Technical Report

PRIP-TR-130

Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation

Vienna University of Technology

Favoritenstr. 9/183-2

A-1040 Vienna AUSTRIA

Phone: +43 (1) 58801-18351

Fax: +43 (1) 58801-18392
E-mail: {e0726670}@student.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

September 21, 2013

Overview of Existing Software Tools for Graph Matching

Abstract

Katrin Lasinger

This report was created in the course of the seminar “Selected Chapters in Image Process-
ing” at the Vienna University of Technology under the supervision of Walter Kropatsch.
The report aims to give an overview of publicly available software toolkits for graph match-
ing. Existing graph datasets for graph matching benchmarking as well as common data
structures to store graphs are presented. Libraries and toolkits for exact and inexact match-
ing are covered in the report and their implemented algorithms are stated.

1 Introduction

Graph matching algorithms have been used for pattern recognition tasks
since the early seventies. The paper ”Thirty years of graph matching in
Pattern Recognition” by Conte et al. [2] gives a survey of the literature in
graph matching algorithms and types of applications of graph-based tech-
niques up to the early 2000’s. Algorithms can be divided into exact and
inexact matching approaches. The first group covers approaches like graph
and subgraph isomorphism that require strict correspondences between two
graphs or at least their subgraphs. Inexact matching algorithms have less
strict constraints and tolerate some differences between the graphs. Some
reasons why this might be necessary are noisy data or intrinsic variability of
the patterns. For inexact matching methods we can furthermore distinguish
between optimal and approximate (or suboptimal) algorithms. Optimal al-
gorithms will always find the best solution but are usually computationally
more expensive than approximate algorithms. A more recent survey of graph
matching techniques, especially for Computer Vision applications, is given
by Vento and Foggia [15]. Besides exact and approximate graph matching
algorithms, the survey covers graph embeddings and graph kernels which
have gained growing interest in recent years.

Another review of exact and inexact graph matching approaches is given
by Riesen et al. [I3]. In the review a graph is defined by a four-tuple
g = (V,E,u,v), where V is the finite set of nodes, £ C VaV is the set
of edges, p: V — L is the node labeling function and v : E — L is the edge
labeling function. This definition allows the representation of attributed,
directed graphs. If unlabeled graphs are required, the same label € can be
assigned to all nodes and edges. For undirected graphs the reverse edges
need to be inserted for each edge. Thus, arbitrary structured graphs can be
handled. Typically, graph matching software tools require special types of
graphs stored in a certain data format.

The aim of this report is to give an overview of available toolkits for both
exact and inexact graph matching. The presented toolkits and their used
algorithms are described shortly. For copyright information under which the
software products are distributed, please refer to the webpages of the cor-
responding toolkits. Furthermore, common graph data structures are sum-
marized in this report and available datasets for graph matching are listed.
The Technical Committee #15 of the International Association for Pattern
Recognition (IAPR) provides an updated list of data sets, algorithms for

graph matching and other useful toold'} Some of the listed items are covered
in this report. However, for up-to-date links and potentially new datasets or
toolkits, please refer to the webpage of the technical committee.

The remainder of this report is structured as follows. First, common data
structures for different kinds of graphs are presented. In Section [3| existing
datasets for benchmarking are listed. Section 4| gives an overview of existing
graph matching toolkits, their functionality and requirements.

2 Graph Types and Data Structures

Different application require different data structures to represent the graph
data. In addition it is not always possible that all graph properties are
covered by one graph structure. E.g. directed vs. undirected graphs or
labeled vs. unlabeled graphs. This section covers some of the available data
structures to represent different types of graphs. Some applications, however,
use their own proprietary data structures instead of standardized formats.

One existing data structure is the Graph eXchange Language (GXL) for-
matE], introduced by Holt et al. [8]. It is an XML based language that allows
the flexible and adaptable storage and exchange of typed, attributed and
directed ordered graphs. Multigraphs (multiple edges per node pair possi-
ble), hypergraphs (more than two nodes per edge) and hierarchical graphs
are supported.

Another XML based file format for graphs is GraphMIﬂ It supports
various graph types such as typed, attributed, directed, undirected and mixed
graphs. Multigraphs, hypergraphs and hierarical graphs are supported.

Text-based file formats are the Graph Modeling Language (GML)EI and
the Trivial Graph Format (TGF)ﬂ GML supports attributed, directed and
undirected graphs. With TGF directed graphs can be stored and at most one
label per edge and node is supported. Edges can be stored in both directions
to mimic undirected edges. Nested graph structures are not supported. An-
other common format, especially for visual applications, is the DOT graph

"http://iapr-tc15.greyc.fr/links.html

Zhttp://www.gupro.de/GXL/

3http://graphml .graphdrawing.org/

“http://www.fim.uni-passau.de/en/fim/faculty/chairs/
theoretische-informatik/projects.html

“http://docs.yworks.com/yfiles/doc/developers-guide/tgf .html

http://iapr-tc15.greyc.fr/links.html
http://www.gupro.de/GXL/
http://graphml.graphdrawing.org/
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://docs.yworks.com/yfiles/doc/developers-guide/tgf.html

description languagd®| with the file extension .gv. It is used in the graph visu-
alization software Graphvi4’| The DOT format can store a single attributed,
directed or undirected graph per file.

Some graph software tools use compact data formats to store graphs
efficiently. E.g. for unlabeled graphs, one can store the total number of
nodes and subsequently for each individual node the number of edges and
for each edge the ID to the corresponding node is stored. Thus, for a graph
with two nodes and one directed edge one only needs to store 4 numbers (2
110 - 2 nodes, node 0 has one edge to node 1 and node 1 has no edges).
When storing this graph in binary format instead of text format even more
memory usage can be reduced. Such a data structure, for example, is used
in the ARG database as described in Section [3] The compact data format
comes with the drawback that only specific graph types are supported for
certain data structures.

To convert from one graph data structure to another only few converters
exist. The graph visualization software Graphviz includes converters for its
DOT/GV format to GXL and GML and backwards. For details and limi-
tations of the converters please refer to the tools gml2gv and gzl2gv in the
Graphviz documentation | A converter from the DOT format to GraphML
is provided by Dirk Biichle[] The software program Wolfram Mathematica”)
supports a variety of graph data structures, amongst others GXL, GraphML,
DOT, TGF and GML. Import and export of all these formats is supported
and thus conversions between formats are possible. Since the different file
formats are based on different graph models (e.g. not all formats support
multi-edges or self loops) conversions between formats can lead to data loss.

3 Graph Datasets

To test a software toolkit, evaluate an implemented algorithm or compare the
performance of different approaches graph databases are a useful resource.
There already exist some databases for benchmarking graph based matching
algorithms. Main differences between them are the way of generation of the

Shttp://www.graphviz.org/content/dot-language
"http://www.graphviz.org/
Shttp://graphviz.org/Documentation.php
9nttps://bitbucket.org/dirkbaechle/dottoxml
Ohttp://www.wolfram.com/mathematica/

http://www.graphviz.org/content/dot-language
http://www.graphviz.org/
http://graphviz.org/Documentation.php
https://bitbucket.org/dirkbaechle/dottoxml
http://www.wolfram.com/mathematica/

data (random or due to measurements) and the structures of corresponding
graphs (for exact graph matching or more general matching tasks).

One such database, the IAM Graph Database RepositoryE], is pro-
vided by Riesen and Bunke [II]. Graphs are stored in the Graph eXchange
Language (GXL) format. The database consists of currently ten different
datasets, all containing training, validation and testing subsections for su-
pervised learning algorithms. The datasets represent line drawings, gray
scale and color images, HTML web-pages, molecular compounds and pro-
teins. Exemplary datasets are Letter, Fingerprint or AIDS. The datasets
can be used for inexact graph matching problems.

Another extensive database of labeled as well as unlabeled graphs, the
ARG database, was realized by the MIVIA Group of the University of
Salernﬂ. The graphs were randomly generated according to different gen-
eration models. The graphs can be used for isomorphism as well as subgraph
isomorphism matching. Graphs were generated pairwise so that either an
isomorphism or a graph-subgraph isomorphism relation holds. For labeled
graphs a non-trivial common subgraph exists. In total the database holds
168 diverse kinds of graphs with 143,600 unlabeled graphs and 166,000 la-
beled graphs of various node sizes. A detailed description of the generated
database is provided by Foggia et al. [7] and De Santo et al. [6]. The graphs
are stored in a binary format with different formats for labeled and unla-
beled graphs respectively. A file is containing one graph and is composed
of 16 bit words. Attributes can only be represented as integer numbers in
labeled graphs. Functions to read the two file formats, together with more
detailed information, are provided as C code on the webpage.

A dataset with randomly generated unlabeled graphs is the Scale-free
networks database, introduced by Zampelli et al. [16]. Graphs are stored
in text files in a compact data format as described in Section [2 The dataset
is contained in the benchmarks collection of Christine Solnon to evaluate the
LAD software progranf| The dataset consists of 6 classes of instances (1
directed and 5 undirected) with each class containing 20 different instances.
The classes differ in the number of nodes and the minimum and maximum
node degrees. Graphs are stored in pairs (pattern and target). All but one
class are feasible subgraph isomorphism problems.

Uhttp://www.iam.unibe.ch/fki/databases/iam-graph-database
?http://mivia.unisa.it/datasets/graph-database/arg-database/
3http://liris.cnrs.fr/csolnon/benchmarks.tgz

http://www.iam.unibe.ch/fki/databases/iam-graph-database
http://mivia.unisa.it/datasets/graph-database/arg-database/
http://liris.cnrs.fr/csolnon/benchmarks.tgz

Larrosa and Valiente [10] proposed the LV benchmarkE] for the sub-
graph isomorphism problem. The benchmark is based on the Standford
GraphBase [9]. The dataset consists of 113 undirected and 59 directed
graphs, providing for a total of 8211 problem instances.

There furthermore exist two different chemistry databases: the GR-
EYC’s Chemistry dataset provided by the GREYC laboratory"”] and var-
ious datasets by the Cheminformatics websitd'%]

4 Software Toolkits

Kasper Riesen et al. [12] presented the Graph Matching Toolkit (GMT)]
a software toolkit for graph edit distance computation implemented in Java.
Graph edit distance can be used for inexact graph matching. The software
handles directed and undirected as well as labeled and unlabeled graphs.
For the software toolkit five different graph edit distance algorithms are im-
plemented. The A*-algorithm with bipartite heuristic can be used for exact
graph edit distance computation, meaning that the optimal solution is found.
Computationally less expensive but non-optimal approaches are beam search
and bipartite graph edit distance using an assignment algorithm (Munkres’,
the Hungarian or the Volgenant-Jonker algorithm). The toolkit can be run
from the command line or using the GUI. Graphs need to be stored in the
GXL format. Thus, the IAM Graph Database Repository is supported.
Another graph matching toolkit, the C++ library VFLib[:g], is provided
by the Mivia Lab of the University of Salerno. The library implements the
VF2 graph matching algorithm [3]. This algorithm conducts exact graph
matching for graph and subgraph isomorphism. The algorithm can deal with
unlabeled as well as with attributed relational graphs. It was tested on the
ARG database. The authors claim that their algorithm is computationally
efficient, especially when working with large graphs. The library includes
an abstract class ARGLoader. Users can implement this class to write their
own graph loader. Thus the library can be used with any desired graph file
format. Additionally, the library already comes with some simple implemen-

Yhttp://www.1lsi.upc.edu/~valiente/research.html
https://brunlOl.users.greyc.fr/CHEMISTRY/index.html
Yhttp://cheminformatics.org/datasets/
"http://www.fhnw.ch/wirtschaft/iwi/gmt
8http://mivia.unisa.it/datasets/graph-database/vflib/

http://www.lsi.upc.edu/~valiente/research.html
https://brunl01.users.greyc.fr/CHEMISTRY/index.html
http://cheminformatics.org/datasets/
http://www.fhnw.ch/wirtschaft/iwi/gmt
http://mivia.unisa.it/datasets/graph-database/vflib/

tations of the ARGLoader. A simple implementation allowing basic graph
editing operations, an implementation for unattributed graphs using the bi-
nary format of the ARG database and an implementation for attributed
graphs are included. Further, the user can choose between nine different
matching algorithms for isomorphism (VF, VF2, Ullmann, Schmidt-Druffel),
graph-subgraph isomorphism (VF, VF2, Ullmann) and monomorphism (VF,
VE2).

Christine Solnon provides the software program LAD[| for solving the
subgraph isomorphism problem. The implemented algorithm uses AllDifferent-
based filtering by Solnon [14]. The filtering aims to prune branches that do
not contain solutions. The original approach from Version 1 for undirected
graphs was extended to directed and labeled graphs in Version 2 of the soft-
ware program. According to the results on the website, the algorithm was
tested on three different databases (subset of ARG database, Scale-free net-
work database and LV database) and compared with two other approaches,
one being the VF2 algorithm from the VFLib. The LAD algorithm outper-
forms the other two approaches in both number of solved instances and CPU
time in most of the times for the given benchmarks.

The Graph Matching Tookbox in Matlab@ is provided by Timothee
Cour. The tool handles partial as well as full matching utilizing the kronecker
bistochastic normalization algroithm by Cour et al. [4].

5 Conclusion

Six different graph data structures were presented in this report. Although
many of them support arbitrary graph structures, no single format has yet
been established as standard format for all software products. One rea-
son might be the trade-off between compact and descriptive data structures.
Only few converters exist and especially for proprietary formats no conver-
sion tools are available. However, for some toolkits, like the VFLib, custom
loaders can be created.

There already exists a variety of software toolkits and algorithms for exact
graph matching problems and at least one for inexact graph matching, using
the graph edit distance and supporting different algorithms. Four software

Yhttp://liris.cnrs.fr/csolnon/LAD.html
2Onttp://www.timotheecour.com/software/graph_matching/graph_matching.
html

http://liris.cnrs.fr/csolnon/LAD.html
http://www.timotheecour.com/software/graph_matching/graph_matching.html
http://www.timotheecour.com/software/graph_matching/graph_matching.html

tools were presented in this paper, one of them for inexact graph matching.
These tools can be a good resource for beginners in the field of graph match-
ing or for people with little or no programming skills who want to make use
of graph matching algorithms. Further the different toolkits are suitable for
researchers who want to compare new algorithms with existing methods. Es-
pecially for the comparison and evaluation of new algorithms benchmarking
datasets are useful resources. Five of these datasets were covered in this
report.

Although present in literature [I, 5], no data structures or matching soft-
ware tools for combinatorial maps and generalized maps were found. Combi-
natorial and generalized maps add additional topological information to the
data structure by subdividing nD objects into cells (0D vertices, 1D edges,
2D faces, 3D volumes, ...). This additional topological information may be
useful for 2D or 3D image processing and matching problems. Thus, soft-
ware toolkits that support these data structures would be a useful resource
in future.

References

[1] C. Combier, G. Damiand, and C. Solnon. From maximum common
submaps to edit distances of generalized maps. Pattern Recognition Let-
ters, 33(15):2020 — 2028, 2012. Graph-Based Representations in Pattern
Recognition.

[2] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recog-
nition and Artificial Intelligence, 18(03):265-298, 2004.

[3] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph iso-
morphism algorithm for matching large graphs. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(10):1367-1372, 2004.

[4] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. Advances
in Neural Information Processing Systems, 19:313, 2007.

[5] G. Damiand, C. Solnon, C. de la Higuera, J.-C. Janodet, and E. Samuel.
Polynomial algorithms for subisomorphism of nd open combinatorial
maps. Comput. Vis. Image Underst., 115(7):996-1010, July 2011.

[6]

[10]

[11]

[12]

[14]

[15]

M. De Santo, P. Foggia, C. Sansone, and M. Vento. A large database
of graphs and its use for benchmarking graph isomorphism algorithms.
Pattern Recognition Letters, 24(8):1067 — 1079, May 2003.

P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomor-
phism and sub-graph isomorphism benchmarking. In Proc. of the 3rd
IAPR TC-15 International Workshop on Graph-based Representations,
pages 176-187, 2001.

R. C. Holt, A. Winter, and A. Schrr. Gxl: Towards a standard exchange
format. In Proceedings 7th Working Conference on Reverse Engineering

(WCRE 2000), 2000.

D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. ACM, New York, NY, USA, 1993.

J. Larrosa and G. Valiente. Constraint satisfaction algorithms for
graph pattern matching. Mathematical Structures in Computer Science,
12:403-422, 8 2002.

K. Riesen and H. Bunke. Iam graph database repository for graph based
pattern recognition and machine learning. In Structural, Syntactic, and
Statistical Pattern Recognition, volume 5342 of Lecture Notes in Com-
puter Science, pages 287-297. Springer Berlin Heidelberg, 2008.

K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit for
graph edit distance computation. In Graph-Based Representations in
Pattern Recognition, volume 7877 of Lecture Notes in Computer Science,
pages 142-151. Springer Berlin Heidelberg, 2013.

K. Riesen, X. Jiang, and H. Bunke. Exact and inexact graph matching:
Methodology and applications. In C. C. Aggarwal and H. Wang, editors,
Managing and Mining Graph Data, volume 40 of Advances in Database
Systems, pages 217-247. Springer US, 2010.

C. Solnon. Alldifferent-based filtering for subgraph isomorphism. Artif.
Intell., 174(12-13):850-864, Aug. 2010.

M. Vento and P. Foggia. Graph-Based Methods in Computer Vision:
Developments and Applications, chapter Graph Matching Techniques for

Computer Vision, page 141. Idea Group, Information Science Reference,
Hershey USA, 2013.

[16] S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph isomorphism
problems with constraint programming. Constraints, 15(3):327-353,
2010.

	Introduction
	Graph Types and Data Structures
	Graph Datasets
	Software Toolkits
	Conclusion

