-
orem [8]. Cohen-Steiner et al. [8] prove that for any two filter functions f
and g, the difference of their persistence is always upperbounded by the L∞

norm of their distance:

∥f − g∥∞ := max
x∈X
|f(x)− g(x)|.

This guarantees that persistence can be used as a signature. Whenever two
persistence outputs are different, we know that the functions are definitely
different.

In our framework, for 2D images we assume 4-connectivity. In general,
for d-dimensional cubical data, we use 2d-connectivity.

Persistence computation. Edelsbrunner et al. [11] devised an
algorithm to compute persistent homology, which works in cubic time (in
the size of complex). It requires preprocessing of the data (also see Figure
3). In case of images, function f is defined on all pixels/voxels. First, these
values are interpreted as values of vertices of a complex. Next, we compute a
filtration of the complex and generate sorted boundary matrix. This matrix
is the input to the reduction algorithm.

Filtration can be described as adding cells with increasing values to a
complex, one by one. To achieve this, a filtration algorithm extends the
function to all cells of the complex. In specific, each cell takes the maximum
value of its vertices. Then, all cells are sorted in ascending order according
to the function value, so that each cell is added to the filtration after all of
its faces. Such a sequence of cells is called a lower-star filtration. Having
calculated the ordering of cells, a sorted boundary matrix can be generated.

Data Build

Complex

Matrix

Reduction
Output

Persistent Homology Workflow in a Nutshell

Complex
Sorted

Boundary

Matrix

Generate Filtration

 &

Boundary Matrix

Figure 2: A workflow of the persistent homology computation.

5

In the reduction step, the algorithm performs column reductions on the
sorted boundary matrix from left to right. Each new column is reduced by
addition with the already reduced columns, until its lowest nonzero entry is
as high as possible. The reduced matrix encodes all the persistent homology
information.

4 Efficient Filtration Algorithm

The filtration-building is one of the main bottlenecks of the persistence algo-
rithm. A straightforward approach would choose to store the boundary re-
lationship between cells and their faces. In this section, we describe the first
major contribution of the paper, a new algorithm for the filtration-building
step. In specific, we explore the regular structure of cubical complex and
adapt a compact data structure which has shown its power in non-persistent
cubical homology.

Cubical complex representation. We first describe CubeMap, a com-
pact representation of cubical complexes. To the best of our knowledge,
similar structure was first introduced in CAPD library [1] for non-persistent
cubical homology.

For an example 2D image with 5 × 5 pixels see Figure 3. Due to the
regular structure, relationship between cells can be read immediately from
their coordinates. We can store the necessary information (i.e. order in the
filtration, function value) for each cell in a 9× 9 array (Figure 3(c)). We can
immediately get the dimension of any cell (whether it is a vertex, edge, or
square), as well as its faces and cofaces, namely, cells of whom it is a face.
We do this by checking coordinates modulo 2. To explain this fact, we recall
that we defined cubes as products of intervals. Even coordinates correspond
to degenerate intervals of a cube.

The above-mentioned properties generalize for arbitrary dimensions. This
due to the inductive construction of cubical complexes, related to cubes being
products of intervals.

Let us consider input data of dimension d and size wd, where w is the
number of vertices in each dimension. We store information attached to cells
in a d-dimensional array with (2w− 1)d-elements. This array is composed of
overlapping copies of arrays of size 3d. We call such an array the CubeMap.

The major advantage of the proposed data-structure is the improved
memory efficiency. Boundary relations are implicitly encoded in the coor-

6

(a) (b) (c)

Figure 3: 3(a) Cubical complex built over a gray-scale 2D image with 5× 5
pixels. 3(b) The cubical complex itself. 3(c) the corresponding CubeMap,
all informations for filtration-building are encoded in a 9× 9 array.

5 3

2

5

3

2

5 5

1

(a)

V(0) E(0) V(1)

V(3) V(2)

E(2) S(0) E(1)

E(3)

(b)

Figure 4: Left: Values of f assigned to vertices and extended to all cubes.
Right: Cells are assigned indices in the filtration. These indices are separate
for each dimension.

dinates of cells. The coordinates itself are also implicit. Furthermore, we can
randomly access each cell and quickly locate its boundaries. See Section 6
for further details and Section 7 for an experimental justification.

Filtration building. Let us now present an efficient algorithm to compute
a filtration of a cubical complex induced by a given function f (see Algorithm
1). It uses the data-structure in this section. Specifically, we use CubeMap
to store additional information for each cell (function value, filtration order).
The outcome of this algorithm is a sorted boundary matrix, being the input
of the reduction step. Since in case of cubical data, boundary matrices have
only O(d) non-zero elements per column, sparse representations are typically
used.

7

The intuition behind the algorithm is that when we iterate through all
vertices in descending order, we know that the vertices’ cofaces, which were
not added to the filtration, belong to their lower-stars, and can be added to
the filtration. We cannot build the boundary matrix in the same step, since
the indices of the adjacent cells might be not yet computed. Do note that on
line 5 filtration indices are assigned from higher to lower. Figure 4 illustrates
the algorithm. Exploiting the properties of cubical complexes makes this
algorithm efficient (refer to section 6 for details).

Algorithm 1 Computing filtration and sorted boundary matrix

Input: function f , given on vertices of a cubical complex K
Output: sorted boundary matrix, extension of function f to all cells of K
1: sort vertices of K by values of f (descending)
2: for each vertex Vi in sorted order do
3: for each cube Cj with Vi as one of its vertices do
4: if Cj was not assigned filtration index then
5: assign next filtration index to Cj

6: f(Cj) ← f(Vi).
7: for each cube Ci of K do
8: row ← filtration index of Ci

9: for each cube Bj in boundary of Ci do
10: col ← filtration index of Bj

11: boundary matrix(row, col) ← 1

5 Sizes of Complexes

When switching from simplicial complex to cubical complex, an obvious ef-
ficiency improvement, in both time and memory, is that the complex size is
significantly reduced. We should emphasize that the complexity of the stan-
dard reduction algorithm is given in the size of the complex, not the number
of vertices. Therefore, reducing the size of complex has a significant impact.

In this section, we analyze how the ratio of the sizes of the simplicial and
cubical complexes increases with regard to the data dimension. For simplicity
we disregard boundary effects, assuming that the number of cells lying on the
boundary (or frontier) is insignificant, if complexes are large. Such analysis
provides a theoretical ground for our approach. In Theorem 5.1 we show that

8

such ratio increases exponentially with the dimension of the data. This is a
strong motivation for the usage of cubical approaches, such as ours.

In Figure 1, we show examples of cubical complexes and their triangula-
tions. The ratio between number of cofaces of vertex V0 in simplicial complex
and in cubical complex is (6 : 4) and (26 : 8) for 2D, 3D complexes, respec-
tively. This is also the ratio of the size of simplicial and cubical complex,
since these selected cells serve as generators of their respective complexes.

For a d-dimensional data, we denote the concerned ratio as ρd = Sd/Cd,
where Cd and Sd are the sizes of a cubical complex and its triangulation.
It is nontrivial to give an exact formula of ρd, since the minimal-cardinality
cube-triangulation is an open problem [26]. By τd we denote a number of
d-simplices in a triangulation of a d-cube. Here we give a lower-bound of ρd
for d ≤ 7. The following theorem holds:

Theorem 5.1 When d ≤ 7, ρd increases at least exponentially to d.

Proof. We give a lower bound for this ratio by triangulating all cubes of
a cubical complex separately in each dimension. Triangulating a d-cube,
we count only the resulting d-simplices, and their (d− 1)-dimensional inter-
sections. Finally, taking into account the fact that certain simplices will
be common faces of multiple higher-dimensional simplices, we get ρd ≥∑d

i=0 (
d
i)τi+

∑d−1
i=0 (

d
i+1)(τi+1−1)

2d
. In Table 1 we present the values for different di-

mensions. We distinguish two cases: optimal triangulation [26] and Freuden-
thal, using d! simplices. It is clear that in both cases the lower-bound in-
creases exponentially with regard to the data dimension.

Table 1: Lower-bound of the size ratio ρd.
Dimension (d) 1 2 3 4 5 6 7
τd (optimal) 1 2 5 16 67 308 1493
τ ′d (Freudenthal) 1 2 6 24 120 720 5040

ρd for optimal 1.0 1.5 2.75 5.625 12.937 33.968 90.265
ρ′d Freudenthal 1.0 1.5 3.0 7.125 19.375 60.156 213.062

6 Implementation Details

In this section we briefly comment on the techniques we used to enhance
the performance of our implementation. We focus on the choice of proper

9

data-structures, and exploiting various features of cubical complexes.

Filtration algorithm. We use a 2-pass modification of the standard
filtration algorithm. Reversing the iteration order simplifies the first part of
the algorithm, which required random accesses to memory. This is typically
slow, due to caching issues. Second part allows for sequential iteration, which
makes it fast.

We calculate the time complexity of this algorithm. To do this precisely,
we assume that the dimension d is not a constant. This is a fair assump-
tion since we consider general dimensions. We use a d-dimensional array to
store our data, so random access is not O(1), but O(d), as it takes d − 1
multiplications and additions to calculate the address in memory.

Let n be the size of input (the number of vertices in our complex). In
total there are O(2dn) cubes in the complex, we ignore what happens at
boundaries of the complex. Each d-cube has exactly 2d boundary cubes, and
each vertex has 3d − 1 cofaces. Accessing each of them costs O(d). This
yields the following complexity: O(d3dn+ d22dn).

Using the properties of CubeMap, we can reduce the complexity. Since
the structure of the whole complex is regular, we can precalculate memory-
offsets from cubes of different dimensions and orientations to its cofaces and
boundaries. Accessing all boundary cubes and cofaces takes constant amor-
tized time. The preprocessing time does not depend on input size and takes
only O(d23d) time and memory. With the CubeMap data structure, our
algorithm can be implemented in Θ(3dn+ d2dn) time and Θ(d2dn) memory.

Storing boundary matrices. Now we present a suggestion regarding
performance, namely, the usage of a proper data-structure for storing the
columns of (sparse) boundary matrices. In [10] a linked-list data-structure
is suggested. This seems to be a sub-optimal solution, as it has an overhead
of at least one pointer per stored element. For 64-bit machines this is 8B -
twice as much as the data we need to store in a typical situation (one 32-bit
integer).

Using an automatically-growing array, such as std::vector available in STL
is much more efficient (speed-up by a factor of at least 2). Also the memory
overhead is much smaller - 16B per column (not per element as before). All
the required operations have the same (amortized) complexity [9], assuming
that adding an element at the back can be done in constant amortized time.
Also, iterating the array from left to right is fast, due to memory-locality,
which is not the case for linked-list implementations.

10

7 Results

The testing platform of our experiments is a six-core AMD Opteron(tm)
processor 2.4GHz with 512KB L2 cache per core, and 66GB of RAM, running
Linux. Our algorithm runs on a single core. We use 3D and 4D (3D+time)
cubical data for testing and comparing our algorithm. We compare our
method with existing implementations. We measure memory usage, filtration
building and reduction times.

We compare our implementation (referred as CubPers) to three existing
implementations: 1) the method introduced by Kerber and Chen [16], re-
ferred to as SimpPers, which uses simplicial complexes. Both SimpPers and
CubPers use the same reduction algorithm, but our approach uses cubical
complexes and CubeMap to accelerate the filtration process, 2) an imple-
mentation of the reduction algorithm, Dionysus, by Morozov [19]. Since
this implementation takes a filtration as input, we only measure the time
and memory consumption of building the boundary matrix and reducing it.
3) CAPD is an implementation by Mrozek [21], which is a part of CAPD
library[1]. We stress that this approach was designed for data with a small
number of unique function values, which is not the case for the data we use.
Additionally it produces and stores persistent homology generators which
incur a significant overhead.

In Tables 2 and 3 we compare the memory and times of our approach to
the aforementioned implementations. For testing we have used the Aneurysm
dataset from the Volvis repository[2]. In order to explore behavior of the
algorithms when the data size increases linearly, we uniformly scale the data
into 503, 1003, 1503, 2003, using nearest neighbor interpolation. Clearly, our
implementation, CubPers, outperforms other programs in terms of memory
and time efficiency. Memory usage is reduced by an order of magnitude. This
is extremely important, as it enables the usage of much larger data-sets. We
observe that SimpPers is also very efficient in time. However, the usage of
cubical complexes allows our approach to be even faster.

Table 4 shows how our implementation scales with respect to dimension.
We used random data - each vertex is assigned an integer value from 0 to 1023
(the choice was arbitrary). The distribution is uniform. Number of vertices
(1000000) is constant for all dimensions. We can see that performance dete-
riorates exponentially. This is understandable, since size of cubical complex
increases exponentially in time (2d). Size of its boundary matrix increases
even faster (d2d).

11

Table 2: Memory consumption for the computation of persistence of the
Aneurysm dataset for different implementations. Several down-sampled ver-
sion of the original dataset were used. For specific cases the results are not
reported due to memory or time limitations.

503 1003 1503 2003 2563

CAPD 500MB 2700MB 16000MB - -
Dionysus 200MB 6127MB 21927MB 49259MB -
SimpPers 352MB 3129MB 11849MB 25232MB -

CubPers 42MB 282MB 860MB 2029MB 4250MB

Table 3: Times (in minutes) for the computation of persistence of the
Aneurysm dataset for different techniques. Several down-sampled version of
the original dataset were used. For specific cases the times are not reported
due to memory or time limitations. For SimpPers and CubPers, we report
both filtration-building time and for reduction time, the whole computation
is the sum of the two times.

503 1003 1503 2003 2563

CAPD 0.26 12.3 134.55 - -
Dionysus 0.32 3.03 13.74 47.23 -
SimpPers 0.05+0.02 0.43+0.16 1.63+0.9 3.53+3.33 -

CubPers 0.01+0.001 0.10+0.01 0.33+0.13 0.87+0.43 1.25+0.78

Table 4: Times (in minutes) for the computation of persistence for one million
vertices in different dimensions (1-6). Both times for filtration and persis-
tence (filtration+reduction) are given.

Dimension 1D 2D 3D 4D 5D 6D
Filtration 0.017 0.05 0.15 0.55 1.65 3.70
Persistence 0.067 0.12 0.23 0.87 4.80 17.70

12

In Table 5 we report the timings and memory consumptions for several 3D
datasets and a 4D time-varying data consisting of 32 timesteps. All the 3D
datasets can be run on a commodity PC. It is clear, that our implementation
is efficient, especially in terms of memory usage. This is especially important,
since memory limits the size of applicable data.

Understanding time-varying data with persistence. With our
efficient tool, we are able to compute persistent homology of a dataset rep-
resenting an animation of a beating heart. We treat all four dimensions of
this datafile (3 spacial and time) equally. See section 8 for a short discus-
sion. We conclude this section by briefly discussing the computed persistence
diagrams.

In Figures 5(a)-5(d) we show the persistence diagrams for the 4D Heart
dataset. In Figure 5(e) we display graphs of the Betti numbers of the sublevel
sets. Blue, red, green and pink correspond to 0-3 dimensional Betti numbers
respectively.

Observation reveals that during the filtration, most 0 and 1-dimensional
homology classes die before the value 500. However, this is not the case for
2 and 3-dimensional classes. This suggests that the structure of the space
changes drastically along the filtration. Focusing on value range larger that
500 might be a first step in the process of further data analysis.

We think, that in case of high-dimensional, and especially time-varying
data, direct analysis of such diagrams might give certain hints about the
structure of the data, but in general such analysis is very challenging. How-
ever, recent advances [6, 8] show that analyzing different spaces by compu-
tationally comparing their persistence-diagrams is a promising option. We
believe that calculating persistent homology should be one step in a more
complex process of data analysis.

8 Summary and Future Work

We showed that our approach can be used to compute persistent homology
for large data-sets in arbitrary dimensions. Our experiments show that is
more efficient with regard to time and memory than existing persistence
implementations.

There is a wide range of directions to be considered in the future research.
We consider further development of the proposed method. In particular, a
parallel implementation is a promising option. Further reduction of memory

13

Table 5: Times in minutes for different 3D datasets and a 4D time-varying
data (32 timesteps). Times below 0.001 min were reported as 0.00.

Data set Size Memory (MB) Times (min)
Silicium 98× 34× 34 30 (0.02+0.07)
Fuel 64× 64× 64 82 (0.02+0.00)
Marschner-Lobb 64× 64× 64 82 (0.03+0.00)
Neghip 64× 64× 64 82 (0.03+0.00)
Hydrogene 128× 128× 128 538 (0.22+0.40)
Engine 256× 256× 128 2127 (1.07+0.30)
Tooth 256× 256× 161 2674 (1.43+1.48)
Aneurysm 256× 256× 256 4250 (1.75+0.77)
Bonsai 256× 256× 256 4250 (1.98+0.93)
Foot 256× 256× 256 4250 (2.15+0.70)

Heart (4D) 256× 256× 14× 32 13243 (20.20+1.38)

usage is another important research direction, but also challenging.
Currently, in the case of time-varying data, all dimensions are considered

homogeneous. While this can give insight into the analyzed physical process,
it does not assume non-reversibility of time. Our approach can be easily
suited for a directed case as well, by altering the connectivity along selected
dimensions.

A so-called multidimensional-persistence [6], taking multiple filtration
functions, is an interesting new research direction. Computationally, it can
be reduced to the one-dimensional case, so our framework can also be used
in this setting.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) grant no.
P20134-N13. The authors would like to thank Prof. Herbert Edelsbrunner
and Dr. Michael Kerber for the fruitful discussions.

14

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
ea

th
 (

F
un

ct
io

n
V

al
ue

)

0−persistence

(a) 0-Persistence

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
ea

th
 (

F
un

ct
io

n
V

al
ue

)

1−persistence

(b) 1-Persistence

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
ea

th
 (

F
un

ct
io

n
V

al
ue

)

2−persistence

(c) 2-Persistence

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Birth (Function Value)

D
ea

th
 (

F
un

ct
io

n
V

al
ue

)

3−persistence

(d) 3-Persistence

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

4

Function Value [0, MaxValue]

P
er

si
st

en
ce

 F
re

qu
en

cy

0−persistence
1−persistence
2−persistence
3−persistence

(e) Persistence Statistics

Figure 5: Graphs showing persistent information.

15

References

[1] Computer assisted proofs in dynamics: Capd homology library,
http://capd.ii.uj.edu.pl.

[2] Volvis: Voxel data repository, 2010.

[3] C. L. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In
Proceedings of IEEE Visualization, pages 167–174, 1997.

[4] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing robustness and
persistence for images. In Proceedings of IEEE Visualization, volume 16,
pages 1251–1260, 2010.

[5] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Landi. Multidi-
mensional size functions for shape comparison. J. Math. Imaging Vis.,
32(2):161–179, 2008.

[6] F. Cagliari, B. Di Fabio, and M. Ferri. One-dimensional reduction
of multidimensional persistent homology. Proc. Amer. Math. Soc.,
138(8):3003–3017, 2010.

[7] H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Sim-
plifying and displaying scalar topology using the contour tree. Compu-
tational Geometry, 43(1):42–58, 2010.

[8] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence
diagrams. Discrete and Computational Geometry, 37(1):103–120, 2007.

[9] T. Cormen. Introduction to algorithms. The MIT press, 2001.

[10] H. Edelsbrunner and J. Harer. Computational Topology, An Introduc-
tion. American Mathematical Society, 2010.

[11] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-
sistence and simplification. Discrete & Computational Geometry,
28(4):511–533, 2002.

[12] H. Freudenthal. Simplizialzerlegungen von beschränkter Flachheit. An-
nals of Mathematics, 43(3):580–582, 1942.

16

[13] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient com-
putation of morse-smale complexes for three-dimensional scalar func-
tions. IEEE Trans. Vis. Comput. Graph., 13(6):1440–1447, 2007.

[14] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homol-
ogy, volume 157 of Applied Mathematical Sciences. Springer-Verlag,
2004.

[15] G. Kedenburg. Persistent Cubical Homology. Master’s thesis, University
of Hamburg, 2010.

[16] M. Kerber and C. Chen. An improvement of persistence reduction.
Technical Report, IST Austria, Nov 2010.

[17] R. Kershner. The number of circles covering a set. American Journal
of Mathematics, 61(3):665–671, 1939.

[18] N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag Persistent Homol-
ogy in Matrix Multiplication Time. Research Report RR-7393, INRIA,
09 2010.

[19] D. Morozov. Dionysus : a c++ library for computing persistent homol-
ogy. http://www.mrzv.org/software/dionysus/.

[20] D. Morozov. Persistence algorithm takes cubic time in worst case. Bio-
Geometry News, Dept. Comput. Sci., Duke Univ., Durham, North Car-
olina, 2005.

[21] M. Mrozek and T. Wanner. Coreduction homology algorithm for in-
clusions and persistent homology. Computers and Mathematics with
Applications, accepted., 2010.

[22] M. Mrozek, M. Zelawski, A. Krajniak, A. Gryglewski, and S. Han. Ho-
mological Methods in Feature Extraction of Multidimensional Images.
pages 1–5, 2009.

[23] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Red-
wook City, California, 1984.

[24] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
on-line computation of reeb graphs: simplicity and speed. ACM Trans.
Graph., 26(58):1–8, 2007.

17

[25] D. Strömbom. Persistent homology in the cubical setting: theory, im-
plementations and applications. Master’s thesis, Lule̊a University of
Technology, 2007.

[26] C. Zong. What is known about unit cubes. Bull. Amer. Math. Soc. 42
(2005), 181-211, 2005.

18

