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Abstract

Image segmentation, in general, is the process of dividing a digital image into segments having a
strong correlation with objects in it. Various techniques exist to locate objects of interest formed
by visual cues. However, general purpose segmentation methods cannot produce a perfect final
segmentation by using low-level cues only. A way round the problem is rather to create a stack
of segmentations with different resolution levels. Higher level knowledge shall then be used to
confirm or select regions for further processing. In automatic region-based segmentation, usually
such a stack of segmentations is built in a bottom-up manner, guided by low-level image feature
data and the defined homogeneity criteria. We should take into account as well that the accuracy
of an image segmentation is measurable, but its quality and usability are highly subjective and
depend also on the scope of the application.

This thesis deals with modifications of such an irregular image segmentation pyramid and
embedding additional knowledge about the problem domain such that the results of the image
segmentation best suit the user. Based on an existing automatic segmentation framework – where
the minimum spanning tree based method tries to capture perceptually important groupings – we
bring the user into the loop and define interactive operations guiding the segmentation process.
Semi-automatic approaches show multiple benefits (like flexibility and acceptance), but may
sometimes be required also from juridical point of view. The interactive operations of merging
and inhibition from merging require a representation that encodes the edge and the parent-child
relationship of the merging tree. In this work each level of the irregular pyramid is represented by
a combinatorial map, encoding both region and boundary information in a single combinatorial
map structure. Using the connecting paths between the different levels of the pyramid, it is
possible to set focus on regions from different granularities. In contrast to related approaches,
this work is not limited to a single working level and pure sequential processing. Moreover,
regions having different resolutions – down to pixel level – may be selected in parallel. This
requires dedicated (pre-)processing and conflict resolution methods which guarantee consistency
of applying the operations throughout the hierarchy. The output is a stack of segmentations with
a final result that best suits the users’ applications, in the topmost level of the hierarchy.

We try to find out answers related to usability questions of the interactive segmentation
tool developed and empirical values on the operations defined. As it turned out, the candidates
(beginners) were able to produce results satisfying their expectations. The data recorded
during the segmentation-sessions reveals different strategies and gives evidence on the usage
of the interactive operations. This work can be used for problems where accuracy in image
segmentation, annotating images or creating ground truth among others is needed.
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Kurzfassung

Unter Bildsegmentierung versteht man im Allgemeinen den Prozess des Aufteilens eines
digitalen Bildes in Segmente, wobei diese eine starke Korrelation mit den im Bild enthaltenen
Objekten aufweisen sollen. Um ein vorab definiertes Zielobjekt – das aus unterschiedlichsten
visuellen Reizen bestehen kann (z.B. Farbe, Symmetrie oder bekannte Formen) – zu extrahieren,
gibt es mehrere Methoden. Jedoch lässt sich ein perfektes Endergebnis nicht mit Ansätzen,
die für eine breites Anwendungsgebiet gedacht sind und nur mit einfachen Bildinformationen
arbeiten, erzielen. Ein Weg, um dieses Problem zu lösen, besteht darin, nicht ein perfektes
Ergebnis, sondern eine Hierarchie von Segmentierungen mit unterschiedlichen Auflösungen
zu erstellen. Spezielles Wissen über den Problembereich kann dann dazu verwendet
werden, einzelne Segmente zu bestätigen oder sie detaillierter zu bearbeiten. Automatische
regionenorientierte Verfahren bauen eine solche Hierarchie von unten nach oben auf. Die
verschiedenen Segmentierungstufen werden dabei durch die im Bild enthaltenen Informationen
sowie ein definiertes Homogenitätskriterium bestimmt. Ebenfalls muss berücksichtigt werden,
dass sich die Genauigkeit einer Bildsegmentierung zwar messen lässt, die Qualität und
Verwendbarkeit des Ergebnisses jedoch stark subjektiv ist und von der weiteren Anwendung
abhängt.

Diese Arbeit nimmt diesen Ansatz auf. Einzelne Segmente einer irregulären Bildpyramide
werden dabei – unter Einbindung von zusätzlichem Wissen über das Segmentierungsziel
– bestätigt oder bearbeitet. Basierend auf einer automatischen Methode, die Borůvkas
minimalen aufspannenden Baum (MST) dazu verwendet, wichtige Gruppierungen – ähnlich
dem Vorgang der menschlichen Wahrnehmung – zu segmentieren, binden wir zusätzlich den
Benutzer in den Prozess ein. Speziell dafür definierte interaktive Operationen sollen so den
Segmentierungsprozess beeinflussen. Solche halbautomatisierten Ansätze haben in Bezug auf
Flexibilität und Akzeptanz viele Vorteile, können aber manchmal auch aus juristischen Gründen
erforderlich sein.

Die Operationen ’merging’ (dt.: Verschmelzen) von zwei durch den Benutzer ausgewählten
Regionen und ’inhibition’ (dt.: Verhindern) derselbigen basieren auf dem Konzept der
Kanten eines Graphen und der Eltern-Kind-Information von Segmenten der Hierarchie. In
dieser Arbeit wird jede Segmentierung durch einen kombinatorischen Graph auf struktureller
Ebene repräsentiert. Dieser duale Graph beinhaltet sowohl die Information über Regionen
als auch deren Kanten gleichzeitig. Mithilfe der Verbindungen (Eltern-Kind) zwischen den
verschiedenen Ebenen der irregulären Pyramide ist es möglich, den Fokus auf mehrere Segmente
gleichzeitig in verschiedenen Ebenen der Hierarchie zu setzen. Im Gegensatz zu anderen
Arbeiten ist diese nicht auf eine einzige Ebene und eine reine sequenzielle Verarbeitung
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beschränkt. Darüber hinaus können die zu bearbeitenden Segmente mit verschiedenen
Auflösungen - bis hin zur Pixelebene - parallel ausgewählt werden. Dies erfordert eine spezielle
(Vor-) Verarbeitung und Methoden, um die Konsistenz der irregulären Pyramide und des
Ergebnisses zu gewährleisten. Das Endergebnis ist ein Stapel von Segmentierungen, in dem sich
das Endergebnis im obersten Level befindet und vollständig den Erwartungen des Benutzers
entspricht.

Im Rahmen der Evaluierung versuchten wir, Antworten einerseits zu Fragen der
Benutzerfreundlichkeit der interaktiven Segmentierungmethode zu finden und andererseits
empirische Werte zu den interaktiven Operationen selbst zu bekommen. Wie sich herausstellte,
konnten die Kandidaten, die alle Anfänger waren, Ergebnisse produzieren, die ihre Erwartungen
erfüllten. Die Daten, die während den einzelnen Segmentierung-Einheiten aufgenommen
wurden, zeigen verschiedene Strategien und ermöglichen Erkenntnisse über die Nutzung der
interaktiven Operationen. Offene Probleme und zukünftige Entwicklungen werden zusätzlich in
dieser Arbeit diskutiert.

Dieses Verfahren kann zur Problemlösung verwendet werden, wenn Genauigkeit bei der
Bildsegmentierung, der Annotation von Bildern oder dem Erstellen von Ground Truth benötigt
wird. Weiters können mit dieser Methode auch eigene Abstrahierungsebenen eingefügt werden.
Dieses Konzept ist allgemein und offen für Erweiterungen oder Optimierungen.
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CHAPTER 1
Introduction

Referring to [Sonka et al., 2008, p. 175], “Image Segmentation is one of the most important
steps leading to the analysis of processed image data - its main goal is to divide an image into
parts that have a strong correlation with objects. . . contained in the image”. There are several
algorithms available for the purpose of creating image segmentations, each dedicated to a certain
domain of problems. Their quality and usability of the result for further processing depends on
various factors. Among others, the type of cues and knowledge used to create partitions is one
of the essential. This all indicates to [Shi and Malik, 2000] “that image segmentation based on
low-level cues cannot and should not aim to produce a complete final ’correct’ segmentation”.
Instead, the objective should be to use the low-level coherence in order to create hierarchical
partitions. Finally they conclude, mid- and high-level knowledge may than be used to either
confirm these groups or select some for further attention.

[Shi and Malik, 2000] summarize a general problem “since there are many possible
partitions of the domain of an image into subsets, how do we pick the ’right’ one?”. Regarding
the current problems in image processing, the authors state that in general the following two
aspects need to be considered:

• There are several possible interpretations (i.e. partitions of an image into
subsets) in the context of prior world knowledge.

• The partitioning is inherently hierarchical (relations of parts to any given
whole)

Regarding the first point, as there may not be a single correct answer on the question which
partition to choose, [Shi and Malik, 2000] conclude that a “Bayesian view is appropriate”.
For the second aspect, they suggest to “think of returning a tree structure corresponding to a
hierarchical partition instead of a single ’flat’ partition”.

Usually the results delivered by automatic segmentation methods – building a stack of
segmentations by using low-level cues – do not meet neither the requirements nor the users’
expectations. This diploma thesis is about the interactive selection and modification of partitions
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in an hierarchical irregular pyramidal data structures. Categorizing this work within the field of
image processing, there are the following keywords to describe the overall context:

• Image Segmentation

• User Interaction

• Graph Theory

• Topology

• Hierarchical Data Representation

• Perceptual Grouping

• Annotation

1.1 Problem Statement

In this work we attempt to satisfy both annotation and segmentation requirements, so far both
processes share various similarities. The annotation process itself is hierarchical. Moreover
hierarchies are plausible by nature [Culhane and Tsotsos, 1990] - e.g. a car consists of wheels, a
car body and its interior. Using LabelMe approach [Martin et al., 2001], each level of granularity
has to be created individually. Furthermore it lacks the explicit and formal encoding of the
hierarchical annotation relations. The segmentation process itself is hierarchical too as smaller
parts are iteratively grouped together [Zahn, 1971]. Usually it all starts on pixel level, where
each pixel corresponds to a region. However, working on pixel level may not be feasible for
every application and working on higher level of abstraction/granularity is desired. In order to
create different levels of abstraction, the regions are iteratively merged together according to
the defined homogeneity criteria. In the approach presented, such a stack of segmentations is
automatically built using the minimum spanning tree based method (see Chapter 3 for details)
proposed by [Haxhimusa and Kropatsch, 2004, Haxhimusa et al., 2005].

In pure interactive approaches, working close to pixel precision can be time consuming
and requires considerable amount of human interaction. This problem has been described and
considered to be a drawback in recent image annotation tools like LabelMe [Torralba et al.,
2010], where on pixel-level segmented objects are annotated with vocabulary. One possibility
to automate the process is again to delegate generic segmentation tasks to an algorithm and
retain the user for initialization or optimization steps. Not only for the purpose of interactively
controlling the merging of regions, this proceeding allows introducing additional knowledge
about the problem domain into the segmentation process to improve the results. Moreover, the
acceptance of a partition is highly subjective and embedding the user can be required also from
juridical point of view. In conclusion, using a semi-automatic segmentation method has several
benefits.

Depending on the composition of automatic/interactive methods and the different types of
knowledge, a framework can either be restricted to a certain domain of images or generically
applicable on a variety of image classes. Section 2.4 in the basics’ chapter covers various types
of knowledge, its use in image segmentation algorithms and the associated tradeoff. We decided
to use a general purpose and semi-automatic approach. After a study on the state-of-the-art in
Section 2.5 and having also the task of image annotation in mind, we sketched the cornerstones
of the contribution:
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• Integration of user-interaction into an existing automatic hierarchical image-segmentation
framework

• Definition of merging and inhibition of merging operations on regions to guide the
segmentation process

• Working at different granularity levels within the hierarchy

• Using of pixel-level precision versus super-pixel approach

• Consistency of operations within the hierarchy

• Ability to produce any segmentation result

1.2 Aim of the Work
[Meine et al., 2004] point out the benefits of reusing components of one segmentation

method in another one and the possibility of switching to the most appropriate method for a
specific segmentation task. The authors state that the combination is difficult because different
algorithms “use incompatible data representations for almost all levels beyond the pixel matrix”.
They invent a unified representation called GeoMap which covers the requirements of a large
number of algorithms. It is based on an extended topological representation and the user will
be integrated into the loop as well. In contrast to regular pyramids, which have a rigid structure
and known drawbacks [Bister et al., 1990], irregular pyramids dynamically adapt to the image
structure. They are widely used for such kind of problems in image analysis [Simon et al., 2006]
and are able to represent image partitions at different resolution levels. In conclusion, the data
structure plays a key role.

However, the initialization at the base and sequent decimation steps in the first levels are
computationally intense and very crucial to the overall segmentation result. Consequently these
steps are often automatized. As most approaches rely on an initial over-segmentation, it is
impossible to access lowest levels of detail for refinement. Furthermore boundaries not detected
in the beginning also cannot be corrected later on. In this work this is not the case and pixel-level
precision is reached.

While the GeoMap [Meine et al., 2004] framework is rather specific concerning the
representation chosen, this diploma thesis is about interactive modifications of irregular image
segmentation pyramids [Kropatsch, 1995] in general. In order to exert influence on the
segmentation process, we use the topological relations defined within the levels and connecting
paths [Glantz and Kropatsch, 1994] that relate the elements between the different levels of
resolution in irregular combinatorial pyramids. Another important aspect of this work is the
duality concept of the combinatorial map structures that allows to switch between the relevant
representations in terms of regions and boundaries for processing.

Doing it this way it is possible to guide the process of creating the stack of segmentations. It
shall be possible to access all levels within the hierarchy and select regions in multiple levels of
granularity in one step. The output is a stack of segmentations with a final result that best suits
the users’ applications on top.
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1.3 Contribution of the Work
The definition of interactive operations on the irregular graph pyramid and its embedding into
the automatic framework – in order to guide the segmentation process – is an essential part of
the work presented. Based on the information encoded in the combinatorial map structure and
the merging tree, dedicated processing steps within the hierarchy are introduced to guarantee
consistency of the operations and propagate the changes. In addition we provide methods to
select regions from different levels of resolution (until pixel-level precision) for further attention
and which support the user in creating image segmentation results that meet his expectations.

An evaluation of the framework developed against the state-of-the-art (see Section 2.5) is not
intended at this time. Among others, the problems making it difficult to compare them are based
on technical differences and framework parametrization. Furthermore segmentation accuracy
is not relevant in our case as it is possible to produce any result using the approach developed.
Instead we evaluate questions regarding the usability/functionality implemented and discuss the
findings based on the empirical values gathered in the segmentation sessions.

1.4 Structure of the Thesis
After a first overview it is necessary to describe in Chapter 2 the basic theory and state-of-the-art
related to this work. We discuss the segmentation framework at the base in Chapter 3, followed
by the definition of the interactive operations on top of it in Chapter 4. The introduced interaction
methods on irregular pyramids, possible segmentation strategies and related user experience are
subject of research and will be evaluated in Chapter 5. A conclusion of this work and a list
of improvements to be added in future is given in the final Chapter 6. The two Appendices A
and B contain a documentation/tutorial on the tools developed and the detailed answers of the
questionnaire in the evaluation part.
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CHAPTER 2
Basics of Hierarchical Image

Segmentations

In this chapter we cover the basic concepts needed in the rest of the thesis. Starting with
image segmentation as governing theme, the graph-based foundations required in the subsequent
chapters are introduced. We will discuss hierarchical representations based on topological data
structures representing the image-segmentations results and the different types of knowledge to
improve the same. This finally leads to a comparison of the state-of-the-art, having focus on
semi-automatic and interactive segmentation frameworks.

2.1 Image Segmentation

Any object contained in an image is formed by different cues. According to [Martin et al., 2001],
cues are ranked with respect to the following levels of complexity:

• Low: Coherence of brightness, texture, continuity of a contour.

• Intermediate: Symmetry and convexity

• High: Recognition of familiar objects

They are fundamental in the process of creating image segmentations, both for computer
programs and humans. Various techniques exist to segment an input image into the objects
of interest (corresponding to the foreground) and its background. A general categorization is
presented in [Sonka et al., 2008, pp. 175 – 256]:

• Thresholding: By choosing a brightness constant as threshold, an image is separated into
foreground and background.
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(a) Input image (b) Edge image (c) Region image

Figure 2.1: An input image (a) and its example segmentations created using (b) edge-based or
(c) region-based methods.

• Edge-based segmentation: Edges mark discontinuities – like a significant change of
brightness – in an image. They are detected using local filtering operators (convolution
kernels) returning e.g. first (gradient) or second (Laplace) derivative in the spatial domain.
Chained significant edges lead to borders. Among other methods also border tracing or
graph search based algorithms exist. In the end its output is used to construct regions.

• Region-based segmentation: The methods following this paradigm create regions
directly. Based on a homogeneity criterion, the region-growing process iteratively merges
– in a bottom-up approach – smaller/adjacent regions together. Alternatively there may be
dividing (top-down) and hybrid approaches.

In general the segmentations derived by latter two paradigms are dual, i.e. regions can be
constructed from their borders and vice versa. These results can be combined in a single structure
like graphs (see Section 2.2 for details). However, the output of edge- and region based methods
are usually not the same. Figure 2.1 shows some examples, the image in (a) is taken from
Berkeley image segmentation database [Martin et al., 2001]. The segmentation in subfigure (b)
shows edges extracted by the Sobel operator. This edge-based method calculates a gradient
image using the first derivative of pixel-intensity values. In (c) a region image having coarse
granularity in a step of the region-merging process is shown.

Please note that the usage of the technical terms varies in literature as there exist several
synonyms. By definition from [Sonka et al., 2008, p. 332], a region is identified by a label
assigned “with a unique (integer) number; such identification is called labeling or coloring
(also connected component labeling), and the largest integer label usually gives the number
of regions in the image”. Hence all pixels belonging to the same region in Figure 2.1c share
a common label [Braquelaire and Brun, 1998] and are visualized using e.g. the mean-color.
Depending on the context, the terms “division, area, section, partition, face and segment” are
used equivalently for a region1. Due to [Meine and Köthe, 2005], “there are several definitions
of regions and its boundaries in discrete images”:

1See definitions and thesaurus in Oxford Dictionaries of English.
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• Crack-edges based interpretation of region images

• 8-connected boundaries between 4-connected regions or vice versa.

Limit, border and boundary are also often used equivalently. The difference between boundaries
and edges in general will become more clear when having a look at the definition from [Sonka
et al., 2008, pp. 21 – 22]. “An edge is a. . . property of a pixel and its immediate neighborhood”
represented by a vector and “tells us how fast the image intensity varies”. The (inner) border of
a region R is ”the set of pixels within the region that have one or more neighbors outside R.”
Therefore a border is a global concept and an edge represents related local properties.

Concluding this first section, for the problem of extracting objects from complex images,
several methods lead to a result. The decision which one is chosen depends on several factors
and also on the future scope of an application. Referring to [Braquelaire and Brun, 1998], “it
quickly appeared that this problem cannot be solved without an priori knowledge of the objects
to be recognized”. Therefore another classification is performed for such algorithms:

• Domain-dependent: which attempt to recognize specific objects in a scene;

• Domain-independent: which produces a partition of the original image into a set of
regions according to a homogeneity criterion.

Additional knowledge about the problem domain takes in a key role in optimizing the results for
further processing. In addition a specific pre-processing phase (like application of a median
filter in order to remove disturbing noise), combinations of different approaches could also
be used for improvement. Such combinations are usually restricted by technical means, e.g.
incompatibilities with respect to the data structure [Braquelaire and Brun, 1998, Meine et al.,
2004] used. More on external knowledge, like the integration of user-interaction, is presented in
Section 2.4 within this chapter as it is a key feature of this work too.

As a premise for this work, the input images need not to be pre-processed, furthermore
the approach falls into the second category of domain-independent applications. It is based on
region-based segmentations, so thresholding and edge-based segmentation will not be covered
in detail.

Region-based Segmentation

But how to derive these regions in the region-based segmentation paradigm? [Braquelaire and
Brun, 1998] list the three approaches that are possible:

1. The bottom-up approach: Small regions are aggregated into larger ones by using
merging algorithms.

2. The top-down approach: An image is iteratively split into smaller and smaller regions
by using splitting algorithms.

3. The split-and-merge approach: Implements a combination of both.
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Procedure 1 Region growing
1: Define some starting method to segment the image into many small regions satisfying

condition (2.2);
2: Define a criterion for merging two adjacent regions;
3: Merge all adjacent regions satisfying the merging criterion. If no two regions can be merged

maintaining condition (2.1), stop;

In general, the first procedure, as defined in Procedure 1, is known as region growing2. In more
detail, first a starting method is chosen which segments the input-image into many small regions.
The following two may be used in order to get a starting level:

• Identity: Take the original input image where each pixel represents a single region (1 : 1
correspondence).

• Super-pixels: [Ren and Malik, 2003] introduce a preceding stage which groups pixels
into super-pixels. The method returns a segmentation of coarser granularity than pixel
level. This grouping can be characterized best as over-segmentation (relating the output
to a ground truth segmentation). As this initial phase is crucial for the overall result, this
task is often delegated. Resulting segmentations based on super-pixels are often used as
input/basis for other algorithms, however regions not identified in the beginning will not
be available for further processing.

Anticipating the following two formulas3, the second step of Procedure 1 gets more clear.

H(R
i

[R
j

) = FALSE, i 6= j R
i

adjacent to R
j

(2.1)

H(R
i

) = TRUE, i = 1, 2, . . . , S (2.2)

For S being the total number of regions, the resulting must be both homogenous (due to an
evaluation function H) satisfying Equation 2.2 and maximal with respect to Equation 2.1. The
regions in the beginning most certainly do not satisfy Equation 2.1 [Sonka et al., 2008, p. 224].

In the third and last step we define a criterion for merging two adjacent regions. As
an example one can use distance-measures based on color-means (low level cues). Later in
Chapter 3, related concepts like perceptual grouping [Felzenszwalb and Huttenlocher, 2004] are
introduced. If the resulting difference between two adjacent regions exceeds a given threshold
(merging criterion), then the regions are merged together. This iteratively happens for all regions
as long as the homogeneity criterion, in Equation 2.2 remains satisfied, then it stops. During
this iterative reduction one can track the merging/segmentation tree as shown in Figure 2.2.
In this picture a circle represents a region in the level specified on the left (indicated by the
dotted horizontal bar). Already in the next step, e.g. from level 0 to 1, adjacent regions
are merged together. The parent-child relation of successor and predecessor regions defines
a reduction window. This is the abstract procedure and basis for lots of similar approaches

2Procedure 6.17 taken from [Sonka et al., 2008, p. 225].
3Equations 6.30 and 6.31 taken from [Sonka et al., 2008, p. 224].
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k

...
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Figure 2.2: Merging Tree, modified according to [Haxhimusa, 2007, p. 31].

creating region-based image segmentations. The questions which remains to be answered, how
to evaluate the resulting output? Parametrized on a threshold T that specifies the amount of
mutual overlap between a segmented region and the corresponding ground truth region, the
resulting segmentation of a region-of-interest is classified by [Sonka and Fitzpatrick, 2001] into
the following five conditions:

• A correct segmentation of a region: overlap between a region in the segmented
image and a region in the ground truth.

• An over-segmentation of a region: occurs when a collection of regions in the
segmented image corresponds to one region in the ground truth.

• An under-segmentation of a region: occurs when a collection of regions in the
ground truth corresponds to one region in the segmented image.

• A missed region: has no good correspondence in the segmented image.

• A noise region: has no good correspondence in the ground truth.

After a rough definition on the main topic of this work and covering related theoretical
aspects, there are some questions which remain to be answered:

• In order to merge adjacent regions, how to encode topological relations?

• Regions get iteratively merged together, what is the benefit of using a hierarchical merging
tree instead of a flat representation?

• Cluttered background, shadows or noise make the segmentation task even more difficult.
How to improve the results?

• Moreover, the concept of a good partition may depend on the purpose of its use and may
be highly subjective [Klava et al., 2009]. So why not integrating the user?

The first two questions will be answered in detail in Section 2.2, the remaining two within
Section 2.4 in this chapter.
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2.2 Topological Data Structures

Definition of Topology

As important as the choice for the appropriate segmentation method is the decision for
the image representations at its base. Topological properties like spatial relationships
between regions are necessary for computation. They are usually described in terms of
adjacency, proximity, connectivity, membership and orientation. For the purpose of defining
modification-operations on adjacent regions and moreover within the hierarchical structure, the
graph-based representations (presented later in this chapter) need to be able to encode this type
of information.

In contrast to distance measurement in Euclidean space, these properties are invariant to
continuos transformations. Translated from the introducing book on topology, [Ossa, 2009, pp.
2-3] describes the term as follows:

Topology is also referred as ’Continuous’ or ’Rubber-Sheet Geometry’. This
geometry is defined on the fundamental term of Homeomorphic Relations.

f : M ! N, ef = (x, f(x))

Transformations f between the sets M and N such as as bending and denting have
no influence on the topological properties (imagine inclusions such as holes). The
sets stay topologically equivalent, whereas tearing is not allowed since the space is
no longer continuous.

[Egenhofer, 1989] formalizes the relations above algebraically using a representation model
based on minimal objects called simplices. As per his definition, a simplex exists for each
dimension (0. . . n) of a spatial object for example:

• 0-simplex represents a node,

• 1-simplex an edge,

• 2-simplex a triangle

and even a n-simplex can be defined. In order to depict the relations, he gives the following
example: “Any n-simplex is composed of n + 1 geometrically independent simplices of
dimension n� 1. For example a triangle (2-simplex) is bounded by three 1-simplices.”

Furthermore [Egenhofer, 1989] combines those elements to a simplicial complex, which is a
(finite) collection of such simplices. Based on empty and non-empty intersection of its simplicial
elements the spatial relationships mentioned in the beginning are defined. Hence objects are
considered as e.g. neighbors if they share a common edge (1-simplex). Finally also clockwise
or counterclockwise orientation of 1-simplices (edges) is introduced, a concept which we will
need again in Section 2.2 of this chapter.
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Graphs

The terminology of nodes and edges joining them is also used in graph theory. Hence the same
are often used to represent topological relations [Sonka et al., 2008, p. 104] like adjacency which
is needed for processing of split and merge operations. [Lienhardt, 1991] says that “a solid is
defined by a subdivision of a surface (informally, a partition of this surface into vertices, edges
and faces, that is into cells of dimension 0,1, and 2)”. Following this definition, two types of
topological models can be distinguished [Lienhardt, 1991]:

• Incidence Graphs: Vertices can have regions/cells of modeled subdivision
assigned. The edges represent the adjacency and incidence relations between
them.

• Ordered Models: A single type of basic element on which element functions
act, are used to describe the relations.

Both of these graphs have a different representation. An incidence graph is defined by G
containing vertices V and arcs/edges E connecting pairs of them4.

G = (V,E)

V = x0, x1, . . . , x
k

E = x0x1, x1x2, . . . , x
k�1xk

This neighborhood graph is also called primal graph G. Figure 2.3 shows an undirected graph,
where the black dots form the Vertices x 2 V and black lines the edges e 2 E of G. Its
topologically dual G or G⇤ can be deduced by the following scheme:

“Every connected plane multigraph has a plane dual. Indeed. . . we start by picking
from each face f of G a point v⇤(f) as vertex for G⇤. We can then link these
vertices up by independent arcs. . . ” [Diestel, 2010, p. 108]

4Graph notions used from [Diestel, 2010].

e*

G*

e

G

Figure 2.3: A planar graph G and its dual G⇤.
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(a) Image (b) Adjacency Graph (c) Boundary Graph

Figure 2.4: Embedding graphs of a 2D image. (a) Regions on pixel-level. (b) Adjacency
relations between the former, visualized using a RAG. (c) Boundary Graph containing nodes
and interpixel-boundaries.

On interpreting the graphs in terms of region-based segmentation (see Figure 2.4a), the primal
encodes the adjacency relations between the regions (see Figure 2.4b), i.e. vertices have regions
assigned and edges indicate relations. Whereas in this case the dual represents the boundaries of
the regions (see Figure 2.4c), i.e. the interpixel vertices and edges [Braquelaire and Brun, 1998].
Interpixel boundaries, in contradiction to ’natural’ edges derived from edge-based segmentation,
have no ’visible’ correspondence in the image.

The second type, ordered models, is explained in Section 2.2 covering combinatorial maps.
In conclusion, when using 2D images, the assignment of graphs’ basic-elements to match the
image structure yield these two complementary types of graphs G and G. They are used to
describe the structure (spatial relationships) within the image. Furthermore, a weight value
can be stored on the edges for computation and indicating e.g. a likelihood of being a true
boundary [Shi and Malik, 2000, Arbelaez et al., 2009].

In the following list of topological graphs, the assignment of which graph to be primal and
dual varies in literature. To avoid misconceptions we define the primal to be the one capturing
the main aspect of a representation, this will be indicated in the text accordingly. Starting
from typically used region adjacency graphs, we proceed to more advanced representations
like combinatorial maps. The choice of the underlying data structure “considerably effects
. . . an algorithm and is therefore a fundamental question” [Sonka et al., 2008, p. 175]. Using
graphs at the base has various benefits. Energy or cost minimization may be realised using
graph-optimization algorithms. Well known frameworks using graph-cuts approach [Boykov
and Jolly, 2001], as well as this work make use of them (see Section 3.1). The benefits and
drawbacks of each graph type will be discussed.

RAG

An example of a 2D region adjacency graph is shown in Figure 2.5b. Nodes correspond to
regions shown in Figure 2.5a and an arc/edge between two regions indicates their adjacency. To
specify a relationship (e.g. to be left/right/inside), descriptions can be put on an edge [Sonka
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(c) Dual Graph

Figure 2.5: Image regions and corresponding graphs. (a) Shows the region image.
(b) Representation of adjacency relations using the RAG. (c) Precise topological correct
representation using dual graph.

et al., 2008, p. 104, p. 385]. Simple- or multi-adjacency and inclusion are represented in the
same way [Simon et al., 2006].

Due to this ’informal’ representation of topology, structural modifications and resolving
conflicts/ambiguities are a difficult task. Nevertheless a RAG is a simple and popular model.
Computation over topological properties requires – especially in higher dimensions (e.g. loss of
information in nD-images) – an advanced representation formalism.

Dual Graphs

A dual image graph (G,G, see Figure 2.5c) consists both of a 2D region adjacency (primal)
and boundary (dual) representation. It is created using the method shown in [Diestel, 2010].
Multi-adjacency and inclusion relations are now represented correctly, the latter clearly by a self
loop in the region graph. But still not all topological information is available, i.e. the ordering
of regions around a vertex [Simon et al., 2006] to distinguish them. Furthermore, two separate
graphs need to be stored.

2-Dimensional Combinatorial Maps

2-Dimensional combinatorial maps (see Figure 2.6), as defined by [Lienhardt, 1994], belong to
the class of ordered models and can be used to represent the topology of subdivisions of oriented
topological surfaces. Inclusions were already handled correctly using dual graphs, but they are
still missing ordering information. Combinatorial maps overcome this restriction by adding the
concept of orientation [Egenhofer, 1989].

Definition 2.2.1. A combinatorial map G is the triplet G = (D,�,↵), where D is the set of darts
and �,↵ are two permutations defined on D such that ↵ is an involution: (8d 2 D↵2(d) = d).
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(b) 2D Combinatorial Map - Dual

Figure 2.6: Combinatorial Map of Figure 2.5a.

Therefore each edge is split into two half-edges, which is the basic element of this
representation called dart. Since each edge connects two vertices, a dart uniquely belongs to
one vertex. Hence two darts on the same edge have opposite directions. The darts 2 D in
combination with the permutation � (ordering along a vertex) and involution ↵ fully characterize
the ordered graph in 2-D space [Brun and Kropatsch, 1999]:

G = (D,�,↵) (2.3)

By definition of a fixed orientation (clockwise, counterclockwise) it is possible to enumerate all
darts in the specified order. This ordering/permutation can be traversed with the � permutation
(see Figure 2.6a, clockwise). All darts (indicated by arrows) of a vertex (indicated by a black
square) are enumerated by consecutive application of this operation, this cycle/orbit can be
abbreviated with e.g. �⇤(1) = (1, 3, 2). To retrieve the opposite dart on the same edge, the
↵ involution (see Figure 2.6a) is defined, e.g. applying ↵(�2) yields 2 and vice versa. Mapping
to the definition of G in terms of vertices and edges, the vertex set corresponds to V = �⇤(D)
and the edge set to E = ↵⇤(D) [Haxhimusa et al., 2005] accordingly.

In contrast to dual graphs before, there is no need to store its dual separately. Through
definition of a new operation ' = � � ↵ (by consecutively applying the defined operations
before), it is possible to implicitly derive the adjacency representation:

G = (D,',↵) (2.4)

The darts '⇤(�1) = (�1, 3) encode both the boundary of region 1 in the primal graph and
its adjacency relations (see Figure 2.6b) in the dual. By now applying the operation ' on the
opposite dart (↵), one gets the darts defining the adjacent region B (representing the background)
as they are touching the same edge: '⇤(1) = (1,�2). This is shown in the dual correspondent in
Figure 2.6b. The new vertices in the dual representation are equivalent to the region indices, the
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D (1,�1, 2,�2, 3,�3, 4,�4, 5,�5)
↵ = (1,�1)(2,�2)(3,�3)(4,�4)(5,�5)
� = (1, 3, 2)(2, 4,�3,�1)(�4,�5, 5)
' = (�1, 3)(�3, 2, 4,�5,�4) (5)|{z}

inclusion

(1,�2)| {z }
f

1
'

Figure 2.7: Dartset D and its operations encoding the example-graphs in Figure 2.6.

darts leaving each vertex encode all the information necessary for deriving adjacency/ordering
relations. f1

'

denotes the infinite face or the background B. D together with the operations
↵,�,' implicitly encodes all we need just in one representation, see Figure 2.7 for an example.
This topological representation is able to handle ordering and inclusion information correctly. A
formal description for n-dimensional combinatorial maps can be found in [Lienhardt, 1994].

n-Dimensional Generalized Combinatorial Maps

[Lienhardt, 1991, Lienhardt, 1994] describes the n-dimensional generalized maps as
“combinatorial model for representing the topology of subdivisions of orientable or
non-orientable quasi manifolds5 with or without boundaries”. Unlike before, where either
topological information was lost in higher dimensions or the formalism was restricted to 2D
images only, n-G-maps overcome these problems. They are homogeneously defined for any
dimension - this applies also to removal operations. An example graph is defined as follows:

G = (D,↵0,↵1, . . . ,↵n

) (2.5)

where D is a non-empty set of darts and ↵0,↵1, . . . ,↵n

are involutions on D . In contrast to
before, all operations are involutions defined equivalently:

8i, 0  i  n, 8d 2 D,↵2
i

(d) = d (2.6)

An example of tiled frame – represented as a 2-Dimensional Generalized Combinatorial Map
– is shown in Figure 2.8. All involutions ↵

i

represent adjacencies, where ↵0 corresponds to ↵
permutation defined before and ↵1 to � similarly. The black bar in Figure 2.8 indicates the new
operation ↵2 encoding the adjacency relation.

2.3 (Irregular) Pyramid Representation

The usage of hierarchical representations in opposite to flat data structures in image analysis is
motivated by several findings. [Culhane and Tsotsos, 1990] claim that hierarchies are “plausible

5For an explanation see [Brickell and Clark, 1970].
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↵0 = {(1,�1), (2,�2), (3,�3), (4,�4), (5,�5),
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↵1 = {(1,�4), (�1,�2), (2,�3), (3, 4), (5,�6),
(6, 7), (�7, 8), (�8,�5)}

↵2 = {(�4,�6), (4, 6)}

Figure 2.8: 2D Generalized Combinatorial Map and the cycles for involutions ↵0...n.

by biology”. When working with multi-resolution pyramids [Kropatsch, 1995], one may work at
the level of granularity only of those parts of the image which are essential [Sonka et al., 2008, p.
106]. Often computer vision has to deal with high amounts of data, so reducing the load to the
minimum (resolution) required may help to save resources. From algorithmic point of view this
representation fits to region-based segmentation frameworks. There, in the first place, each step
may be represented as a level in the pyramid. In the second place the merging of regions from
level to level builds up a hierarchical merging tree. [Sonka et al., 2008, p. 98, 109] describe
this concept in terms of regular matrix m and tree t pyramids explained in the following. Based
on the concept of topological (dual) graphs presented in Section 2.2, [Kropatsch, 1995] defines
irregular pyramids.

Regular Pyramids

[Sonka et al., 2008, pp. 99-100] state that “traditional image data structures such as matrices,
chains, graphs, . . . are important not only for the direct representation of image information”.
Thus matrices may also be used as a basis for more complex hierarchical methods and data
structures.

• Binary images: a matrix containing only zeros or ones;

• Multispectral images: each matrix contains corresponds to a representation in one spectral
band;

• Multi-resolution pyramids: matrices containing of different levels of resolutions
(pyramidal structure);

Such a matrix pyramid, is defined as follows [Sonka et al., 2008, p. 106]:

Definition 2.3.1. A matrix pyramid is a sequence {M0, . . . ,Mi

,M
i+1, . . . ,M

k

} of images,
where M0 has the same dimensions and elements as the original image. M

i+1 is derived from
M

i

by reducing the resolution by one half.
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Figure 2.9: Pyramidal Structures

This reduction defines a fixed reduction window, e.g. 2 ⇥ 2 pixels (see dotted lines in
Figure 2.10) where for every cell c (single element, e.g. region) of M

i+1, w(c) is its set of
children in M

i

. The reduction factor � defines at which rate the image decreases between the
levels:

�  |M
i

|
|M

i+1|
, i = 0, 1, . . . , k � 1 (2.7)

If the images are organized in regular manner, i.e. all cells have the same number of neighbors
(square grid) and the same number of children, the pyramid is called regular. In a regular
pyramid the number of pixels in level i�1 is � times higher than in the next level i (Figure 2.9a).
This reduction window of a cell c at level i can be propagated down to higher resolution than
level i � 1. wl(c

i

) is the equivalent window [Sonka et al., 2008, p. 109] that covers all cells at
level i� l � 1:

wl�1(c
i

) =
[

q2w(ci)

wl(q) (2.8)

This defines also the merging tree and the receptive field (see Figure 2.9a, modified according
to [Haxhimusa, 2007, p. 31]). Figure 2.9b shows a self-created Gaussian Pyramid with reduction
factors � = 1, 2, 3, resulting in a resolution being 1/2, 1/4, 1/16 of the size of the input image.
Regular pyramids are fully characterized by the term (reduction window, e.g. 2⇥ 2)/(reduction
factor).

Regular pyramids have a rigid structure where the intra-level relationships are fixed (only
inter-level relationships could adapt itself to the image layout) and the reduction factors are
constant [Marfil et al., 2006]. This ’inflexibility’ has the advantage that size and layout of
the structure are always fixed and well known already in the beginning. In consequence, this
data structure has logarithmic tapering and efficient algorithms can be implemented in O(log n)
runtime.

In order to create segmentation either bottom-up and/or top-down approaches can be chosen.
What needs to be considered is that even if the same homogeneity criteria are used, merging
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is not a dual operation to splitting [Sonka et al., 2008, p. 227] and inevitably leads to
different results! In the latter case of splitting, one could start on top of the pyramid (image
is represented as one region) and apply splitting operations to produce segments. Approaches
following this paradigm use T-Pyramids (tree-pyramids or modifications called quadtrees) as
data structure [Sonka et al., 2008, pp. 106-110]. Tree-pyramids correspond to the tree version
of M-pyramids.

Definition 2.3.2. Nodes of a T-pyramid correspond for a given k with image points of an
M-Pyramid; elements of the set of nodes P = {(k, i, j)} correspond with individual matrices in
the M-Pyramid (k is called the level of the pyramid). F is the so called parent mapping, which
is defined for all nodes P

k

of the T-pyramid except its root (0, 0, 0) [Sonka et al., 2008, p. 107].

Quadtrees are modifications of T-pyramids, where it is not necessary to keep nodes at all
levels – which is less expensive. [Braquelaire and Brun, 1998] claim, that above mentioned
“hierarchical structures are devoted to top-down region based algorithms and do not provide
efficient implementations of merge algorithms”. Thus they break these structures and use
region adjacency graphs (as presented in Subsection 2.2) which are more adapted to perform
merge operations. See Figure 2.10 for an example showing the split-and-merge operations in an
hierarchical data structure. [Bister et al., 1990] show, that these regular data structures suffer

splitting merging

Figure 2.10: Split-and-merge in a hierarchical data structure.

from global shift-, scale- and rotation variance. E.g. moving the grid structure by one pixel leads
to a complete different segmentation. Therefore they conclude that regular pyramids have to be
rejected as general purpose image segmentation algorithms.

Irregular Pyramids

Irregular pyramids were introduced to overcome the limitations of global shift-, scale- and
rotation variance. Here – analogous to regular M-pyramids – a stack of graphs/combinatorial
maps is used for representation. Similarly, [Kropatsch, 1995] distinguishes ordered levels of
decreasing sizes (higher abstraction) in an irregular pyramid. This way image partitions at
different resolution levels [Simon et al., 2006] may be represented.

Adjacent levels are related by the fact that the vertex set (representing regions) of the reduced
level is a subset of the vertices in the level below. This way ’connecting paths’ (structures) are
created that relate the edges of the reduced graph with paths between surviving vertices in the
level below. This variable data-structure and decimation process dynamically adapts to the image
layout [Marfil et al., 2006], in consequence they are also called adaptive pyramids. In general,

19



the authors say, there is no fixed reduction factor between the levels nor is the size of each level
and the height of the pyramid known.

From any of the boundary representation data structures [Lienhardt, 1991] (topological
graphs) presented before in Section 2.2 an irregular pyramid can be built. When representing
2D-images, the simplest one is a RAG-pyramid. Reminding Procedure 1 for region growing,
this data structure could be used to easily apply the merge-operations. [Glantz and Kropatsch,
1994] define dual graph contraction to create dual graph pyramids. In further consequence
combinatorial pyramids [Brun and Kropatsch, 1999] are used to capture the whole topological
information. In general an irregular pyramid is a stack of graphs (G0, . . . , G

k

). As described
in [Kropatsch, 1995], “the methods for building differ in the way they select the survivors and
in the way they derive the neighborhood relations of the reduced level”. In Procedure 2, [Simon
et al., 2006] presents a general approach:

Procedure 2 Build a new pyramid level
1: mark (n� 1) cells between regions to merge homogenous regions (n-cells);
2: duplicate last level;
3: apply decimation;

The first step of ’selecting the regions to merge’ and some more details on this procedure are
given in Section 3. E.g. level 0 corresponds to the initial image/segmentation and each graph
k + 1 is built from the one below (k). Especially the third step is more involved than before and
will be discussed here in detail. The preceding section on regular pyramids already contained
- in general terms - the concept of a reduction window. In order to obtain different resolution
levels in irregular pyramids, this concept needs to be adapted to the new structure.

When working with topology and dual representations, the decimation phase is crucial since
contraction and removal operations need to be done in a structure preserving way [Glantz and
Kropatsch, 1994]. Either one can apply:

• primal edge contraction and removal of its dual or

• dual edge contraction and removal of its primal.

[Brun and Kropatsch, 1999] say that “in order to preserve the number of connected components
of the initial combinatorial map, bridges and self-loops must be respectively excluded from
removal and contraction operations”. Hence contraction kernels [Brun and Kropatsch, 2003a]
are defined to solve this constraint and to be able to perform several contraction operations
simultaneously. The definitions 2.3.3 and 2.3.4 are taken from [Haxhimusa et al., 2005].

Definition 2.3.3 (Contraction Kernel). Given a connected combinatorial map G = (D,�,↵),
the set K ⇢ D will be called a contraction kernel iff it is a forest6 of G not including all darts
of G : SD = D �K 6= ;. The set SD is called the set of surviving darts.

6Definition from [Diestel, 2010, p. 12]: An acyclic graph, one not containing any cycles, is called a forest. A
connected forest is called a tree. Thus a forest is a graph whose components are trees.
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Definition 2.3.4 (Equivalent Contraction Kernel). Given a combinatorial map G0 = (D,�,↵),
a contraction kernel K1 of G0, the contracted combinatorial map G1 = G0/K1, and K2 a
contraction kernel of G1, the contraction kernel K3 of G0 for which G0/K3 = (G0/K1)/K2,
is called the equivalent contraction kernel of K1 and K2.

A successive reduction/decimation of vertices by the set of operations leads to a stack
of combinatorial maps, defining a combinatorial pyramid (G0, ..., G

k

). Several decimation
schemes may be applied to control the height of the pyramid. This applies also to the process
of selecting the edges to be removed. An overview and detailed definition of both aspects is
given in Chapter 3. Formally each 0 . . . k represents a level G within the pyramid. Each level
(map) in k + 1 is build from the one below k, by selecting a set of contraction kernels K

k,k+1

and applying it to a given combinatorial map G
k

to get the reduced G
k+1 = C[G

k

,K
k,k+1] =

G
k

\ K
k,k+1 [Haxhimusa and Kropatsch, 2004]. More on removal of the redundant edges can

be found in [Brun and Kropatsch, 2003c] and will be discussed in Section 4.2. In contrast
to n-dimensional combinatorial maps where removing and contracting operations need to be
defined explicitly for each dimension, a n-dimensional generalized map pyramid is based on a
general operation [Simon et al., 2006].

2.4 Knowledge and Image Segmentation Algorithms

The performance of segmentation algorithms can be increased when additional knowledge about
the problem domain is added. As this is a key part of the work presented (see Chapter 4),
this section gives a more detailed assignment. Figure 2.11 shows the tradeoff between general
purpose and highly specialized methods.

General purpose Highly Specialized

Manual Semi-automatic Automatic

No Prior Knowledge Model-based

Figure 2.11: Classification of Segmentation Methods, modified according to in [Hug, 2000].

Beginning on the left top end on the scale, the more generic an application is designed,
the less prior knowledge is necessary. But domain-independent algorithms therefore require
additional sources of knowledge during runtime to produce acceptable results, thus requiring a
flexible interface. If we do manual segmentation, probably pixel by pixel, the result for sure is
quite accurate and of course lives up to the users’ expectations. It is time-consuming and hence
not acceptable for repeated usage, but very flexible. One possibility to automate the process
is to delegate generic segmentation tasks to an algorithm and retain the user for initialization or
optimization steps. In the center of Figure 2.11, parts of the process are calculated automatically.
The user is freed from providing input all the time and parts are delegated. If there is noise badly

21



influencing the automatic segmentation process, additional information is needed to produce
acceptable results. For both aspects, flexibility and prior-knowledge, bringing a user or an expert
into the loop has advantages. It is not as time-consuming as the fully manual approach and the
user still has the possibility to exert influence on the result. In the fully automatic approach the
user is no longer in the loop of the segmentation task itself. Prior knowledge in shape of e.g. a
training-set is used to create a model of the object in question. It is also possible to extract rules
guiding the algorithm. The algorithm produces a result mostly without user input needed, but it
is fitted to a specific domain and probably no longer applicable for generic image classes.

As already stated, the acceptance and usage of a partition depends on the application and may
be highly subjective. Therefore semi-automatic segmentation yields good acceptance. A similar
argument is also given by [Meine et al., 2004], for the use of medical applications: “Having
a user in the loop is necessary from both a clinical and a legal point of view”. What can be
observed, is that the notion of ’semi-automatic’ and ’interactive’ is ambiguously used. In some
publications a simple mouse click to trigger an operation is already considered as interaction
as well as manually preprocessing of an image. Restricting or parametrizing the segmentation
process also cannot be counted to this class. [Hug, 2000] tries to categorize them and shows
various ways of user interaction on (semi-)automatic segmentation algorithms (see Table 2.1).

Initialization Optimization Postprocessing
manually initialized manually guided manually corrected
manually restricted manually influenced manually modified

Table 2.1: Interaction Types.

Some of the methods in recent literature are initialized (e.g. statistic shape models, rule sets,
training sets), others use seed points or strokes for initializing and restricting a segmentation
process [Heimann et al., 2009]. Besides, existing methods can also be categorized either
as optimizing (manually guided, influenced) or post-processing methods (manually corrected,
modified) [Hug, 2000].

The computer sees the image through a keyhole (local neighborhood) which makes it very
difficult to understand more global context [Sonka et al., 2008, p. 5]. In consequence the amount
and quality of additional data used has a major impact on both sides, i.e. the design of the
segmentation tool and its resulting output. User-interaction gives an input of knowledge about
the domain that can exert influence on the algorithm to produce more acceptable segmentation
results. The work presented can be put into both categories of the schema presented in Table 2.1.
The user is integrated to modify an existing automatic segmentation and also to guide the process
of creating segments. This will be discussed in more detail in Chapter 4 but first existing
algorithms are reviewed to point out the differences.
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2.5 State of the Art
Up to now a classification of this work with respect to others would not have been adequate as the
theoretical background was missing. Therefore this section now describes alternate approaches
while comparing them to the one developed. They do not contradict necessarily, but partially
inspire and complement each other.

Automatic Image Segmentation Algorithms

In general, three algorithms in this category appear to be the most widely used according
to [Arbelaez et al., 2009] as sources of automatically created image segments in recent
applications:

• Graph based region merging [Felzenszwalb and Huttenlocher, 2004]

• Normalized Cuts [Shi and Malik, 2000]

• Mean shift [Comaniciu and Meer, 2002]

The approach of [Meine et al., 2004] presented in Subsection 2.5 fits into the category
of graph-based region merging algorithms as well as the framework used here [Haxhimusa
and Kropatsch, 2004]. The others will be covered in Chapter 3. Among others, also
watershed [Sonka et al., 2008, p. 233] approaches are used widely. In this case catchment
basins of the topographic surface (gray-levels are interpreted as altitude) are created by e.g.
synchronous flooding. In the beginning water is placed into each regional minimum (source,
lowest gray-level). On increasing the gray-level (flooding), different sources melt together,
this is where the boundaries are located. As a result a hierarchy is constructed by this greedy
graph-based region merging algorithm. The over-segmentation created this way (super-pixels)
is used as base or beginning of other algorithms. The approach presented in [Felzenszwalb and
Huttenlocher, 2004] is discussed in detail in Chapter 3 as it is an important part of the framework
introduced in this thesis.

Interactive Image Segmentation Algorithms

In contradiction to the ones before, the approaches in the following are pure interactive:

• Snakes [Kass et al., 1988] or the active contour model are based on a energy-minimizing
spline. Its energy depends on the shape and location within the image.

• Live Wire [Mortensen and Barrett, 1998], also called intelligent scissors, is based on
dynamic programming and graph search for the path with the lowest cost.

• Active paintbrush [Van Leemput et al., 1998] a method used to paint over region
boundaries to initiate region merging.

• Interactive Graph Cuts [Boykov and Jolly, 2001], based on the minimum cut principle.

Implementations of the above are available as plugins for recent image manipulation and
graphics editing software.
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Figure 2.12: Processing critical regions with a few strokes. Image taken from [Meine, 2009a].

Interactive Image Segmentation in the GeoMap Framework

[Meine et al., 2004] states that “no single method achieves the optimal balance for all classes of
images”. Therefore he presents an interactive image segmentation framework combining several
methods, both edge- and region based. In order to do so he was challenged to create a unified
data representation fitting the purpose of all approaches and capturing both the geometrical and
topological aspect of a segmentation.

The framework developed by [Meine et al., 2004] is called GeoMap and being able to
represent also the results of sub-pixel segmentation algorithms. Previous approaches were
limited to pixel grid, but – due to the authors – most algorithms already deliver edges with
sub-pixel accuracy. This is achieved by inserting crack-edges, in the first place to directly
represent boundaries and in the second to derive them in a topologically correct way from
label images. Image dimensions are doubled and explicit edges inserted. In order to overcome
the staircase affect (a well known problem of crack-edge boundaries) some optimizations are
embedded (smoothing) in the visualization part.

Another motivation behind GeoMaps is the unified representation of topological relations
and geometrical features. While the first is required for encoding of adjacency and boundary
enumeration, the second is used to derive statistical properties of a region. An internal
mechanism called ’hooks’ keeps track of changes, updates the components accordingly and
guarantees consistency. This sound combination is new, as most frameworks have a separated
implementation, i.e. a topological data structure side-by-side with a label image.

Besides automatic region merging, the previously mentioned interactive segmentation
algorithms Snakes [Kass et al., 1988], Live Wire [Mortensen and Barrett, 1998] and Active
paintbrush [Van Leemput et al., 1998] are implemented on top of the GeoMap framework in
order to control the merging process (see Figure 2.12).

Processing of these modifications in the implementation of [Meine et al., 2004] is described
in the following example. In the beginning usually an initial over-segmentation (super-pixels)
defines the entry point. In Figure 2.13a the steps are aligned sequentially. Starting at level 0,
the input regions are first processed by the automatic region merging (ARM) method until level
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level 0
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diplay/work level
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navigational range

(a) Naive representation of generated pyramid

level 0
4 2410

diplay/work level

2834

apex

APB ARM

navigational range

(b) Pyramid after reordering to protect manual changes from disappearing

Figure 2.13: Alternating application of automatic and interactive methods, figures modified
according to [Meine, 2009b].

1207. Using the active paintbrush (APB) method, the user then performed manual corrections (in
4 levels) on the current image segmentation stack. From level 1211 to 2410 again the automatic
region merging process was used for decimation. In this example, the latter level is also the
current working level of the generated stack. There any new operation defined may be started.
The apex is the uppermost point of the hierarchy, representing the future final segmentation
result. Following the order of processing shown in Figure 2.13a, we run into the problem that any
manual operations/refinements is lost once the process is started over at lower level. Therefore
– as shown in Figure 2.13b – the manual changes induced by the user (APB) are moved to the
beginning of the process. Doing it this way these particular levels do no longer appear within
the navigational range and remain protected throughout the process.

Concluding, this approach relates to a specific implementation on top of the irregular
pyramid paradigm, whereas our work is based on the general concept of irregular pyramids.
Moreover, the process starts on pixel-level instead. Nevertheless the PhD-thesis of [Meine,
2009b] mainly inspired the developments presented in this work, we will refer to these concepts
later in Chapter 2.4. Finally categorizing it into the schema presented in Table 2.1, class
optimization suites this approach best.

Annotated Contraction Kernels for Interactive Image Segmentation

In [Meine, 2009a] the authors present a modified framework (based on [Meine et al., 2004]
introduced in the preceeding section) optimized with respect to performance and interactive
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operations. In the structural representation, the merging tree is now annotated and pruned. First
a label showing the level where the merge happened is added to the merged node. This way
the partitioning in a particular level l can be retrieved (due to the authors) easily by pruning all
branches below nodes with a level  l.

Furthermore [Meine, 2009a] state that “in practice, it is unneeded to represent all levels at the
same time”. Using only the bottom layer (GeoMap) and the concept of contraction kernels [Brun
and Kropatsch, 2003a], they can recreate every level and thus reduce memory consumption.
Finally also ’face inhibition’ is introduced in order to protect resulting segmentation throughout
the hierarchy. The authors also argue that logarithmic tapering with a fixed reduction factor
is irrelevant in their context. This way a ’continuous pyramid’ is created in which only one
region per step is merged. No new boundaries are introduced. The process relies on an initial
over-segmentation where important boundaries already need to be present [Meine, 2009a]. The
’face inhibition’ operation appears to be similar to our approach, however, the overall concept is
different.

Interactive image segmentation with integrated use of the markers and the
hierarchical watershed approaches

In general, watersheds and markers belong to the category of morphological particle
methods [Sonka et al., 2008, p. 687]. First markers (used to indicate objects, not boundaries)
are located, in the second step the objects can be grown from the markers using e.g. watersheds.
This concept is well known in topography where watershed lines divide individual catchment
basins as already described in the beginning.

Several optimizations and extensions exist to the first efficient watershed approach
of [Vincent and Soille, 1991]. [Klava et al., 2009] combine in their work hierarchical watershed
and watershed from markers. In their implementation it is possible to switch back and forth
between the two taking advantage of the individual strengths. This approach is also considered
as interactive, markers can be set (using a welding brush) and two local operations (merge
and refine) can be used on the hierarchy. At the base they use a region adjacency graph for

Figure 2.14: Obtaining partitions, subfigures taken from [Klava et al., 2009].
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representing the topological relationships. Figure 2.14 shows different segmentations created by
operations on the merging tree.

On testing the system developed by [Klava et al., 2009], it shows that this approach strongly
benefits from the two approaches supplementing each other. In the beginning e.g. an initial
over-segmentation can be performed using the watershed from markers approach. Afterwards
a region can be selected for hierarchical segmentation. Within this region one can apply split
and merge operations following certain ’hierarchical criterion’. Only one depth, area or volume
level up/down in the hierarchy can be addressed by each modification-operation.

Afterwards, for further refinement, again the markers’ approach may be used. As it is
relevant for the discussion on the approach developed, only within the markers’ approach pixel
accuracy can be used. This is not possible within the hierarchical watershed method, but one
can merge regions efficiently using a welding brush. The idea of ’grabbing’ a certain region
within the hierarchy (see Figure 2.14) was adopted also in this work. Following the schema in
Table 2.1, this approach is located in class initialization as well as optimization.

Automatic Image Segmentation by Positioning a Seed

The work of [Mičušić and Hanbury, 2006] is about optimization of a seed-based segmentation
technique, i.e. the interactive graph cut method [Boykov and Jolly, 2001] which takes color and
texture into account. “The novelty is in introducing the positioning of the seed, and collecting
and merging similar segments yielding the segmentation pyramid. . . ” say the authors. In this
approach the interactive part usually performed by a user is automatized. However, the amount
of seeds (input) required does not seem to be economic and impossible to achieve for human
operators. Categorizing it into the schema presented in Table 2.1, class initialization fits the
application best.

Semi-automatic image segmentation and annotation

The work of [Gelasca et al., 2007] is based on the concept of perceptual grouping introduced
by [Felzenszwalb and Huttenlocher, 2004]. It is possible to refine regions within the
segmentation hierarchy or simply create custom segments (on pixel level) by drawing a
polygon-line around the object. Regions may be selected for further attention and to initiate
merging. Resulting segmentation borders are visualized but may be smoothened afterwards
(using median-filter) to get a non blurred result. It is possible to traverse the segmentation
hierarchy up and down (for the entire image or a specific region). Finally one can put a
label (defined in a custom catalog) on the region specified. The original approach and the
segmentation criteria introduced by [Felzenszwalb and Huttenlocher, 2004] are discussed in
more detail in Chapter 3.

Labelme

LabelMe [Torralba et al., 2010] is a web-based image annotation tool7 relying on the
collaborative effort. Researchers are able to segment images and contained objects by clicking

7Contribute and visit http://labelme.csail.mit.edu/
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Figure 2.15: Freehand segmentation and annotation of objects. Image taken from a LabelMe
public directory.

along their boundary (drawing a polygon-line, see an example in Figure 2.15). Finally the object
can be annotated with vocabulary (free text).

The developers set up simple labeling guidelines but apart from that there are no limitations.
Aiming to create a database containing annotated images spanning the visual world, the
output and statistics collected may be useful for training and evaluation of computer vision
systems among others. Therefore they provide also a Matlab interface as a basis for custom
developments.

This approach is entirely interactive without automated assistance and located – with respect
to the schema presented in Table 2.1 – in class ’initialization’. From segmentation point of
view this framework requires high amount of manual input. Furthermore it is not possible
to grasp relationships between the objects (which are hierarchical by nature). Each level of
abstraction has to be created individually. However, [Torralba et al., 2010] mainly set focus on
the annotation part therefore improvements in the segmentation part (using a hierarchical data
structure or optimized input methods) are not considered.

Annotation tool

The annotation tool presented by [Korč and Schneider, 2007] is based on the Labelme [Torralba
et al., 2010] approach. In comparison to before, the authors try to improve usability and
add missing functionality in the user interface lacking in the original implementation. The
segmentation method remains the same as in [Torralba et al., 2010] where the user indicates each
boundary individually by placing corner points forming a polygon line. Zooming functionality is
added to increase accuracy. Based on the Matlab framework provided by [Torralba et al., 2010]
it is now also possible to limit the input to a certain set of vocabulary for object classes. On
annotating objects the user now can specify its uncertainty, which is an estimate how precise the
labeling is and values for occlusion and representativeness. Although [Korč and Schneider,
2007] use an hierarchical data-structure XML to store the results, there is no tree structure
implemented which allows to define hierarchical relations between objects.
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CHAPTER 3
Automatic Hierarchical Image

Segmentation

The basic theory of image segmentation and irregular pyramids was covered in the preceding
chapter, while this chapter covers the combination of the different concepts. As already stated
in the very beginning, the diploma thesis is based on the hierarchical image segmentation
framework proposed by [Haxhimusa and Kropatsch, 2004, Haxhimusa et al., 2005, Haxhimusa,
2007]. The authors use extended RAG, dual graphs and combinatorial maps to encode
topological relations properly – respectively RAG, dual graph and combinatorial map pyramids
are used to represent the stack of segmentations. The process of merging of regions is based on
the concept of perceptual grouping [Felzenszwalb and Huttenlocher, 2004] and the minimum
spanning tree (MST), which in combination captures many perceptually important aspects of
complex imagery.

3.1 Minimum Spanning Tree based Method

[Haxhimusa, 2007, p. 101] builds a minimum weight spanning tree of an image “in order to
find regions borders quickly in a bottom-up ’stimulus driven’ way”. The selection of candidate
edges is based on local differences in the feature data. In general, perceptual grouping is
“about extracting the global impressions of a scene”, therefore [Shi and Malik, 2000] state
that most segmentation criteria based on local properties of the graph are not appropriate.
Greedy decisions (like smallest weight edges) in turn produce segmentations that satisfy global
properties [Felzenszwalb and Huttenlocher, 2004]. [Zahn, 1971] states that a minimum spanning
tree reveals the hierarchical structure of clustering. This strong cut property is also supported
by [Zahn, 1971].

The stack of segmentations represented by irregular graph pyramids is created by the
BorůSeg framework (see outline in Procedure 3). The merging processes take low-level cues,
e.g. images only having RGB or gray color values. In each decimation level in the pyramid,
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a minimum spanning forest is built by Borůvka’s method [Nesetril et al., 2001] (translation of
original papers). In this approach the edges to be contracted are selected by a merging criteria
based on perceptual grouping (capturing feature similarity). In the decimation phase contraction
kernels assert the topologically correct creation of the new level. A general outline is shown
in Procedure 3, the individual concepts are summarized afterwards. The lowest level k = 0
corresponds to the input image where each pixel maps to a region and each region is represented
by a node in the (primal) region graph. Graph edges encode the adjacency relations which are
built up in a preceding initialization step. Afterwards they are processed as follows:

Procedure 3 Construct Hierarchy of Partitions (Boruseg)
1: k = 0;
2: repeat
3: for all vertices v

i

2 G do
4: Emin = argmin{attr

e
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13: end for
14: k = k + 1;
15: until G

k

= G
k+1

Procedure 3 describes the key steps of the framework proposed1. At the bottom of the
pyramid G0, the regions correspond to image pixels (compare to Figure 2.4c). The following
list captures the essential parts of the algorithm:

1. Initialization: Lines 3–6 build up the MST.

2. Selection: In lines 7–9 we select the edges to be contracted.

3. Decimation: Line 10–13 the graph is decimated and post-processing steps are initiated.

The end is reached when there are no more edges available for contraction, indicated by
condition G

k

= G
k+1. We explain these three tasks in the following subsections. On segmenting

an image into regions using graph based representations, a “predicate for measuring the evidence
for a boundary between two regions” is necessary [Felzenszwalb and Huttenlocher, 2004]. Its
calculation is based on attributes assigned to the elements of the graph. Following [Haxhimusa
et al., 2005], a corresponding representation in terms of a combinatorial map representation is
defined as graph:

G = (D,�,↵, attr
v

, attr
e

)
1Modified according to Procedure 13 in [Haxhimusa, 2007, p. 117].
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In order to store image feature data on the graph elements, attributes are defined on vertices
u 2 V and edges e 2 E as follows:

attr
v

: V ! R+

attr
e

: V ! R+

Vertices have feature values (like pixel values in RGB color space) assigned, the edge attributes
store differences between end point vertices. A feature vector F (u

i

) representing feature values
of vertices u

i

2 V encodes the information [Shi and Malik, 2000]:

F (u
i

) = I(u
i

): intensity value, for segmenting brightness images
F (u

i

) = [v, v ⇤ s ⇤ sinh, v ⇤ s ⇤ cosh](u
i

): HSV values, for color segmentation

Three dimensional RGB values are implemented in R+ using a programming trick. The data
type Integer, which has length 32 bit = 4 ⇤ 8 bit or 4 ⇤ 1B, is used to encapsulate the three color
channels having 1B each. The same trick is used to extract the RGB color information again.
Similar approach can be found in HTML where a RGB color is encoded using hexadecimal
digits. In order to calculate edge attributes attr

e

(representing differences), [Haxhimusa et al.,
2005] use the Euclidean distance between RGB pixel values:

attr
e

(u
i

, u
j

) =
q

R(u
i

) ⇤ R(u
j

) + G(u
i

) ⇤ G(u
j

) + B(u
i

) ⇤ B(u
j

).

This weight attr
e

is stored on the edge between two regions. It is some kind of dissimilarity
(contrast) measure between two pixels connected by that edge. In this implementation
undirected graph edges are used. In case of combinatorial maps, the attribute is not stored on
the dart itself but on the mapped edge (involution ↵, see Section 2.2). In case of directed edges,
which may be necessary because of special application requirements, they must not necessarily
have the same weights.

Perceptual Grouping

As already indicated in the beginning of this chapter, a pairwise region comparison predicate
calculus [Felzenszwalb and Huttenlocher, 2004] based on such feature data is needed, indicating
the presence of a boundary in the segmentation process. [Wertheimer, 1923] asks, “do such
arrangements and divisions follow definite principles?”. He claims that a number of stimuli are
not experienced as a number of things, but instead “larger wholes separated from and related to
one another are given”. In his paper he examines the problem and lists the factors of proximity,
similarity and continuation which form the appearing stimuli to the experienced arrangement
following “Gestalt Theory”. [Ren and Malik, 2003] summarize the principle of similarity whilst
describing the concept of perceptual grouping as follows:
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1. Intra-region similarity: the elements in a region are similar.
2. Inter-region (dis)similarity: the elements in different regions are dissimilar.

These assumptions were formalized by [Felzenszwalb and Huttenlocher, 2004], leading to
the predicate calculus they present in the framework developed. The internal difference of a
component C ✓ V is expressed by Equation 3.1.

Int(C) = max
e2MST (C,E)

w(e) (3.1)

The internal difference of a component C is, by definition of [Felzenszwalb and Huttenlocher,
2004], calculated by using the maximum weight edge of its minimum spanning tree. According
to [Diestel, 2010, p. 141], a topological spanning tree of a graph G is an arc-connected standard
subspace T of G that contains every vertex but contains no cycle. To explain the motivation
behind MST, we need to go back to earliest attempts in the field of cluster detection. [Zahn, 1971]
states, that the main advantage of the MST is its “close conformity to the ’proximity’ principle
of perceptual organization . . . by Wertheimer”. Furthermore [Zahn, 1971] draws an analogy
between organization effected by MST (minimum principle) and perceptual mechanisms, but it
also reveals the hierarchical structure of clustering.

To build the MST, one could implement the method proposed by Borůvka, Kruskal or
Prim. A review of its specific properties is presented in [Haxhimusa, 2007, pp. 106 –
108]. In [Felzenszwalb and Huttenlocher, 2004], Kruskal’s algorithm is used. Whereas in this
work, allowing parallel implementation and overall algorithmic complexity of O(|E| log |V |),
Borůvka’s work has been chosen.

The difference between the components is determined by the definition given in equation 3.2

Dif(C1, C2) = min
vi2C1,vj2C2,(vi,vj2E)

w((v
i

, v
j

)) (3.2)

The decision whether two adjacent regions (i.e. vertices connected by edges) are merged is
guided by comparison of region similarity [Felzenszwalb and Huttenlocher, 2004]. To determine
the evidence of a boundary the following predicate D is defined:

D(C1, C2) =

⇢
true if Dif(C1, C2) > MInt(C1, C2)
false otherwise

where the minimum internal difference MInt is:

MInt(C1, C2) = min(Int(C1) + ⌧(C1), Int(C2) + ⌧(C2)) (3.3)

⌧(C) = k/|C| (3.4)

The threshold function, ⌧ in Equation 3.3 for calculating the minimal internal differences,
contains a scale factor. It is based on size of the component [Felzenszwalb and Huttenlocher,
2004]. This way the relative difference in comparison to the differences between the
components is controlled. Following the author’s statement, “for small components we require
stronger evidence for a boundary”. In consequence a larger k causes a preference for larger
components and vice versa. The general observation is that edges between two vertices in the
same component should have relatively low weights and edges between vertices in different
components should have higher weights [Felzenszwalb and Huttenlocher, 2004].
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Decimation

As already described in the basic’s chapter, an irregular pyramid is a adaptive data structure
which dynamically adapts to the image layout. Of course it would be desirable to retain the
advantages of its regular counterpart also for them. In contrast to regular pyramids, there is
neither a fixed reduction factor between the levels nor a fixed relationships. Therefore the size
of each level and the height of the structure are unknown. [Marfil et al., 2006] summarize the
problem:

“Although original irregular pyramids overcome the drawbacks of regular ones,
their main drawback is that they only grow to a reasonable height as long as the
base level is small.”

[Meer, 1989] presents a pure stochastic scheme that allowed no two neighbored vertices to be
both survivors and required at least one survivor and in the neighborhood of each non survivor.
These two constraints define a maximum independent set (MIS).

In order to retain logarithmic tapering for dual graph pyramids too, [Haxhimusa et al., 2002]
implements a MIS of edges called MIES (maximal independent edge set). If the direction of
contraction matters, a MIS of directed edges can be applied. This approach is called MIDES
(maximal independent directed edge set) [Haxhimusa et al., 2003] and is of interest as the
direction of edges determines the roots of the contraction kernels. All the vertices which are
sources of directed edges are marked there as non survivors [Haxhimusa, 2007, p. 75]. Using
the new decimation concepts, “the construction of irregular pyramids bounds logarithmically the
height of the pyramid”. Alternate decimation approaches (according to [Marfil et al., 2006]) not
discussed at this time are:

• Data driven decimation scheme [Jolion, 2003]

• Specified rate and prioritized sampling approaches [Ip and Lam, 1996]

• Dual-graph contraction [Glantz and Kropatsch, 1994] and connectivity preserving
relinking approach [Nacken, 1995]

• Union-find techniques [Tarjan, 1975]

Implementation

The status output of the framework (see Listing 3.1) shows detailed information about the
merging process, each level is identified by an increasing number and performance data.
After initializing the edge weights at level 0, each iteration of Borůvka’s MST algorithm
(called Borůvka’s phase, indicated with an asterisk ’*’) followed by relevance filtering of
candidate edges and its contraction creates the next level in the stack of segmentations. In
between [Haxhimusa and Kropatsch, 2004] add additional levels to have a simpler contraction
kernel. In this case the edges to be removed (selected in *) are iteratively decimated using MIES
decimation method. This way the irregular graph pyramid grows higher until no longer edges
are selected for removal (see Figure 4.1 for reference). Finally the segmentation (*.ppm) and
label images (*.bsi) are written to file.
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./MSTSegmentation

DoRGB MSTSegmentation

InitSegmentationPyramid (Lv. 0)

BuildSegmentationPyramid

DoContraction (*)

MST, Relevance Filtering

contr. requested

DoStepwiseContraction (Lv. X + 1)

SavePyramidLevels (bsi, ppm)

true

rem. edgeCnt > 0
false

Figure 3.1: Flow chart of the automatic MST segmentation framework showing the most
important processing steps. From the input image a stack of segmentations is generated.

Input image: 118035.ppm, 481 x 321
K: 300

*
Level 1: MIES 0.26s, Kernel 31.09s, Total 31.7s , Faces left 72244
Level 2: MIES 0.12s, Kernel 6.05s, Total 6.5s , Faces left 47793
Level 3: MIES 0.07s, Kernel 1.17s, Total 1.53s , Faces left 43976
Level 4: MIES 0.05s, Kernel 0.4s, Total 0.73s , Faces left 43671
Level 5: MIES 0.06s, Kernel 0.32s, Total 0.64s , Faces left 43652
Level 6: MIES 0.05s, Kernel 0.31s, Total 0.62s , Faces left 43650

*
Level 7: MIES 0.11s, Kernel 3.86s, Total 4.23s , Faces left 19390
...

*
Level 13: MIES 0.02s, Kernel 0.24s, Total 0.39s , Faces left 4355
...

*
Level 31: MIES 0s, Kernel 0s, Total 0.14s , Faces left 47
Level 32: MIES 0s, Kernel 0s, Total 0.14s , Faces left 35
Level 33: MIES 0s, Kernel 0s, Total 0.14s , Faces left 33

*
Level 34: MIES 0s, Kernel 0s, Total 0.14s , Faces left 23
Level 35: MIES 0s, Kernel 0s, Total 0.14s , Faces left 16
Level 36: MIES 0s, Kernel 0s, Total 0.13s , Faces left 14

*
Level 37: MIES 0s, Kernel 0s, Total 0.15s , Faces left 12
Level 38: MIES 0s, Kernel 0s, Total 0.14s , Faces left 11

*
Total time: 52.32s

Listing 3.1: Shortened runtime information of the automatic segmentation tool presented in
Chapter 3. Console output shows the decimation parameters and contraction statistics.
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Other Merging Criteria

The image features to be processed take in a key role as the resulting segmentations are “affected
by the order in which the regions are merged” [Zankl, 2010]. This order is influenced by the
similarity of the regions, the higher the similarity, the sooner edges are selected for contraction.
Based on the framework proposed by [Haxhimusa et al., 2005], [Zankl, 2010] implements higher
level features in order to improve the process of evaluating the similarity of adjacent regions.
He discerns among pixel-, border- and region features and considers also structural patterns,
difference in intensity/color/motion or some other local attribute. The geometrical data needed
is derived by [Zankl, 2010] implicitly using the hierarchical information:

• area (size of the receptive field, i.e. the number of nodes in level 0 which
merge to one node in level n)

• perimeter (number of edges in level 0 corresponding to one of the edges of
one node in level n)

• length of the border between 2 regions (number of edges in level 0
corresponding to one edge in level n)

In addition to the contrast measure defined before, also the results of the new feature set are
encoded in the edge weight.

Another aim of the work presented by [Zankl, 2010] is to reduce the memory consumption
of the pyramid. This is achieved on inventing the Flat Graph Pyramid, i.e. an aggregation of
multiple sequent levels. Arrays of index changes (in merging tree) are combined together based
on the concept of the equivalent contraction kernel. In the example shown in Listing 3.2, all
levels from 1 to 10 (range determined individually) are compressed into a single one. What
can be seen as well is that most regions are merged within these levels. The merging process
then continues with level 2, having only 8129 regions instead of 64616. This procedure saves
resources especially in lower levels of the pyramid, however it causes all merging information
in between to be lost. Only the overall contraction result is passed on. The implementation
in this diploma thesis contains both improvements of [Zankl, 2010] as they all share the same
code-base.
Level 1: Flat Pyramid
-----------------------------------------------------------

*
Flat Level 1: MIES 0.16s, Kernel 1.16s, Total 1.33s , Faces left 79376
Flat Level 2: MIES 0.03s, Kernel 0.43s, Total 0.47s , Faces left 64616
Flat Level 3: MIES 0s, Kernel 0.29s, Total 0.3s , Faces left 63698
Flat Level 4: MIES 0s, Kernel 0.29s, Total 0.3s , Faces left 63673

*
Flat Level 5: MIES 0.08s, Kernel 0.36s, Total 0.44s , Faces left 28524
Flat Level 6: MIES 0.02s, Kernel 0.11s, Total 0.14s , Faces left 19533
Flat Level 7: MIES 0s, Kernel 0.06s, Total 0.06s , Faces left 18249
Flat Level 8: MIES 0s, Kernel 0.04s, Total 0.04s , Faces left 18129
Flat Level 9: MIES 0s, Kernel 0.04s, Total 0.04s , Faces left 18117
Flat Level 10: MIES 0s, Kernel 0.04s, Total 0.04s , Faces left 18115
-----------------------------------------------------------

*
Level 2: MIES 0.02s, Kernel 0.07s, Total 0.17s , Faces left 8129

Listing 3.2: Flat Pyramid Concept, the merging information of the first 10 levels is condensed
to a single level. The process then continues with level 2.
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Example segmentations

The segmentation images in Figures 3.2 on the next page are intermediate levels chosen from
a stack of segmentations. The input images (a), (b) and (c) representing level 0 are taken
from [Martin et al., 2001]. As the pyramid grows higher, the regions iteratively merge together.
In the Figures shown, the label “level (# number of segments)” indicates the current height and
the remaining amount of regions. The segments in Subfigures (d), (e) and (f) are fine-grained,
the term over-segmentation describes the result best. The Subfigures (g), (h) and (i) show –
subjectively – good segmentations, capturing perceptually important regions. Although some
smaller details already disappear due to their thin structure and a lack of contrast causes
regions to be merged early with the background, the automatic framework delivers promising
results. Subfigures (j), (k) and(l) show higher levels of the pyramid, important regions are
under-segmented as they merge with the background. On producing the stack of segmentations,
no special parametrization was chosen. The default parameters chosen are k = 300, MIES
decimation method and the internal/external contrast measure. On testing several parameter
combinations and edge selection criteria it is possible to optimize results of the automatic
framework presented.

3.2 Graph based Segmentation Algorithm Alternatives
So far, the following concepts for the purpose of creating segmentation graph
hierarchies [Haxhimusa et al., 2005] were presented:

• segmentation criteria based on the MST concept [Zahn, 1971] like perceptual
grouping [Felzenszwalb and Huttenlocher, 2004]

• decimation methods: dual graph contraction [Haxhimusa and Kropatsch, 2004] and the
MIES/MIDES approach [Haxhimusa et al., 2003]

Among others, [Marfil et al., 2006] list alternate approaches based on irregular pyramid
representation:

• Segmentation with a hierarchy of region adjacency graphs (RAG) and the adaptive
pyramid [Montanvert et al., 1991]

• Image segmentation by connectivity preserving relinking [Burt et al., 1981]

• Segmentation based on combinatorial pyramids and union-find algorithm [Brun and
Kropatsch, 2003b]

What can be observed is that each of the latter approaches is related to a specific decimation
scheme. There are various hierarchical segmentation frameworks which use an e.g. RAG at its
base. In Chapter 2 we already referred to watershed-based segmentation methods. Further –
well known – graph-based segmentation frameworks like the minimum cut [Boykov and Jolly,
2001] or normalized cut [Shi and Malik, 2000] approach are not considered due to their different
concept. Referring to [Sonka et al., 2008], “the pyramid approach is quite general and leads itself
to many developments. . . ” [Bister et al., 1990, Meer, 1989].
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(a) Input image ID 41004 (b) Input image ID 118035 (c) Input image ID 12003

(d) 23 (#244) (e) 27 (#179) (f) 26 (#579)

(g) 35 (#15) (h) 33 (#33) (i) 32 (#73)

(j) 36 (#10) (k) 34 (#23) (l) 33 (#50)

Figure 3.2: Example segmentations (a)(b)(c) images without preprocessing (d)(e)(f)
over-segmentation, high amount of details, fine granularity (g)(h)(i) subjectively good
segmentations, smaller details already disappear (j)(k)(l) under-segmentation, regions merge
with background.
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CHAPTER 4
Interactive Hierarchical Image

Segmentation

This chapter first establishes a connection to the automatic hierarchical segmentation approach
already presented and points out the design decisions made for the interactive extension. Then
we define the interactive modification operations on the stack of segmentations. In order to create
a custom segmentation meeting the users’ expectations, additional processing steps – embedded
in the hierarchical structure – are required. Besides the theoretical aspects covered, a part puts
focus on the implementation details as well. In the end, examples showing the effect of the
operations defined are provided.

4.1 Interface to Automatic Approach
As already mentioned in the introduction, the interactive image segmentation approach
developed consists of two parts.

1. Building the irregular pyramid based on the MST [Haxhimusa and Kropatsch, 2004,
Haxhimusa et al., 2005] which is already described in Chapter 3, and the

2. Interactive extension implemented on top of the framework where the user places its
modification operations.

After a study on the state-of-the-art in Section 2.5 and having also the task of image annotation
in mind, we sketched the cornerstones of the contribution:

• Integration of user-interaction into an existing automatic hierarchical image-segmentation
framework

• Definition of merging and inhibition of merging operations on regions to guide the
segmentation process
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• Working at different granularity levels within the hierarchy

• Using of pixel-level precision versus super-pixel approach

• Consistency of operations within the hierarchy

• Ability to produce any segmentation result

In general, merging and inhibition from merging operations (defined later in Section 4.2)
placed by a user exert influence on the segmentation process and modify the merging tree.
The basic way of doing this is traversing through all the segmentation levels of the pyramid
in strictly sequential and ascending order. This was considered to be a drawback. Therefore the
hierarchical paradigm takes in a special role as the user is enabled to select regions from different
granularity levels for the final segmentation. It is possible to set focus on arbitrary detail(s)
within the stack of segmentations, not limited to a certain resolution level. This contributes also
to the statement of [Sonka et al., 2008, p. 107] that “often it is advantageous to use several
resolutions simultaneously rather than choose just one image”. In comparison to the approaches
already presented in Section 2.5 the user is now no longer forced to define a certain working
level or follow a strictly sequential process. This method chosen is supported by the fact that
also in the process of creating annotations one may choose many parts of interest in one step –
regardless of the level of detail. Not limited to this, also the hierarchy is kept (merging tree) to
allow a decomposition of object into its subparts or restart the process for further refinement.

There are several points where the approaches presented so far differ. In contrast to the
approach presented by [Meine et al., 2004] this framework delivers as well sub-pixel precision
but lacking the explicit edge representation using crack-edges. Furthermore there is no combined
model of structural and geometrical data. As already covered in Section 3.1 in the features
extension created by [Zankl, 2010] this information is derived implicitly and contributes to the
edge weight. In consequence we only have the region information and the information contained
in the input image. Hence an effective implementation of interactive tools like ’Intelligent
Scissors’ is not feasible, although one could think of related optimized and more efficient input
methods than pixel or region-wise selection.

In the second place, the methods presented in Section 2.5 immediately propagate the
modifications done in the graphical user interface to the structural representation. For the
reasons already described in Chapter 1 and the conditions induced by the underlying framework,
a different approach has been chosen. We collect several modification operations and finally pass
them as argument to the segmentation framework. There the irregular pyramid is recalculated
and the user-defined operations guide the image segmentation process. As the overall process of
the interactive segmentation tool is crucial for understanding, it is visualized in Figure 4.1.

The interactive extension uses the output provided by the modified automatic segmentation
framework, i.e. the merging tree and region-based segmentation images with their labeling
information. This information is needed for visualization in the GUI and to record the
modification operations. The region-based operations are again provided as input to the
segmentation framework. In order to handle the input from the human, a ’translation’ from
regions to edges needs to be performed in a separate preprocessing phase. The operations
placed in the user interface implicitly describe the desired effect in terms of affected regions,
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a representation in terms of combinatorial maps explicitly addresses the inter-pixel boundaries
between the regions which have to be modified.

Consequently we need to define processing methods in the segmentation framework
dedicated to the interactive operations which is described in Section 4.3. On trying to categorize
this approach we refer again to Table 2.1. It is located between optimization and post processing,
the reason for this fuzziness is determined by the different capabilities:

1. Post processing: the framework presented uses the operations i.e. user input strictly, so
the result of the segmentation-process may be directly corrected or modified.

2. Optimization: the collected external knowledge possibly affects the algorithms’ decisions.
It is not a live approach, nevertheless the framework is manually guided and influenced.

4.2 Definition of Operations
First of all two basic operations – merging and the inhibition of merging – of adjacent regions
are defined. As already discussed in the sections on graph theory and perceptual grouping, the
feature data may be stored directly as an attribute/weight on the graph edge. In the automatic
procedure this information is used to determine the edges to be contracted. What remains to
clarify, how do we encode the decisions taken by the interactive method? Is it possible to
combine both?

On reviewing the possible implementations for the related approaches, the merging decisions
may either be soft or hard. In the first option the edge weight is modified. There the interactive
operation has a real-valued representative, i.e. the edge gets a normalized/cumulative weight in
addition to the feature data is assigned. But this approach leaves some questions unanswered.
How to weight the additional knowledge in relation to the feature data? Shall the interactive
decision have a fixed value or set within a variable probability range? In case of edge removal,
setting the edge weight to a value close to zero will cause a higher probability so that the incident

Minimum Spanning 
Tree based Pyramid 
Segmentation Tool

Interactive
Extension

Edge Selection
Edge Decimation

Operations

GUI

Regions

∀
 le

ve
ls

Input Image

Merging tree 
Segmentation Images

Ops. Pre-Processing

Figure 4.1: Data flow between the program components. The interactive extension provides the
input required for the decimation steps performed in the MST-based pyramid segmentation tool.
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regions are merged. But how about the inverse operation ’inhibition’? Shall the probability of
the operation change as the segmentation pyramid grows higher? However the segmentation
result would be unpredictable and the merging criteria computed by a black box. There is no
guarantee that a contraction will happen in certain level (if ever). [Meine et al., 2004] had similar
problems, but they handle this complex task by introducing weighting decisions and priorities
for operations to the frame work. Especially overlapping operations required different protection
flags and importance rankings. Due to the problems described and as the scope of this work is
also creating image annotation (hierarchies), this implementation is based on hard merging or
inhibition operations decisions. If an edge between two regions shall be removed as per the input
of the user, then it will be removed. The same applies for the dual operation of inhibition of
regions from merging, strictly following the users input. Nevertheless the interactive operations
are not restricting the flexibility of the algorithm in merging (other) non selected (or not in the
focus) regions automatically. In the previous chapters we explained the foundations, now the
approach will be discussed from technical point of view.

Basic Operations

In order to identify the edges for processing, first all darts belonging to and identifying a region
are collected. Within the segmentation framework, more correctly in the hierarchical/topological
data structure, the correspondence is encoded and can be retrieved easily. Figure 4.2 shows the
affected combinatorial map elements of the regions in level i.

6 -6

2 -2
-4

4

3

-3
5 -5

1 -1

�

↵

f1
'

2

1

3
D = {1,�1, 2,�2, 3,�3, 4,�4, 5,�5}
↵ = {(1,�1), (2,�2), (3,�3), (4,�4), (5,�5), (6,�6)}
� = {(1,�4, 2), (4, 6, 5), (�3,�5,�6), (�1,�2, 3)}
Darts for R

i,1 = '(5,�6)
Darts for R

i,2 = '(3,�5, 4, 2)
Darts for R

i,3 = '(�1,�4, 6,�3)
Darts for f1

'

= '(�2, 1)

Figure 4.2: Combinatorial map at Level R
i

and its functions ↵, � and ' on D.

In Chapter 2 we already explained the fundamental iterations ↵ and � which are also
indicated in Figure 4.2. But how do we get the correspondence between e.g region 1
and its boundary graph? Technically – at the beginning of this process – a dart that forms
the vertex in the regions’ graph is returned, this dart can then be iterated using �. For
easy access of this functionality during programming, the framework contains a method
GetDartForFace(faceIdx) which returns a dart belonging to the face index given (e.g. R

i,1:
5), similarly GetFaceForDart(dartIdx) is defined which returns the index of a face for a
given dart. This mapping is essential for explanation of the concepts presented in the following.
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In order to modify the relations between two adjacent regions by only giving their
corresponding indices, we need to get the inter-pixel boundary in the primal or the edge
representing the adjacency in its dual. Using permutation ' (corresponds to � � ↵) all darts
belonging to a region can be traversed. Concluding, the orbit '⇤ describes the inter-pixel
boundary of a region [Brun et al., 2004]. This schema is explained in more detail in Procedure 4.

Procedure 4 Get all darts belonging to a specific region
Input: dart, Output: vector

1: dart = GetDartForFace(faceIdx);
2: for (var tempdart = '(dart), tempdart != dart, tempdart = '(tempdart)) do
3: if GetFaceForDart(tempdart) != GetFaceForDart(dart) then
4: vector.add(dart);
5: end if
6: end for

Using the dart retrieved by method GetDartForFace(faceIdx), all darts belonging to
a region are traversed until the input dart is reached again. Bridges and self-loops must be
excluded from removal and contraction operations. This is asserted by the check in line 2, i.e.
does this dart belong to an edge separating the same face. Due to [Brun and Kropatsch, 1999]
the reason is to preserve the number of connected components of the initial combinatorial map,
furthermore the contraction operation is not defined for self-loop in the primer graph.

The list of darts belonging to the roof (region 1) and the wall (region 2) is shown in
Figure 4.2. The fundamental operations that can be applied on levels and regions x1 and x2
are:

Operation Description
1 goto(i) go to level i in pyramid (G0  G

i

 G
k

, from pixel-level to top)
2 imrg1(R(i,x1)) inhibition of merging x1 with other regions in higher levels l > i
3 mrg(R(i,x1), R(i,x2)) merging regions x1 and x2

Table 4.1: Basic Operations.

The first one, goto(i), is no operation on segments but on the stack of segmentations. In the
user interface of the interactive extension, one may choose arbitrary level (0  i  k) within
the hierarchy. Within a particular segmentation the user is then able to select a region for further
interest. In the following such a region may be described using the two patterns, this depends on
the context:

• Generic, a region x1 in level i: R(i,x1);

• Specific, a region e.g. x1 = 1 in the context of level i = 10: R1;

The second operation imrg1(R(i,x1)) is inhibition of a region x1 from merging with others
(see Figure 4.3a). It takes only one region (therefore the subscript ’1’) index of a certain level i as
input argument. All edges from the selected segment are excluded from the following merging
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Operation on R1

(a) Inhibition of a region, affected edges
indicated in green.

Operation on R1 and R2

(b) Merging of two regions, affected
edge indicated in red.

Operation on R1 and R2

(c) Merging of two regions, inhibition of
their outer border.

Operation on R1 and R2

(d) Inhibition of two regions.

Figure 4.3: Example operations in arbitrary level i on specific regions.

process. The method for deriving those edges is already outlined in Procedure 4. Combining
those two operations, goto(i) and 1(R(i,x1)), shows one of the advantages of this approach.
Figure 4.4 sketches this behavior roughly. It shows a stack of segmentations, i.e. image partitions
at different resolution/granularity levels. The nodes representing a partition may be selected
from any level within the merging tree (ranging from graph G0 to G

k

). This way it is possible to
combine segments (indicated in green) from arbitrary level of detail to a final result containing
all of them. The propagation of operations to higher levels within the merging tree is explained
in Section 4.3.

The third operation, mrg(R(i,x1), R(i,x2)), merges the adjacent regions x1 and x2 given and
removes their common edge (see Figure 4.3b) in the structural representation. The calculation of
the joining edge out of the region indices is again based on the cycles of their '⇤ permutations.
The darts for each region are compared until both belong to the same cycle of ↵ and consequently
to the same edge. This schema is outlined in Procedure 5. Like before, all edges belonging to
a region are calculated separately using the frameworks’ method presented. Talking in terms
of numbers which helps to understand the principle behind a little better, these edges are then
compared until the common edge between the adjacent regions is found. This particular edge
exists twice and in the cumulated set of edges, whereas all others appear only once.

Basically this test compares dart1 with ↵(dart2). If the resulting dart of the involution
matches the input dart we found the common edge to be removed. This is the technical
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Figure 4.4: Simplified graph pyramid
which contains vertices (regions)
marked for inhibition of merging
operation (green) placed in different
levels. The arrow of an edge indicates
the direction of a contraction.

G0

G1

Gk

Gk+1

background, now we can start to select the regions belonging to these operations.
There are three different ways implemented in the interactive extension of how to select a

particular region for processing. In the selection mode each segment is selected individually
by simply clicking on it, like in Figure 4.5a where the two regions to be merged are chosen
individually. The colors assigned are customizable, in this example a selected region is indicated
in yellow and the current region at the location of the mouse-pointer using its inverse RGB value.
In general each operation has a different color which makes it easier to distinguish them. For
visualization purpose we add a separate layer on top the segmentation image, there each input
region is colored accordingly. The brush mode shown in Figure 4.5b can be used to select
regions more efficiently by simply drawing over the regions affected. For the merging operation
this is visualized using a red stroke, however as it must not have more than two input arguments
the last input region of the recent operation is automatically passed as first argument to the
new operation. This operation is comparable to the paintbrush method [Van Leemput et al.,
1998]. As there is no explicit visualization of inter-pixel edges – like crack-edge visualization
in [Meine et al., 2004] – it is not possible to directly select a particular edge, but only the regions

Procedure 5 Finding the common edge
Input: vector1, vector2 Output: commonEdge

1: for all dart d1 in vector1 do
2: for all dart d2 in vector2 do
3: if getEdgeForDart(d1) == getEdgeForDart(d2) then
4: commonEdge.add(getEdgeForDart(d1));
5: return commonEdge;
6: end if
7: end for
8: end for
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(a) Selection mode (b) Brush mode (c) Explore mode

Figure 4.5: Different selection modes for user interaction.

separated by the same. The explore mode shown in Figure 4.5c will be explained together with
the corresponding operations later in this section.

Nested Operations

But merging solely does not implicate that the resulting region will be inhibited automatically
since the automatic algorithm can decide to merge it with other regions in higher levels
of the pyramid. Through ’nesting’ other combinations are possible which attempt to solve
this problem, see Table 4.2 for reference. Furthermore the intention is to provide ’useful’
combinations, which supports efficient interactive image-segmentation.

Operation Description
4 imrg1(mrg(R(i,x1), R(i,x2))) merge R1 and R2 in level i and inhibit the result from

merging with others in higher levels
5 imrg2(R(i,x1), R(i,x2)) inhibit R1 and R2 in level i from merging with others in

higher levels

Table 4.2: Nested operations.

Similar to the basic operations, the nested operations are defined. The fourth operation is
imrg1(mrg(R(i,x1), R(i,x2))), see Figure 4.3c for an example. There the common edge between
the adjacent regions R(i,x1) and R(i,x2) selected is removed while the others are inhibited from
merging. The methods to calculate the common ’inner’ (indicated using red color) and limiting
’outer’ (green colored) edges are identical as before. In the combined set of edges all edges
which appear twice will be removed, the others are going to be protected.

The fifth operation is imrg2(R(i,x1), R(i,x2)). In contrast to before, this inhibition operation
now takes two regions as input (therefore the subscript ’2’). All edges belonging to the two
adjacent regions R(i,x1) and R(i,x2) - i.e. their common and outer boundary - are inhibited from
merging from the next level onwards. This is shown in Figure 4.3d, all corresponding edges
are not put into the list of edges to be contracted. Our intention behind this operation is not
to simply protect two adjacent regions in a specific level (which could also be done using the
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corresponding basic-operation), but – formulated differently – rather splitting-up two regions
and preventing them from merging in higher levels.

Finally there exist combined operations which are a combination out of both basic and nested
operations. They relate to the explore-mode concept, as seen in Figure 4.5c, already mentioned
before. With this method it is possible to divide a region into its components within its receptive
field. This is preserving a selected region (surrounded red) in a level j with lower granularity
and restore a particular detail (indicated in yellow, like the birds beak) from a level i having
higher granularity (level i � j) in one step. Any detail of the object of interest which already
disappeared in a higher level may be restored this way without going back to a lower level.
Without this operation, the user is forced to leave the current ’working level’, now we only
change the level within a particular region. However, instead of creating a complex operation,
in this case two of the previously presented operations are generated in different levels:

Operation Description
6 imrg1(R(i,x1)) + mrg(rem) inhibit R1 and in level i and merge all

others (placeholder rem) to get a clean
foreground-segmentation

7 imrg1(R(i,x1)) + imrg2(R(j,y1), R(j,y2)) in R1 of level i, split selected regions R1 and
R2 contained in level j

8 imrg1(R(i,x1)) + imrg1(R(j,y1)) in R1 of level i, restore selected region R1

contained in level j

Table 4.3: Receptive Field Operations.

The sixth and last operation implemented imrg1(R(i,x1)) + mrg(rem) is designed to get a
clean foreground/background-segmentation. If the segmentation-image on top of the pyramid
is very noisy, the list of operations containing regions to be merged will be very long
(remember, each corresponding operation can take only two arguments) and confusing to
the human operator. This way we introduce the placeholder rem representing all remaining
regions. The wildcard will be expanded in the segmentation framework using the structural
representation. However, we skip the preprocessing phase (see Section 4.3 for details) and
choose a straight-forward approach. All remaining edges – except the ones belonging to region
R(i,x1) and the background face f1

'

– are directly selected for removal.
Other operations would be defined easily, like in opposite of removing a single edge keep

it protected throughout a lifecycle. It turns out it is not possible to control such situation in the
current setup (where only the region index changes are tracked). If the regions separated by
this edge do (not) merge with others, this one would be left in a dangling state and causing a
corrupted structural and visual representation. The selected edge somehow needs to evolve, i.e.
develop gradually following the merging tree (using tracked edge index changes). However this
approach leaves some open questions to be investigated in detail. Please note that the list of
operations presented so far is not complete and may be extended (if needed).

Examples showing the effect of each operation will be presented in the next section. They
all may be combined individually, in the end it is an entire set of operations placed in various
levels within the stack of segmentations which needs to be processed. Therefore it is crucial
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to implement special mechanisms which keep track of the consistency all the time and enforce
correct processing. The mechanisms implemented check the overlap of operations’ receptive
fields, more on this is explained in Section 4.3.

What remains to be discussed, why is it necessary to use darts when the final-processing
is based on edges? The concept of the segmentation framework at the base is general and
can be implemented also on other topological representations like region adjacency graphs and
dual graphs [Haxhimusa and Kropatsch, 2004]. Thus this work is not limited to the image
representation with combinatorial maps even though it strongly benefits from them because of
the implicit dual representation. Therefore we only need the concept of regions’ boundary in
order to define the user operations.

4.3 Processing

Preprocessing of operations

The interactive extension creates a list of operations which is finally passed on to the
modified automatic segmentation framework. Each operation entry in the list is of the form
{i, op., Ri,1[, Ri,2]}. An integer value i denotes the level within the pyramid, the string op
the operation identifier and Ri,1[, Ri,2] the regions affected. The second region is optional as
unary and binary operations are defined. This list and the basic operations are essential for
the segmentation process. The translation of the region arguments Ri,1[, Ri,2] into adjacency
relations was already covered in the previous section, but how exactly are the different operations
mapped/processed in the segmentation framework? The set of user operations is not immediately
applied upwards in the merging tree. Since we allow operations to be selected on different levels
we need to find a common starting level.

Definition 4.3.1. A common starting level is the lowest level in which at least one operation is
defined. From this level onwards the operations given as input are processed.

However, the ones initially placed in higher levels need to be down-projected. In this part
of the preprocessing phase the parent-child information contained in the merging tree is very
important. The procedure for down-projection presented in the following, traverses the merging
tree backwards. Starting from the root node of each operation (probably lying in different
levels), all child nodes (regions) in the common starting level are determined. Internally and
for computational reasons, it is not exactly the lowest level among the operations recorded.
Level 5: MIES 0.06s, Kernel 0.32s, Total 0.64s , Faces left 43652
Level 6: MIES 0.05s, Kernel 0.31s, Total 0.62s , Faces left 43650 <-- common starting level

*
Level 7: MIES 0.11s, Kernel 3.86s, Total 4.23s , Faces left 19390
Level 8: MIES 0.04s, Kernel 0.72s, Total 0.97s , Faces left 11785 <-- Operation 1 = lowest level
Level 9: MIES 0.02s, Kernel 0.18s, Total 0.36s , Faces left 10054
Level 10: MIES 0.01s, Kernel 0.08s, Total 0.25s , Faces left 9748 <-- Operation 2
...

*
Level 13: MIES 0.02s, Kernel 0.24s, Total 0.39s , Faces left 4355
Level 14: MIES 0s, Kernel 0.05s, Total 0.18s , Faces left 2583 <-- Operation 3
Level 15: MIES 0s, Kernel 0.01s, Total 0.13s , Faces left 2073

Listing 4.1: Operations’ down-processing schema.
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An example is shown in Listing 4.1. There, three operations were placed in different levels
(8, 10 and 14). The lowest level among these operations is level 8, but the common starting level
will be 6. Level 6 is the closest level prior to the latest Borůvka step indicated by an asterisk
’*’. At this point it is necessary to describe the process of the evolving pyramid again. In the
base combinatorial map at level 0 (not shown in the output) each pixel corresponds to a region.
This level is copied to the new level 1. In the beginning of level 1 not only the Borůvka step
(building up the MST) is executed, also the final set of edges to be removed is determined using
relevance filtering. This set is decimated until all edges selected for removal are processed, so
at the end of level 6 only 43650 regions (or faces) are left in the segmentation image. Then the
corresponding graph of level 6 is copied and the process described before starts over again. This
is why the final segmentation of level 6 will be our common starting level and the highest one
kept in the new stack. All levels above this one will be deleted. In the edge selection phase of
newly added level 7, the interactive operations will then be considered as well.

What is important to mention as well is that the region indexes are reorganized in the
post-processing steps at the end of each level. This causes the region indexes to be equivalent
always at the end of level i and the beginning of i+1. Comparing this to the approach of [Meine
et al., 2004] presented in Section 2.5, the process here is slightly different (see Figure 4.6 for
a summary). From the different levels where operations are set, the lowest one among them is
chosen to be the starting level for applying the operations.

In this common starting level the candidate-edges affected from operations (contraction
or inhibition) are determined, allowing rebuilding the pyramid from this level upwards (see
Figure 4.7). More precisely, deleting all older levels above the common starting level and
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Figure 4.6: Alternating application of automatic and interactive methods.
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Figure 4.7: Processing overview after restart/recalculation.
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recalculating the new levels. Consequently only the really affected parts of the merging tree
are recalculated from the common starting level onwards instead of the entire pyramid. First –
in a separate step – the interactive (INT) merging operations will be processed. Then the process
continues with the inhibition of regions and automatic merging of the remaining regions. As we
do not move the interactive operations to the base level like in the approach of [Meine, 2009b],
the different (intermediate) resolution levels are retained for later usage.

This recalculation is achieved using the hierarchical information encoded in the merging tree,
through permutations on the D with ' in the combinatorial map and set operations as shown in
the following example. Figure 4.8 shows two consecutive levels1 i and i + 1 in the pyramid.
Let Figure 4.8a be a common starting level and Figure 4.8b be a higher level where operation
mrg(R(i+1,x1), R(i+1,x2)) shall be applied. We intend to merge region 1 (roof) with 2 (wall) and
inhibit the resulting region from merging. We can see that this operation leads to a different and
non corresponding result imrg1(mrg(R(i,1), R(i,20 ))) when applied on the combinatorial map in

the level i below. The wall of the house (region 2) in level i is divided ( div�!) into two subregions
2
0 and 2

00 , the boundary the house’s roof (region 1) remains the same in both of the levels.
Therefore we need to reconstruct the original operation of level i + 1 to its correspondent in
level i. Using the relation between the regions in the common starting level i and the level above
i+1 and its ' permutation, the corresponding darts (or edges) can be reconstructed as follows:

R
i+1,1

div�! R
i,1

R
i+1,2

div�! R
i,2 = R

i,20 ^R
i,200

Darts for R
i,1 = '(5,�6)

Darts for R
i,2 = '(3,�5,�7) ^ '(2, 7, 4)

1Figure 4.8(a) and (b) are based on the examples from [Brun and Kropatsch, 1999].
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Figure 4.8: Combinatorial maps from different segmentation levels.
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There are two different categories and collections of edges (inhibition and removal)
necessary to process the operation correctly:

1. Former Contractions: in each set of R
i,1 and R

i,2 some darts belong to the same cycle
of ↵. This edge indicates the adjacency/subdivision from region R

i+1,2 in level i and is
marked for removal, i.e. edge (7,�7) in Figure 4.9d.

2. User Operations:

• all edges of R
i,1 (Figure 4.9a) and R

i,2 (Figure 4.9b and 4.9c) without the marked
edges for removal from former contractions (Figure 4.9d), represent the original
(outer) borders of regions R

i+1,1 and R
i+1,2. All these edges in level i are marked

for inhibition, e.g. darts (3,�3)(5,�5), (2,�2)(4,�4) of R
i,1 and (6,�6), (5,�5)

of R
i,2.

• the darts from the outer borders of R
i,1 (Figure 4.9a) and R

i,2 (Figure 4.9e) of each
region are compared to find the common edge. This edge is marked for removal,
see edge (5,�5) in Figure 4.9f.
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Figure 4.9: Edge reconstruction in level i.
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This process is repeated for all operations. In the example shown, the selection of edge
(5,�5) leads to a conflict because it appears in both inhibition and removal edge sets of the
users’ operations. Because user intention is to merge, a rule defined decides that this edge has
to be removed. Such an invalid overlap-situation has to be avoided in any case, for this purpose
a dedicated mechanism is introduced and explained later in this section.

Implementation of the processing phase

As it is important for understanding sequent steps, we present below the exact implementation
of operations’ processing performed in the automatic framework. The down-processing of
operations w.r.t. the common starting level and identification of edges representing adjacency
relations rely in the first place on the combinatorial map or in general graph operations.

We did not yet explicitly discuss these phases, but due to the conflict processing and
interactive operation propagation phase it was necessary to store the operations list (and
meta-data) for the purpose of computation in a slightly different way than {i, op., Ri,1[, Ri,2]}.
Irrespective of this the overall processing concept defined in the previous section remains the
same as presented before. The propagation phase is needed in case that inhibition from merging
operations are defined. Its corresponding edges will automatically be protected until the end of
the segmentation process (top of the pyramid). Otherwise the user would have to protect the
same region repeatedly in each level.

The list is now stored in a different format {i, op., items, reason}, where items stands for a
collection of edges using the following structure:

• edge affected

• metadata

– count, how often does this edge appear for specified operation

– parent, which are the regions belonging to the edge

The most significant change affects the representation in terms of affected regions (before)
to joining edges. This separate data-structure may look redundant as this information can be
retrieved easily from the combinatorial map as well. First of all it is required also by the
automatic framework as we need to pass on a set of edges to be contracted. Second, due to
fitting the new functionality into the existing automatic framework, this step was needed for
computational reasons. Therefore an edge belonging to a region is now stored in the new format
for interactive processing only. In general, the overall procedure remains the same as explained
previously.

Each region given in the operation entry is processed separately. Because of the
common-starting level, a region may split up within its receptive field in lower levels. Therefore
we need to determine the edges belonging to former contractions in order to reconstruct the
initial operation again. As mentioned before, this all is based on Procedure 4 where the edges
for each child-region are determined and collected in the structure presented above. The edges
belonging to former contractions can easily be identified as they share a count in the metadata
of value two (i.e. exist twice). They are copied into a separate list (called ’wasteMap’) having
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edge metadata
count parent faces

(7,�7) 2 2
0 , 200

(a) wasteMap

edge metadata
count parent faces

(3,�3) 1 2
0 , 3

(5,�5) 2 1, 20

(2,�2) 1 2
00 , BG

(4,�4) 1 2
00 , 3

(6,�6) 1 1, 3
(b) reducedMap

Figure 4.10: Edge maps (a) shows the edges of former contractions (b) the original ones.

Op. Type Description Edge # Set
0 MF mrg(R(i,x1), R(i,x2)) 2 edgeRemovalSet
1 IF imrg1(R(i,x1)) 1 edgeInhibitionSet
2 IE imrg2(R(i,x1), R(i,x2)) 2 edgeInhibitionSet

1 edgeInhibitionSet
3 MI imrg1(mrg(R(i,x1), R(i,x2))) 2 edgeRemovalSet

1 edgeInhibitionSet
4 WS waste 2 edgeRemovalSet
6 MA imrg1(R(i,x1)) + mrg(rem) 1 edgeInhibitionSet

Table 4.4: Mapping of operations between the segmentation framework and its interactive
extension in the first three columns. Plus assignment of edges to the correct removal/inhibition
set depending on the operation (first column). The fourth column shows the count
of edges retrieved from the metadata, the corresponding containers edgeRemovalSet and
edgeInhibitionSet in the fifth column hold the index of the affected edge.

the same structure and holding all similar edges. Our edges belonging to the original operation
(and appearing only once, see corresponding value for count in the metadata) are stored in a list
called ’reducedMap’. Figure 4.10 shows the same example as presented before in Figure 4.8,
but in a different format.

The mapping of interactive operations in the GUI and the automatic framework is shown
in Table 4.4. Of course, for each basic and nested operation there is a correspondent defined,
but again for the purpose of computation there are some slight differences. Column operation
contains a real valued representative of each operation, the abbreviation in column type matches
its name in the automatic framework. You will notice that some operations are missing here,
but the others may also be expressed in terms of the basic operations. There is no explicit type
defined for:

• imrg1(R(i,x1)) + imrg2(R(j,y1), R(j,y2))

• imrg1(R(i,x1)) + imrg1(R(j,y1))
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The new dedicated type ’4’ is required in order to distinguish the different types of edges to be
removed (former vs. original). Finally a new list of operations is allocated, each operation adds
two entries containing the:

• Original edges: {level, operation, reducedMap, reason}.

• Former edges: {level, 4,wasteMap, 4}

The usage of the reason argument will be explained in the subsection on conflict processing,
its value comes as well as the one for the operation identifier from Table 4.4 and is intended to
save the original purpose of the operation. Usually they are equivalent, the following example
reveals its usage. In case of operation 5 – in order to get a clean foreground segmentation
– we remember instead of selecting all regions in the GUI this step is performed in the
automatic part. As this type of merging is equivalent to operation 0 we add the following entry
{level, 0, reducedMap, 5} to the list of operations. In the last column we save the ’original’
operation, this is needed in order to resolve conflicts later and to distinguish between other
merging operations. Finally the operations are ready to be processed in the Borůvka ’*’ level.

Procedure 6 DoContraction - interactive
1: I: edgeInhibitionSet, edgeRemovalSet = ProduceActionSets(operationsList);
2: if edgeRemovalSet != empty then
3: interactiveRemovalRequested = true;
4: end if
5: if interactiveRemovalRequested == false then
6: A: mark all edges that could be safely contracted
7: for all edges 2 edgeInhibitionSet do
8: edgeMarkedForRemoval[e] = false;
9: end for

10: A: first random selection
11: A: build the MST using Boruvka’s method
12: A: second random selection
13: A: filter candidates through adaptive thresholding (internal/external contrast)
14: else
15: for all edges 2 edgeRemovalSet do
16: edgeMarkedForRemoval[e] = true;
17: end for
18: end if
19: A: Do stepwise contraction
20: A: Update edge weights
21: I: Update operations

Procedure 6 shows an overview of the steps performed in this level. All lines with prefix ’A:’
belong to the functionality of the automatic framework, the ones with prefix ’I:’ to the interactive
part. Besides the edges affected by the automatic process, we also need to determine the edges
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affected by interactive selection as well. Therefore we allocate two separate lists which will
hold the edges to be inhibited from merging in the edgeInhibitionSet and of course a list called
edgeRemovalSet for the edges to be contracted. See Table 4.4, containing the mapping for each
operation. But why do we need both sets? This separation is very important as further processing
requires a separation, the reasons are shown in the following. Reminding the automatic edge
selection approach in Chapter 3, in the first step all edges are selected for removal. Afterwards
the candidate edges list is decimated using relevance filtering methods. In order to embed the
interactively selected edges in the automatic process, consequently:

• the candidate-edges to be inhibited from merging need to be excluded already in the very
beginning, i.e. deselected before the Borůvka phase and relevance filtering begins (lines 6
to 13).

• the candidate-edges for contraction will be processed in a custom contraction phase (lines
15 to 21). This way we omit conflicts between existing functionality and force low
coupling/high cohesion. Furthermore the segmentation method may be replaced easily
without damaging the interactive extension.

Listing 4.2 shows a sample logging-output of the segmentation framework. First the
candidate-edges to be removed are processed. Using the flat-pyramid approach we isolate the
corresponding contraction steps to a single (flat pyramid) level. On advancing to this new level,
no other (automatic) contractions will be processed.
-- interactive edge selection removal begin--

*
Level 16 Interactive Removal: Flat Pyramid
-----------------------------------------------------------
Flat Level 1: MIES 0s, Kernel 0s, Total 0s , Faces left 520
Flat Level 2: MIES 0s, Kernel 0s, Total 0s , Faces left 517
-----------------------------------------------------------
>> processing operations

*
Level 17: MIES 0s, Kernel 0.01s, Total 0.15s , Faces left 303
Level 18: MIES 0s, Kernel 0s, Total 0.16s , Faces left 238
Level 19: MIES 0s, Kernel 0s, Total 0.15s , Faces left 219
Level 20: MIES 0s, Kernel 0s, Total 0.13s , Faces left 212
Level 21: MIES 0s, Kernel 0s, Total 0.13s , Faces left 211
>> processing operations

*
...

Listing 4.2: Edge processing of interactive operations.

This way the interactive edge-removal phase is clearly separated from others. As of level 17 in
this example, also the edges to be inhibited are propagated as shown in Procedure 6. Furthermore
this separation allows the user to track the changes to the merging tree induced by the interactive
method easily.

Conflicting operations

As already mentioned, the instruction set – i.e. the collection of operations – has to be conflict
free for certain combinations in order to produce predictable results. Predictable in this context
means, the user will get exactly the segmentation result he wants to have. This is different to
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other approaches like interactive graph cuts based frameworks [Boykov and Jolly, 2001] where
the effect of a stroke is unpredictable for the user to a certain extent. An invalid overlap of the
regions and their receptive fields within the hierarchy with respect to the operations recorded
needs to be avoided in any case. Obviously some operations are not allowed to conflict. If there
is a invalid overlap within the receptive field of a operations region, an ambiguous instruction
set would be created. In order to exclude such inconsistencies internal rulesets are defined to
validate the operations at runtime. Two cases may be distinguished and need to be tracked:

1. Invalid combinations

2. Multiple application of operations (compare brush-mode)

Regarding the first step, this evaluation is done on region basis. Therefore each region is
tagged during runtime in the interactive GUI with a dedicated boolean flag in the merging tree, if
a certain operation is set. After recording an operation (its arguments are omitted in the example
below), each affected region within the merging tree (and receptive field) is iterated and checked
if the truth value of the following terms is > (true):

8 affected regions x within the receptive field between level 1, i
boolean rule1 = ¬(imrg1 ^ mrg)
boolean rule2 = ¬(imrg2 ^ mrg)
boolean rule3 = ¬(imrg1(mrg) ^ mrg)
boolean rule4 = ¬(imrg1(mrg) ^ imrg2)
boolean rule5 = ¬((imrg1(x) + mrg(rem)) ^ mrg))
boolean rule6 = ¬((imrg1(x) + mrg(rem)) ^ imrg1(mrg))
return validOperation = rule1 ^ rule2 ^ rule3 ^ rule4 ^ rule5;

In the first case, if this region has the boolean flags set both for imrg1(R(i,x1)) and
mrg(R(i,x1), R(i,x2)), the current operation and the others already recorded are conflicting. The
single term evaluates to false ?, so the overall return value ’validOperation’ combines all return
sub-clauses. For several combinations of operations there exists a truth equation (see Table 4.5
for the full list and detailed explanations).

Most of the conflicts (invalid combination of operations) are already caught here and the user
is prompted during runtime. The main reason behind the two phase conflict resolution is that for
the situations presented in Table 4.5, there is no possibility to resolve them in the automatic part.
These decisions on ambiguous instruction sets require user interaction.

A second conflict processing step is executed in the automatic segmentation framework
itself. There is one situation which cannot be covered by the first step, i.e. conflicting edges
when certain operations are applied one after another. Imagine the following overlap situation
shown in Figure 4.11: Operation 1 is imrg1(mrg(x, y)) and operation 2 and imrg1(mrg(y, z)).
The intention here is to merge regions x, y, z and protect their resulting outer border.

If we look on each operation separately, the outer boundary created through merging region
x and y shall be protected. This is true also for regions y and z of the second operation. As
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Operation 1 Operation 2
imrg1(x) mrg(x, y)
Inhibition against merging region x with others (operation 1) and merging
region x with y (operation 2) is not allowed. There are two contradicting
operations defined on region x, leading to an ambiguous instruction set.
imrg2(x, y) mrg(x, z), (y, z) or mrg(x, y)
Inhibition against merging regions x and y together or with others (operation
1) and merging e.g. one of the regions of operation 1 with another one is
not allowed. Again this leads to contradictions. If mrg(x, y) is recorded as
operation 2, the inhibition overrules the deletion of the common boundary.
For protecting the outer boundary and removing the inner one, a particular
operation is defined.
imrg1(mrg(x, y)) mrg(x, z), (y, z)
In operation 1 region x and y are first merged together while the outer boundary
is protected. Hence merging (operation 2) one of the previous regions with a
different one z is not allowed. Region x and y may be merged in step 2 because
the instruction set is identical to the inner part of operation 1.
imrg1(mrg(x, y)) imrg2(x, y), (x, z), (y, z)
Merging regions x and y whilst inhibition of the outer boundary in operation 1
while preventing one of the affected regions from merging with others and of
the common boundary is not allowed. Operation 2 with x and y is the inverse
operation, x and z or y and z would lead to a conflicting instruction set on the
common boundary of x and y.
imrg1(x) + mrg(rem) mrg(x, y 2 rem)
Operation 1 is a combined one, nevertheless the rule (similar to the first one)
applies also to this combination. Inhibition of region x in operation 1 and
merging all others while merging x with region y in operation 2 is not allowed.
imrg1(x) + mrg(rem) imrg1(mrg(x, y 2 rem))
Operation 1 is a combined one, nevertheless the rule (similar to the second
one) applies also to this combination. Inhibition of region x in operation 1 and
merging all others while merging x with region y and inhibition of the result
in operation 2 is not allowed.

Table 4.5: Conflicting operations, evaluation based on regions.

we can see in Figure 4.11, the edges to be removed and protected intersect. In this case the
users’ intention is to merge, so the inhibition operations of the edges separating x from y and y
from z is overruled. Finally x, y and z will be merged while protecting their outer border. Such
complex decisions require processing with edge-based conflict resolution step in the automatic
framework.

As we cannot ask the user for a decision here, we require a global rule for handling such
situations. If the edge to be removed is also contained in the inhibition set at the same time, we
have a look at the ’reason’ column stored in the metadata. There we can see which operation
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x y z

Operation 1

Operation 2

Figure 4.11: Conflicting operations, invalid overlap of merging (red line) and inhibition from
merging (solid green line) operations. The dashed green line indicates the outer borders of
operation 1 and 2 which finally will be removed.

marked a particular edge for removal:

• imrg1(mrg(R(i,x1), R(i,x2))): this relates to the example shown in Figure 4.11 where
multiple regions shall be merged while protecting their outer border. In this case the
particular edge is removed from the inhibition set and kept in the removal set.

• Other operations: for all conflicting situations not handled explicitly, by definition
inhibition overrules removal.

Using the two-phased conflict resolution approach, a large set of conflicting combinations
is covered. This way we ensure a proper instruction set and preserve the consistency of the
structural representation.

Post-processing

At the end of each contraction phase there are some important steps to do. Both Procedure 3
and 6 list some post-processing actions which need to be performed. Because of the merging
regions, in addition to edge-weight update also a structural reorganization (of e.g. the region
indexes) is required and performed by the automatic framework at each level. As the structure
changes, obviously also the operations need to be adapted. Consequently a new step is added
which will take care of propagating the inhibition of merging operations. By definition, the
edges to be inhibited from merging shall survive until the end of the segmentation process. All
others are omitted as the merging operations (with identifier 0 and 4) were already processed by
the latest Borůvka and contraction phase.

Due to limitations of the automatic framework – index changes of edges are not tracked by
definition – we will use again the region numbering and the hierarchical merging tree. At this
point the dual representation of combinatorial maps again is required and of great benefit. The
procedure is comparable to the one presented in the top-down-processing step but of course in
the opposite direction. The old operation list will be overwritten, the detailed steps for each
remaining entry are:
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1. Get all regions belonging to an operation from the edge metadata and sort them in
ascending order to eliminate duplicates.

2. Get the level-to-level region index change from the latest Borůvka level to the topmost
(current) map of the stack of segmentations.

3. For each region, determine the graph-edges affected and its metadata (using the specific
edge-format presented).

4. Add a new operation following the pattern
{toplevel, operation, processedMap, reason}

Let us take again the example from Figure 4.8. Region R
i+1,1 does not change with respect

to level i, for region R
i+1,2 this is different because its child-regions R

i,20 and R
i,200 are merged

(mrg�!) together. The processedMap list containing only the edges to be inhibited looks like:

R
i+1,1

mrg�! R
i,1

R
i+1,2

mrg�! R
i,2 = R

i,20 ^R
i,200

Darts for R
k,1 = '(5,�6)

Darts for R
k,2 = '(3,�5,�7) ^ '(2, 7, 4)

edge metadata
count parent faces

(2,�2) 1 2, BG
(3,�3) 1 2, 3
(4,�4) 1 2, 3
(6,�6) 1 1, 3

Examples for interactive operations

This subsection shows some examples and the effect of the operations presented. Please note
that the colors indicating the affected regions in the segmentations are artificial and optimized
for visualization.

1. goto(i) - Goto a higher/lower level

2. mrg(R(i,x1), R(i,x2)) - Merge two adjacent regions

Input: two adjacent regions in level i Output: merged region in level i+ 1

Description: The regions (parts of a cloud, indicated in yellow/green) selected in
level i for merging, are already merged together (white cloud) in the next level.
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3. imrg1(R(i,x1)) - Inhibit a region from merging

Input: a specific region in level x Output: region survives until the top

The operations are placed on 4 separate regions (colored green, indicating windows
of a church). These regions will be excluded from any future merging decisions
until the top-most level of the stack.

4. imrg2(R(i,x1), R(i,x2)) - Inhibit two regions from merging

Input: two adjacent regions Output: regions survive until the top

The operation was placed on two adjacent regions (indicated in yellow/green). Both
were excluded from any merging decisions and survive until top.

5. imrg1(mrg(R(i,x1), R(i,x2))) - Merge two regions, and inhibit the resulting region

Input: two adjacent regions Output: merged region survives until top

The operation was placed on two adjacent regions (indicated in yellow/red, parts of
a cloud). Both merge already in the next level and the resulting region will survive.
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6. imrg1(R(i,x1)) + mrg(rem) - Inhibit selected region from merging but merge all others

Input: one region Output: only this region will survive

This operation is intended to get a clean foreground/background-segmentation. All
regions except the one selected (indicated in yellow) will be merged in any case.

7. imrg1(R(i,x1)) + imrg1(R(j,y1)) - Restore a selected region

Input: one detail Output: parent region and detail

Preserving a selected region (surrounded green) in a level j with lower granularity
and restore a particular detail (indicated in yellow, the cross on top of the church)
from a level i, j  i.

Level locking and other GUI operations

This framework could also be used easily for creating a nested image annotation tree. By locking
all levels below the top of the pyramid it is possible to create a new stack of segmentations with
custom graduation of decreasing granularity. Recording operations below the topmost level is
not allowed, this way the remaining regions may iteratively be merged to build a new hierarchy,
see for example Figure 4.4 level k + 1 on top of the pyramid.

An explicit life-time for operations was not considered in this approach. The main reason
behind is that the initial design-decision aims to have the final segmentation on top of the
pyramid. A living time for protections is implicitly encoded since it is possible to restart at a
desired level and simply not considering a region for protection in future runs. Another approach
to indirectly achieve the desired effect is to restart the tool on the topmost segmentation level
without interactive operations.

62



An explicit undo operation has not been realized in this approach. However a history
of operations is kept, this way it is sufficient to re-apply the set of operations collected (in
appropriate order) on the initial segmentation in order to retrieve the final segmentation result
again. Implicitly the user can therefore restore a particular segmentation up to a certain rebuild.

The parent-child relationship defined by the reduction window may be extended by
transitivity down to the base level [Marfil et al., 2006]. The initial grid on level 0 has a
well-defined structure, therefore the region-indices remain the same even after starting a new
segmentation. If all operations are down-propagated to the base level it is possible to collect,
re-use or remove (undo) operations from the instruction set. This attempt is similar to [Meine
et al., 2004] where the operations are moved to the very beginning of the process as already
shown in Figure 2.13. Because of the design decisions described in the beginning of this chapter,
a different approach has been chosen.

Refine existing segmentation

Using the operations/extension developed it is theoretically also possible to correct an existing
segmentation performed by a different method. The only input needed, besides the input image,
is the correspondency between the base-layer and the segmentation mask. This can be done on
mapping all the pixels of a region (by the use of its labeling) to its correspondents at the base.
In a reverse manner an ’artificial’ set of operations is built representing the merging process
(receptive field), like using operation imrg2(R(i,x1), R(i,x2)). The resulting list of operations
is later passed on to the framework which automatically computes the stack of segmentations
containing the given ’input’ partitioning. This partitioning may then be interactively modified.
This feature remains to be implemented and was postponed for future tasks.
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CHAPTER 5
Evaluation

The aim of the evaluation part is to find answers to usability questions, mainly related to the
process of creating hierarchical segmentations using the interactive tool developed. In the
beginning we present the setup. The evaluation part in general is made up out of two parts
which will be discussed in detail, the phase of interactively creating segmentations by a set of
users followed by a questionnaire.

5.1 Setup

The conditions for the image segmentation task were assigned following the definition of [Martin
et al., 2001]: “Divide each image into pieces, where each piece represents a distinguished thing
in the image. It is important that all of the pieces have approximately equal importance. . . ”.
This goal was adapted, finally matching the purpose of the tool developed. This is creating
an image segmentation which in the first place is acceptable and in addition that meets the
requirements of the user. To be more precise, the user was free to choose the object he wanted
to segment. Hence the condition of ’equal importance’ was not considered here because of the
different scope of the application. It is not about comparing segmentations and measuring the
quality compared to ground truth, it is about setting focus on a particular detail in the image –
imagine the task of segmenting a computed tomography (CT scan) image of the human brain
by a medical practitioner. In certain situations he may not be interested in a clear separation
of the bone or the gray/white matter of a brain, but rather in limiting the tumor. In the final
survey we ask the candidate to answer the following question, “How satisfied are you with the
segmentation result?”. This question about acceptance can only be answered if the segmentation
goal has been chosen individually and not defined a priori.

For the first phase of creating image segmentations 8 volunteers agreed to participate
voluntarily. They signed a declaration of consent, summarizing the evaluation process and
data to be recorded during the session (see the form attached to Section B.2). Additionally it
is important to mention that these persons neither worked before with the tools developed nor
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they have experience in this field of image analysis. Therefore I started with a short technical
introduction and demonstration of the concepts.

There is no transcript of this introduction available as this part was based on examples
and individual discussions, however a summary of the key topics discussed is provided in the
following:

We started to give a definition of image segmentation by providing a concrete
example and application. This is for example locating objects in an image and
annotating them with vocabulary. Then we had a closer look on the output of
the automatic segmentation process. Using the interactive tool, we explained the
concept of the different (resolution) levels in the stack of segmentations: “there,
starting on pixel level, the regions iteratively merge together following certain
merging criteria”. Doing it this way we began to build up basic knowledge in
this domain. At this point, however, no detailed information was given about the
structural representation (like the concept of irregular pyramids). The user agreed
that the automatic method delivers good results, but these are located in different
resolution levels. This way we defined the goal of interactive extension developed,
which is the combination of these segments to a final segmentation on top of
the pyramid which matches the users’ expectations. Starting with the two basic
operations – inhibition of a region from merging and merging two adjacent regions
– a first example of the new functionality was provided. After a short introduction
of the GUI, we explained the remaining operations and the brush mode.

This first part and an explanation of the evaluation questionnaire took about 25 minutes in
total. Afterwards the candidates had the chance to test out the interactive segmentation tool
on their own and create segmentations as long as they wanted. In this phase any remaining
open questions were answered. After two training images, all of the users felt ready to start the
exercises.

The five images in Figure 5.1 which are presented to the users were taken randomly (using
a helper tool based on classjava.util.Random) out of the 300 training and test images
from [Martin et al., 2001]. We assumed that each candidate will segment on average 3 images
(estimated response rate). Therefore we specified two of them to be the control images, but only
one of them will be presented to the user. The others are again chosen randomly. Concluding,
the set of images assigned per session consists out of one control image and up to three random
images. If a candidate wants to do all five segmentations, the set of images consists out of the
two control and the three random images. Doing it this way, the result is expected to be more
representative than a complete random presentation of the 5 or all 300 images.

The questionnaire at the end was implemented using the open source tool LimeSurvey. This
way the users were able to fill in the evaluation form online and anonymously. We asked
questions grouped into different categories. The participants should provide feedback on the
process of creating Image Segmentations, the functionality and usability of the Segmentation
Tool itself and questions regarding the Skills required. The full set of questions can be found in
Section B.1 of the appendix.
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(a) 113016 (481⇥ 321 px) (b) 135037

(c) 108070 (d) 175032 (e) 374020

Figure 5.1: Images for evaluation randomly chosen from [Martin et al., 2001], the captions show
the image ID, (a) and (b) are the control images. The others are presented in random order.

Together with the feedback received when creating the segmentations, we try to answer
questions related to possible segmentation strategies among others:

• How often and when (at which level of granularity) was a particular operation used?

• Is there any preferred type of input method (selection/brush)?

• How much time was needed to create a segmentation?

• Does operating the interactive segmentation tool require prior/expert knowledge or can it
be used effectively by beginners as well?

• Are there any parts in the process of creating image segmentations that require
improvement?
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5.2 Results
The detailed results of the segmentation phase can be found on the DVD media at
<drive:>/Evaluation. Images and raw segmentation data is located there as well as the
segmentation statistics. Figure 5.2 shows some examples.

The score of the questionnaire is attached to Section B.1 of the appendix. A summary will
be provided in the following. Each segmentation has a random identification tag assigned (5
hexadecimal-digits) which helps to establish a correspondence with the related survey questions.

(a) 2A4A6 (7 regions); Focus set
on the mare, foal and their pallor.

(b) 3ED15 (3 regions); Focus set
on the eagle and fine details.

(c) 337D5 (4 regions); Rough
segmentation of the different
areas in the scenery.

(d) 2CDC2 (5 regions); Focus set
on the foal and fine details.

(e) 25662 (3 regions); Focus set
on the eagle, no details selected.

(f) AD4D6 (3 regions); Failed to
set focus on tiger and river only.

(g) 12857 (7 regions);
Focus set on the
branch.

(h) 5FAD6 (45
regions) Focus set on
the snake, the big and
the fir branch.

Figure 5.2: Images segmentation results, the captions show the test identifier ID and the region
count. The candidates set focus on different objects and level of detail.
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Overall 21 segmentations have been created by 8 persons. Each image (see Figure 5.1) –
randomly chosen out of [Martin et al., 2001] – can be identified by a file name having 6-digits.
The session ID which identifies each segmentation is emphasized in the following using the
typewriter font:

• Image 113016⇥ 5: T2A4A6, 2CDC2, 3ABE4, 4C584, 78B48

• Image 135037⇥ 5: 3ED15, 5DFB6, 25662, BD498, FE38F

• Image 374020⇥ 4: 337D5, 494B3, B64DB, C3D2D

• Image 108070⇥ 3: 54DFB, 452B2, AD4D6

• Image 175032⇥ 2: 5FAD6, 12857

Two segmentations (6C6DA, 5814C) of one candidate are not listed here as they are not taken
into consideration due to the fact that the process has been aborted twice because of runtime
errors. There one candidate extensively used the brush-mode on a very low level with high
resolution. The implementation of the MouseListener (Java) waiting for the double-click to
activate this mode and recording the regions, did not react as expected. In conclusion, the
participant was not able to produce a satisfying segmentation according to his strategy and
expectations (see comments in questions G2_Q0002 and G2_Q0004 in the questionnaire
score). However, these problems did not occur again during the remaining sessions.

Summarizing the list of images and sessions, each user segmented on average 2.7 images per
session. One session took about 1.5 to 2 hours including the introduction, getting familiar with
the tool, performing the segmentations and filling in the questionnaire. The chart in Figure 5.3
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Figure 5.3: Number of rebuilds needed (x-axis) in order to produce a final image segmentation
result. The y-axis shows the number of sessions matching the amount of rebuilds).
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U. Session Image Inter. Total Ratio
1 3ABE4 113016 01:37 08:22 0, 194
1 25662 135037 01:02 05:59 0, 175
1 452B2 108070 00:58 05:20 0, 183
2 C3D2D 374020 03:17 13:33 0, 243
2 78B48 113016 01:58 07:35 0, 259
4 BD498 135037 04:59 13:45 0, 362
4 337D5 374020 03:50 15:06 0, 251
5 4C584 113016 01:34 07:39 0, 204
5 5DFB6 135037 04:50 12:29 0, 387
6 3ED15 135037 03:03 14:50 0, 205

U. Session Image Inter. Total Ratio
6 12857 175032 01:51 20:00 0, 093
6 B64DB 374020 02:17 07:16 0, 314
8 2CDC2 113016 08:08 21:19 0, 381
8 54DFB 108070 05:05 19:19 0, 263
9 2A4A6 113016 05:17 18:07 0, 292
9 5FAD6 175032 10:55 25:38 0, 426
9 494B3 374020 01:38 10:34 0, 155
9 AD4D6 108070 05:39 08:49 0, 641
9 FE38F 135037 02:31 07:19 0, 345

Table 5.1: Interaction times (columns ’U.’ = user, ’Inter.’ = Interaction Time, minutes:seconds)
recorded in each session, compared agains the total time required.

shows the amount of user-triggered rebuilds needed in order to produce a final segmentation
in each session. This is 3, 4 or 5 partial recalculations from the common starting level of the
irregular pyramid that were used in approximately 79% of all cases.

The required time for creating the segmentations is visualized in Table 5.1, on average each
session took 12:47 minutes. There the interaction time (selection of regions) is compared against
the total time consumed. The total time includes the waiting time for the segmentation result
which is generated by the external MST segmentation tool and navigating through the hierarchy,
finding regions or thinking about the strategy. Time recording starts as soon as the initial stack
of segmentations is loaded successfully and ends when the user is satisfied with the result. This
ratio ’Interaction Time/Total Time’ is on average 29.01% and shown in Figure 5.4 (visualized
by the red line). The
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Figure 5.4: Normalized Interaction Time, grouped by user. Red line shows the average ratio.
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Operations/Height in % 0� 9 10� 19 20� 29 30� 39 40� 49 50� 59
imrg1(R(i,x1)) 4 4 5 5 9 6
imrg1(mrg(R(i,x1), R(i,x2))) 663 168 984 1579 406 178
imrg1(R(i,x1)) + mrg(rem) 0 0 0 0 0 2

Operations/Height in % 60� 69 70� 70 80� 89 90� 99 100
imrg1(R(i,x1)) 3 1 8 0 13
imrg1(mrg(R(i,x1), R(i,x2))) 49 9 2 5 177
imrg1(R(i,x1)) + mrg(rem) 0 0 12 1 64

Table 5.2: Amount of operations in relation to the height of the pyramid. The columns show the
corresponding intervals in % for the operations used (rows).

In total 4357 interactive operations have been placed in the GUI with the following distribution:

• 96, 87% (4220) belong to imrg1(mrg(R(i,x1), R(i,x2)))

• 1.81% (79) to imrg1(R(i,x1)) + mrg(rem) and

• 1.32% (58) to imrg1(R(i,x1))

Concluding, operation imrg1(mrg(R(i,x1), R(i,x2))) is the one used most. There also the
brush mode has been used for placing 3313⇥ this operation in a more efficient way, the
remaining 1044 operations (and their corresponding regions) up to the total amount of 4357
were selected individually. What needs to be considered here is the fact that this operation –
merge regions and inhibit resulting region from merging – takes two input regions, this is 77%
of all regions recorded which were selected using the brush. The other types of operations only
require one argument and have a different effect in the merging tree. Nevertheless they are very
important as well.

This is supported by the results summarized in the Table 5.2 showing the amount of
operations used (rows) in relation to the height of the pyramid (columns, increasing from left
to right). The 100% column indicates that an operation was placed in the highest level to add
a new level on top of the stack with the changes requested. Operation imrg1(R(i,x1)) appears
to be used in all level of the stack to inhibit regions from merging in higher levels. Operation
imrg1(mrg(R(i,x1), R(i,x2))) has been applied extensively in lower levels (of high resolution) to
merge over-segmented regions correctly together. The purpose of imrg1(R(i,x1)) + mrg(rem) is
used to produce a clean foreground-background segmentation if there are a lot of (noisy) regions
remaining in the topmost level. During the process of creating segmentations, we were able to
observe different strategies. This enumeration claims not to be complete:

1. Use one specific level – where most of the details are available – as long as possible. Even
if the region resolution is high (strong over-segmentation) and more operations are needed
in the end.
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2. Select details from arbitrary level and rebuild the stack of segmentations in order to
preview the changes. This has been repeated again and again until the final segmentation
result was acceptable to the user.

3. Use different levels and pick as much details (having different granularities) as possible.
Then, in a second step, refine the result with regions from levels of higher resolution.

4. No explicit selection of the object of interest, but implicitly limit its boundary. Let
the segmentation framework merge the regions, where no operations are defined,
automatically.

However, the data recorded in the logs confirms these observations (see Figure 5.5 for reference).
In the first strategy (session 2CDC2) only regions from the same level 8 (of high granularity)
were chosen initially to fully outline the object of interest using 259 operations. Even if
there were bigger or good partitions in higher levels, they were not taken into consideration.
Afterwards the remaining parts were merged together to the final segmentation. In the first run
of 25662, the user starts in the intermediate level 26 (of 39). Only in this level interactive
operations were applied in the first run, then the pyramid is rebuilt to review the result. In an
iterative manner details from other levels are chosen and combined to the final result. This
matches the second strategy. The segmentation process of 3ED15 follows strategy three where
a lot of regions of different granularity levels (1, 6, 7, 8, 9, 12, 17, 28, 29) are already selected in
the first rebuild. However there is no preferred strategy or strategy enforced by the interactive
segmentation tool. This question has also been asked by the participants, in general the users are
free to follow whatever strategy they have in mind. If the interactive segmentation tool does not
support this particular way, this should be addressed in the questionnaire.

Rb. Level Operation Amount
1 8 IMRG_MRG 259
2 32 IMRG_MRG 27
3 34 IMRG_MRG 1
4 35 IMRGMRG 1

(a) Strategy in 2CDC2

Rb. Level Operation Amount
1 26 IMRG_MRG 32
2 40 IMRG_MRG 1
3 13 IMRG_MRG 11
3 43 IMRG 1
4 48 IMRG_MRG 2
5 49 IMRGMRG 1

(b) Strategy in 25662

Rb. Level Operation Amount
1 1 IMRG_MRG 3
1 6 IMRG_MRG 1
1 7 IMRG 4
1 7 IMRG_MRG 13
1 8 IMRG 3
1 8 IMRG_MRG 8
1 9 IMRG_MRG 1
1 12 IMRG_MRG 14
1 17 IMRG_MRG 2
1 28 IMRG_MRG 7
1 29 IMRG_MRG 1
2 45 IMRGMRG 12
3 46 IMRG_MRG 11
4 47 IMRG_MRG 1

(c) Strategy in 3ED15

Figure 5.5: Different segmentation strategies.
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The interpretation of the questionnaire (Section B.1) shows that the users rate the usability
of the tool on average as good (school grade), this goes together with the grade of satisfaction
with the final segmentation result. The candidates – having no image-segmentation skills prior
to this evaluation - provide also motivating feedback and agree that the tool may be operated by
beginners with the amount of preliminary information provided. However, 7 out of 8 users feel
that their skills in using the interactive segmentation tool and creating segmentations improved
during the sessions. On a scale from 1 (easy) to 5 (hard), the difficulty of this process has
been rated on average with 2.13. The working experience on coarse grained levels has been
rated better than on fine-grained levels. From the feedback provided, this turns out to be a
point where still improvement is needed. The brush mode helps to save clicks and supports
the user in selecting regions more efficiently, whereas on levels of high resolution the human
operator needs to be precise. This clashes to the character self-assessment of some participants
of being impatient and ’clumsy’ when it comes to operating on pixel-level. Here we run into a
limitation of the tool which is caused by external constraints. Due to the embedding of interactive
functionality into the external segmentation tool – collecting modification operations instead of
applying them immediately – the changes are here only visible after rebuilding the pyramid. As
it turned out the users expect the interactive operations on regions to be transitive. They intend
to merge the regions number one with two and its result with region three (which is probably
on the other end), this will cause an error. In this implementation we required the regions to be
adjacent and selected in pairs of two. These regions are only marked for merging but not yet
merged, therefore finding the adjacent region on pixel level can be very hard, especially when
the colors of the neighboring segments are very similar to each other.

In a different approach like [Meine et al., 2004] this is not a problem as the region
borders may be addressed and modified directly due to the explicit crack-edge representation
of inter-pixel boundaries. In the GUI (used for region selection) of the interactive extension we
only have the region information available as it is used for region/operation selection only. In
the external segmentation tool this translation to edges to be modified is finally performed. The
zoom functionality provided and the possibility to replace the colors assigned to the operations
appear not to be sufficient in this particular case. One of the candidates suggested to implement
advanced input methods like drawing shapes (rectangle, circle) to limit a certain object. This
extension and the embedding of related functionality like the active contour [Kass et al., 1988]
or Live Wire [Mortensen and Barrett, 1998] approach has to be postponed as future task.

Regarding the usability of the tool, the users added two more remarks. In order to reduce
the mouse-clicks, an ’auto-set’ functionality should be implemented. This way an operation
is started implicitly once it has been selected, during evaluation phase the users sometimes
forgot to start the operation recording mode. In addition, if no region is marked for inhibition
from merging in the highest level, a warning should be displayed. This is because previously
segmented regions in the final segmentation may be lost if not excluded explicitly from the
process. Both aspects could be implemented with little effort. Disregarding these improvements,
most of the users agree or even strongly agree that the tool provides all functionality for the
purpose of creating image segmentations. At this point it is important to mention that not
all responses given have been discussed. For detailed reference please see the score of the
questionnaire attached to Section B.1.
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CHAPTER 6
Conclusion

According to the current problems shown in Chapter 1 and the assignment of tasks in Chapter 4,
the approach of interactively modifying an irregular segmentation pyramid by defining merge
and inhibit from merging operations on regions has been introduced. As it turned out, the
interaction of the computational, visualization and data-representation part is very important
during this process. The combinatorial map pyramid used in this work satisfies all the
requirements without problems. The duality concept – region and boundary graphs are encoded
in a single structure – is a key feature as well as the parent-child information of the merging tree.

This information – among the transformation from regions selected to edges to be processed
– is required to guarantee consistency of the operations (within the structural representation) due
to a possible mutual overlap of the corresponding regions’ receptive fields. In conclusion, such
complex situations require additional knowledge provided by the user as these conflicts cannot
be resolved automatically by the framework. This supports the decision for a semi-automatic
approach. Furthermore we require a data-structure at the base encoding all the information we
need for processing. This applies to the calculation of the common starting level as well as the
propagation of operations in the merging tree upwards.

Both hierarchical image segmentation and annotation requirements were considered, the
user can select and combine regions from different levels of granularity. In contrast to other
approaches we can access details on pixel-level as well and are able to produce any segmentation
result. To be more precise, a stack of segmentations with the final image segmentation result in
the topmost level. This requires advanced input methods like the brush mode. From the feedback
provided in the questionnaire it shows that the functionality implemented is not yet optimal with
respect to usability. Future developments need to concentrate especially on methods supporting
the correction of boundaries that were not detected correctly in the beginning.

However, in opposite to going down to pixel-level precision, the user can start over again
in the topmost level of the hierarchy and create custom levels of abstraction. The interactive
extension developed supports different scenarios and does not impose certain strategies to be
followed. In case a user cannot go his own way when creating segmentations, this needs
to be addressed. The data recorded during the segmentation sessions show variations in the
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levels/operations used, but reveals also the purpose of an operation during the process of creating
a new hierarchy.

We successfully embedded interactive functionality into a previously fully automatic
approach, without restricting the flexibility of the algorithm in merging other non selected (or
not in the focus) regions autonomously. This is supported also by the promising results shown by
the evaluation part. Without deep technical background knowledge, the candidates (beginners)
were able to create image segmentations that satisfy their expectations. This goes together with
the usability of the tool rated on average as good (school grade). However, the additional
comments provided reveal limitations of the tool, some of them already have been discussed
in Section 5.2. Apart from thinking about alternate input methods, the memory consumption
and overall performance of the tool developed – especially when working with input images
having high resolution – should be considered as a future task. From computational point of
view, the structure encoded by combinatorial maps can be represented in several ways [Simon
et al., 2006]. At the moment each level is represented explicitly and there is no need to have
more than one segmentation level at a particular point time. The flat-pyramid concept of [Zankl,
2010] affects the memory consumption of the tool in a positive manner, however, the region
information in between these levels is lost. This turns out to be a problem on segmenting thin
structures.

During development of the interactive hierarchical segmentation tool using irregular
pyramids, severals collaborations with other students at PRIP and the research group of Luc
Brun (ENSICAEN, France) were established. Moreover, other colleagues already started to
use the tool for their scientific work. Intermediate results during the origin of this diploma
thesis have been published at the 8th IAPR TC-15 workshop on Graph-based Representations in
Pattern Recognition [Gerstmayer et al., 2011].
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APPENDIX A
Interactive Segmentation Tool

The main purpose of this appendix is to provide an overview of the interactive segmentation
tool. It contains an installation guide and a tutorial providing a step-by-step introduction.

A.1 Installation Guide

General information on the source code

Putting everything into numbers, this implementation of the interactive part overall counts
approximately 6070 LOC1 code including comment tags for better understanding. These
comments can be used to create a documentation using Javadoc and Doxygen. Overall 5540
LOC belong to the User Interface written in Java programming language. This part contains
the methods needed for visualizing the stack of segmentations created by the automatic method.
On top of this, the user is able to record the set of interactive modification operations defined
in Chapter 4. Furthermore this parts implements one phase of the conflict processing approach
described in Section 4.3.

The data-structures to hold the segmentation information, I/O methods and basic image
processing functionality are packed into a core-library belonging to the Java interface part.
It may be re-used by other developers easily. As the two components (interactive extension
and automatic segmentation framework) are designed to exchange data (see Figure 4.1) a
common interface from the GUI to the command line segmentation tool had to be defined and
implemented as well.

The remaining 630 LOC contain the methods to make the automatic segmentation
framework (written in C++ programming language) capable of processing this list of interactive
operations. As a prerequisite for this functionality it is required to provide methods which enable
the tool to serialize segmentation data (Section A.1) created by preceding runs. This way the
segmentation-process can be restarted at any time and level.

1Lines of code
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Segmentation Framework (D,R)

The files located at <drive:>/Code/mstpyr-merged on the DVD-media provided,
contain the Minimum Spanning Tree based Segmentation Framework modified for the use
with interactive operations. This branch is merged with the one developed by [Zankl, 2010].
Regarding the environment where the tool can be installed, it is necessary to discern between
the dependencies which are required to compile the source code (indicated using Development)
and the ones to run the compiled tools (indicated using Runtime). This is necessary because
most probably not all users want to modify the source code. However there are several
operating-system dependencies which need to be satisfied in order to compile it successfully.
For Linux based operating systems you need to install the following packages:

Ubuntu � 9.x CentOS � 5.x
xutils-dev (makedepend) Development Tools
build-essential

gcc, g++, cpp, libstdc++6 � version 4.4
libncurses5-dev ncurses-devel
x11proto-*-dev xorg-x11-proto-devel
xserver-xorg-dev

For compilation, GCC/G++ version 4.4 has to be used at least. Prior versions (like 4.1) will
fail to compile the sources as certain language definitions and template arguments are not yet
supported in these releases. In order to run the Linux binary, it has to be ensured that the same
version of libstdc++ as on the compilation system is installed. This is necessary because
libstdc++.so.6 needs to satisfy the dependencies of GLIBCXX: 3.4.9 and 3.4.11 within the
library. When using GCC/G++ version 4.4, this condition is fulfilled2. When using Microsoft
Visual Studio (� version 2003) no additional system libraries need to be provided.

Features Extension (D, R)

In order to use the features extension of the automatic segmentation framework developed
by [Zankl, 2010] the following packages are required for compilation on Linux:

• libblas, liblapack: these dev-packages contain the libraries in order to use basic
linear algebra routines in C-programming

• lapackpp 3: library for high performance linear algebra

• fortran compiler: any version

These shared libraries need to be available on every PC running the tool, unfortunately it is
not possible to link them statically to the MST segmentation binary. For Windows similar
restrictions apply, therefore only a limited set of features is available here.

2http://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
3The source to be compiled can be downloaded at: http://lapackpp.sourceforge.net/
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Boost Serialization (D)

In this tool, the Boost4 serialization library is used to write the pyramid data to the file
system, i.e. combinatorial maps and the merging tree information are exported this way in
order to use them again later. Boost provides free peer-reviewed and portable C++ source
libraries, implementing best-practice methods. A major benefit of this approach is that
several file containers are supported5. For performance reasons the combinatorial map is
exported in text-format (non-human readable)6, the level-to-level index changes are exported
for interoperability reasons as XML. This way the latter information can easily be imported into
programs based on Java, like our Interactive GUI. These libraries are available for all common
operating systems and development environments. On Linux, precompiled Boost libraries are
usually available in the distribution-repositories. The * (asterisk) is a placeholder for the version
number which should be not lower than 1.39:

• libboost*-dev

• libboost-serialization*

• libboost-serialization*-dev

However these libraries are statically linked to the segmentation tool binary, therefore on
the Runtime-system it is not necessary to satisfy these dependencies. All files needed for
compilation are shipped with the segmentation tool sources (header files and libraries are located
at <drive:>/Code/mstpyr-merged/boost, therefore nothing has to be done here. A
precompiled version of the Windows static runtime library is available7, for Visual Studio 2010
all related files are provided on the media as well.

User Interface

The files located at <drive:>/Code/msti on the DVD-media provided contain the
interactive GUI to the Minimum Spanning Tree based Segmentation Framework called MSTi. In
order to build and run the Java-based User Interface, Oracle Runtime Environment 1.6 together
with Netbeans IDE should be used. It is important to use exactly this proprietary JVM, as other
open source alternatives were – at the time the program was developed – not able to deal with
the huge amount of data processed. This caused non-catchable runtime exceptions in the JRE
itself which severely affect the stability of the tool. In order to run the interactive segmentation
tool please ensure that the JRE is able to allocate sufficient heap memory, otherwise an “Out of
Memory” exception is thrown. Hence the following command can be used to start the tool and
providing sufficient heap memory:

java -Xmn100m -Xms512m -Xmx1024m -jar MSTi.jar

4Boost Framework: http://www.boost.org/
5Manual: http://www.boost.org/doc/libs/1_45_0/libs/serialization/doc/
6In order to produce a human-readable output use the Dump() method defined for each combinatorial map.
7Boost Windows Libraries: http://www.boostpro.com/download/
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Doing it this way initially 512MB (Xms) are allocated. Each time more memory is required, this
is done in 100MB steps (Xmn) until the maximum heap size of of 1024MB. This is visualized
in Figure A.1.

Figure A.1: History of heap memory allocated for a stack of segmentations (image size 500 ⇥
340, 35 levels) plus related merging tree information and other data required for processing.
The rising slope (3⇥) corresponds to the initial load of the stack, on rebuild the previously used
memory (y-axis) is released by the garbage collector.

In order to call the external MST pyramid segmentation tool, it has to be copied to the root
folder of MSTi with the execute permission set on the binary.

Custom and External Class Libraries (D)

In order to handle/import the data created by the MST Pyramid based Segmentation
Framework, a custom java package named MSTCore has been implemented. It is located
at <drive:>/Code/MSTcore on the DVD-media provided and contains all necessary
operations dealing with:

• Segmentation data I/O (implementing the interface to the automatic framework)

• Methods related to image segmentation

• Interactive operations and parsing of the merging-tree

• Conflict processing

These methods are documented properly within the code using Javadoc and can be re-used easily.
The external libraries required in this Java project are:

• JAI: Java Advanced Imaging API, for advanced image manipulation8

• Xerces: Apache XML libraries, to read/write XML documents9 like the level to level
index changes serialized by the automatic segmentation framework (using Boost)

• log4j: Apache Logging10

All these additional packages are contained in the lib/ subdirectory of the MSTi tool.
8http://java.sun.com/javase/technologies/desktop/media/jai/
9http://xerces.apache.org/

10http://logging.apache.org/log4j/1.2/
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Figure A.2: User Interface, containing: the menu bar, toolbar and main panel. The latter is
divided vertically into the image area, level chooser and operations panel.

A.2 Tutorial

Interactive Image Segmentation Tool

To start the process of interactively modifying a stack of segmentations execute MSTi.sh
(Linux) or MSTi.bat (Windows) given as a supplement on the DVD. This shell script calls
the tool with the JVM-arguments presented in the previous Subsection A.1. In the File menu,
the user is asked to either create an initial/new or load an existing segmentation of an image.
In both cases, the image file needs to be in the Netpbm11 format, preferred is .ppm. You
can easily convert existing files using ImageMagic12 under (Linux) or Irfan View/Gimp on
(Windows). However, in the first option the MST segmentation binary is called to create the
stack of segmentations. Finally a file ending with .sil has to be provided, it contains the list
of the segmentation image file names representing the stack. Once the stack of segmentations is
loaded, the screen looks like in Figure A.2.

In the Control section of the menu-bar (Figure A.3a) a thumbnail view indicating the zoom
area can be displayed (see Figure A.3c). Furthermore it is possible to switch to the process
monitor which shows the output of the MST segmentation binary. For a sample output see
the Listings 3.1, 3.2 or 4.2. The toolbar in Figure A.3d contains the sections described in the
following.

11http://www.fileformat.info/format/pbm/egff.htm
12Sample convert command: convert testimage.jpg testimage.ppm
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(a) Control menu

(b) Display modes (c) Thumbnail view

(d) MSTi application toolbar

(e) Segmentation image (f) Original image with labeling information

(g) Preferences Panel (h) Color Chooser

Figure A.3: Controls and views in the Graphical User Interface.

Zoom: in order to work on details of high granularity, it is possible to enlarge the image display
using zoom functionality (+, �, fit to screen, original size). If the mouse cursor is placed
in the image area it is sufficient to scroll the mouse wheel to zoom in/out.
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Display Mode: by default the segmentation image of the level selected is displayed
(Figure A.3e). However it might be necessary to take a look on the input image again
to match the segments with its correspondents in the highest level of detail. Therefore the
user can switch to a display mode where the input image is visualized with the overlying
labeling information of the corresponding level (Figure A.3f). The dedicated display mode
chosen in the drop-down box (see Figure A.3b) is active for all levels in the hierarchy.

Color Chooser: to change the colors assigned to the operations the user can open at the
color chooser panel (Figure A.3h ). If the color of a certain operation is similar to the one
dominating in the image or region, it may be hard to detect which regions already have
been processed and this consequently can be changed.

Preferences: to set others than the default arguments (RGB Int/Ext-Contrast feature,
file/directory-names) passed on to the pyramid segmentation framework, click the options
icon in the toolbar. In the preferences panel (Figure A.3g) one can set the same
arguments as in the console-version of the segmentation framework. Since this version
of the pyramid segmentation tool contains an extended feature-set (see [Zankl, 2010] for
reference), a dedicated settings panel has been implemented for this extension as well.

Projection and preview functionality: using this checkbox, the visualization of the ’effect of
operations’ (preview functionality) can be turned on/off. This way the affected regions
within the receptive field of an operation are colored or not. Note that only the operations
placed in a level higher or equal than the current working level are displayed. Regions
of operations placed in lower levels are not indicated here as they do not yet have a
corresponding region in higher levels. This is because the result of merging or inhibition
from merging operations only is available after a rebuild of the pyramid. Only then these
regions are processed and the operation propagated to a higher level in the pyramid.

Locks: in this mode it is possible to create a custom hierarchy of segmentations on top of
the stack below. Starting from the topmost level which contains the final segmentation,
regions can be merged together again iteratively to create new levels of abstraction. By
double clicking on the Locks label, these levels can be added to the new hierarchy. Note
that it is no longer possible to select regions from lower levels than the new (topmost)
starting level. To switch to the new hierarchy activate the corresponding checkbox and the
pyramid level-slider range will change accordingly.

Read Operations: If you want to re-apply a list of interactive-operations already created by
a previous run on the initial segmentation, you can load the operation history file having
the pattern <output_pattern>.ppm.actionlist_<timestamp> into the tool
again. This is the file which has been passed on to the segmentation tool at an earlier
point of time. However this feature is experimental and no validity check is performed,
therefore we strongly recommend to apply these files in the correct order.
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(a) Panel

imrg1(R(i,x1))

imrg1(mrg(R(i,x1), R(i,x2)))

imrg1(R(i,x1)) + mrg(rem)

imrg2(R(i,x1), R(i,x2))

mrg(R(i,x1), R(i,x2))

(b) Operations

Figure A.4: Operations Panel.

Record Operations

To start recording an operation, first select an interactive operation in the drop-down menu shown
in Figure A.4a. For a detailed explanation of the operations please refer to Section 4.2. Then
click on the + set button, now the ’operation recording mode’ is enabled. Consequently no
other tasks can be performed in between, so most other GUI controls are locked as long as the
operation is not complete. An operation is complete as soon as all regions it takes as argument –
which is either one or two – are selected. This cardinality is given also in the icon assigned. So
for each region has to be selected individually, of course they need to be adjacent as well. The
recorded operation is finally added to the list shown in the center of Figure A.4a. Operations may
also be deleted again from this list using the [DEL] key on the keyboard. A possible strategy
here is to first find the ID of the region affected in the image and then to match this ID with the
regions recorded in the list. In general – when the mouse cursor is moving over the image – the
status panel in the bottom of the windows displays the labeling information. This is the current
level, the region count in this level and the ID of the region where the mouse cursor is pointing
at:

Lv.: 29 | Region#: 721 | Current:673

This region is also highlighted using the inverse color. For the purpose of recording operations
– and their corresponding regions – in a more efficient way, a multiple apply switch has been
implemented. The toggle button turns from green (inactive) to red once this mode is activated
(caution!). Note that it has to be set before the recording is started. In case an operation takes
two regions as input, the second one is automatically passed on as the first argument to the next
operation. If an operation has only one region as argument, for each region selected an operation
is automatically recorded. If the multiple apply switch is on, this information is displayed in the
status bar as well. The operation recording mode has to be aborted manually using the [Esc] key.

Following the active-paintbrush method [Van Leemput et al., 1998], where it is sufficient to
paint over region boundaries to initiate merging, a similar approach has been implemented. As
this framework lacks the explicit representation of boundaries in the segmentation image, we
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require two adjacent regions for the input. Once the operations recording mode is started using
multiple apply, it is sufficient to double click on the first region to enable the brush mode. There
the mouse pointer style switches to a crosshair cursor and it is no longer required to click on
each region, brushing over a region is enough to record it (see Figure 4.5b). A double click on
the last region ends the brush mode again.

In contrast to before when a double click activated the brush mode during operations’
recording, a double click on a region in normal mode where the user can travel through the
hierarchy starts the explore mode. This mode has already been addressed in Section 4.2.
In short, with this method it is possible to divide a region into its components using
parent-child relationship and to restore a particular detail. This region which is divided into
its sub-components is called explored region and is indicated using a red boundary. In order to
go to a different resolution level in this particular region, you need to press the [ALT] key and
scroll the mouse-wheel up/down. The status panel now displays the region information of two
levels, the current one and the one within the explored region. In this mode the list of operations
available is extended by the combined operations. To leave the explore mode double click again
the explored region.

Note that the operations recorded are not applied immediately. You collect a set of operations
and after pushing the Rebuild Pyramid button the stack of segmentations is recalculated. If
there are any problems or exceptions raised during this process, you can stop it manually using
the button. The interactive segmentation tool and its data in the output directory chosen is
then in an inconsistent state. This requires a manual cleanup of the segmentation files.

Logging

To evaluate the created image segmentation, the tool automatically collects statistical
information like application/segmentation specific events. See Listing A.1 below for an
example:
INFO 2012-12-18 21:27:29,468 msti.MSTiApp - MSTi started
INFO 2012-12-18 21:27:46,633 msti.MSTiView - <user>: MST Pyramid started
INFO 2012-12-18 21:28:25,548 msti.MSTiView - <user>: image ’14037.ppm’ loaded
INFO 2012-12-18 21:28:25,549 msti.MSTiView - Level count: 44
INFO 2012-12-18 21:28:25,549 msti.MSTiView - Regions left: 5
INFO 2012-12-18 21:28:42,487 msti.MSTiView - Pause started
INFO 2012-12-18 21:29:00,751 msti.MSTiView - Pause ended after: 18.263 seconds
INFO 2012-12-18 21:29:19,645 msti.MSTiView - <user>: Rebuild triggered
INFO 2012-12-18 21:29:19,656 msti.MSTiView - <user>: MST Pyramid started
INFO 2012-12-18 21:29:32,208 msti.MSTiView - <user>: image ’14037.ppm’ loaded
INFO 2012-12-18 21:29:32,209 msti.MSTiView - Level count: 46
INFO 2012-12-18 21:29:32,209 msti.MSTiView - Regions left: 6

Listing A.1: MSTi Application Log (msti.log).

The msti.log contains information about the images loaded and the time a rebuild has been
triggered. Once a stack of segmentation has been loaded successfully, the index of the highest
level and its count of remaining regions will be added to the log file. This way it is possible to
track the segmentation progress which corresponds to the amount of segments in the topmost
level. During segmentation the user may want to take a break, therefore a Pause button has
been added. Obviously we have to count the time spent doing nothing because this has also an
effect on the evaluation result.
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To get a more detailed overview of the operations performed, each time a rebuild
is triggered, the collected statistical information is written to an XML file named
<imagename>.ppm.operationslog. There we count – among others – the clicks and
time consumed (in milliseconds) between the start of the operation and the time it is complete.
As an example, see the statistical information belonging to the list of operations passed on to the
segmentation framework in Listing A.2. The rebuild was triggered at 2012-12-18 21:29:19 due
to msti.log, this matches also the value of the rebuildStart attribute in the root node.
<?xml version="1.0" encoding="UTF-8"?>
<operations imageName="14037.ppm" rebuildStart="20121218_212919">

<operation action="IMRG" level="29">
<regions>

<region1>585</region1>
</regions>
<time>863</time>
<clicks inputMethod="selection">1</clicks>

</operation>
</operations>

Listing A.2: MSTi Statistical Information.

As this list can be quite long, we programmed a tool called MSTiEval which aggregates the
information recorded and finally presents a list of key figures. It is located at <drive:>/msti
on the DVD-media provided and can be started using the command java -jar MSTiEval
<imagename>.ppm.operationslog.
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APPENDIX B
Evaluation Documents

This appendix contains the detailed results of the evaluation questionnaire and the declaration
of consent. There the performance-data recorded during the sessions and its usage is listed
explicitly. Due to data-protection reasons – the participation was anonymous and the declaration
of consent contains a handwritten signature – only the form itself is attached. The signed
documents will be provided upon request.
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Number of records in this query

Total records in survey

Percentage of total

8

8

100,00 %

G1, Basic Information

Q0001, Please select your gender:

Answer Count Percentage

Female (F) 4 50,00 %

Male (M) 4 50,00 %

G2, Image Segmentations

Q0001, Enter the image ID of the first image segmentation run:

Answer Count Percentage

Answer 8 100,00 %

No Answer 0 0,00 %

Responses (ID, Session) added to comments in Q0002. 

Q0002, How satisfied are you with the first image segmentation result?

Answer Count Percentage

(1) Excellent (A1) 2 25,00 %

(2) Good (A2) 5 62,50 %

(3) Satisfactory (A3) 0 0,00 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 1 12,50 %

No rating (A6) 0 0,00 %

Comments 8 100,00 %

No answer 0 0,00 %

B.1 Questionare Score
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If you are not satisfied, none of the options fits to your result or you just want to provide 
additional feedback, please use the comment box below:

ID Session Response

1 25662 Select Bird as foreground

2 78B48 wanted the horses to remain

3 6C6DA Photo of two horses: tried to keep the main contours just to the point where still 
can be determined that there are horses.Two different approaches: left horse -> 
merge regions in horse, right horse -> merge regions outside horse. Had some 
handling issues (rebuild twice without 'saving') regions. Tool got frozen in the end, 
so no satisfactory result.

4 BD498 Vorhaben war, den Vogel möglichst genau freizustellen. Bei der Herausarbeitung 
der Flugfedern an der Flügelspitze war ich mit dem Endergebnis nicht vollends 
zufrieden, es war aber schlussendlich ausreichend. Positiv aufgefallen ist mir, 
dass die Trennung des Kopfes vom (ebenfalls weißen) Hintergrund gut 
funktioniert hat. Die Pinselfunktion empfand ich in diesem Fall als praktisch. Dass 
gewohnte, fast unbewusst verwendete

5 4C584 Tastenkombinationen funktionieren ist mir ebenfalls positiv aufgefallen 
(Mehrfachmarkierung in der Liste mittels Strg+Klick, Löschen mittels Entf, 
Beenden einer Mehrfachmarkierung mit Esc)

6 3ED15 Adler: hat gut funktioniert, Auswahl im feineren Pixelbereich etwas zeitaufwändig.

8 2CDC2 Fokus auf das Fohlen, auf Details geachtet

9 2A4A6 I wanted to get the mare and the foal and the pallor of both

Q0003, Enter the image ID of the second image segmentation run:

Answer Count Percentage

Answer 8 100,00 %

No Answer 0 0,00 %

Responses (ID, Session) added to comments in Q0004.

Q0004, How satisfied are you with the second image segmentation result?

Answer Count Percentage

(1) Excellent (A1) 2 25,00 %

(2) Good (A2) 2 25,00 %

(3) Satisfactory (A3) 2 25,00 %

(4) Sufficient (A4) 1 12,50 %

(5) Insufficent (A5) 1 12,50 %
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Answer Count Percentage

No rating (A6) 0 0,00 %

Comments 8 100,00 %

No answer 0 0,00 %

If you are not satisfied, none of the options fits to your result or you just want to provide 
additional feedback, please use the comment box below:

ID Session Response

1 3ABE4 focus on the little horse in the foreground

2 C3D2D set focus on different layers, difficult because of too similar elements.

3 5814C Tried to follow the snake's contour in brush mode, but had problems with this 
mode ('selected region is not a neighbour' when double click on a region)

4 337D5 Mein Ziel war es, das Bild grob in 4 Entfernungsintervallen aufzuteilen. Wiederum 
habe ich gerne die Pinselfunktion verwendet. Beim zweiten rebuild habe ich den 
zuvor bereits herausgearbeiteten Himmel glücklicherweise gleich zu Beginn 
wieder als Region markiert. Ansonsten wäre diese arbeit verloren gewesen. Dass 
dies nicht (optional) automatisch geschieht finde ich schade. Das häufige Klicken 
auf den Set-Button empfand ich nach längerem Arbeiten als etwas nervig. Ein 
Auslösen durch eine Taste wäre mir lieber.

5 5DFB6 Haupt, Flügel inklusive Federn

6 12857 Ast/Schleiche: Da das Bild sehr viele kleine Details hat, habe ich mich für den Ast 
entschieden. Anfangs erschien mir es schwer doch mit der Brush-Funktion hat es 
dann relativ flüssig funktioniert.

8 54DFB Fokus auf Ast rechts, SEHR detailliert, am Ende einmal vergessen zu schützen

9 494B3 Separate the sky, the mountains, the field and the wall. First I wanted to get all 
the arcs from the wall but because it was so difficult I selected only the four big 
parts.

Q0005, Enter the image ID of the third image segmentation run:

Answer Count Percentage

Answer 3 37,50 %

No Answer 5 62,50 %

Responses (ID, Session) added to comments in Q0006.

Q0006, How satisfied are you with the third image segmentation result?

Answer Count Percentage

(1) Excellent (A1) 1 12,50 %
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Answer Count Percentage

(2) Good (A2) 2 25,00 %

(3) Satisfactory (A3) 0 0,00 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 0 0,00 %

No rating (A6) 0 0,00 %

Comments 3 37,50 %

No answer 5 62,50 %

If you are not satisfied, none of the options fits to your result or you just want to provide 
additional feedback, please use the comment box below:

ID Session Response

1 452B2 focus on the head of the tiger

6 B64DE Landschaft mit Aquädukt: Fokus auf die Grasflächen. Die Funktionen sitzen jetzt 
schon relativ gut. Daher konnte ich die Flächen schnell markieren/ausschneiden.

9 5FAD6 I selected the snake, the branch and the small part of the fir branch

Q0007, Enter the image ID of the fourth image segmentation run:

Answer Count Percentage

Answer 1 12,50 %

No Answer 7 87,50 %

"
" Responses (ID, Session) added to comments in Q0008.

Q0008, How satisfied are you with the fourth image segmentation result?

Answer Count Percentage

(1) Excellent (A1) 0 0,00 %

(2) Good (A2) 1 12,50 %

(3) Satisfactory (A3) 0 0,00 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 0 0,00 %

No rating (A6) 0 0,00 %

Comments 1 12,50 %

No answer 7 87,50 %
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If you are not satisfied, none of the options fits to your result or you just want to provide additional 
feedback, please use the comment box below:

ID Session Response

9 FE38F Select the eagle

Q0009, Enter the image ID of the fifth segmentation run:

Answer Count Percentage

Answer 1 12,50 %

No Answer 7 87,50 %

" Responses (ID, Session) added to comments in Q00010.

Q0010, How satisfied are you with the fifth image segmentation result?

Answer Count Percentage

(1) Excellent (A1) 0 0,00 %

(2) Good (A2) 0 12,50 %

(3) Satisfactory (A3) 1 12,50 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 0 0,00 %

No rating (A6) 0 0,00 %

Comments 1 12,50 %

No answer 7 87,50 %

If you are not satisfied, none of the options fits to your result or you just want to provide additional 
feedback, please use the comment box below:

ID Session Response

9 AD4D6 Eigentlich wollte ich den Tiger einzeln auswählen und dann zusätzlich noch den 
Fluss. Da ich aber mit der Brushfunktion nur die Umrisse ausgewählt habe, sind 
der Tiger und der Fluss miteinander verschmolzen. Das war eigentlich nicht mein 
wirkliches Ziel, aber trotzdem zufriedenstellend, so dass ich es gelassen hab. Die 
Brush Funktion verleitet dazu, dadurch dass sie so schnell ist, dass man kleinen 
Fehler ignoriert und einfach weiter macht obwohl man eigentlich dadurch nicht 
mehr so genau genau arbeitet, wie man zu Beginn eigentlich wollte.
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G3, Segmentation Tool

Q0001, How do you rate the usability of the interactive segmentation tool?

Answer Count Percentage

(1) Excellent (A1) 1 12,50 %

(2) Good (A2) 6 75,00 %

(3) Satisfactory (A3) 1 12,50 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 0 0,00 %

No rating (A6) 0 0,00 %

Comments 6 71,00 %

No answer 0 0,00 %

ID Response

1 simple, logical, useful

2 key for automatic activation of the operation "set"

3 -> I tended to forget the 'set' button (some key on the keyboard would be easier for me),
-> multi-merging: non-transitive (only direct neighbours and not neighbours of already merged 
regions)
-> no 'preview' mode on coarser scales when operations done on fine scales: got me 
confused
-> when mistakes done: an easier identification of the operation done to a region would be 
helpful to define the operation from the list which has to be deleted

4 Klicken auf set vor jeder Operation störend. Ansonsten gut, dass die Tasten Entf, Strg usw. 
ihre gewohnte Funktionalität haben finde ich gut.

8 Immer dazwischen "set" zu drücken ist umständlich, weil man mit der Mouse immer vom Bild 
wegfahren muss

9 Der Doppelklick, um in die Brushfunktion zu gelangen, ist in einer kleinen Auflösung kaum 
auszuführen. Das Programm möchte meistens zwei Flächen miteinander verbinden und gibt 
dann die Fehlermeldung, dass es keine Nachbarn sind. Geht man in eine höhere Auflösung, 
wo die Flächen größer sind, ist es deutlich einfacher durch den Doppelklick in die 
Brushfunktion zu gelangen.
Die Brush Funktion verleitet dazu, dadurch dass sie so schnell ist, dass man kleinen Fehler 
ignoriert und einfach weiter macht obwohl man eigentlich dadurch nicht mehr so genau genau 
arbeitet, wie man zu Beginn eigentlich wollte.
In einer sehr kleinen Auflösung muss bei sehr kleinen Feldern nicht die Spitze des 
Mauszeigers auf die zu markierende Fläche zeigen, sondern ein anderer Teil des Zeigers. 
Intuitiv würde ich aber mit der Spitze den Bereich auswählen.
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Q0002, The state of the interactive segmentation tool was always clear to me and 
the process of segmenting images under control.

Answer Count Percentage

(1) Strongly agree (A1) 2 25,00 %

(2) Agree (A2) 5 62,50 %

(3) Neither/nor (A3) 1 12,50 %

(4) Disagree (A4) 0 0,00 %

(5) Strongly disagree (A5) 0 0,00 %

Comments 4 50,00 %

No answer 0 0,00 %

If this was not the case or you want to give additional feedback please use the comment box below:

ID Response

1 it became better the more pictures i did, sometimes explanation needed (because of no 
technical background)

3 Switching between scales/ rebuilding, I was not always sure which operations I had already 
done and which were still to be done (preview-mode possible?)

4 Dass ich auf den unteren Fensterrand blicken musste, um festzustellen, ob ich mich noch in 
der Auswahl befand, war nicht optimal. Evtl. könnte sich zusätzlich zum Hinweis zum Drücken 
der Esc-Taste auch die Form des Cursors ändern.

9 Durch die Möglichkeit, wenn man Felder falsch markiert hat, diese wieder zu entfernen, ist 
eine große Möglichkeit der Kontrolle gegeben.

Q0003, How was your working experience on fine-grained levels within the stack of 
segmentations (like regions of small size, high resolution close to pixel level)?

Answer Count Percentage

(1) Excellent (A1) 1 12,50 %

(2) Good (A2) 3 37,50 %

(3) Satisfactory (A3) 2 25,00 %

(4) Sufficient (A4) 1 12,50 %

(5) Insufficent (A5) 1 12,50 %

No rating (A6) 0 0,00 %

Comments 7 87,50 %

No answer 0 0,00 %
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If you have additional feedback please use the comment box below:

ID Response

1 with zoom function no problem

3 I am too clumsy and impatient to for these fine scales, even in zoom ;-), Small bug in brush 
mode (mode not possible).

4 Da ich gerne mit dem Pinsel arbeitete, kam ich auf feinem Niveau nicht so gut zurecht, 
allerdings war das Arbeiten auf diesen nur selten notwendig.

5 Nächstes Segment bei Federn schwer zu finden

6 Als erstes schwer, aber man bekommt nach einiger zeit ein Gefühl dafür schneller und 
effizienter zu Arbeiten.

8 Auf diesem Level ist es eher schwierig, die Flächen mit der Mouse zu treffen; man tippt oft 
daneben. Dafür detailgenaue Ergebnisse!

9 Es war in diesem Level schwieriger in den Brush-Modus zu gelangen und auch die 
Verbindung der einzelnen Flächen war deutlich komplizierter, weil sehr häufig die 
Fehlermeldung kam, dass die beiden Regionen keine Nachbarn waren.

Q0004 How was your working experience on coarse-grained levels within the stack 
of segmentations (like regions of big size, low resolution close to the uppermost 
levels)?

Answer Count Percentage

(1) Excellent (A1) 6 75,00 %

(2) Good (A2) 1 12,50 %

(3) Satisfactory (A3) 1 12,50 %

(4) Sufficient (A4) 0 0,00 %

(5) Insufficent (A5) 0 0,00 %

No rating (A6) 0 0,00 %

Comments 4 50,00 %

No answer 0 0,00 %

If you have additional feedback please use the comment box below:

ID Response

1 very easy to handle

4 Schnell, gut und präzise

6 sehr Gut

8 Funktioniert prima!
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Q0005 The interactive-segmentation tool provided all functionality you wanted to 
use for the purpose of creating image segmentations.

Answer Count Percentage

(1) Strongly agree (A1) 4 50,00 %

(2) Agree (A2) 3 37,50 %

(3) Neither/nor (A3) 1 12,50 %

(4) Disagree (A4) 0 0,00 %

(5) Strongly disagree (A5) 0 0,00 %

Comments 3 37,50 %

No answer 0 0,00 %

If not, please provide also a short description of the missing function(s) in the comment box 
below:

ID Response

3 -> Splitting regions mode?
-> Preview mode?
-> Undo?

6 Interessant wären Funktionen wie einige Standardformen (Rechteck, Kreis, Dreieck, Trapez) 
un alle segmente innerhalb der Form automatisch zu Markieren oder Zusammenzufügen.

9 Aber es wäre komfortabeler, wenn die Brushfunktion auch über einen Auswahl-Menü-Punkt 
erreichbar wäre.

Q0006, Which amount of experience/knowledge is necessary from your point of 
view to operate the tool and create image-segmentations efficiently?

Answer Count Percentage

Few (Beginner) (A1) 5 62,50 %

Medium (Intermediate) (A2) 3 37,50 %

Detailed (Advanced) (A3) 0 0,00 %

No answer 0 0,00 %
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Q0007, In which part of the the segmentation framework do you see a need for 
improvement?

Answer Count Percentage

Design of the Graphical User 
Interface (SQ001)

1 12,50 %

(Operation) Input Methods 
(SQ002)

4 50,00 %

Performance (SQ003) 1 12,50 %

Initial Segmentation (SQ004) 2 25,00 %

Other 0 0,00 %

G4, Skills

Q0001, How do you rate your image-segmentation skills prior to this evaluation?

Answer Count Percentage

Beginner (A1) 1 87,50 %

Intermediate (A2) 4 12,50 %

Advanced (A3) 1 0,00 %

No answer 0 0,00 %

Other 0 0,00 %

Q0002, How difficult was it for you to create the image segmentations?

Answer 1 (easy) 2 3 4 5 (hard) No Answer

Count 1 6 0 1 0 0

Percentage 12,50 % 75,00 % 0,00 % 12,50 % 0,00 % 0,00 %

Sum (Answers) 8

Arithmetic mean 2,13

Standard deviation 0,83
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Q0003, Did you notice an improvement of your skills while using the interactive-
segmentation tool and creating image segmentations throughout the evaluation 
process?

Answer Yes (Y) No (N) No Answer

Count 7 1 0

Percentage 87,50 % 12,50 % 0,00 %

Q0004, Sufficient preliminary information was provided at the beginning of the 
interactive segmentation session.

Answer Count Percentage

(1) Strongly agree (A1) 7 87,50 %

(2) Agree (A2) 1 12,50 %

(3) Neither/nor (A3) 0 0,00 %

(4) Disagree (A4) 0 0,00 %

(5) Strongly disagree (A5) 0 0,00 %

Comments 1 12,50 %

No answer 0 0,00 %

ID Response

1 good explanations with examples (also for beginners)!!!

Q0005, Did you feel ready for the segmentation exercises after the introduction 
phase?

Answer Count Percentage

(1) Strongly agree (A1) 5 62,50 %

(2) Agree (A2) 3 37,50 %

(3) Neither/nor (A3) 0 0,00 %

(4) Disagree (A4) 0 0,00 %

(5) Strongly disagree (A5) 0 0,00 %

Comments 0 0,00 %

No answer 0 0,00 %

If you have additional feedback please use the comment box below:
No feedback provided,
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G5, Other

Q0001, If you wish to give some further feedback not yet discussed in the 
questionaire, please use the comment box.

Answer Count Percentage

Answer 1 12,50 %

No answer 7 87,50 %

ID Response

9 Während der Brushfunktion im niedrigen Level ist die rote Linie eher hinderlich, da man 
schnell den zuletzt markierten Bereich verliert.

98



Einverständniserklärung

für die Teilnahme an der Evaluation im Rahmen der Diplomarbeit zum Thema:

„Interactive Hierarchical Image Segmentation
using Irregular Pyramids“

Die Teilnahme an der Evaluation erfolgt auf freiwilliger Basis. Die 
TeilnehmerInnen können zu jedem Zeitpunkt die aufgezeichneten Daten 
einsehen oder das Experiment beenden.

Die Evaluation besteht aus zwei Phasen:

1) Segmentierung: Während der Bildsegmentierung werden folgende Daten 
zusätzlich zu den erstellten Segmentierungen aufgezeichnet: Liste der 
verwendeten Interaktiven-Operationen, betroffene Regionen, Level in der 
Pyramide, Maus-Klicks, Zeit/Operation, Gesamtzeit, Selektionsmodus

2) Fragebogen: Jedem Bild wird - um einen Bezug zu den korrespondierenden 
Fragen in der abschließenden Umfrage herstellen zu können - eine zufällige 
ID zugewiesen. Außer dem Geschlecht (Quote 50:50 unter den Probanden) 
werden in der Umfrage keine anderen persönlichen Daten abgefragt.

In beiden Phasen ist weder während der Aufzeichnung noch nach der 
Auswertung ein Personenbezug herstellbar.

Hiermit erkläre ich mich einverstanden, dass die während der Evaluation 
aufgezeichneten Daten im Rahmen der Diplomarbeit und darauf aufbauenden 
Publikationen wissenschaftlich ausgewertet und veröffentlicht werden dürfen.

Ort, Datum! ! ! ! ! ! Unterschrift

B.2 Declaration of Consent
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