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Abstract

In the field of object recognition in natural images, a variety of established
tasks exist, which are focus of attention when it comes to comparing different
methods, for example image segmentation, semantic image segmentation or
object detection. Image segmentation is the task of grouping pixels in an
image that belong to the same region or object. Semantic image segmenta-
tion is the task of assigning a semantic label to each pixel of the image. The
semantic labels can be objects: for example car, person, building ; or classes
of areas in an image: sky, floor, vertical surface. Object detection is the task
of predicting occurrence and position in an image, for example by determi-
ning a bounding box of the object. Traditional object recognition challenges
have limitations such as ambiguity in more general contexts. For example
for a single natural image, there are often multiple image segmentations a
human would consider to be correct, depending on the object that person is
particularly interested in. We raise the question: “Is there a different task,
that overcomes these limitations?” As an example we propose the task of
interactively assigning a semantic label to each segment of a segmentation
hierarchy. The result can be represented as a stack of semantic segmentations,
with an inclusion-relationship between segments of adjacent segmentations.
The focus of this work is to provide a solution to this task and discuss advan-
tages and problems that arise. The main disadvantage is that it is harder to
obtain suitable ground-truth that consists of annotated segmentation hier-
archies. Also the quality of underlying segmentation methods is, in general,
sub-optimal for natural images. The main advantage is that the structure
implied by the occurrence of labels in the ground-truth can be used to aid
the user in labeling the segments of the hierarchy. We propose a framework
that consists of a feedback loop, where a label prediction is provided by the
framework and a human user may select one or more misclassified segments
and assign the correct label. This process can be repeated until the user is
satisfied. The prediction is done using a Conditional Random Field (CRF)
that is modified so that we are able to condition the model on the segmenta-
tion hierarchy as well as the user input. The framework is evaluated on two
distinct datasets by comparing its quality to a straight-forward baseline. The
baseline consists of a single prediction step of the proposed framework follo-
wed by fully manual correction of the segments without new predictions. The
results show a significant difference in quality, after several user interactions.
For example after 20 user interactions the baseline adjusts 20 misclassified
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segments, while the CRF-based framework adjusts about 130 misclassified
segments for the two datasets. This experiment illustrates the potential of
structured prediction for the proposed task.

ii



Kurzfassung

Wenn es darum geht verscheidene Methoden der Objekterkennung in natürli-
chen Bildern zu vergleichen, stehen diverse etablierte Aufgaben im Mittel-
punkt. Beispiele dafür sind Bildsegmentierung, semantische Bildsegmentie-
rung und Objekterfassung. Bildsegmentierung ist die Aufgabe Bildpixel, die
zur selben Region oder zum selben Objekt gehören, zu gruppieren. Seman-
tische Bildsegmentierung ist die Aufgabe jedem Bildpixel eine semantische
Bezeichnung zuzuordnen. Eine semantische Bezeichnung kann ein Objekt
sein: zum Beispiel Auto, Person, Gebäude; oder eine Klasse von Bereichen in
einem Bild: Himmel, Boden, vertikale Fläche. Objekterfassung ist die Aufga-
be Aufkommen und Position eines Objektes in einem Bild vorherzusagen, in-
dem zum Beispiel der Rahmen (Bounding Box) eines Objekts bestimmt wird.
Traditionelle Aufgaben der Objekterkennung haben gewisse Einschänkungen,
wie etwa Mehrdeutigkeit in allgemeinerem Kontext. Zum Beispiel gibt es oft
mehrere Bildsegmentierungen für ein natürliches Bild, die ein Mensch als rich-
tig beurteilen würde, abhängig davon welches Objekt besonders interessant
für die entsprechende Person ist. Wir stellen die Frage: “Gibt es eine Alter-
native, die diese Einschränkungen überwinden kann?” Als Beispiel schlagen
wir die Aufgabe vor, interaktiv jedem Segment einer hierarchischen Segmen-
tierung eine semantische Bezeichnung zuzuordnen. Das Ergebnis kann dann
als ein Stapel semantischer Bildsegmentierungen dargestellt werden, wobei es
eine Inklusionsrelation zwischen Segmenten angrenzender Segmentierungen
gibt. Der Fokus dieser Arbeit ist es, eine Lösung der vorgeschlagenen Auf-
gabe vorzustellen und auftretende Vor- sowie Nachteile zu diskutieren. Der
größte Nachteil ist, dass es schwieriger ist passende Ground Truth zu finden
- in unserem Fall besteht diese aus beschrifteten hierarchischen Segmentie-
rungen. Außerdem ist die Qualität der zugrundeliegenden Segmentierung im
Allgemeinen sub-optimal für natürliche Bilder. Der wesentliche Vorteil ist,
dass die Struktur der Beschriftungen in der Ground Truth dazu verwendet
werden kann, dem Benutzer zu helfen neue hierarchische Segmentierungen zu
beschriften. Wir präsentieren ein Framework, das eine Feedbackschleife bein-
haltet, bei der eine Beschriftung vom Framework vorhergesagt wird und der
Benutzer einen oder mehrere falsch bezeichnete Segmente selektieren und die
korrekte Bezeichnung zuordnen kann. Dieser Vorgang kann wiederholt wer-
den, bis der Nutzer zufrieden mit dem Ergebnis ist. Die Vorhersage der Be-
schriftung wird mit einem Conditional Random Field (CRF) berechnet, das
adaptiert wird, um das Modell sowohl auf die hierarchische Segmentierung
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als auch auf die Benutzereingaben zu konditionieren. Das Framework wird
auf zwei verschiedenen Datensätzen evaluiert, indem die Qualität zu einer
einfachen Baseline verglichen wird. Diese Baseline besteht aus einer einzel-
nen Vorhersage der Beschriftung gefolgt von vollständig manueller Korrektur
der Bezeichnungen, ohne erneute Vorhersagen. Ergebnisse zeigen eine wesent-
liche Differenz in Qualität, nach mehreren Benutzereingaben. Zum Beispiel
nach 20 Interaktionen korrigiert die Baseline 20 falsch bezeichnete Segmen-
te, während das CRF-basierte Framework ungefähr 130 Bezeichnungen auf
beiden Datensätzen korrigiert. Das Experiment zeigt das Potential von Struc-
tured Prediction für die gegebene Aufgabe.
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1 Introduction

One of the tasks, currently considered essential to improve on in computer
vision, is semantic image segmentation [7]. The success of a method solving
this problem relies on the ability to correctly identify objects present in an
image and to correctly outline the regions that correspond to the projections
of these objects to the image plane – both are non-trivial sub problems.
However, considering both compound type objects and their parts, semantic
classification of pixels may not be unique - pixels might belong to multiple
classes, e.g. in Figure 1 a pixel in the highlighted region may belong to class
wheel as well as class car, possibly even shoe and image. Furthermore, class-
independent image segmentation (grouping pixels together such that they
represent objects) is ill-posed [17]. These problems motivate our approach
to consider the task of semantic labeling of a segmentation hierarchy. We
mitigate both aspects by having an inclusion hierarchy for the image regions
and a semantic label hierarchy corresponding to the composition of parts into
objects.

Current automatic methods for semantic segmentation show impressive
performance [6,9,13], but in many cases the results are not satisfying enough
(e.g. the best results on VOC20111 are below 50%). Methods that require
annotated ground-truth for their supervised training dominate the state-of-
the art. However, high quality annotations are costly to obtain manually. We
consider interactive (semi-automatic) methods that include a feedback-loop,
thus improving on the automatic results and providing a more efficient way
to obtain annotated ground-truth than fully manual approaches.

The focus of this work is the task of interactive semantic labeling, given
a segmentation hierarchy. The proposed framework integrates a Conditional
Random Field (CRF), whose dependencies are defined by the hierarchy, and
feedback provided by a human user (see Fig. 2 for an overview of the work-
flow).

1.1 Problem Statement

Let S be a segmentation hierarchy of an image. Let U be the user provided
input in an interactive framework. Given a set of object labels L, we are

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/results/index.
html.
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Figure 1: Example illustrating the ambiguity of single object classes per
pixel. The highlighted wheel may have the classes wheel, car, shoe and image.
Original Image by Mads Boedker [2].

looking for a model f that computes a labeling

y = f(S,U ,L) y ∈ L|S|, (1)

assigning an object class yi ∈ L to each segment si ∈ S. We want this model
to capture structural dependencies between object classes in the segmenta-
tion hierarchy, s.t. given U , the computed labeling y is closer to the optimal
labeling y∗ than for the case of independent classification of segments. In an
interactive framework, f can be evaluated after each user interaction in order
to provide visual feedback to the user and prevent user interactions that are
not necessary, considering that the labeling can be improved by exploiting
the structural properties of the segmentation hierarchy.

1.2 Aim of the work

The goal of this work is to provide an interactive framework for generating
ground-truth labelings of hierarchical image segmentations. Important fac-
tors are fast inference (ideally in linear time), so that the interaction can
progress fluently, and high initial quality as well as a high increase in quality
of the labeling per user interaction. Note that there is a trade-off between
these last two properties, where we prefer high initial quality because it gives
the method a head start for the convergence to a classification rate of 100%.
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Figure 2: Overview of the proposed framework: in a preliminary step we
train the parameters of our CRF-based model using a training set consisting
of semantically labeled image segmentation hierarchies; at test time the user
provides an image and the corresponding segmentation hierarchy. The label-
ing process alternates between providing a prediction of the labels, and the
user correcting a misclassified segment. Segmentations are represented by
the outline of the respective segments in the image, semantic segmentations
are represented by colored segments, with the color being associated with
an object class, and segmentation hierarchies are represented as a stack of
respective segmentations.

1.3 Definitions

In the following we show a table of commonly used terms and definitions.

Segment si is a set of pixels of a connected region i in an image.

Segmentation Sl at level l is a set of pairwise disjoint segments si ∈ Sl
covering the whole image. The coarseness of the segmentation is de-
termined by the level l = 0 · · ·N , where l = 0 is the finest and l = N
the coarsest segmentation.

Parent-child mapping mS : S → P(S) associates to si ∈ Sl a set of
segments {sj} ⊆ Sl−1 s.t. sj ⊂ si, or the empty set if l = 0, with P(S)
being the power set of S. {sj} are the children of si. Note that this
mapping induces the hierarchy among the segments in S.
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Child-parent mapping m′S : S → P1(S) associates to si ∈ Sl its parent
segment if it exists,

m′S(si) =

{
{sj} iff sj ∈ mS(si)

∅ otherwise
. (2)

Segmentation hierarchy S of an image consists of a segmentation Sl ⊂ S
per level l and a parent-child mapping m. Every segmentation Sl is
coarser than the segmentation Sl−1 below, s.t. for any segment si ∈ Sl−1

there exists exactly one segment sj ∈ Sl s.t. si ⊆ sj. Note that S also
implicitly contains the image data.

Label set L denotes a pre-defined set of numeric labels with associated
object classes.

Labeling y = (. . . , yi, . . . ) of a segmentation hierarchy S associates to each
segment si ∈ S a label yi ∈ L. The ground-truth labeling is denoted
by y∗.

Possible labelings Y(S) of a segmentation hierarchy S is a set containing
all labelings of the same cardinality as S, i.e. Y(S) = {y|y ∈ L|S|}.

1.4 Methodological approach

We propose the I2A (Interactive Image Annotation) Model, which is based
on a CRF and consists of different components, where various alternatives
and parameters are evaluated. The following chapter discusses the CRF
and reasons for it’s application in this scenario. A qualitative comparison
of different structured prediction methods is beyond the scope of this work,
though. The evaluated components and variants contain different features,
quality measures, baselines and label sets as well as the option to include
hard constraints based on a pre-defined hierarchy of object classes.

The results show that the proposed framework significantly improves the
classification rate over the number of user interactions, i.e. the structured
model supports the interactive framework for the task of labeling image seg-
mentation hierarchies.
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1.5 Original Contribution

To the best of our knowledge this work presents the first approach to in-
teractive semantic labeling of a segmentation hierarchy, using a CRF-based
statistical model and a hierarchy of semantic labels. Thus we incorporate
methods solving interactive labeling and object-class image segmentation in
the context of segmentation hierarchies and a structured label space.

As part of this work, results were published at the joint symposium of
the Deutsche Arbeitsgemeinschaft für Mustererkennung (DAGM) and Öster-
reichische Arbeitsgemeinschaft für Mustererkennung (ÖAGM) [28]. In addi-
tion, the dataset used in this thesis and evaluation results are available on
the authors website2.

1.6 Structure of this thesis

In Chapter 1 we illustrate the problem addressed in this work and present a
rough overview of the chosen approach. Chapter 2 discusses methods related
to our approach and their differences. A short summary of CRFs and a more
detailed explanation of our approach can be found in Chapter 3. Chapter 4
contains experiments, results and discussion about alternative framework
components as well as a comparison to different baselines. Chapter 5 con-
cludes this work by summarizing the proposed framework and discussing
open issues and further research options.

2 Related Work

In the following, we describe related methods of object-class image segmen-
tation and interactive labeling, and focus on the differences between the
respective method and the interactive annotation framework presented in
this work.

2.1 Object-Class Image Segmentation

Object-class image segmentation is the task of predicting object classes per
pixel of an image on a single layer of abstraction. This kind of task is related
to the problem we are concerned with, but is inherently different, since it is

2http://www.publik.at/gzankl/.
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not defined for multiple layers. Several approaches exist that build on CRF
models to solve this problem in a non-interactive manner.

Note that several methods solving this task use segmentation hierarchies
in order to retrieve more robust segmentations. However, none of them uses
a label space with non-trivial object-part relationships (an example is shown
in Fig. 1).

Nowozin et al. [20] present a method for automatic semantic segmenta-
tion on a single level of abstraction. They use a CRF-based model with a
dependency graph built from a segmentation hierarchy and instead of com-
puting the potentials from classifier responses, like it is done in this work,
they use a high dimensional parameter vector to learn a mapping from the
feature vectors to the potentials.

McAuley et al. [18] use a graphical model based on a regular image
pyramid. They utilize a simple hierarchy of semantic labels containing the
ground-truth labels as well as a generic “multiple” (containing more than one
ground-truth classes) and “background” (containing no ground-truth class)
labels. They enforce these semantic dependencies with hard constraints in
the model. Because of the simple hierarchy of semantic labels, the output of
their method still represents a single level of abstraction. The I2A Model uses
a similar but more detailed hierarchy of semantic labels: a set of labels with
object-part relationship - essentially giving a semantic label to each segment
that would otherwise be labeled “multiple”.

Lempitsky et al. [15] propose a “Pylon Model” that uses a segmentation
hierarchy to compute figure-ground segmentations for a single class. This
method can be extended to multiple classes, but a hierarchy of semantic
labels is not considered.

Ladicky et al. [14] present a PN based CRF that uses higher-order rela-
tionships. Rather than using a segmentation hierarchy, they compute image
segmentations and use the model to capture relationships between pixels and
segments as well as the relationships between segments.

Gonfaus et al. [9] introduce the “Harmony Potential”, a generalization
of Ladicky’s work that penalizes labels that do not match a global random
variable of the model, while Ladicky’s work also penalizes the case where
the global random variable does not match the local labels. This way the
method allows for a more relaxed labeling of segments.

Plath et al. [24] propose a method that constructs a hierarchical segmen-
tation without the restriction of an inclusion relationship between parent and
child. The prediction is performed on the whole hierarchy, like in our model,
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but only the labels on the finest segmentation are used for the result.

2.2 Interactive Labeling

Interactivity in a structured prediction framework is a less common, but very
important feature in the context of this work.

Branson et al. [3] use interactive training for deformable part models. The
proposed interaction model is functionally equivalent to the adjustments of
the energy function presented in this work. However, this model uses contin-
uous labels (position of points) and performs online training using stochastic
gradient descent after the user finished his data input.

Mensink et al. [19] propose a CRF-based model for learning annotation
hierarchies of images as a whole. Here agglomerative clustering is used in
order to create a hierarchy of clusters of semantic labels. This hierarchy is
then directly used as a model, where in each cluster the prediction determines
wether a label exists or not. Annotation is performed interactively by asking
the user yes/no questions that determine the existence of labels with low
confidence.

3 Interactive Image Annotation Model

Standard regression and classification tasks are meant to predict the value
of a single variable. Predicting multiple variables while considering their
relation to each other is a structured prediction task [27,21]. A Conditional
Random Field (CRF) is a method of structured prediction that models the
probability function p(y|x), where y is a labeling and x is the data. A well-
known alternative is the Markov Random Field (MRF), which models the
joint probability p(x, y).

For the task of predicting the labels in a segmentation hierarchy we use
a CRF because it is a statistical framework that can solve the task by dis-
tinguishing between data space and label space. This allows training with
less parameters or samples for the same level of generalizability and com-
putes a theoretically optimal solution given the specific model and training
set used [21].
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3.1 The Probability Function

The I2A Model is a CRF with the probability distribution over all possible
labelings defined as:

p(y|S, θ) =
1

Z(S, θ)
e−E(y,S,θ) (3)

with θ = (θu, θp) being a learned parameter vector containing the unary θu
and pairwise parameters θp, y = (. . . , yi, . . . ) being a labeling of all segments
si ∈ S, and

Z(S, θ) =
∑

y∈Y(S)

e−E(y,S,θ) (4)

being the partition function (used to normalize the term to retrieve a prob-
ability function). Y(S) is the set of all possible labelings of the segments in
S. The probability function p(y|S, θ) is of the family of exponential distri-
butions. More specifically we define E to be linear in θ, meaning that we
have a log-linear model. Thus training our model is a convex optimization
problem (every local extrema is a global extrema).

We define the energy function E for a set of segments Q ⊆ S and corre-
sponding labels y as:

E(y,Q, θ) =
∑
si∈Q

Φ(si, yi, θu) +
∑
si∈Q

∑
sj∈Q∩mS(si)

Ψ(yi, yj, θp) (5)

Φ(si, yi, θu) = θu(yi)
>φ(si, yi) (6)

Ψ(yi, yj, θp) = θp(yi, yj)
>ψ(yi, yj) (7)

where φ is a unary meta-feature obtained as output of a classifier for each
segment si and label yi, ψ is a feature computed using the co-occurrence
of the ground-truth labels and mS is the parent-child mapping for S. ψ
does not have to be symmetric ψ(yi, yj) 6= ψ(yj, yi). Thus, the features and
parameters encode which labels correspond to the parent and child segments,
respectively. This allows the framework to distinguish between child and
parent when computing the pairwise potentials, e.g. child wheel and the
parent car will have a higher score than labeling the child car and the parent
wheel.
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3.2 Inference and the Feedback Loop

The workflow for labeling an image is as follows: The user provides an image
and the corresponding segmentation hierarchy S and receives an initial pre-
diction of the labels of all segments. An interactive process (feedback loop)
follows that alternates between the user selecting one or more segments and
specifying their label(s), and the system providing a new prediction based
on this input and providing visual feedback to the user. Labels provided
by the user are considered correct and will not be predicted anymore. In
the following we discuss the case of the user selecting and labeling a single
segment per iteration, without the loss of generality.

We perform inference by selecting the maximum a-posteriori configuration
y∗ (MAP inference). For the initial (Q = S), fully automatic prediction y∗

is given by solving

y∗ = argmax
y∈Y(S)

{p(y|S, θ)} = argmin
y∈Y(S)

{E(y,S, θ)} . (8)

For two disjoint subsets S(v),S(f) ⊆ S with S(v) ∪ S(f) = S we can
decompose the energy function E(y,S, θ) in Eq. 5 as:

E(y,S, θ) =E(y(v),S(v), θ) + E(y(f),S(f), θ)+

+
∑

si∈S(v)

∑
sj∈S(f)∩mS(si)

Ψ(y
(v)
i , y

(f)
j , θ)+

+
∑

si∈S(f)

∑
sj∈S(v)∩mS(si)

Ψ(y
(f)
i , y

(v)
j , θ),

(9)

with y(v), y(f) representing the restrictions of y to the labels corresponding to
segments in S(v),S(f), respectively. Note that the superscript (v) stands for
variable and (f) for fixed (or user-specified) variables, i.e. y(f) is constant.
We start with S(v) = S and S(f) = ∅ and model user interaction by moving
the manually labeled segment sk from S(v) to S(f) as well as adding the given
corresponding label to y(f). Then, inference is performed only over the labels
in y(v) corresponding to the segments in S(v):

y(v)∗ = argmin
y(v)∈Y(S(v))

 ∑
si∈S(v)

Φ′(si, y
(v)
i , θ) +

∑
si∈S(v)

∑
sj∈S(v)∩mS(si)

Ψ(y
(v)
i , y

(v)
j , θp)

 ,

(10)
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where Φ′, the modified unary potential, is defined as:

Φ′(si, y
(v)
i , θ) = Φ(si, y

(v)
i , θu) + (11)

+
∑

sj∈S(f)∩mS(si)

Ψ(y
(v)
i , y

(f)
j , θp) +

∑
sj∈S(f)∩m′S(si)

Ψ(y
(f)
j , y

(v)
i , θp)

with m′(si) =

{
{sj} iff sj ∈ m(si)
∅ otherwise

Eq. 10 represents the inference function f(S,U ,L) from Eq. 1, where the
user input U contains the user selected segments S(f) and the specified labels
y(f). The set of segments that have to be inferred is S(v) = S \ S(f) and the
inferred labeling y combines y(v)∗ and y(f).

It can be seen in Eq. 9 that the pairwise interaction between segments
si ∈ S(v) and sj ∈ S(f) only depend on y

(v)
i , since y

(f)
j is constant during

inference. Thus the pairwise terms can be included in the unary potential
(shown in Eq. 11). User-provided labels change the MAP configuration and
other misclassified segments may be corrected automatically if the features
are well suited for the corresponding image segments, i.e. φ has a high
response for non ground-truth labels of these segments.

The Markov Property for MRFs states that a random variable is indepen-
dent of all other variables, given its neighbors. In our model, the neighbors
of a variable yk consist of the corresponding segment sk, the labels of child
segments yi with si ∈ mS(sk) and the label of the parent yj with sj ∈ m′S(sk).
The Markov Property also holds for CRFs and in our case means that the la-
bels of children and parents of a segment sk are conditionally independent of
each other, given yk and their respective segments si. Thus, during inference
each user selected segment sk and the specified label y

(f)
k splits the graphical

model at each sk. The resulting graphical model is a forest where infer-
ence can be done independently for each tree. We perform exact inference
efficiently using the Belief Propagation (BP) algorithm [23].

Example Inference

Fig. 3 shows a constructed example of potentials of a small hierarchy with 5
segments. Inference is performed by minimizing the energy function. Tbl. 1
shows several labelings and the corresponding value of the energy function.
The values of the potential functions Φ and Ψ in this example are artificial,
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A

B

D E

C(3, 3, 1, 5)

(1, 5, 5, 3)

(5, 5, 3, 1) (5, 3, 5, 5)

parent
Ψ Wheel Tire Rim Car

child

Wheel 3 5 5 1
Tire 2 1 5 5
Rim 1 5 1 5
Car 5 5 5 1

Φ

(1, 5, 5, 5)

Figure 3: Example of unary (Φ, to the left) and pairwise (Ψ, to the right)
potentials for a label set L = (Wheel, T ire, Rim,Car). Unary potentials are
represented by a 4-tuple per node, containing the potential for each label in
the order given by L.

the computation will be explained in Sec. 3.4.2 and the respective features
and experiments will be presented in Sec. 4.4.

Let y = (Car,Wheel,Wheel, Rim, T ire) be the correct labeling (the or-
der given by the name of the node: A to E). An inference algorithm will
choose y = (Wheel, Rim,Rim,Rim) over the correct assignment, since its
energy value is lower. Fig. 4 shows what happens if the user selects node B
and sets its label to Wheel. All pairwise potentials of this node only depend
on the respective neighbor but not on node B anymore. Thus they are added
to the modified potential function of children and parent.

By incorporating the user interaction we split the model into a forest
where inference can be done independently for each tree, e.g. we can im-
mediately infer the most likely label of node E to be Tire, since it is now
conditionally independent of all other nodes in the model and we can simply
minimize the modified potential function. In fact this example is set up,
so that this single user interaction makes the correct labeling also the most
likely labeling, as the model has minimal energy for the correct labeling, as
long as it is condition by yB = Wheel.

3.3 Parameter Estimation

Given a set of N training images, the corresponding hierarchical segmenta-
tions {Sk} and ground-truth labelings {y(k)}, for the k-th image, we perform
training by assuming i.i.d. samples and maximizing the likelihood (the prob-
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yA yB yC yD yE Energy Classification Rate
Wheel Rim Wheel Car Tire 15 0.40
Car Wheel Wheel Rim Tire 13 1.00

Wheel Rim Wheel Rim Rim 14 0.40

Table 1: Example labelings y and the respective values of the energy function
based on the potentials from Fig. 3. The last column shows the classification
rate assuming the correct labeling is y = (Car,Wheel,Wheel, Rim, T ire).

A

B

D E

CWheel

(4, 10, 10, 4)

(8, 7, 4, 6) (8, 5, 6, 10)

parent
Ψ Wheel Tire Rim Car

child

Wheel 3∗+ 5∗ 5∗ 1∗

Tire 2+ 1 5 5
Rim 1+ 5 1 5
Car 5+ 5 5 1

Φ�

(1, 5, 5, 5)

Figure 4: Example of unary (Φ′, to the left) and pairwise (Ψ, to the right)
potentials for a label set L = (Wheel, T ire, Rim,Car). Here the label of
node B is specified by the human user as Wheel. Pairwise potentials related
to the selected node are added to the unary potentials of adjacent nodes
(numbers marked with ’∗’ are added to the potentials parents of B, while
numbers marked with ’+’ are added to the potentials children of B). The
graph also represents the new model that is used for inference, where B and
incident edges are removed.
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ability of the ground-truth, given our model):

θ∗ = argmax
θ

N∏
k=1

p(y(k)|Sk, θ) (12)

= argmin
θ

N∑
k=1

[
E(y(k),Sk, θ) + lnZ(Sk, θ)

]
(13)

= argmin
θ

N∑
k=1

Lk(θu, θp) (14)

We solve this optimization efficiently by using a second-order gradient de-
scent. The loss Lk for each sample k is differentiated with respect to the
unary parameters θu:

δ

δθu
Lk =

δ

δθu
E − 1

Z

δ

δθu
Z (15)

=
δ

δθu
E −

∑
y∈Y(Sk)

[
1

Z
e−E(y,Sk,θ)

δ

δθu
E

]
(16)

=
∑
si∈Sk

φ(si, y
(k)
i )−

∑
si∈Sk

∑
y∈Y(Sk)

p(y|Sk, θ)φ(si, yi) (17)

=
∑
si∈Sk

φ(si, y
(k)
i )−

∑
yi∈L

∑
y′∈Y(Sk)
y′i=yi

p(y′|Sk, θ)φ(si, yi)

 (18)

δ

δθu
Lk =

∑
si∈Sk

[
φ(si, y

(k)
i )−

∑
yi∈L

p(yi|si, θ)φ(si, yi)

]
, (19)

where p(yi|Sk, θ) = p(yi|si, θ) is the marginal belief for label yi at segment si.
Note that φ and ψ here are lowercase and do not depend on the parameter
vector θ (see Eq. 6 and 7).

Analogously we differentiate with respect to θp:
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δ

δθp
Lk =

δ

δθp
E −

∑
y∈Y(Sk)

[
1

Z
e−E(y,Sk,θ)

δ

δθp
E

]
(20)

=
∑
si∈Q

∑
sj∈Q∩m(si)

ψ(y
(k)
i , y

(k)
j )−

∑
si∈Q

∑
sj∈Q∩m(si)

∑
y∈Y(Sk)

p(y,Sk, θ)ψ(yi, yj)

(21)

=
∑
si∈Q

∑
sj∈Q∩m(si)

ψ(y
(k)
i , y

(k)
j )−

∑
(yi,yj)∈L2

p(yi, yj|si, sj, θ)ψ(yi, yj)

 ,
(22)

where p(yi, yj|si, sj, θ) is the pairwise belief for labels yi, yj. The marginal
and pairwise beliefs p(yi|si, θ) and p(yi, yj|si, sj, θ) are computed efficiently
using the BP algorithm implemented by the UGM toolbox3.

3.4 Potential Functions

We want the meta-features φ and ψ to have low responses for segment and
label combinations that represent the ground-truth because we minimize the
energy. For example a segment si containing a wheel may have the low
values for φ(si, wheel) and high values for φ(si, street). Because of similar
appearance φ(si, rim) and φ(si, tire) may also provide low responses, but
they should be higher than φ(si, wheel).

3.4.1 Unary Potentials

The meta-feature φ is computed using the output of a classification or regres-
sion method based on feature vectors per segment of the image. For a linear
model, this means that φ is a function of w>v(si), with w being a trained
weight vector and v(si) the feature vector of segment si. The final function
definition will be presented in the next chapter along with experiments on
alternative feature vectors and classification or regression methods. Another
way to use the feature vectors is to define φ(si) = v(si) and use the unary
parameters θu as a matrix, such that the regression is implicitly done by
the CRF framework [20]. However, this would increase the number of unary

3by Mark Schmidt 2011, http://www.di.ens.fr/ mschmidt/Software/UGM.html
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parameters to |θu| = |v||L|, creating a less generalizable model that needs
more training images than our approach.

3.4.2 Pairwise Potentials

Similarly ψ is supposed to have low responses for meaningful parent-child
label combinations. For example ψ(wheel, rim) may have low values, because
a rim is part of a wheel, while ψ(rim,wheel) or ψ(street, rim) have high
responses, since these combinations are unlikely or unobserved (they do not
occur in the training data).

It is possible to define ψ(si, yi, sj, yj) and use features of the segments
si and sj for these pairwise potentials. However, a common definition of
pairwise interactions is ψ(yi, yj). For example the Potts Model defined as
ψ(yi, yj) = 1− 1yi=yj

, with 1B being the indicator function, which is 1 if B is
true and 0 otherwise. Thus the model encourages neighbors in the graphical
model to have the same label.

Rather than encouraging the same labels for neighbors, we want to en-
courage parent and child labels, that are consistent with the observed ground-
truth. Thus we define ψ(yi, yj) as a |L|× |L| matrix and automatically com-
pute it from the training data. The following chapter provides more details
on how φ and ψ are computed.

4 Evaluation and Component Comparison

In this chapter we present how the framework is evaluated followed by several
experiments with alternative components and evaluation setups and discuss
the results.

4.1 Datasets

The experiments are performed on a generated ground-truth based on the
Stanford Background dataset [10] as well as the CamVid dataset [4,5]. Both
datasets provide ground-truth object class segmentations on a single level of
coarseness. To evaluate the proposed framework it is necessary to create a
hierarchy of semantic labels for the dataset and a segmentation hierarchy for
each image in the dataset.
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Several videos from a camera mounted to a moving car are contained
in the CamVid dataset4 [4, 5]. For a total of 701 images from these videos
there exist manually labeled segmentations (every 30th frame of the videos)
with 32 classes representing objects and backgrounds commonly occurring in
street scenes. There is no stationary background and motion information is
not used for further computation.

The Stanford Background dataset5 [10] consists of 715 single images and
two ground-truths with different label sets: the geometric classes {sky, hor-
izontal, vertical} and the semantic classes {sky, tree, road, grass, water,
building, mountain, foreground object}.

The samples of each dataset were divided into training set (3/4 of the
images) and test set (1/4 of the images). The training set is further divided
for the feature evaluation in order to provide short training and test times,
s.t. the parameter space can be thoroughly investigated.

4.2 Experiments Setup

A desired property of the evaluation is that the influence of the segmentation
quality is minimal, so that only the proposed method is evaluated. It is not
the goal of this thesis to evaluate segmentation methods [29]. We compute
hierarchical segmentations Sk for all images and consider them to be part of
the ground-truth.

The semantic labels of the datasets (further called base labels LB) only
capture one level of abstraction and the straight-forward solution to this is
to use all label combinations L = P(LB) \ ∅. We start with |LB| = 3 (the
smallest set of base labels with label combinations that contain more than
one, but not all of the base labels) and perform experiments with bigger
label sets L. To complete a ground-truth that can be used by the proposed
framework it is necessary to assign a label y∗i ∈ L to each segment si ∈ Sk
of all training samples Sk by determining the occurrence of object classes of
the dataset inside the segments of the hierarchy.

We compute the segmentation hierarchy S of an image, using the mini-
mum spanning tree-based pyramid [11]6. The dataset provides a flat ground-
truth segmentation S(gt) and a corresponding ground-truth labeling with ob-

4http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/.
5http://dags.stanford.edu/projects/scenedataset.html.
6Although any hierarchical segmentation method, e.g. [1], can be used.
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ject classes from LB for the image. Ground-truth labelings y∗ of the segmen-
tation hierarchy are obtained by determining the occurrence of object classes
of S(gt) inside the segments of the hierarchy. This is done by computing the
overlap of si ∈ S with segments from S(gt). Is the overlap with segments
of a class bigger than 1

|LB |
(in our case 1/3), then that class is added to the

label combination y∗i of the segment. The threshold 1
|LB |

is chosen so that it
is minimal without allowing segments to have no class.

The quality measures used are the number of corrected regions |{yn =
y∗}| − |{y0 = y∗}| and the classification rate

q1 =
|{yn = y∗}|
|S|

, (23)

with yn denoting the inferred labeling after n user interactions. The eval-
uation is performed for 100 simulated user interactions using a top-down
strategy of correcting segments, i.e. in each iteration a virtual annotator se-
lects the top-most misclassified segment (starting at the coarsest level of the
segmentation hierarchy) and assigns the correct label. The measurements
are then averaged over the test set. For the feature evaluation, which does
not consider user interaction, the classification rate over all images is used.

4.3 Framework Evaluation

For the full evaluation the hierarchy of semantic labels is created by using
|LB| = 3 base labels and all label combinations L = P(LB) \ ∅. For the
Stanford dataset LB represents the geometric classes and for the CamVid
database LB consists of classes representing roads, cars and background (ev-
erything else).

The meta-features φ and ψ discussed in Sec. 3.4.2 are fixed in this experi-
ment. Here φ is a function of the Mahalanobis distance of the feature vectors
to each class, with the feature vectors being computed using the Geometric
Context framework by Hoiem et al. [12]. Details on the best of the evaluated
functions can be found in the next section.

For our baseline we use an initial prediction without pairwise interactions,
i.e. using an energy function without the second term in Eq. 5, followed by a
simulation of repeated manual correction of labels (with a top-down strategy
as well). Thus the initial classification rate y0 is slightly lower than for the
full framework.
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Figure 5: (a) Main evaluation showing average classification rates of the
interactive framework and the baseline on the Camvid and Stanford Back-
ground datasets; (b) illustration of the average number of corrected regions
per user interaction. Note that the curves in the bottom graph converge to
different maxima, so a comparison between the datasets has to be performed
in the top graph. The evaluation is done with a total of 7 labels for each
dataset.
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Figure 6: Average classification rates of the proposed baseline compared to
top-down and fully manual approaches, evaluated on the (a) CamVid and
(b) Stanford Background datasets.
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The baseline is outperformed by our interactive system as seen in Fig. 5a.
Because misclassified segments are corrected independently in the baseline,
it has a constant quality-slope. We can reach an average precision of 80%
after a single user interaction on the CamVid dataset, compared to 13 for the
baseline. On the Stanford Background dataset we need 9 user interactions
for the full framework and 63 for the baseline to reach the same precision.
Fig. 5b shows that after 20 user interactions, while the baseline corrected
20 segment labels, the interactive system corrected an average of 122 labels
on the Stanford and 118 labels on the CamVid dataset. A lower number of
misclassified regions also means that less regions can be corrected with a sin-
gle interaction. Thus all curves converge to the point where no misclassified
segments are left.

4.3.1 Comparison of different Baselines

Alternative baselines that can be used are fully manual approaches. The
most basic approach is to label each segment independently. It provides the
same improvement rate ∆q1

∆n
as the baseline, but starts at 0 correctly classified

regions. This can be further improved by starting with a default label (e.g.
the most common label in the training set). However, the initial prediction
still has a higher classification rate as this trivial labeling. A more efficient
strategy is to ask the user to label in a top-down order, only the segments
that do not have the same label as their parent. Fig. 6a and 6b show a
qualitative comparison of the baseline and these two alternatives. While the
top-down method has the highest improvement rate, the classification rates
during the first 40 user interactions are significantly lower, which is also the
interval at which the most improvement of the interactive method comes into
play.

Another alternative is to start with a single prediction step of the full
framework (using the pairwise term in Eq. 5), followed by fully manual cor-
rections. This variant has the same initial classification rate as the full inter-
active framework, but the slope of the proposed baseline with its independent
classification of segments. We decided on the independent classification of
segments because it is a more straight-forward approach that still works in
the feedback loop of the proposed system. Also by comparing the frame-
work to independent classification we can show the advantages of structured
prediction in an interactive setting.

All of the proposed manual approaches require significantly lower aver-
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age classification rates than the proposed baseline as well as the interactive
method.

4.3.2 Comparison of Evaluation and Simulation Methods

It was taken into consideration to evaluate the framework based on custom
quality measures that favor specific segments. Two alternatives were evalu-
ated:

• The normalized sum of the area of correctly classified segments, more
formally

q2 =
1∑

si∈S A(si)

∑
si∈S

A(si)1yi=y∗i
, (24)

where A(si) is the area of segment si. The indicator function 1B equals
1 if B is true and 0 if B is false.

• Additionally we can include a weight that is a function of the number
of base labels |yi| of each segment si:

q3 =
1∑

si∈S A(si)e−|yi|

∑
si∈S

A(si)e
−|yi|1yi=y∗i

, (25)

This represents the desire to have specific labels (few base labels) in
larger regions too, because for q2 the most important segment would
be the whole image, which has one of the most generic labels (e.g. the
label “image”, containing all object classes).

Both alternatives favor specific strategies to select and correct nodes.
For q2 one would want to always choose the biggest misclassified segment in
order to maximize the slope in the quality-user interactions graph. The same
approach can be used to maximize the slope for q3 by choosing the segment
with the highest score A(si)e

−|yi|.
More complex quality measures and node selection strategies defeat the

purpose of the evaluation, because the user may or may not follow such
strategies. It would require more elaborate experiments to find a quality
measure that is adapted to human perception. Also note that quality is
subjective and there is no single perfect measurement to capture the quality
of the labeling, since it depends on the application and the segments the user
is interested in.
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4.3.3 Hard Constraints

The asymmetric feature function ψ implicitly encodes the ordering of seman-
tic labels that represents the aggregation of objects from parts. The labels
of the descendants of a segment labeled by the user can be constrained using
the hierarchy of semantic labels, e.g. when a segment is labeled human, its
descendants labels should only correspond to body parts.

While ψ implicitly encodes this ordering, it only represents a “soft-constraint”
that makes a parent-child combination of human-wheel less likely, but does
not enforce the children of human to be body-parts. Using the human inter-
ventions, since the human-labeled segments are considered ground-truth, we
can incrementally include hard-constraints on subtrees of the segmentation
hierarchy. This marginally improves the classification rates.

Fig. 7a and 7b show the distribution of differences in classification rates on
the CamVid and Stanford dataset, respectively. These illustrations represent
histograms of the signed difference between the method that uses these hard
constraints and the originally proposed method. Positive values mean that
using the hard constraints provide higher classification rates. Note that the
computation is done per image, not based on the average classification rates.
Both graphs show that using these hard constraints, the classification rates
are higher for most images. And the absolute value of differences on the
positive side tends to be larger, indicating that it is more likely that hard
constraints improve the classification rates. When they do, the absolute
difference between classification rates with and without hard constraints is
higher than in the case of quality decline. Because this only affects the
feedback loop and there is no additional training necessary, it is possible for
the user to decide to (de-)activate these hard-constraints during runtime, for
the next prediction in the feedback loop.

4.4 Feature Alternatives

The unary and pairwise potential functions are evaluated based on differ-
ent features and different mappings. In the following, we discuss options,
parameters and results of these evaluations.
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Figure 7: Histogram of the signed difference in classification rates between
the using hard constraints and the default proposed approach, evaluated on
the (a) CamVid and (b) Stanford Background datasets.

23



LR SVM Mahal

0.5

0.55

0.6

0.65
C

la
ss

if
ic

at
io

n
 R

at
e

(a) dense SIFT

LR SVM Mahal

0.5

0.55

0.6

0.65

C
la

ss
if

ic
at

io
n

 R
at

e

(b) Geometric Context

Figure 8: Feature evaluation on the CamVid dataset, based on (a) Bag of
Words histogram of dense SIFT features and (b) Geometric Context features
by Hoiem et al. [12]. The evaluated potential functions are based on (LR) a
linear regression to the overlap of image regions; (SVM) the distance to the
hyperplane of an SVM per class; (Mahal) the Mahalanobis distance. Brighter
symbols represent multiple occurrence of the same classification rate. Dotted
lines represent a trivial classifier that always chooses the class that most
frequently occurs in the training set.
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Figure 9: Feature evaluation on the Stanford Background dataset, based
on (a) Bag of Words histogram of dense SIFT features and (b) Geometric
Context features by Hoiem et al. [12]. The evaluated potential functions are
based on (LR) a linear regression to the overlap of image regions; (SVM) the
distance to the hyperplane of an SVM per class; (Mahal) the Mahalanobis
distance. Dotted lines represent a trivial classifier that always chooses the
class that most frequently occurs in the training set.
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4.4.1 Features for Unary Potentials

Three steps are necessary in order to find the unary potential function
φ(si, yi), each introducing new parameters:

4.4.2 Step 1: Base Features

The features evaluated are the Bag of Words [26] histogram of dense SIFT [16]
(dSIFT) features sampled every 6 pixels using 20 code words and the region
features from the Geometric Context (GC) method [12]. Sampling param-
eters are determined on the validation set with a simple k-NN classifier,
maximizing the classification rate. The GC features are computed per im-
age segment and contain several color, texture, shape, spatial and geometric
features.

Using the randFeat framework7, the transformation of features into the
Hilbert space of skewed χ2 and intersection kernels was approximated, using
different kernel parameters. Only a few Experiments with these transfor-
mations were performed, because the dimension of the transformed features
is set to 2000, which only slightly improves results at a high computational
cost. The tested parameters (c, d) for the Stanford dataset with Linear Re-
gression (LR) are {(1, 200), (0.5, 200}, (0.01, 200), (1, 1000), (1, 2000), with c
being the kernel parameter and d being the dimension of the transformed
features. In the case of the SVM, only c = 1 with d = 200 was tested, since
high dimensional SVM training takes more time than LR training.

4.4.3 Step 2: Label-dependent Features

Because we need potential functions providing values for each region and
label, an intermediate step provides label dependent features. One of the
tested methods for this step is a linear regression to the overlap of segment
si with image regions of the original ground-truth that represent the label
combination yi. Another method is to use the signed distance of the test
feature to the hyperplane of a linear Support Vector Machine (SVM) for
each class (which is positive if the point is classified as a negative sample,
in order to get low values if the points are similar). The last method uses
the Mahalanobis distance of the feature vector of si towards class yi. The
covariance matrices are computed independently for each class and Principal

7http://sminchisescu.ins.uni-bonn.de/code/randfeat/
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Component Analyisis (PCA) is used in order to prevent them from being be-
coming singular. We remove all dimensions with eigenvalues λi < ξmaxj λj,
introducing the new parameter ξ.

4.4.4 Step 3: Mapping Function

The final step consists of a mapping function, which is supposed to be closer
to 0 the better the segment fits to the specified object class. This not neces-
sary for the linear regression. For the other two options (SVM, Mahalanobis
distance) we use the exponential function and introduce a scaling parameter
δ:

φ(si, yi) = e−δd(si,yi), (26)

where d(si, yi) is the label-dependent feature.

4.4.5 Pairwise Potentials

The pairwise potential function ψ(yi, yj) is computed using the co-occurrence
of labels in the generated ground-truth and is independent of the actual
segments. This is a simple way to capture the structure of the label space
and use it in the form of soft constraints that do not enforce, but encourage
a reasonable labeling with respect to the parent-child relationship.

Evaluated alternatives are different mapping parameters (as with the
unary potentials, step 3) and normalization of the contribution of each image
to the co-occurrence matrix. In addition two different types of parameter
tying are used, effectively reducing the number of pairwise parameters to
|θp| ∈ {1, 2}. A single parameter means all combinations of labels yi and yj
have the same weight, so that θp represents the weight of the pairwise term
in comparison to the weights of the unary term. In the case of |θp| = 2, one
of the weights is used iff yi = yj and the second weight is used otherwise.
This means that the case where parent and child segments have the same
label is scaled differently than where they do not have the same label.

This definition of ψ allows for a model with a small number of parameters,
high generalizability and training with a small number of samples. However,
there still exists a trade-off between these variables.
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Figure 10: Evaluation of pairwise potential functions on the (a) CamVid
and (b) Stanford Background dataset, using 1 or 2 model parameters (CRF-
Weights). Brighter symbols represent multiple occurrence of the same clas-
sification rate. Dotted lines represent the best classification rates achieved
without pairwise potentials (see Fig. 8 and 9).
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4.4.6 Results

The results of the unary potential evaluations are illustrated in Fig. 8 and 9
for the CamVid and the Stanford Background dataset, respectively. The
experiments shows that using the Geometric Context features with the Ma-
halanobis distance provide consistently better results than all other combi-
nations. The best results are obtained using δ = 0.02 and ξ = 10−8. Note
that the number of samples is unevenly distributed because promising setups
were tested more thoroughly, due to limited time for the feature evaluation.

The evaluation results of the pairwise potential functions are depicted
in Fig. 10a and 10b for the CamVid and the Stanford Background dataset,
respectively. Based on these results we chose to use 2 weights and focus on
the Stanford Background dataset for further evaluation. Best results for this
case were achieved using

ψ(yi, yj) = e−
50
N
C(yi,yj), (27)

where N is the number of sample images and C(yi, yj) is the co-occurrence
of labels in the training set, with the contribution of image k to C being
L1-normalized, i.e.

C(yi, yj) =
N∑
k=1

∣∣∣{sp, sq ∈ Sk : sq ∈ mSk
(sp) ∧ y(k)

p = yi ∧ y(k)
q = yj

}∣∣∣
|{sp, sq ∈ Sk : sq ∈ mSk

(sp)}|
. (28)

4.5 Extending the Label Set

In the following, we discuss results obtained by using more than 3 base labels
on the Stanford Background dataset. Previously 3 geometric classes and all
of their combinations L7 were used ({(1), (2), (3), (1, 2), (1, 3), (2, 3), (1, 2, 3)},
with the numbers 1, 2, 3 representing the object classes; this makes a total of
7 label combinations). We now compare this to a bigger set of label combi-
nation, based on the 8 semantic classes of the data set. Let L9, L12 and L45

be new label sets, where Lx contains x combinations of base labels. Label
combinations in L9 and L45 contain {1, 8} and {1, 2, 7, 8} base labels, respec-
tively. That means in the case of L9 we use all base labels (combinations
containing 1 label) and one combination containing all 8 base labels. The
set L12 contains all 8 base labels and 4 manually defined label combinations
with a associated semantics: flora/fauna = {tree, grass, fg.obj}, nature =
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{tree, grass, water, mountain, fg.obj}, city = {road, building, fg.obj} and
the combination image, containing all base labels.

An example of the generated ground-truth for the label set L12 is illus-
trated in Fig. 13. Note that this label set has a relevant flaw: it does not
consider the foreground-object to be part of a simple scenery, e.g. one can
see in Fig. 13 that there is a fg.obj on a road, each segment containing parts
of both objects is labeled as city. In the specific case of the Stanford Back-
ground dataset, where the class fg.obj represents many different real-world
object classes it may make sense to ignore this base label. However, the goal
of this work is not to optimize the hierarchy of semantic labels, therefore the
straight-forward method of base labels and combinations of them is used for
all cases.

The number of possible label combinations for a base label set LB is
2LB − 1. Generally having a larger label set implies a bigger classification
error (assuming the frequency of all labels in the ground truth is greater
than 0). On the other hand, the stronger the correlation between specific
labels and the features in the training set, the more accurate the model.
Fig. 11 illustrates this behavior. A smaller label set with less meaningful label
combinations L9 has very low initial classification rate. Note that having a
lower initial classification also means that there are more regions to correct
and the slope of the classification rate tends to be steeper. In order to fully
assess the results, it is necessary to at least relate the graph to the initial
classification rate (shown in parentheses in the legend).

Another relevant observation is that L12 has better performance than L45

in the interactive framework and has a slightly higher initial classification rate
(44% compared to 45%). This shows that a small set of manually defined
label combinations with semantic meaning fits better to the model than a
larger set containing most of these combinations.

Fig. 12 shows the distribution of label combinations over the number of
base labels for the 3 new label sets. These graphs agree with the assumption
that combinations containing a low amount of base labels are more distinctive
and also show that there are label combinations that do not occur in the
ground-truth (e.g. the combination containing all 8 base labels in L45). In
such cases the CRF training will eliminate the influence of such classes by
setting the θu(yi) to a significantly lower value than other parameters.

We further show examples of initial predictions in Fig. 14, 15 and 16,
depicting results with worst, median and best classification rates respectively.
For the purpose of illustration we only show a single level of the segmentation
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Figure 12: Histogram of label combinations over the number of base labels
for different label sets on the Stanford Background dataset.

hierarchy each. Results indicate that our framework works best on man-made
structures like roads and buildings. This is expected as the GC features are
optimized for such scenes. Another observation is that the results are smooth
(neighboring regions tend to have the same label). This is also expected
because children of the same parent that have similar features tend to have
the same label, thus indirectly smoothing the semantic segmentation. Please
note that there is no interaction involved in the creation of these examples.

5 Summary and future work

5.1 Summary

In this work we present a probabilistic framework for interactively labeling
hierarchical image segmentations, including the relevant theory of this CRF
based method.

The approach is then compared to a baseline consisting of independent
prediction of segments, which shows the advantages of structured prediction
in this setup. The main evaluation is done by using a virtual annotator, that
corrects misclassified segments in top-down manner. Other experiments in-
clude comparison of different framework components and behavior for larger
label set. One of the most exciting observations is that a large set of labels
(45 labels) provides worse classification rates than a subset containing a few
semantic labels (12 labels).
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Figure 13: Visualization of ground-truths of an image (top left) from the
Stanford Background dataset. It shows the original ground-truth of the
dataset (top right) and the computed ground-truth of a fine (bottom left)
and a coarse (bottom right) segmentation of the segmentation hierarchy. The
illustration is done using the semantic label set L12 (semantic labels of the
Stanford Background dataset, one label combination image containing all la-
bels and the following manually defined combinations: flora/fauna, nature
and city). Image best viewed in color.
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Figure 14: Semantic segmentation result with lowest classification rate, using
an image (top left) from the Stanford Background dataset. It shows the
original ground-truth of the dataset (top right), the computed ground-truth
(bottom left) and the initially predicted labeling (bottom right), both showing
only level 2 of the segmentation hierarchy. The computation is done using
the semantic label set L12. Image best viewed in color.
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Figure 15: Semantic segmentation result with median classification rate, us-
ing an image (top left) from the Stanford Background dataset. It shows the
original ground-truth of the dataset (top right), the computed ground-truth
(bottom left) and the initially predicted labeling (bottom right), both showing
only level 2 of the segmentation hierarchy. The computation is done using
the semantic label set L12. Image best viewed in color.
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Figure 16: Semantic segmentation result with highest classification rate, us-
ing an image (top left) from the Stanford Background dataset. It shows the
original ground-truth of the dataset (top right), the computed ground-truth
(bottom left) and the initially predicted labeling (bottom right), both showing
only level 2 of the segmentation hierarchy. The computation is done using
the semantic label set L12. Image best viewed in color.
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Also the most frequent label combinations contain 1-3 base labels (see
Fig. 12) and there are several label combinations that do not occur. While it
is be possible to learn distinguishable label combinations by clustering, thus
improving overall performance, this defeats the purpose of the framework.
The method is supposed to predict object classes defined by a human user
based on a training set.

5.2 Open Issues

One of the main goals of this work is to quickly generate ground-truth for
the specified task. However, the proposed method is supervised, which cre-
ates a chicken-egg problem: we need ground-truth to generate ground-truth.
We deal with this issue by generating a custom ground-truth that does not
necessarily represent the objects in the scene.

With this custom ground-truth comes the computed hierarchy of (seman-
tic) labels, which do not have distinct semantic meaning but rather depict
combinations of base classes. Even when manually defining specific label
combinations with a semantic meaning these combinations may be ambigu-
ous, e.g. in the experiment with 12 labels, we have many segments labeled
city in the ground-truth, even though there is no city in the image. A suit-
able manually produced ground-truth with carefully chosen object classes
may solve this problem.

We keep the number of model parameters in order to encourage gener-
alizability and allow training on small data sets, so that the time spend on
a manually produced ground-truth is minimized. Initially this assumption
was supposed to be analyzed by repeatedly learning the model on training
data of increasing size. However, at that point in time a single training iter-
ation took several days because the optimization in Eq. 14 was done with a
smaller error tolerance. Repeated training seemed infeasible for the time plan
of this work. Thus the focus shifted to the comparison between structured
and independent prediction in this interactive framework.

Relative geometric features are not considered in our experiments, the
Geometric Context features normalized position and shape features, but the
position relative to its parent may be more relevant. We do not rely on a
segment fully covering an object or part, so the use of such relative geometric
features has yet to be evaluated.
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5.3 Outlook

There are several options to possibly improve the performance by giving up
generalizability or using approximate inference. Aside from obvious modifi-
cations and possibilities mentioned above, an evaluation of different kinds of
models can be very helpful. For example, the model could be extended in
order to include adjacency relations of the regions on one level of coarseness
or use higher order energy terms. Also alternatives to CRF like Structured
SVM [21] or Decision Tree Fields [22] may improve the quality of labelings.

Even with alternative models one of the big problems for real-life use of
this framework is the underlying segmentation. There is a method for object
class segmentation that incorporates both segmentation and labeling in a
joint probabilistic model [13], which may be a solution in this context, which
does not rely on another suboptimal image segmentation method. However,
this would result in a more complex model, likely needing more parameters
and/or a larger training set to achieve similar results.

There is also the option of using the general idea of the framework for a
different task. For example one could use a deformable parts model [8] and
extend it to include semantics, thus detecting and identifying objects and its
parts without relying on a segmentation method. Once could also increase
the level of abstraction further and look at the relation between detected
objects, which may improve confidence in object labels - essentially this would
be an interactive hierarchical version of the method by Rabinovich et al. [25].
On the other hand interactivity is not always desired and it depends on the
requirements of the application whether or not such a solution may be useful.

Another possible research topic is to find a quality measure for labelings
on segmentation hierarchies that are adapted to human perception, e.g. by
finding correlations between human assessment of importance of regions or
labels and a specific weight for the quality score.
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