
Iterated Function Systems

A Direct Discrete Approach with Pyramids

Technical Report 13

10:20 | July 26, 1995

0



Contents

1 Introduction 2

2 Basics of IFS 2

2.1 A�ne Transformations in IR

2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2.2 Deterministic IFS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.3 Probabilistic IFS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.4 Sampling the Attractor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3 From IFS to Images 6

3.1 Direct Computation of the Attractor and the Invariant Measure : : : : : : : : : : : : : : : 6

3.1.1 Computing the Discrete Attractor : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.1.2 Computing the Invariant Measure : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.2 Improving Performance Of Direct Computation Using Image Pyramids : : : : : : : : : : : 10

3.3 E�cient Image Reconstruction from Image Pyramids : : : : : : : : : : : : : : : : : : : : : 11

3.4 An Illustrative Example in IR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

4 From Images to IFS | The Inverse Problem 12

4.1 Direct Computation of an IFS in IR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

4.2 Re�nement of Direct Computation in IR : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.3 Continuous IR

2

-Orbits : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.4 Classes of IFS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.5 Border Curve of an IFS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.6 Largest Gaps of an IFS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.7 Deriving IFS Parameters from Geometric Properties : : : : : : : : : : : : : : : : : : : : : 16

5 Conclusion 16

References 17

1



1 Introduction

Results of Barnsley [1, 3, 4] have shown that by the use of iterated function systems (in short IFS)

image compression rates up to 1:10,000 and higher can be achieved. This is a signi�cant improvement

compared with traditional methods that provide rates up to 1:20. The main problem, also known as the

inverse problem, is that of �nding an IFS that generates a given image or an approximation. A method

solving the inverse problem in general and automatically has not been published yet, although such a

system is currently sold by Iterated Systems Inc. with which Barnsley is a�liated.

Recent papers by Stark [11, 12] have brought up a new way of generating images de�ned by IFS with

neural networks: Using a unit per pixel the image as well as the gray levels can be computed su�ciently

exact. The connections between units are determined by the IFS' transformations.

First of all, we improved these results by giving a closed form of representation and by using image

pyramids to recognize empty regions of the image at an early stage of computation. Referring to Stark [11]

we use the term direct computation for computing the digital image just with the accuracy needed for a

given resolution.

This work has led to some new ideas of how to deal with IFS, especially with the inverse problem.

Hitherto known methods use a search technique optimizing an error criterion to �nd an IFS [2, 13, 9, 10].

We think it is possible to avoid this expensive step by computing the IFS directly from the image, using

pyramids.

2 Basics of IFS

Let (X; d) denote a complete metric space with distance function d. A mapping w : X ! X is called

a contractive mapping on X if there exists a real number c 2 [0; 1) such that d(w(x); w(y)) � cd(x; y)

for all x; y 2 X . The smallest c for which this condition holds is the contractivity factor of w. For

every contractive mapping w there exists a unique �xed point x

F

2 X with w(x

F

) = x

F

. The sequence

fx;w(x); : : : ; w

i

(x); : : :g is the orbit of x under w. The orbit of any x 2 X converges to the �xed point

of the contractive mapping w. The rate of convergence coincides inversely with the contractivity factor

of w.

Let H(X) be the class of all non-empty compact subsets of X . A contractive mapping w on X can be

extended to a mapping on H(X) in the following way:

w(A) = fw(a) : for all a 2 Ag A 2 H(X) (1)

A distance function d

h

, the so calledHausdor� metric, can be de�ned so that (H(X); d

h

) forms a complete

metric space [5]. If a mapping w is contractive on (X; d) it is also contractive on (H(X); d

h

) [1, 6]. The

Hausdor� metric is de�ned as

d

h

(A;B) = inff� : A � B

�

and B � A

�

g A;B 2 H(X) (2)

where A

�

is the �-parallel body of A 2 H(X); this is the set of points within distance � of A, i.e.

A

�

= fx 2 X : d(x; a) � � for some a 2 Ag.

2.1 A�ne Transformations in IR

2

We will take a closer look at the special case of IR

2

because a binary image can be regarded as a compact

subset of IR

2

.

In the following d(�x; �y) will denote the Euclidian metric, i.e. the distance between two points �x; �y 2

IR

2

. (IR

2

; d) forms a complete metric space. The contractive mappings we will consider are a�ne

2



transformations , since they can be easily understood in terms of geometric operations, e.g. rotation,

translation and scaling. An a�ne transformation is de�ned by

w(�x) = L�x+

�

t �x 2 IR

2

: (3)

The 2� 2 matrix L sums up the e�ects of rotations, skews, re
ection, and scaling whereas

�

t 2 IR

2

is a

translation. If �x

F

2 IR

2

is the �xed point of w, the transformation can also be written as

w(�x) = L(�x� �x

F

) + �x

F

: (4)

From this we can conclude that the geometric operations contained in L operate in relation to the �xed

point, e.g. �x

F

is the center of the rotation.

To show which geometric operations the matrix L performs it can be split up into the product of a

rotation, a scaling/re
ection, and another rotation:

L = R(�)S(c

x

; c

y

)R(�) (5)

with �; � 2 [0; 2�) and c

x

; c

y

2 (�1; 1). The operators R and S generate the following matrices:

R(�) =

�

cos�

sin�

� sin�

cos�

�

S(c

x

; c

y

) =

�

c

x

0

0

c

y

�

(6)

Now that the basics have been explained it is possible to illustrate the e�ect of a�ne transformations

with some images of orbits in Fig. 1 { 3. The starting point is (1; 1) for all of them.

2.2 Deterministic IFS

A deterministic iterated function system is a �nite set of two or more contractive mappings from X to

itself [6].

The Hutchinson operator w(A) on a set A 2 H(X) for an IFS fw

i

: i = 1; : : : ; ng is the union of the

images of the set A under the n mappings of the IFS:

w(A) =

n

[

i=1

w

i

(A) (7)

The e�ect of the Hutchinson operator of the IFS

w

1

(�x) = S(0:5; 0:5)�x

w

2

(�x) = S(0:5; 0:5)�x+ (0:25;

p

3=16) �x 2 IR

2

w

3

(�x) = S(0:5; 0:5)�x+ (0:5; 0)

is illustrated in Fig. 4. The starting image is the gray �lled rectangle in the upper left corner of the

�gure. Applying the Hutchinson operator on it yields the middle image in the upper row. As we proceed,

the Sierpinski triangle in the lower right corner is approximated closer and closer. This happens always,

no matter which starting image is used. The image that is approximated is called the attractor of an

IFS.

Hutchinson proved [6] that w is a contractive mapping on (H(X); d

h

). Therefore w has a unique �xed

point A 2 H(X) which is the attractor of the corresponding IFS and the solution of

A = w(A): (8)

Fig. 5 shows some IFS and their attractors.
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Figure 1: Orbit of transformation w(�x) = S(0:6; 0:9)�x

Figure 2: Orbit of transformation w(�x) = R(10

�

)S(0:9; 0:9)�x

Figure 3: Orbit of transformation w(�x) = R(10

�

)S(�0:9; 0:9)�x

Figure 4: E�ect of the Huchinson operator on a rectangle
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w

1

(�x) = R(10

�

)S(0:8; 0:8)�x

w

2

(�x) = R(20

�

)S(0:64; 0:64)�x+ (5; 3)

w

1

(�x) = S(0:9; 0:8)R(�20

�

)�x

w

2

(�x) = S(0:8; 0:9)R(20

�

)�x + (2; 1)

Figure 5: Some attractors

2.3 Probabilistic IFS

A probabilistic iterated function system is a deterministic IFS extended by assigning probabilities p

i

to

each transformation w

i

, which sum up to 1 [6].

Let P (X) denote the space of normalized Borel measures on X . Each w

i

induces a Markov operator M

i

on P (X) in the following way:

M

i

(�)(A) = �(w

�1

i

(A)) A 2 H(X); � 2 P (X) (9)

The operator M : P (X)! P (X) for the whole IFS is then de�ned by

M =

n

X

i=1

p

i

M

i

: (10)

There exists an invariant measure [6] which is the unique solution �

F

2 P (X) of

�

F

(A) =M(�

F

)(A) for all A 2 H(X): (11)

The measure de�ned by an IFS in IR

2

can be interpreted as color or gray levels.

2.4 Sampling the Attractor

An IFS in IR

2

de�nes an attractor that is a subset of IR

2

. Now we must �nd a way to display this subset

as a binary image on a screen. Therefore, the screen is identi�ed with its index set which is a �nite

subset of IN

2

� IR

2

. The area containing the attractor is subdivided into small squares that correspond

to the pixels of the screen. A pixel is set to one if and only if the corresponding square contains at least

one point of the attractor. The resulting binary image is called the sampled attractor .

The Chaos Game [1] is the mostly used strategy for sampling an attractor:

Initialization A starting point x

0

2 A is chosen, e.g. the �xed point of any transformation in the IFS.

j is set to 0.

Iteration The pixel corresponding to x

j

is set. The next step is to compute x

j+1

= w

i

j

(x

j

), where

i

j

2 f1; : : : ; ng is selected at random with equal probability p =

1

n

.
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The process should be stopped when the attractor is plotted densely enough. Since the random walk on

the attractor shows chaotic behaviour, this should not take too much time [5].

For probabilistic IFS the transformations are selected according to their probabilities p

i

. This has two

e�ects: �rstly the attractor is covered more regularly and therefore faster provided that the probabilities

are chosen according to the area of the attractor under the transformations; secondly, using the invariant

measure �

F

, it is possible to get an image with color or grey values of the attractor: Each pixel is

assigned a color or gray value in respect of its measure. Concerning the chaos game this can be done by

counting the number of hits on a pixel and normalizing it by the maximum number of hits. Colors or

gray levels are assigned on behalf of the so obtained value by a mapping function.

3 From IFS to Images

The Chaos Game is a rather expensive way to sample an attractor, calculating it much more exactly

than ever necessary. This is because the limit of the Chaos Game is the real attractor as a mathematical

object and there is no obvious way to conclude the number of iterations that is su�cient for a given

resolution.

Image pyramids are the key to many e�cient algorithms. Our �rst step will be to show how the attractor

and its invariant measure can be computed from an IFS directly in discrete space; subsequently we

combine this with image pyramids.

3.1 Direct Computation of the Attractor and the Invariant Measure

To compute the attractor or its invariant measure directly for a given screen resolution it is necessary to

represent them as �nite sets. We will work on the discrete space IP

2

� IN

2

of screen pixels, for simplicity

assuming a square screen. For a screen with dimension R

IP

R

= f0; 1; : : : ; R� 1g (12)

and IP

2

R

is de�ned as IP

R

� IP

R

. We identify the screen with [0; R) � [0; R) � IR

2

; each pixel p =

(p

x

; p

y

) 2 IP

2

R

represents a unit sqare [p

x

; p

x

+ 1) � [p

y

; p

y

+ 1) � IR

2

. For simplicity we assume the

attractor lying entirely in [0; R)� [0; R) (any IFS can be transformed into an equivalent one for which

this assumption holds).

We consider �nite subsets I � IP

2

R

. Every subset I de�nes a binary image in a way that the pixels 2 I

are set and the pixels 62 I are not set and vice versa. Hence, for simplicity we can call these subsets I

images. The gray levels of an image I are de�ned by specifying the measures �

p

for all p 2 I . We have

to de�ne the meaning of w and M on IP

2

R

; therefore a correspondence between IP

2

R

and IR

2

has to be

given. This is done by de�ning a mapping % from IP

2

R

to H(IR

2

), i.e. % relates a pixel to the subset of

IR

2

representing it. We explore two possibilities:

1. Each pixel is represented by its center.

%

+

(p) = f�x 2 IR

2

: �x = (p

x

+ 0:5; p

y

+ 0:5)g p 2 IP

2

R

(13)

2. Each pixel is represented by a unit square subset of IR

2

.

%

2

(p) = [p

x

; p

x

+ 1)� [p

y

; p

y

+ 1) p 2 IP

2

R

(14)

The �rst choice will lead to simple algorithms. The second one may be more exact.

After applying an a�ne transformation on %(p) for a pixel p the result has to be mapped back to IP

2

R

again. This is done by the function � which maps subsets of IR

2

to subsets of IP

2

R

:

6



1. If pixels are represented by their centers, �

+

has to operate on points in IR

2

. It selects the pixel

that contains a given point.

�

+

(f�xg) = fp 2 IP

2

R

: p = (b�x

x

c; b�x

y

c)g �x = (�x

x

; �x

y

) 2 IR

2

(15)

2. If pixels are represented as square subsets of IR

2

the result of applying w

i

on %(p) is a parallelogram.

Hence, �

2

maps a subset of IR

2

(namely a parallelogram) to those pixels intersecting it.

�

2

(A) = fp 2 IP

2

R

: %

2

(p) \A 6= ;g A � IR

2

(16)

Note that the result of � is guaranteed to lie inside of IP

2

R

; everything outside the screen is discarded.

When we write % or � in the following, %

+

, �

+

or %

2

, �

2

respectively are possible depending on the

pixel representation.

3.1.1 Computing the Discrete Attractor

For the following, it is necessary to de�ne the relation between a transformation w : IR

2

! IR

2

and a

discrete transformation w

0

that maps a pixel to a set of pixels. This is done in the following way:

w

0

(p) = (� � w � %)(p) p 2 IP

2

R

(17)

The pixel p is mapped by % into IR

2

�rst, then the transformation w is applied and the resulting subset

of IR

2

is �nally transformed into a pixel-set by �. Notice that this approach also allows the use of

transformations other than a�ne ones. In Fig. 6 you can see a pixel being mapped to others under

some transformation. On the left, the pixel is represented by its center, on the right, representation as

a square is used.

Figure 6: Di�erent methods of pixel representation

The discrete Hutchinson operator w

0

of an IFS fw

i

: i = 1; : : : ; ng maps a pixel-set I into a pixel-set and

is de�ned as

w

0

(I) =

n

[

i=1

[

p2I

w

0

i

(p) I � IP

2

R

: (18)

Each pixel of image I is discretly transformed for each mapping of the IFS.

Any set A

d

satisfying the following equation is called a discrete attractor :

A

d

= w

0

(A

d

) (19)

Due to discretization errors, this equation has generally no unique solution as in the continuous case

(Eq. 8). Perhaps it has exactly one maximal solution for any IFS.
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We think an improvement of discrete transformations can be achieved by a modi�cation of the above.

If a discrete transformation maps a pixel to itself, two cases can be distinguished: First, the �xed point

of this transformation is situated in this pixel. The pixel stays mapped to itself. Secondly, the �xed

point is not situated in this pixel. Then the transformation w is applied repeatedly until another pixel

is reached. Rough experiments have shown that this may lead to discrete attractors that are closer to

the sampled ones.

Algorithm RemoveBackground

The algorithm given here computes the maximal discrete attractor for an IFS fw

i

: i = 1; : : : ; ng.

A matrix � = (�

pq

)

p;q2IP

2

R

can be built that tells where the pixels of IP

2

R

are mapped to under the

transformations w

i

:

�

pq

=

�

1 if q 2 w

0

i

(p) for some i 2 f1; : : : ; ng

0 otherwise

p; q 2 IP

2

R

(20)

� can be interpreted as the adjacency matrix of a directed graph. The nodes coincide with pixels and

(p; q) is an arc of the graph if pixel p is mapped into the area of pixel q. The e�ect of a�ne transformations

is therefore entirely described by a directed graph.

We can restrict the directed graph speci�ed by � to the pixels of a certain image I . Let its adjacency

matrix be denoted by �

I

.

For a discrete attractor A

d

all nodes of graph �

A

d

must have at least one incoming arc. This is because

the attractor is self-tiling under its transformations. Hence, we only need to �nd the maximal subset

of IP

2

R

for which this condition holds to get the maximal discrete attractor.

Algorithm RemoveBackground computes the maximal discrete attractor A

d

for a given IFS:

� Set I to IP

2

R

.

� Compute � by using Eq. 20.

� The nodes with no incoming arc in �

I

are deleted from I recursively until none of that kind exist.

Then I is the maximal discrete attractor of the IFS.

Proof: The attractor lies entirely inside the area of the screen and RemoveBackground starts with whole

IP

2

R

; thus, it computes the maximal subset I of IP

2

R

for which �

I

is a graph whose nodes all have at

least one incoming arc. So I has to be the maximal discrete attractor as stated above.

Algorithm SetForeground

This algorithm takes the assumption that the graph of each discrete attractor is completely connected,

i.e. each node can be reached from every other.

Initialization We can start with any pixel of the attractor, e.g. a pixel where a �xed point is situated.

This pixel is put on a list.

Iteration A pixel is taken from the list, marked and set on the screen. Each transformation is applied

to the pixel, yielding a set of successor pixels. Every unmarked successor pixel is put on the list.

The process continues until the list is empty.

It is still to explore if the connectivity assumption stated above holds for every IFS.

SetForeground has a lower memory and run-time requirement on regular sequential computers than

RemoveBackground.

8



Di�erences Between Sampled and Discrete Attractor

Stark [11] has proved that the di�erence (i.e. the Hausdor� metric) between a sampled and a maximal

discrete attractor is bounded by a term that depends only on the contractivity factor of the IFS.

Fig. 7 shows images of the fern attractor at a resolution of 256 � 256 pixels. The leftmost attractor

Figure 7: Sampled and discrete fern attractors

has been sampled with the chaos game. The following two were generated with RemoveBackground and

SetForeground respectively. The rightmost is the result of both RemoveBackground and SetForeground

extended with the improvement mentioned in section 3.1.1. Among the discrete attractors, it is closest

to the sampled attractor. This gives a strong evidence for the usefulness of the improvement. Neither

are the discrete attractors fully contained in the sampled attractor nor vice versa.

3.1.2 Computing the Invariant Measure

A discrete measure �� on IP

2

R

is de�ned by specifying the measures for all pixels in IP

2

R

, yielding a vector:

�� = (��

p

)

p2IP

2

R

(21)

So the discrete Markov operator M

0

of an IFS is de�ned as

M

0

(��) = ��� (22)

where � = (


pq

)

p;q2IP

2

R

is a matrix giving the e�ect of the measures sent from p to q under the Markov

operator:




pq

=

n

X

i=1

p

i

�

pqi

p; q 2 IP

2

R

(23)

p

i

is the probability assigned to w

i

. �

pqi

indicates how much of p is mapped into the region of q under

w

i

:

1. If pixels are represented by their centers the whole measure of a pixel p is sent to that pixel q where

its center is mapped into under w

i

:

�

+

pqi

=

�

1 if fqg = (�

+

� w

i

� %

+

)(p)

0 otherwise

p; q 2 IP

2

R

; 1 � i � n (24)

2. If pixels are represented as square subsets of IR

2

the measure of p is distributed among those pixels

it overlaps under w

i

in the ratio of the areas of the overlapping sections:

�

2

pqi

=

area((w

i

� %

2

)(p) \ %

2

(q))

area((w

i

� %

2

)(p))

p; q 2 IP

2

R

; 1 � i � n (25)

area(A) denotes the area of a subset A of IR

2

.
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The discrete invariant measure ��

F

= M

0

(��

F

) is then a normalized solution of the homogenous system

of linear equations de�ned by

��

F

(��E) = 0: (26)

E is the unit matrix. Only that solution is valid where the measures ��

Fp

of the pixels p 62 A

d

are zero;

therefore just the pixels that are part of the attractor have to be considered. They can be determined

with the algorithms given in the last section.

3.2 Improving Performance Of Direct Computation Using Image Pyramids

Throughout this section we use a non-overlapping pyramid structure as it is described in [7].

It is useful to discover regions of the screen as large as possible where the attractor is guaranteed not to

lie: These regions need not be considered in the RemoveBackground algorithm described in section 3.1.1.

This is the aim of the following.

Fig. 8 shows the attractor of Barnsley's fern [1] computed with the Chaos Game for resolutions 256�256,

128� 128, 64� 64, 32� 32, 16� 16, 8� 8, and 4� 4. At a resolution of 8, for example, more than half

of the pixels lie outside of the attractor and need no re�nement at higher resolutions.

Figure 8: Pyramid of Barnsley's fern created by the Chaos Game

Suppose we have found the pixels of the attractor and their measures at level I

i

. For each of these pixels

we set up links to its sons, thereby determining the pixels to start the direct computation with at level

I

i�1

. Sons of pixels that are not part of the solution at level I

i

can be neglected from level I

i�1

on. The

procedure starts at the top level I

N

of the pyramid. Weights for links between the levels can be provided

such that the measures of the sons can be established in terms of their father pixel's measure. When the

process is �nished at I

0

, all information of the image is contained in the father-son links.

If pixels are represented by their centers, it may be that parts of the attractor's border area have been

lost during the computation of level I

N

to level I

i

due to error in representation. We assume that they

will be captured again at level I

i�1

if they are big enough to be part of the solution de�ned by this level.

Otherwise, the algorithm may �nd them at a lower level in the pyramid. The correctness of this is to be

proved.

10



3.3 E�cient Image Reconstruction from Image Pyramids

The weighted top-down links in the pyramid can be used to generate the original image in O(logR

2

)

parallel steps. Imagine that all points within the pixels of the original image are summarized in the

top pixel. Then they can be redistributed onto the higher pixels in proportion to the link weights.

The original distribution of points is correctly reconstructed in one parallel top-down pass through the

pyramid.

3.4 An Illustrative Example in IR

To help the reader to gain insight into the procedure described in section 3.2 we present an example in

IR (Fig. 9).

Figure 9: Pyramid for IFS fw

1

; w

2

g in IR
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The attractor of the IFS fw

1

; w

2

g with

w

1

(x) =

1

4

x w

2

(x) =

1

2

(x � 16) + 16 x 2 IR (27)

is computed. Algorithm RemoveBackground deletes all pixels with no incoming arc resulting in the

four graphs shown in Fig. 9. The arcs of the graph are labeled with the corresponding transformations.

Pixels, i.e. intervals, are represented by their center (drawn as small circles). A pixel p is mapped to

that pixel q into which p's center is transformed. The shape of the attractor is shown in bold intervals.

The construction of the example starts at the top with two nodes. Since all pixels have incoming arcs

at this low resolution, all four sons at the next lower level are candidates for belonging to the attractor.

This time one pixel is removed and the six sons of the remaining three pixels are inspected below. Dashed

lines show these father-son relations in Fig. 9.

4 From Images to IFS | The Inverse Problem

The pyramidal approach has proved to be helpful to compute the attractor and the invariant measure of

an IFS directly. Let's now explore the inverse way, i.e. the inverse problem.

Constructing a pyramid for a given image allows to access the inherent structural information of the

image at multiple resolutions. Considering both this pyramid and the one de�ned by an IFS it seems

that pyramids are a form of intermediate representation between images and IFS, narrowing the gap

between them.

This and the fact that we have found solutions for quite constrained cases (see following sections) let the

idea of computing an IFS directly from an image seem more realistic than hitherto.

When we look for a way to compute an IFS directly from an image, it seems reasonable to begin

with simple cases. Therefore, we will constrain the IFS we are searching for to such ones with two

transformations in the form of Eq. 4, where

L = S(c; c) (28)

with c being the contractivity factor. This means that only a contraction which is the same for horizontal

and vertical direction, and maybe a re
ection take place.

The attractor yielded by such an IFS is always situated on the line that is determined by the two �xed

points, i.e. it will look like a straight line including the �xed points, maybe with some interruptions.

Only one dimension is of importance here; there is no reason to stay in 2D. That is why we start our

research looking for some IFS in IR.

4.1 Direct Computation of an IFS in IR

As an example we show how to compute a �rst approximation of a deterministic IFS for a row of pixels.

Fig. 10 shows the pixel pattern we consider.

Figure 10: Pixel pattern

Given two transformations we compute the largest gap and an upper bound for the attractor. The

transformations in IR may be re
exive (c

i

< 0) or not:
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Figure 11: Boundaries of non-re
ecting IFS

1. Assuming two non-re
ecting transformations, boundaries f

1

; f

2

; e

1

; e

2

are given (Fig. 11).

In this case the parameters of w

1

(x) = c

1

(x� f

1

) + f

1

and w

2

(x) = c

2

(x � f

2

) + f

2

are given by

c

1

=

e

1

� f

1

f

2

� f

1

and c

2

=

f

2

� e

2

f

2

� f

1

: (29)

Note that the �xed points are among the observed boundaries.

2. Assuming two re
ecting transformations, we observe the boundaries m

1

;m

2

; e

1

; e

2

(Fig. 12).

Figure 12: Boundaries of re
ecting IFS

The parameters of w

1

(x) = c

1

(x� f

1

) + f

1

and w

2

(x) = c

2

(x� f

2

) + f

2

are computed as follows:

c

1

= �

e

1

�m

1

m

2

�m

1

; c

2

= �

m

2

� e

2

m

2

�m

1

(30)

and

f

1

=

1

1� c

1

m

1

�

c

1

1� c

1

m

2

; f

2

=

1

1� c

2

m

2

�

c

2

1� c

2

m

1

(31)

4.2 Re�nement of Direct Computation in IR

Until now only the rough structure (outer boundaries and largest gap, which divides the attractor in

parts) of the pixel row has been regarded. For a better approximation of the pixel row it is necessary to

examine its structure on a �ner level (a pyramid is suited very well for this). Then, some smaller gaps

will become visible.

We have two possibilities now: First of all we can choose the better matching IFS from re
ecting and

non-re
ecting IFS. Secondly, if the approximation is still not close enough, additional transformations

will be necessary. Considering a smaller gap, we will have to change the transformation that yields that

part of the attractor which has been divided by the smaller gap in the �ner level of resolution. This

transformation will be split up into two transformations. Note that all other transformations stay the

same, for the parts of the attractor they yield are not concerned.
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One can gradually increase resolution, choosing between re
ecting and non-re
ecting transformations

and splitting them up at each level until the desired pixel pattern is reached. In the worst case, this

system results in as many transformations as the attractor has parts, but results may be better.

We think these issues are worth exploring because mastering the 1D case will help a great deal in solving

the inverse problem for 2D.

4.3 Continuous IR

2

-Orbits

In order to extend the above example into IR

2

, we must �nd a way to represent an orbit as a continuous

curve. This can be done by parameterizing the orbit curve.

For a transformation w(�x) = S(c; c)R(�)(�x��x

F

)+�x

F

(i.e. every a�ne transformation that has a uniform

contraction in all directions) the paramterized orbit of startpoint �x

0

2 IR

2

can be denoted by

o

w

(t; �x

0

) = S(c

t

; c

t

)R(t�)(�x � �x

F

) + �x

F

t 2 [0;1) (32)

with � 2 [0; 2�) and c 2 [0; 1), which means that only non-re
ecting transformations can be paramete-

rized.

For a transformation w(�x) = S(c

x

; c

y

)(�x � �x

F

) + �x

F

the paramterized orbit of startpoint �x

0

2 IR

2

can

be denoted by

o

w

(t; �x

0

) = S(c

t

x

; c

t

y

)(�x� �x

F

) + �x

F

t 2 [0;1) (33)

with c

x

; c

y

2 [0; 1).

The orbit of a re
ecting transformation can be split up into two orbits of non-re
ecting ones, where �x

0

and w(�x

0

) are the starting points and w

2

is used instead of w.

Fig. 13 shows the continuous orbit of transformation w(�x) = S(0:8; 0:8)R(30

�

)�x and starting point (1; 1).

Figure 13: Continuous orbit

4.4 Classes of IFS

In this section, we will only consider IFS with two non-re
ecting transformations. Continuous orbits

imply a division of transformations into classes. Each class consists of the transformations with the same

continuous orbit. If v(�x) = S(c; c)R(�)(�x � �x

F

) + �x

F

is a member of a class, then any transformation

w(�x) = S(c

f

; c

f

)R(f�)(�x � �x

F

) + �x

F

f 2 IR; f > 0 (34)
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is also a member of this class. If v(�x) = S(c

x

; c

y

)(�x � �x

F

) + �x

F

is a member of a class, then any

transformation

w(�x) = S(c

f

x

; c

f

y

)(�x� �x

F

) + �x

F

f 2 IR; f > 0 (35)

is also a member of this class.

Using this we can divide also IFS into classes. Those IFS are in the same class whose �rst transformations

lie in the same class and the second ones accordingly.

4.5 Border Curve of an IFS

The border curve of an IFS is an analytically de�ned curve that bounds the attractor of the IFS. In the

case of IFS with two non-re
ecting transformations we assume that the border curve is built of parts

of the continuous orbits of two border points . There are two necessary conditions for a pair of border

points (see Fig. 14):

1. Each border point must be situated on one continuous orbit of the other border point, i.e. M1 must

be situated on M2's orbit to the �xed point F1 and vice versa.

2. The tangents of the two continuous orbits at each border point have to be equal, i.e. there has to

be a smooth join of orbits.

Figure 14: Border curve of an IFS with two transformations

If these conditions are satis�ed for a pair of points, then the attractor is sure to lie inside the so-de�ned

border curve. It is not garantueed that there exists no other pair of points that de�ne a tighter border

curve.

It follows from the above that all IFS in an IFS class have the same border curve.

4.6 Largest Gaps of an IFS

Again we consider only IFS with two non-re
ecting transformations. Looking at an attractor bounded

by a border curve (Fig. 15) we can see the largest empty areas in the neighbourhood of the border points.

We will call such areas largest gaps of an IFS. IFS of the same class will always have their largest gaps

situated in quite the same place because their �xed points are the same. Nevertheless, shape and size of

these gaps will di�er. Continous variation of parameter f in Eq. 34, 35 will lead to a continous variation

of shape and size of the largest gaps. The larger f is the larger the gaps will be.
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Figure 15: Largest gaps of an IFS

4.7 Deriving IFS Parameters from Geometric Properties

This is a rough sketch of how to derive the parameters of an IFS with two non-re
ecting transformations

from the geometric properties of a given image. Looking at an image it is possible to draw a curve that

bounds the object shown in it. Then the largest empty areas inside the bounded area can be concluded.

These two geometric properties can be related to the border curve and the largest gaps. As it was

possible to derive IFS parameters from borders and gaps in the one dimensional case (see 4.1) it may be

possible to do this in two dimensions by using the properties described before (and maybe some others).

5 Conclusion

The following has been shown:

� The discrete attractor and its invariant measure can be computed directly for a given resolution.

� This method can be enhanced by using image pyramids.

� In a simple 1D case IFS can be computed directly from a row of pixels.

� A parameterized form of continous orbits in IR

2

was introduced.

� A division into classes was done for transformations and IFS.

We believe that it is worth investigating into the recovery of fractal parameters from images because

current computer vision systems are not good in representing natural objects like plants, clouds, etc.

The capability of recognizing fractals would therefore enhance the potential of current vision systems.
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