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Abstract

In this work we present a new image segmentation algorithm which is based on Local Binary
Patterns and the Combinatorial Pyramid. Current Local Binary Pattern-based segmentation
algorithms utilize statistical approaches in form of a histogram to describe and compare textured
regions, and to subdivide an image into homogeneous regions. The novelty of our approach is that
we omit the usage of histograms and perform a segmentation based directly on the local structure
of the image, while at the same time preserving structural correctness and image topology. In
our work we define five topological classes that are based on the Local Binary Patterns of regions
and are invariant to the number and shifting of bits, namely local minima, slopes, singular slopes,
saddles, and local maxima. Using these classes in combination with the dual graph we are able to
identify and remove redundant structural information. This approach simplifies the image graph
and enables a merging of connected regions without introducing structural errors. We compare
our algorithm to five other algorithms using the Global Consistency Error and Probabilistic Rand
Index error metrics. One of these algorithms is a pre-version of our proposed algorithm which
does not take structural constraints into consideration, and the remaining four algorithms are
existing algorithms based on internal- and external contrast, Minimum Spanning Trees, Mean-
Shift, and superpixel approaches. The evaluation shows, that the proposed algorithm indicates
comparably good results with the Global Consistency Error metric, and it beats all of the five
algorithms in terms of a high Probability Rand Index score. This segmentation behavior suggests,
that a refinement of segmentations takes place at regions where there is evidence of multiple levels
of granularity of segmentations performed by human subjects, and thus an application in image
compression can be found.
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CHAPTER 1
Introduction

Image segmentation is an important part of Computer Vision. It refers to the subdivision
of an image into non-overlapping heterogeneous regions, where each region consists of a
set of pixels that share some homogeneous properties. These properties can be based
on color, texture, or any other similarity criterion [FMR+02]. The idea is, that a good
segmentation can capture perceptually important regions, which reflect local and/or
global properties of the image [PZZ13]. These regions can then be used for classification
and subsequently for higher level tasks such as image understanding, or detection and
tracking of objects located in these regions. Over the last few decades hundreds of
segmentation algorithms [FMR+02] have been proposed, which can be classified by their
functionality, namely based on thresholding, histograms, edge detection, region growing
and splitting/merging, Watershed Transformation, or graph partitioning [RRDR09].

Graph theoretical approaches model the image that is being segmented as a weighted
graph. Each pixel is represented by a vertex in the graph, and the edges between the
vertices represent adjacency relationships. Graph based segmentation methods can be
categorized as Minimum Spanning Tree based, graph cut methods with cost functions
and Markov random fields, shortest path based methods, and others [PZZ13]. Since the
introduction of Local Binary Patterns in 1996, efforts have been made to integrate this
local texture descriptor in image segmentation algorithms as well. Ojala et. al.[OP99]
proposed an unsupervised three phase algorithm. Here the image is firstly hierarchically
split into blocks based on an uniformity test involving the LBP, then agglomerative
merging of the blocks is applied, and finally to get a high precision segmentation at
the borders of individual regions, pixel-wise classification is used. Later in 2008, this
algorithm was extended to video sequences by Chen et. al. [CZP08]. In 2006, Heikkilä
et. al. [HP06] proposed a background segmentation algorithm which detects moving
objects in a video sequence. This segmentation is reached by modeling the history of a
region around a pixel over time as a group of weighted LBP histograms and comparing
the current histogram to the stored samples. If the current histogram does not fit a
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similarity criterion, the pixel is classified as foreground. In 2009, Chen et. al. [CZP09]
further improved their texture segmentation algorithm for video sequences by combining
the LBP texture descriptor with the WLD descriptor [CSH+10] which is based on the
ratio of the intensity of a pixel and the relative intensity difference of its 8-neighbors.
One common property of these mentioned approaches is, that they utilize a statistical
description of the underlying texture using a histogram. The main disadvantage of this
method however is that the spatial distribution of the local structures is not captured,
and thus multiple images that are for us humans perceptually completely different, may
be statistically equivalent. Based on our research and to our current knowledge there are
no other methods, which would combine the advantages of the Local Binary Patterns
with a graph based image segmentation approach without utilizing histograms.

In this work we propose a new image segmentation algorithm which is based on Local
Binary Patterns without the use of histograms. Our algorithm represents an image as
a pair of graphs that is stored using the combinatorial pyramid representation. The
Local Binary Patterns of each vertex in the primal and dual graph can be divided into
one of five topological classes, which are invariant to the number and shifting of the
bits. Using these classes it is possible to transform the dual graph in such a way, that
it consists, with the exception of the outer face, only of topological slopes. This way
each face in the primal graph is enclosed by two directed paths. By merging two regions
and analyzing the topological class of the incident faces it is possible to identify and
remove structural information. This approach iteratively reduces the image graph up to
the apex of the pyramid, while preserving the structural correctness of the image. As a
consequence, lowly textured regions are merged early in the segmentation hierarchy, and
highly textured regions are merged late. Perceptually this behavior causes important
visual information for humans to be preserved even at a high level of region compression.

My contributions in this work are:

• Proposal of an image segmentation algorithm based on Local Binary Patterns which
does not use a histogram to describe a region,

• Definition of structurally correct image segmentation and proposal of a method to
ensure structurally correct image segmentation,

• Definition of topological classes that are invariant to the number and shifting of
bits of a Local Binary Pattern,

• Identification and removal of redundant structural information,

• Proposal of a method for transforming all dual vertices (except the outer face) into
slopes, and

• Evaluation, comparison to other algorithms, and analysis of the properties and
applications for the proposed algorithm.
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This work is divided as follows: Chapter 2 introduces the combinatorial map represen-
tation, and how the dual graph contraction theory is implemented using removal- and
contraction operations in a combinatorial pyramid framework. Additionally a canonical
representation of the combinatorial pyramid and its advantages, as well as the topology
preserving properties of the combinatorial pyramid are presented in this chapter as
well. The theory of Local Binary Patterns, and topological region classes deduced from
these structural relationships are described in Chapter 3. This chapter also includes a
method to assign strict inequality relationships onto the edges of the image graph, and
a discussion about the special case of self-loops. The definition of structural equality
and the computation of the representative image for the whole class of images with the
same structure is described in Chapter 4. A discussion about structural redundancy,
removal of dual saddles, as well as a connection to the order theory is also included in
this chapter. Chapter 5 describes our proposed image segmentation algorithm, which is
evaluated and compared to five other image segmentation algorithms in Chapter 6. A
discussion regarding the results can also be found in that chapter. Conclusions about
the proposed algorithm and its performance are drawn in Chapter 7. Plots with the
exact segmentation results and the error curves used in the evaluation can be found in
Appendix A.
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CHAPTER 2
Combinatorial Pyramid

Regular image pyramids were introduced by Burt et al. [BHR81] in 1981 in the field of
image segmentation. Regular pyramids are defined as a sequence of copies of an original
image in which the resolution is decreased in regular steps. The relationships between
regions in adjacent levels of the pyramid are fixed, which means that for each region
in a higher level there is a fixed number of regions in the lower level connected by a
fixed relation. A reduction window relates each region in the pyramid with a set of
regions defined in the level below. Therefore a regular image pyramid is defined by a
fixed reduction window and a fixed reduction factor [BK01]. Since their introduction,
regular pyramids have been utilized in many other applications, such as data compression,
multi-scale texture analysis, shape analysis, or motion analysis [AAB+84, Ros84].

Due to the lack of flexibility of the regular pyramids, irregular pyramids [MMR91]
were introduced. These are defined as a stack of successively reduced graphs, where
each graph is built from the graph below by selecting a specific subset of (surviving)
vertices and mapping the remaining ones onto these vertices. This way the reduction
factor between adjacent levels is not fixed, and the size of each level and the height of
the pyramid are unknown prior to generation [MR06]. It was however shown that the
height of the irregular pyramid can be bounded by a logarithmic height [HGS+02]. The
main advantage of irregular pyramids is, that a vertex in the higher levels of the pyramid
can represent various shapes of connected regions in the pixel level. These irregular
regions can represent objects in an image, which can further be recognized, analyzed or
tracked. Another advantage is that the merging hierarchy of the vertices in the pyramid
is captured as well. An example of an irregular pyramid can be seen in Figure 2.1.
Irregular pyramids have been successfully used in tasks such as image segmentation
[HK04, GHK11], text segmentation and binarization [LT03], object tracking [MR06].

Irregular pyramids can be stored in several data structures [MR06], namely as simple
region adjacency graphs, dual graphs, combinatorial maps or generalized maps. Simple
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Figure 2.1: An example of an irregular pyramid.

graphs have the disadvantage, that the number of common boundaries between two
adjacent regions is not known, as well as they do not allow to differentiate an adjacency
relationship between two regions from an inclusion relationship. Since the neighborhood
relationships of regions in an image produce a planar graph, it is possible to define dual
graphs. This way the drawbacks with the simple graph data structure are removed, but
at a cost of increased storage requirements. A combinatorial map may be considered
as a planar graph with an explicit encoding of the neighborhood’s orientation of each
vertex and an implicit encoding of the dual graph [BK01]. The combinatorial map also
encodes multiple boundaries and inclusions, and this way preserves the topology of the
image [Hax07, KHI07]. A generalized map is an extension of the combinatorial map,
which additionally allows representation of non-orientable surfaces and open subdivisions
[GSDL06]. As these properties of the generalized map are not needed in this work, the
representation for storing each level of the irregular pyramid will be a combinatorial map.
This stack of combinatorial maps will form a combinatorial pyramid [BK01].

This chapter is organized as follows: Section 2.1 defines the combinatorial map, the
dual combinatorial map, and special edges which need to be identified when applying
reduction operations. Section 2.2 introduces the combinatorial pyramid, the theory of
dual graph- and combinatorial map reduction, as well as a canonical representation of the
combinatorial pyramid. Finally Section 2.3 discusses the topology preserving properties
of the combinatorial pyramid and presents some examples, and Section 2.4 shows the
relation between dual graphs and a combinatorial map.
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2.1 Combinatorial Map
An n-dimensional combinatorial map is a combinatorial representation allowing to describe
a n-dimensional oriented quasi-manifold with or without boundary [DL14]. Figuratively
speaking, a n-dimensional oriented quasi-manifold is an object obtained by “gluing”
together its n-cells along its (n− 1)-cells, and when embedding it in an Euclidean space
it is possible to define at each point of this object an unambiguous direction. In the case
of a 2-dimensional object 0-cells are its vertices, 1-cells are its edges, and 2-cells are its
faces. An image graph is such a 2-dimensional object and the individual cells correspond
to vertices representing pixels, edges representing the neighborhood relationship between
the pixels, and faces representing 2×2-configurations of pixels. Our work is based on
2-dimensional combinatorial maps, which will be just called combinatorial maps for the
remainder of this work.

Definition 1. Combinatorial Map
A combinatorial map is a triplet C = (D, α, σ), where:

• D is a finite set of darts,

• α is an involution on the set D, and

• σ is a permutation on the set D.

Compared to a simple graph data structure, an image is not encoded as a set of vertices
and edges, but as a set of darts D. Each edge in the graph is represented as two half
edges called darts, d1 and d2, connected by the involution α(d1) = d2 and α(d2) = d1.
As a result the relationship α(α(d)) = d holds for all darts in the combinatorial map.
This encoding of an edge in the combinatorial map is also called a (alpha)-orbit and is
denoted by α∗(d). Additionally each dart is associated with a vertex in the graph. The σ
permutation relates each dart with the following dart around the same vertex in clockwise-
or counter-clockwise direction. The direction of the encoding is implementation specific.
The sequence of darts encountered when turning around a vertex starting from dart d is
called a (sigma)-orbit and is denoted by σ∗(d).

A combinatorial map implicitly encodes a dual graph [Har69], which can be constructed
using a combination of the α involution and the σ permutation. The encoding of the edges
stays the same, namely using the α involution, but the encoding of the vertices changes.
The orbits of the dual permutation ϕ encode the set of darts when turning around the
vertices of the dual graph. Depending on the chosen direction of the σ-orbit, the dual
permutation ϕ has the opposite direction and is defined as ϕ = α ◦ σ or ϕ = σ ◦α. In the
primal graph the orbit ϕ∗(d) returns the sequence of darts when turning around a face.
This way, the dual C of a combinatorial map C = (D, α, σ) is defined as C = (D, α, ϕ).
An example of a simple graph encoded in a combinatorial map data structure is shown
in Figure 2.2. Notice in this figure, that the background face (green color) is encoded in
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D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
α 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8
σ 14 4 7 9 12 13 8 10 2 3 1 16 15 11 6 5
ϕ 2 3 1 16 15 11 6 5 14 4 7 9 12 13 8 10
ϕ′ 6 12 15 1 4 5 16 2 10 11 9 8 7 3 14 13

Figure 2.2: An example of a simple graph encoded as a combinatorial map.

the opposite direction compared to the inner face (red color). This is a phenomenon of
the dual combinatorial pyramid C and is described in detail in [Bru02]. The last two
rows of the table in the figure are both possible ϕ permutations, namely the first being
ϕ = α ◦ σ and the second being ϕ′ = σ ◦ α.
As will be seen in the next section, some special types of edges in a graph can cause graph
connectivity problems when two vertices are being merged or edges are being removed.
Using a combinatorial map encoding, these edges can however easily be detected. Brun
and Kropatsch [BK99] defined these edges as follows:

Definition 2. Empty Self-loop
An edge α∗(d) is an empty self-loop, iff σ(d) = α(d).

Definition 3. Self-loop
An edge α∗(d) is a self-loop, iff α(d) ∈ σ∗(d). An empty self-loop always fulfills this

condition.

Definition 4. Pendant Dart
A dart d is called a pendant (or dangling) dart, iff σ(d) = d. In this case the vertex

σ∗(d) = (d) is called a pendant vertex.

Definition 5. Pendant Edge
An edge α∗(d) is called a pendant (or dangling) edge, iff d or α(d) are a pendant dart.

Definition 6. Bridge
An edge α∗(d) is called a bridge, iff α(d) ∈ ϕ∗(d).
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Already on the special case of a bridge the usefulness of switching between a combinatorial
map and its dual can be observed. As it is mentioned in [BK99], this relationship between
the primal and dual combinatorial map reaches even deeper. One common property for
example is that when the primal combinatorial map is connected, its dual is connected
as well. Moreover, the previously defined special edges are related as well [BK01]:

“primal map” (D, α, σ) “dual map” (D, α, ϕ)
self-loop α(d) ∈ σ∗(d) bridge
bridge α(d) ∈ ϕ∗(d) self-loop
empty self-loop (σ(d) = α(d) or σ(α(d)) = d) pendant dart
pendant dart (σ(d) = d or σ(α(d)) = α(d) empty self-loop

Table 2.1: Relationships between special types of edges in the primal and dual combina-
torial map.

2.2 Combinatorial Pyramid
A combinatorial pyramid is a stack of successively reduced combinatorial maps. At the
base level of the pyramid is the initial combinatorial map, and at the higher levels are
combinatorial maps produced by sequentially applying contraction and removal operations
on the combinatorial maps at the lower levels. The contraction and removal operations
were defined by Kropatsch [Kro98] as a reduction scheme for dual graphs. Before
continuing with the contraction and removal operations and a canonical representation
of the combinatorial map, we will briefly explain the reduction scheme of dual graphs.

2.2.1 Dual Graph Reduction Scheme

A graphG = (V,E) consists of a set of vertices V and a set of edges E. The reduction of the
graph can be performed by either an edge contraction- or edge removal operation. When
an edge removal operation is applied to a graph G, the resulting graph G′ is a subgraph of
G with G′ = (V,E \{e0}), where e0 is the removed edge. Similarly, the graph G′ resulting
from an edge contraction operation is a subgraph of G with G′ = (V \ {v0}, E \ {e0}),
where v0 is one of the vertices incident to the contracted edge e0. Let Gk = (Vk, Ek) be
a graph in a dual graph pyramid at level k and Gk+1 = (Vk+1, Ek+1) ⊂ Gk be at level
k + 1. Prior to performing a contraction operation, a subset Sk = Vk+1 ⊂ Vk of surviving
vertices and a subset Nk,k+1 ⊂ Ek (where index k,k + 1 mean the contraction from level
k to k + 1) of non-surviving edges is chosen. The surviving vertices v ∈ Sk will survive
to the next higher level of the pyramid, making up the set of vertices Vk+1 of graph
Gk+1, and the set of non-surviving vertices v ∈ Vk \ Sk will be contracted towards their
neighboring surviving vertices. To reduce the graph Gk it is necessary to satisfy two
conditions, namely the graph (Vk, Nk) has to be a spanning forest of graph Gk = (Vk, Ek),
and the surviving vertices v ∈ Sk ⊂ Vk are the roots of the forest (Vk, Nk). This set of

9



Figure 2.3: An example of contraction kernels in a graph. The left image shows the
graph Gk, where the surviving vertices v ∈ Sk are marked green, and the non-surviving
edges e ∈ Nk are marked black with an arrow pointing in the direction of contraction.
The marked set of disjoint rooted trees is the set of contraction kernels. The right image
shows the resulting graph Gk+1 after dual graph contraction.

disjoint rooted trees with maximal length of two (from leaf over root to leaf) is called
a set of contraction kernels. A detailed review of existing methods how to build these
contraction kernels can be found in [Hax07]. An example of such contraction kernels can
be seen in Figure 2.3.

Knowing all the contraction kernels from the base level to the level k, it is also possible
to calculate directly the graph Gk. The individual contraction kernels for each level are
stored as decimation parameters (Sk, Nk,k+1). The transition from base level to level
k is done by combining successively the decimation parameters from level 0 to level k
into one single equivalent contraction kernel (ECK). For example the graph Gk+2 can be
computed as [Kro98]:

C[C[Gk, (Sk, Nk,k+1)], (Sk+1, Nk+1,k+2)] = C[Gk, (Sk+1, Nk,k+2)] = Gk+2,

where C is a contraction operation. An example of equivalent contraction kernels of the
same pyramid, but at different levels can be seen in Figure 2.4.

The removal- and contraction operations are very closely related in dual graphs, namely
a removal operation in the primal graph is a contraction operation in its dual, and
vice-versa. The dual graph reduction scheme proposed by Kropatsch [Kro98] applies
first the contraction operation in the primal graph, called dual edge contraction, and
successively a contraction operation in the dual graph, called dual face contraction. An
example of this procedure can be seen in Figure 2.5. Here the first operation contracts
non-survivors towards survivors, and if possible the second operation simplifies the graph
by removing multiple edges and empty self loops. In the following section, this reduction
scheme will be adapted to be usable with the combinatorial map representation. All of
the properties of the graph dualism will be preserved.
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Figure 2.4: An example of equivalent contraction kernels on different levels of the same
pyramid. The left image shows the ECK of Gk and the right image the ECK of Gk+1.
The right ECK is a tree spanning over all vertices, which means that Gk+1 is the apex of
the pyramid.

Figure 2.5: Examples of the dual graph reduction scheme. The primal graph is drawn black
and its dual green. The middle and right examples show also the second simplification
step by removing multiple edges and empty self loops using the dual face contraction.
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2.2.2 Combinatorial Pyramid Reduction Scheme

In the combinatorial pyramid reduction scheme both the contraction- as well as the
removal operation are performed by modifying the σ-permutation, and leaving the α-
permutation untouched. This modification is visually easily understandable, namely the
α-permutation binds together the two halves of an edge, and the σ-permutation binds
together the half edges incident to a vertex in a chosen direction. When a contraction-
or removal operation is applied, only the connections between vertices and edges are
modified, not the edges themselves. Figure 2.6a shows a simple example of a removal of an
edge connecting two vertices of degree four. After performing the removal operation, on
both vertices the binding of the half edges is changed by skipping the removed half edges.
In terms of a combinatorial map encoding this is a modification of the σ-permutation of
the predecessor darts of the darts forming the removed edge. Mathematically the removal
operation can be defined as [BK01]:

Definition 7. Removal Operation
Given a combinatorial map C = (D, α, σ) and a dart d ∈ D which is neither a bridge

nor an empty self-loop, the combinatorial map C \α∗(d) = (D\α∗(d), α, σ′) is defined by:
∀d′ ∈ D \ σ−1(α∗(d)) σ′(d′) = σ(d′)
σ′(σ−1(d)) = σ(d)
σ′(σ−1(α(d))) = σ(α(d))

Similarly, the contraction operation removes the edge between two vertices and merges
them together. A visualization of the contraction operation can be seen in Figure 2.6b.
Once again, this is only a modification of the half edge order of both vertices, namely
the contracted edge is ignored and the order of half edges of both vertices is combined
together. Same as with the removal operation, this only modifies the σ-predecessors of
the darts forming the contracting edge in the combinatorial map.

Definition 8. Contraction Operation
Given a combinatorial map C = (D, α, σ) and a dart d ∈ D which is neither a pendant

edge nor a self-loop. The combinatorial map C/α∗(d) = (D \ α∗(d), α, σ′) is defined by:
∀d′ ∈ D \ σ−1(α∗(d)) σ′(d′) = σ(d′)
σ′(σ−1(d)) = σ(α(d))
σ′(σ−1(α(d))) = σ(d)

As it was explained in Section 2.1, there are special types of edges which can cause prob-
lems when contracting or removing an edge. For the contraction operation this special
edge is a self-loop, and for the removal operation this is a bridge. The reasoning behind
this is fairly obvious, namely one of the properties of the graph dualism is that when the
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(a)

(b)

Figure 2.6: A visualization of the (a) removal operation, and the (b) contraction operation.

primal graph is connected, its dual is connected as well. When an image is represented as a
planar graph and contraction- or removal operations are performed, then the connectivity
of this image has to be preserved. In terms of a graph this means that edges that are
bridges cannot be removed. In the dual graph this translates to a contraction of a self-loop.

The second step of the reduction scheme, namely simplification of the graph, can be
performed very easily in the dual combinatorial map encoding. Multiple edges and empty
self-loops can be identified in the dual combinatorial map by the cardinality of the ϕ-orbit
[BK01]. An empty self-loop translates in the dual to a pending edge, which can be
found by identifying pendant darts for which the condition ϕ(d) = d is true. Here the
cardinality of the ϕ-orbit is 1. Multiple edges between two vertices can be found in the
dual by identifying darts, which belong to ϕ-orbits of the degree 2. Here the condition
ϕ2(d) = ϕ(ϕ(d)) = d holds.

2.2.3 Canonical Representation

So far only the theory of combinatorial pyramids and the reduction scheme have been
presented, but no implementation specific details were given. The combinatorial pyra-
mid is a hierarchy of successively reduced combinatorial maps. Practically what this
means is that with the height of the pyramid, the memory requirements to store the
combinatorial pyramid are increased, as in each level a new combinatorial map has to be
captured. Until recently this was the main disadvantage of the combinatorial pyramid
representation. In response to this problem Torres and Kropatsch [TK14] proposed a
canonical representation for the combinatorial pyramid which encodes the whole pyramid
at the memory requirements of the combinatorial map at the base level. The main idea
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of this encoding is that the combinatorial pyramid consists of a single array in which its
elements are ordered with respect to the construction history of the pyramid.

When an image is encoded as a combinatorial map, the number of darts equals to
|D| = 2 ∗ |E| = 2 ∗ ((M − 1) ∗N +M ∗ (N − 1)), where D is the set of darts of the com-
binatorial map, E is the set of edges in the region adjacency graph of the image, and M
and N are the image dimensions. The canonical encoding stores only the σ-permutation
of the combinatorial map in an array of size |D|. For the α-permutation, this encoding
takes advantage of the indexing of the array. The darts are encoded in the α-permutation
as even and odd unsigned integers, namely:

α(d) =
{
d+ 1 if d odd
d− 1 if d even

This encoding of the darts makes it redundant to store the labels of the darts and the
α-permutation. The darts in the canonical encoding are numbered from 1 to |D|. In
a 0-indexed array this means for the σ-permutation, that for the dart d a look-up at
position d− 1 has to be made. Analogously, for a 1-indexed array the σ-permutation for
dart d is stored at index d.

When a removal- or contraction operation on the base level of the pyramid is per-
formed, the array is split into an active- and a passive part. The active part is stored as
a whole in the front of the array and the passive part as a whole in the back of the array.
This can be implemented by storing the index at which the passive part starts. The
active part stores the state of the combinatorial map in the current level of the pyramid.
When an operation on the current map is performed, a quadruple (d, α(d), σ(d), σ(α(d)))
defines this operation. The first two values, d and α(d), capture the indices at which an
edge is encoded in the combinatorial map, and the latter two values, σ(d) and σ(α(d)),
capture the encoding of that edge in the map. When an operation is performed, the
σ-permutation of the affected darts is modified by following the reduction scheme, and
then a reordering and relabeling of the darts takes place. This is done by moving the
quadruple to the front of the passive part and relabel the darts to fit the corresponding
position in the array. This procedure effectively stores the chronological order of the
operations from the base level to the current level in the passive part of the array. An
example of this reordering principle can be seen in Figure 2.7.

In order to retrieve the combinatorial map at the base of the pyramid, the darts in the
passive part are moved to the active part. In this step there is no need for a reordering of
the darts, because the darts are already chronologically ordered in the passive part of the
pyramid. At this point, it is only necessary to apply the inverse removal- or contraction
operations on the darts. Using the canonical encoding of the pyramid it is also possible
to recognize whether an inverse removal or an inverse contraction operation should be
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D[i] 1 2 3 4 5 6 7 8
σ 5 7 6 8 1 3 2 4

D[i] 1 2 3 4 5 6 7 8
σ 3 5 1 6 2 4 1 3

Figure 2.7: An example of an encoding of a combinatorial pyramid after a contraction
operation. In the left combinatorial pyramid the quadruple defining the contraction is
highlighted in gray. In the right pyramid, the quadruple moved to the passive part of the
pyramid. The first rows of the tables are not stored in the array, as they are the dart
labels defined by the indices of the array.

applied. The conditions for identifying an inverse removal operation are [TK14]:

• if σ′(α(d)) /∈ σ′∗(σ′(d)) or σ′(d) /∈ σ′∗(σ′(α(d))),

• if σ′∗(d) = σ′∗(α(d)),

where d and α(d) are the first two values of the quadruple identifying the operation at
the beginning of the passive part. Similarly, the conditions for identifying an inverse
contraction operation are:

• if σ′(α(d)) ∈ σ′∗(σ′(d)) or σ′(d) ∈ σ′∗(σ′(α(d))).

The canonical representation of the combinatorial pyramid makes a trade-off between
the space that is needed to store the pyramid along with the reduction history, and
the computational cost that is needed to perform such a reduction operation. As it is
mentioned in [TK14], the bits that are needed to store a combinatorial pyramid explicitly
is log2(D)

∑n
l=0

|D|
kl plus parent/child relations to unfold the pyramid, where kl is the

reduction factor between level l and l − 1, and n is the total number of levels. When
an implicit encoding is used as in [BK03a, FB10], then the number of bits needed to
store the pyramid is |D|log2(D) + 1

2 |D|(log2(n)). The canonical representation of the
pyramid reduces these space costs to the number of bits that are required to store the
base combinatorial map of the pyramid, that is |D| × log2(D).

With respect to the computational costs, it is also worth noting that when multiple
reduction operations are performed on a single level of the pyramid, the reordering of the
darts has to be applied only once after the last operation on that level has been performed.
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Figure 2.8: An example showing the topology preserving property of a combinatorial
map. The left image shows an object encoded as a combinatorial map with σ =
(1, 2, 3, 4, 5, 6, 7, 8), and the right image shows an encoding using dual graphs. Here the
primal graph is drawn in black its dual in green. By switching any of the loops of the
object the σ-permutation would change leading to a new combinatorial map, but the
new dual graph would be isomorphic to the unaltered one.

The reordering of the darts takes comparably longer than applying a reduction operation,
since the operation only changes maximally 2 values in the σ-permutation, and the
reordering of the darts has to relabel in the worst case all of the darts. The only two
cases where no reordering has to be performed is when the “last” edge in the graph is
being reduced, or the combinatorial pyramid has been already once reduced to the apex
and reconstructed. At this point it is only necessary to apply the reduction operations.
Out of this reason we can choose an algorithm for constructing contraction kernels with
a high reduction factor, for example [HGS+02].

2.3 Topology Preservation

As it could be seen in the previous sections, the combinatorial pyramid is a more concise
representation of the dual graph pyramid. The combinatorial pyramid inherits also one of
the most important properties from the structural point of view, namely topology preser-
vation [BK99, BK03b]. To visualize this property, an example object is encoded using a
combinatorial map and dual graphs in Figure 2.8. The advantage of the combinatorial
map over dual graphs comes from its embedding in the plane. Imagine that any two loops
of the object would be exchanged. In the combinatorial map encoding this would lead to
a different σ-permutation and thus a different object. In the dual graph representation
however this exchange would produce a new dual graph which is isomorphic to the original
one, meaning that the new object would be structurally equal to the unaltered one. This
way the topological representation of an object using a combinatorial map is unique. In a
combinatorial pyramid each of the levels consists of a combinatorial map which encodes
the current partitioning of the image. When the pyramid is additionally encoded using
the canonical representation, the history of reduction operations is captured as well. This
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(a) (b)

Figure 2.9: A visualization of (a) multiple borders and the (b) inclusion relationship
captured by the combinatorial pyramid. Notice in the top image multiple borders between
the two largest regions, as well as the self-loop of the large region around the small
included region in the lower image. The coloring of the vertices indicates the topological
class of each vertex, discussed in more detail in Section 3.2. A yellow vertex color indicates
a local minimum, red a local maximum, and pink a singular slope.

way an unique relationship between individual levels of the pyramid is produced without
loss of functionality [TK14]. This ultimately leads to the ability of the combinatorial
pyramid to fully reconstruct the initial combinatorial map from any level of the pyramid.

Additionally the pyramid differentiates between adjacency- and inclusion relationships of
regions, and between single- and multiple borders between regions. To visualize these
properties (and combinatorial pyramids in general) we implemented the algorithm pro-
posed in [IIKG08]. A simple example of the ability to capture multiple borders between
regions can be seen in Figure 2.9a, and an example of the inclusion relationship can be
seen in Figure 2.9b.

2.4 Image Graphs
As it is said in [BK03b], the efficiency of an irregular pyramid is strongly influenced by
two closely related features:

1. The decimation process used to build one graph from the graph below, and

2. The data structure used to encode each graph of the pyramid.

The decimation process used during the construction of the pyramid defines on one
hand the height of the pyramid, and on the other hand the properties, that may arise
from the decimation process. As was shown in [HGS+02], the height of the pyramid can
be bounded by logarithmic height, which brings the reduction factor of the irregular
pyramid on the level of the regular pyramid. Other properties, that may arise from the
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decimation process are for example parallelization, uniform contraction kernel size, and
others. The data structure that is used to encode the graphs at each level of the pyramid
determines the properties that may be encoded with each of these graphs. Simple region
adjacency graphs and dual graphs do not have the ability to encode multiple borders
and the inclusion relationship. Combinatorial maps encode the graph as a set of darts,
explicitly encode the dart neighborhood orientation, and implicitly encode the dual
combinatorial map. Generalized maps are able to represent non-orientable surfaces and
open subdivisions. The combination of the chosen decimation process and the data
structure to reduce and encode the graphs at each level of the pyramid define the overall
properties of the irregular pyramid.

In this work we define a new decimation process which satisfies the needs of a structurally
correct image segmentation, defined later in Chapter 5. The underlying data structure to
store the graphs of the pyramid will be combinatorial maps, with an additional canonical
representation for compressing the storage required for capturing the reduction history.
Combinatorial maps have the advantage, that they implicitly encode the dual combinato-
rial map. This way the dual combinatorial map may be retrieved at any time from the
primal combinatorial map, and vice-versa. Another property of the combinatorial maps
is, that they are equivalent to dual graphs [BK99], and are at any time interchangeable
with these dual graphs. For this reason, many of the concepts in this work will be
explained in terms of dual graphs, even though the main underlying data structure will be
a combinatorial map.

A digital image can be very easily translated to a (primal) image graph, as illustrated in
Figure 2.10. Each pixel in the image is represented in the graph G = (V,E) as a vertex
v ∈ V , and the neighborhood relationships are represented as a set of edges E. Assuming
4-neighborhood, the corner pixels have 2 neighbors, the remaining border pixels have
3 neighbors, and the internal pixels have 4 neighbors. This way it is possible to draw
the image graph G in one plane with the mentioned neighborhood relations. Since for
the presented image segmentation algorithm in this work it is crucial to have encoded
multiple edges and inclusion relationships, it is necessary to encode the image using a
dual graph or a combinatorial map. For this reason, the dual image graph G′ = (V ′, E′)
is constructed, where the vertices V ′ correspond to 2×2 pixel configurations called faces,
and the edges E′ connect these pixel configurations. At a higher level k of the irregular
pyramid, the vertices Vk correspond to whole regions, i.e. connected components of pixels.
These regions may vary in shape and size, and at the semantic level they may represent
a segmented object in the image. Equivalently, this dual concept can be translated to
combinatorial maps. Each vertex v ∈ V of graph G is encoded in the combinatorial map
C = (D, α, σ) by a σ-orbit σ∗(d), where d is a dart associated with vertex v. The edges E
of graph G are encoded as dart-pairs, each connected by an α-orbit α∗(d). The advantage
of the combinatorial map is, that the dual map C ′ = (D, α, ϕ) can be easily computed.
The dart set D and the α-permutation remain the same, and the ϕ-permutation may be
computed as ϕ = α ◦ σ or ϕ = σ ◦ α.
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Figure 2.10: An illustration showing the dual graph and dual combinatorial map repre-
sentation of an image. The vertices of the image graph encode the pixels of the image,
and the edges the neighborhood relationships. The vertices of the dual graph, which can
be constructed from the primal image graph, encode 2×2 pixel configurations. The dual
graph and dual combinatorial map representations of the image are equivalent [BK99]
and thus interchangeable.
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CHAPTER 3
Local Binary Patterns (LBP)

Texture is omnipresent in the real world and for humans an intuitively understood
concept, yet in the technical world there is still a lack of a generally accepted definition
of texture. In the scientific literature there are many different attempts to define texture,
however these are still relatively vague, for example:

• “Texture refers to properties that represent the surface or structure of an ob-
ject.(...)We might define texture as something consisting of mutually related ele-
ments.” [SHB93],

• “A texture area in an image can be characterized by a non-uniform or varying
spatial distribution of intensity or color.” [PZHA11],

• “Texture is an important property of images, representing the structural and
statistical distribution of elements throughout the image.” [Wal14].

In general there are two types of textures, namely regular- and irregular textures. Regu-
lar textures consist of ordered repeating structural elements, such as a brick wall, and
irregular textures follow a statistical distribution, but do not have any repeating pattern
[Wal14], for example pebbles on a road. Textures also usually consist of multiple levels
of structure. A good example for this is a checkered piece of cloth, where the large scale
structure is the pattern made of the textile checks, and the small scale structure being
individual stitches from which the textile is woven. Another example is an irregular
stone wall, where the large scale structure defines the arrangement of the rocks, and the
small scale structure describes the surface of individual rocks. Images may contain a
single texture, for example a brick wall, or multiple textures, such as a satellite image
of a terrain with urban- and forest areas. The problem of automatically segmenting
and classifying images with texture dates back at least 40 years [WDR76]. Already at
that time, texture classification algorithms could be divided into structural and statis-
tical approaches. Structural approaches computed features derived from the texture’s
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Fourier power spectrum, whereas statistical approaches computed features from a gray
level co-occurrence matrix (GLCM) known as Haralick features [HSD73] or performed a
classification based on local properties measured on the texture such as the mean and the
standard deviation of pixels. Later in 1990, He and Wang [HW90] introduced the notion
of a Texture Unit, which describes the local relationship of a pixel to its 8 neighbors.
Texture Units distinguish 6561 = 38 individual local texture elements, which when statis-
tically described using a histogram could classify a texture. This classification method
inspired Ojala et al. [OPH96] in 1996 to introduce the Local Binary Patterns (LBP),
which quickly evolved into one of the most studied and modified texture descriptors. The
functionality of the Local Binary Patterns is the same as of the Texture Units with the
difference, that less (256 = 28) local texture elements can be distinguished. Since the
introduction of the Local Binary Patterns numerous different extensions of this texture
descriptor have been proposed, e.g. to guarantee rotation invariance [OPM02], enable
multi-scale analysis [TP06], or gain the ability to process color images [MP04]. Further
research also included the combination of the LBP with other local feature descriptors
like for example SIFT [Low99, HPS06] to increase the matching accuracy between objects
in different images. With this large base of modifications and extensions of the LBP
descriptor it is possible to apply it to many applications, e.g. for face recognition and
verification, medical image analysis, background subtraction, human detection, gender
classification, and facial expression recognition [PHZA11].

This chapter is organized as follows: Section 3.1 describes the original Local Binary
Pattern texture descriptor and explains the constraints the LBP codification of an image
sets on the histogram of this image. Section 3.2 describes the classification of primal and
dual vertices into five topological classes based on their associated LBP code. Section 3.3
explains how it is possible to transition to strict inequality Local Binary Patterns using
the combinatorial pyramid framework, and finally Section 3.4 handles the special case of
non-empty self-loops for the assignment of one of the five topological classes.

3.1 Local Binary Patterns (LBP)

The original Local Binary Pattern texture descriptor was proposed in 1996 by Ojala et al.
[OPH96] as a way to locally describe the texture around each pixel in an image. The idea
is, that each distinct local texture element can be described as a sequence of 0- or 1-bits,
which can be interpreted as a decimal number. Let the intensity of a pixel p = (x, y),
denoted by g(p), be encoded using 8 bits, i.e. as an integer value in the range [0, 255].
Then the original decimal LBP is computed for a (center) pixel as:

LBPP =
P−1∑
i=0

s(g(pi)− g(c))2i , (3.1)

where P is the number of neighbors, c is the center pixel of the operator and pi is the
local neighbor indexed by i. The basic operator uses the sign function s(x) with:
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(a) (b) (c) (d)

Figure 3.1: An example of visually different, but statistically equivalent images. All of
these images have the same gray-value histogram. (a) is the original image, (b) are the
ordered pixels by values, (c) has a random permutation of the location of the pixels, and
(d) has ordered pixels by values by columns.

s(x) =
{

1, if x ≥ 0
0, if x < 0

. (3.2)

The authors of the original LBP proposed to use the local 3×3 neighborhood for the
computation, i.e. P = 8. The Equation 3.1 can be interpreted as a sequence of three
operations, namely first the 8 neighbors of a pixel are thresholded by its value, then the
resulting sequence of 0- and 1-bits is multiplied by increasing powers of 2, and finally the
resulting weighted numbers are summed up to represent the local texture around the
center pixel as a unique decimal number. This way, in the case of a 3×3 neighborhood
28 = 256 distinct local texture elements can be identified and described.

The standard approach to represent a region using the LBP is to describe it statis-
tically using a histogram. In case of the presented LBP this is a histogram with 256
bins. To perform a classification of this textured region, a comparison with a set of
known samples using a histogram distance measure is performed. When the set of known
textures is structurally diverse with respect to the LBP codification of the image, this
approach performs well. Problems arise, when two textures have a similar amount of
the same LBP codes scattered around at different spatial locations. These textures may
seem to us humans to be different and clearly distinguishable, but from a statistical
point of view these textures may seem very similar. This is the main problem of the
histogram, namely that it is not a bijective function and it does not take the spatial
locations of its values into consideration. An example of this principle can be seen in
Figure 3.1. By encoding the image using the Local Binary Patterns, the local structure of
the image is taken into consideration. Every single permutation of values in the context
of smaller/greater and equal than the center pixel is codified using a unique number.
This puts considerable restrictions on the size of the class of images which have the same
LBP histogram. Also, the spatial location of the locally captured structure by the LBP
is lost when using a global histogram. An example of images with equal LBP histograms
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Figure 3.2: An example of images with the same LBP histogram. (a) is the original
image, (b) is the original image after applying a LBP preserving transformation.

can be seen in Figure 3.2. Observe, that the images are visually different when comparing
the grayscale values, however the same basic structural elements like edges and corners
are present in both images.

3.2 LBP Classes
As mentioned in the previous section, after thresholding the peripheral values by the
center value, the binary numbers are brought into sequence to form an 8-bit binary
number. The length of the binary LBP number depends on the number of neighbors of a
pixel when using the original LBP, or on the sampling rate of a more generalized version
of the LBP [OPM02]. This extended version samples the local neighborhood of a pixel
at a specified radius and sampling rate, enabling multi-resolution analysis and rotation
invariance of the texture descriptor. The original 4-neighborhood LBP texture descriptor
can be computed with the extended LBP texture descriptor by using the radius one
and a sampling at 4 points. The problem with the generalized version is that it is only
defined on a square grid, which corresponds in the combinatorial pyramid representation
to the base level. At a higher level of the pyramid, to compute the more generalized
LBP of a region, one would need to increase the number of sampling points to achieve
the same sampling rate at the border of the region, which would automatically lead to a
variable length of the binary LBP code. An additional problem might occur at concave
regions, where some of the sampling points would be inside the same region. Out of this
reason the original LBP will be used in this work.

When an image is represented as a graph, the length of the original LBP number
of a vertex depends on the number of edges incident to that vertex. In case of the
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combinatorial pyramid representation this translates to the cardinality of the σ-orbit
of each encoded vertex. At the base level of the pyramid the corner vertices have 2
neighbors, the remaining border vertices have 3 neighbors, and the rest of the vertices
have 4 neighbors. At the level k of the pyramid with simplification, this number of
vertices can however range from 1 to n neighbors. In case of the LBP code of an encoded
vertex corresponding to a region in the image, the LBP code would be represented as a
1- to n-bit binary number.

All of the LBP codes can however be classified into 5 topological classes regardless
of the number or circular shifting of the bits of a LBP code. To give an example, imagine
a gray-scale image with a Gauss-blurred dot. When this image is interpreted as a
height-map, then the original position of the dot corresponds to the peak of a mountain,
which corresponds to a local maximum. When this region is merged with regions in a
circular neighborhood, then the new region will look like a flattened peak, but will still
correspond to a local maximum. The length of the LBP code of this new region will be
longer, but the classification remains the same. This classification also remains the same,
when the binary numbers are padded with the first- or last binary value, so that all of
the LBP codes have the same length for comparison or other reasons.

For the classification of the LBP codes we will be assuming strict inequality relationships,
that means a 0-bit expresses the smaller than (<) relationship of a center vertex to the
peripheral vertex, and a 1-bit the greater than (>) relationship. This assumption is made
to avoid problems caused by the asymmetry of the 0- and 1-bits of the LBP code. These
problems and a way to solve them will be discussed in the next section. The 5 classes
shown on an example of 4-bit LBP codes are:

• Minimum: [0000],

• Singular Slope: [1000],[0100],[0010],[0001],[0111],[1011],[1101],[1110],

• Slope: [1100],[0110],[0011],[1001],

• Saddle: [1010],[0101], and

• Maximum: [1111].

The notation “[.....]” represents the sequence of 0- and 1-bits stored at the individual
darts of an orbit. For example [0011] means, that when traversing the orbit in a specified
direction (CW, CCW), then the center pixel is smaller than 2 of its adjacent neighbors
and larger than 2 of its remaining adjacent neighbors.

In general, the class of the LBP code can be assigned by counting the number of
0/1 and 1/0 transitions. Minima and maxima are defined by zero transitions, slopes by
two transitions, and saddles by four or more transitions. Slopes can further be divided
into a regular- and a singular slope. Singular slopes are slopes, where there is only a
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Minimum Singular
Slope Slope Saddle Maximum

Primal Graph
(Regions)

Dual Graph
(Faces)

Figure 3.3: An example of the classification of vertices in the primal and dual graph into
five topological classes. The top row shows vertices of the primal graph, that correspond
to regions, and the bottom row shows vertices of the dual graph, which correspond to
faces in the primal graph. The degree of the dual vertices is in all cases 4, which means
that each face is bound by 4 edges. The arrows between the vertices display the strict
inequality relationships between the vertices. 0-bits are marked black, and 1-bits are
marked green. Notice, that in any correctly constructed image graph, it is not possible
that dual local extrema occur (for more details see Section 4.4).

single occurrence of a 0- or 1-bit. The remaining slopes are classified as regular slopes.
Ojala et al. [OPM02] refer to our defined slopes as “uniform” Local Binary Patterns,
and based on their findings this LBP class represents the vast majority of classes found
in images with texture, sometimes even over 90 percent. An analysis of the topological
classes in randomly selected natural images can be seen in Section 5.4. The top row in
Figure 3.3 illustrates the classification of a primal vertex corresponding to a region in the
image into each of the topological classes based on its binary neighborhood relationships.

In the combinatorial pyramid representation, the relationships between two adjacent
vertices can be implemented as binary attributes of the corresponding darts l(d). Here d
is a dart at the center vertex, for which l(d) = 0 if there is a smaller (<) than relationship
between the center vertex and its α-connected neighbor, and l(d) = 1 if there is a greater
or equal than (≥) relationship. In combinatorial pyramids with only strict inequalities,
l(d) = 1 describes a greater than (>) relationship.

The topological classification of LBP codes can be also applied to the vertices of the dual
graph which correspond to faces in the primal graph, and thus classify each of these faces.
The incident edges of a dual vertex represent the bounding edges of a face, and the binary
relationships stored at these edges define the binary relationships between the vertices
incident to the bounding edges of a face. In the combinatorial map representation, the
bounding edges of a face are split into pairs of darts. Each of these darts is associated
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Figure 3.4: A simple graph encoded as a combinatorial map with its dual map on the
right with ϕ = α ◦ σ. In this example the single inner face of the graph is bounded by
five edges, which are split up into 10 darts. As can be seen on the right dual map, the
face is defined by the odd numbered darts.

with exactly one face, and thus each dart pair identifies the two faces incident to the edge
formed by this dart pair. All of the darts associated with a single face are the defining
darts of this face, and they are included in the dual orbit ϕ∗(d).

Definition 9. Face extrema
Let a face in the primal graph be encoded by ϕ∗(d) in the dual combinatorial map

C = (D, α, ϕ). Let there be only strict inequality relationships stored at each dart d as
binary attributes l(d). Then the vertex associated with dart d is a face extremum if:

Face Minimum:
{
l(d) = 0 ∧ l(ϕ−1(d)) = 1 if ϕ = α ◦ σ
l(d) = 0 ∧ l(ϕ(d)) = 1 if ϕ = σ ◦ α

Face Maximum:
{
l(d) = 1 ∧ l(ϕ−1(d)) = 0 if ϕ = α ◦ σ
l(d) = 1 ∧ l(ϕ(d)) = 0 if ϕ = σ ◦ α

(3.3)

To get a better understanding of the face extrema, observe the illustration in Figure 3.4.
In this example, the left image shows a simple graph encoded using a combinatorial map,
and on the right side its dual map with ϕ = α ◦ σ. The inner face of the primal graph is
bounded by five edges, which are split up into ten darts. Assuming only strict inequality
relationships, then either l(d) = 1 ∧ l(α(d)) = 0 or l(d) = 0 ∧ l(α(d)) = 1 has to apply.
Let v be the primal vertex associated with dart number 1. Then v is a face minimum, if
l(1) = 0 and also l(10) = 0. In the dual combinatorial pyramid the darts 1 and 10 are
connected by the operation α(ϕ−1(1)) = 10. From this follows, that a face minimum is
defined by l(1) = 0 and also l(α(ϕ−1(1))) = 0. Since only strict inequality relationships
apply, l(10) = 0 can be replaced by l(9) = 1. This operation removes the α-operation
from l(α(ϕ−1(1))) = 0, which means that the vertex v is a face minimum if l(1) = 0 and
also l(ϕ−1(1)) = 1, as defined in Equation 3.3. The process for defining a face maximum,
as well as the face extrema with ϕ = σ ◦ α can be derived analogously.
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Same as with the primal LBP classes, dual topological minima and maxima have zero 0/1
or 1/0 transitions, slopes are defined by one 0/1 and one 1/0 transition, and saddles are
defined by more than two of each transition. The bottom row in Figure 3.3 illustrates the
classification of a face into each of the topological classes based on the binary relationships
of its bounding edges. Observe in this figure in the bottom row the face, that is a slope.
In this face the vertex b is a face minimum and the vertex c is a face maximum.

3.3 Strict Inequality LBP

The problem with not using strict inequalities is that ambiguities in the classification of
a LBP code may arise because of the 1-bit. An example is with the primal topological
maximum, where the LBP code consists of a sequence of 1-bits. At this point it is not
clear whether the vertex is larger than all surrounding vertices, equal to all of them,
or some of them are smaller and some are equal to the center vertex. To clarify if
the center vertex has an equal value to a neighboring vertex, it is necessary to check
if l(d) = l(α(d)) = 1, where d is a dart at the center vertex and α(d) is its α-related
counter-dart at the neighboring vertex.

The solution to these problems is to merge neighboring regions with equal values called
plateaus.

Definition 10. Plateau
Let α∗(d) correspond to an edge in the primal graph encoded by a combinatorial map

C = (D, α, σ). Let u and v be the associated vertices with the darts d and α(d), and let
l(d) and l(α(d)) be the binary attributes storing the non-strict relationship between u and
v. Then u and v form a plateau, if l(d) = l(α(d)) = 1.

Due to the asymmetry of the 0- and 1-bits the case l(d) = l(α(d)) = 0 cannot occur
and thus does not need to be checked. From the structural point of view the merging
of plateaus has the consequence, that all of the relationships between vertices change to
strict inequalities. The only side-effect is, that the binary attributes l(d) stored at the
darts of the self-loops misrepresent the true relationships between the incident vertices.
The problem is, that if u is the vertex associated with dart d and vertex v with α(d),
then the attributes l(d) = l(α(d)) = 1 would mean u > v ∧ v > u. Self-loops are however
special edges and will be discussed more in detail in the next section. For the remainder
of this work we will be assuming strict inequality relationships between regions, that can
be achieved by merging plateaus.

3.4 Self-loops in Strict Inequality LBP

After merging plateaus and simplifying the combinatorial pyramid using the dual reduction
scheme, only non-empty self-loops remain. Non-empty self-loops are special edges, because

28



Figure 3.5: An example division of darts around a vertex with a non-empty self-loop into
inner and outer darts. Darts marked with red color are outer darts, and darts marked
with green color are inner darts.

they describe the inclusion relationship, a contraction of these edges is not possible without
destroying the connectivity of the primal or dual graph [BK99], they consist of the only
darts which have an equality relationship, and they separate darts at a vertex with a
non-empty self-loop into inner and outer darts. The last property allows to assign a
vertex with a non-empty self-loop LBP classes in a local- and global context. The LBP
class can be assigned by considering:

• Only the inner darts,

• Only the outer darts, or

• All darts except for the self-loop.

Figure 3.5 shows a subdivision of darts around a vertex with a non-empty self-loop into
inner and outer darts.

During the assignment of the LBP class the self-loop has to be ignored, because otherwise
ambiguities may arise. This is due to the fact, that the inequality relationships l(d) of
the darts of the self-loop are no more valid. Consider the following case, where after the
contraction of plateaus the remaining non-empty self-loops have the binary relationships
l(d) = l(α(d)) = 1:

In both faces the top vertices are part of a large region, and the incident edge is a self-loop.
The arrows signify the direction of the edges based on the 0- and 1-bits stored at the
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(a) (b)

Figure 3.6: An illustration of the subdivision of inner and outer darts in the (a) primal
graph, and the (b) dual graph. Vertices containing the non-empty self-loop are filled with
gray color, darts marked with red color are outer darts, and darts marked with green
color are inner darts.

darts. The arrows of the top edge are highlighted in green color, as both of them store
1-bits. When traversing the dual dart orbit in clockwise direction, the left face has the
LBP code [0011] and the right face has [0111]. This way the left face is a slope, and the
right face a singular slope. When traversing the faces in counter-clockwise direction, the
left face has the LBP code [0111] and the right face has [0011]. In this case the LBP
classes of the two faces are switched. To prevent such ambiguities, the self-loops have to
be ignored. In the above example, when ignoring the self-loop, both LBP codes have the
length 3 and become singular slopes.

In the primal graph a vertex with a non-empty self-loop corresponds to a merged region
which encloses one or more regions. In the global context when considering all sur-
rounding darts of the vertex, both the outer vertices and the enclosed vertices are taken
into consideration for deciding the LBP class of the region. In the local context when
considering only the outer darts, the merged region and all its contents are perceived
from outside as a single vertex. Analogously, when considering only the inner darts, the
merged region is perceived from inside as a single enclosing region. In the dual graph
a vertex with a non-empty self-loop corresponds to a face, which has an outer border,
touches at the edge corresponding to the self-loop, and has an inner border. In the local
context, only the inner or outer border are perceived. Figure 3.6 illustrates a vertex with
a non-empty self-loop in the primal as well as the dual graph, and highlights the inner
and outer darts.

The decision whether to subdivide the darts depends on the context of the applica-
tion. In this work we will use this subdivision to assign a LBP class to a vertex based on
whether the currently observed dart is an inner or an outer dart.

30



CHAPTER 4
Image Structure

So far the theory of combinatorial pyramids and Local Binary Patterns has been explained.
Using these two concepts it is possible to define a framework for the task of image
segmentation, which utilizes the structure of the image as a basis. In the following
chapter we will define the structure of an image using LBPs in Section 4.1, which
allows to make decisions whether two images belong to a set of images with the same
structure. Since this set can become large, we also describe an algorithm to compute
a representative image for each such set. Section 4.2 describes two types of redundant
structural information and a way to remove dual singular slopes. Section 4.3 shows how
it is possible to remove dual saddles. Using the theory in these two sections it will be
possible to generate an image representation with only dual slopes. Finally, Section 4.4
describes the theory of the previous sections using concepts from the order- and graph
theory, and defines a structurally correct image segmentation.

4.1 Structural Equality and Representative Image

In this work we define the structure of an image at the lowest possible level, namely as
binary relationships between individual regions. Our reasoning is, that we first try to
segment the micro-structures of the objects in the image, and then successively merge
these micro-structures to identify structures at a higher level. Additionally by not
introducing structural errors, which will be defined in the next section, we expect to
get a segmentation with plausible hierarchical relationships between individual levels of
structure in the image. An analogous example in the real world is that when segmenting
a tree, we first try to identify the individual leaves and bark of a tree, which when unified
form the stem and crown of the tree. The LBP enable us to define the structure of an
image on such a low level.
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Figure 4.1: An example of two images which have the same structure and thus the same
LBP codification. Notice that even though these images are visually different, structural
elements such as edges or corners are preserved.

Using the original Local Binary Patterns [OPH96], an image I can be LBP codified
to an 8-bit grayscale image LBP (I) to represent local texture elements at each pixel in
I. By considering only the structure of the image using the LBP codification, there is
a whole class of images S which have exactly the same LBP codification, and are thus
structurally equal:

S = {(I, J) | LBP (I) = LBP (J)}, (4.1)

where I and J are two images of the same dimensions. Figure 4.1 shows an example of
such two images which have the same structure and thus the same LBP codification, but
are visually different.

The class of images S with the same structure as the input image I is usually very large,
and therefore we define a representative image REP (I) ∈ S for each class:

REP (I) = REP (J), I 6= J, I, J ∈ S, (4.2)

from which also follows

LBP (REP (I)) = LBP (I). (4.3)

The algorithm for the computation of the representative image is a general algorithm
for computing the longest paths in directed graphs without cycles. These graphs can
be constructed by first representing the original image as an undirected image graph,
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Algorithm 4.1: Algorithm for computing the representative image REP
Data: Directed Acyclic Graph G = (V,E)
Result: Representative image REP encoded as attributes r(V )

1 Initialize vectors TS, I;
2 Initialize all attributes r(V ) := 0;
3 TS := TopologicalSort(G);
4 forall the vertices v ∈ TS do
5 I := findIncomingEdges(v);
6 forall the edges (s, v) ∈ I do
7 r(v) := max{r(v), r(s) + 1};
8 end
9 end

(a)

(b)

Figure 4.2: An example of the computation of the representative image using Algorithm
4.1. (a) shows the original image on the left and the final representative image on the
right, and (b) shows the topologically sorted vertices and their representative values on
the bottom.

and after merging vertices with equal values, each edge in the image graph is assigned a
direction. As it is shown in more detail in Section 4.4, the resulting graphs contain no
cycles. The pseudocode for this algorithm can be seen in Algorithm 4.1 and an illustration
of its functionality in Figure 4.2. This algorithm can be applied to a combinatorial map
with just slight modifications, since the combinatorial map encodes the edges of a graph
as darts, and the vertices as orbits of darts.

In this algorithm, the vertices of the graph G are first topologically sorted in line 2. Since
G is a DAG, at least one topological ordering must exist. The topological sorting is
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a well-known problem in graph theory and there exist a number of algorithms, among
others by means of the Depth-First Search algorithm, which provide a solution that is
linear in time with respect to the size of the graph, i.e. O(|V |+ |E|). The for-loop in lines
3− 12 then traverses each vertex once and looks if it has any incoming edges. If there are
no incoming edges, then this vertex is a local minimum, and receives the value 0 in the
representative image. Otherwise, the current vertex receives the next highest value from
all of its predecessors. This for-loop processes each vertex and edge once and is also linear
in the size of the graph, O(|V |+ |E|). Note, that this algorithm requires a DAG as input.
Since a combinatorial map after merging plateaus may include self-loops, that are only
present to preserve the topology of the image and are ignored during the computation
of the LBP class of a vertex, these edges need to be removed prior to computing the
representative image. This pre-processing step has the complexity O(|E|), since all edges
need to be checked if (v, v) ∈ E, v ∈ V is true.

4.2 Structural Redundancy
As was mentioned in Section 3.2, each 0/1 and 1/0 transition in the dual LBP code
defines a face minimum or face maximum in the primal graph. All structural information
inside a face is stored as directed paths between such minima and maxima. Because dual
topological minima and maxima describe directed cycles, which cannot naturally occur
in images, the only allowed LBP classes of faces are singular slopes, regular slopes, and
saddles. This way all naturally occurring faces have at least one 0/1 and 1/0 transition.

There are two types of operations which can be applied with respect to a face, that do
not change the structural information content:

1. Contraction of an edge which does not connect a face minimum and a face maximum,
and

2. Removal of an edge corresponding to a single occurring 0- or 1-bit in a dual singular
slope.

The first operation exploits the transitive property of the LBP. The inequality relationship
between two regions connected by a directed path is independent of the length of these
paths. This way no structural information is lost, when these paths get reduced to the
length 1:
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Proposition 1 Let there be a directed path of length ≥2 between a face minimum and a
face maximum. By contracting any two adjacent vertices along this path, the LBP class
of the face containing this path may change only if it was a slope, otherwise the LBP
class remains the same.

Proof of Prop. 1 The length of a directed path along the border of a face is given by the
length of consecutive 0- or 1-bit sequences in the orbit of the dual vertex corresponding to
the face. Paths of length 1 correspond to single occurring 0- or 1-bits. By contracting
only paths of length >= 2, all of the 0/1 and 1/0 transitions in the dual orbit remain
preserved, and thus the LBP class of the dual vertex does not change if it was a saddle.
Singular slopes may only be reduced at the longer path, thus preserving the characteristic
single occurring 0- or 1-bit and also its LBP class. In case of a slope, both paths may be
reduced to a length 1, resulting in the LBP code [01], which is a singular slope. �

In this work we will only be using the second reduction operation, because we reserve the
contraction in the primal graph purely for the purpose of expressing the similarity of two
regions, and thus their belonging to the same region describing an object in the image.
For this reason, when we will be talking about the “removal of a redundant edge”, we will
be always referring to the second reduction operation.

This second operation is based on the fact, that every face that is a slope, has two
paths between its face minimum and face maximum. Singular slopes have additionally
the property, that one of these paths has the length 1. By removing this shorter path, all
of the inequality relationships between the vertices of a face remain preserved, because
there exists a second path from the face minimum to the face maximum:

When looking at a face minimum, then it is known that the LBP code of this vertex has
to contain at least two consecutive 0-bits, [...00...]. Based on the degree of the orbit of
this vertex, the LBP class of this vertex may vary. In case the degree of the orbit of this
vertex is 2, then this vertex can only be a local minimum [00]. If the degree of the orbit
is 3, this vertex may be a local minimum [000] or a singular slope [100]. When the degree
of the orbit is 4, the vertex may also be a slope [1001], and from an orbit degree of 5
upwards, this vertex may also be a saddle [01001]. Analogously, the vertex corresponding
to the face maximum has to contain at least two consecutive 1-bits, [...11...], and based
on the orbit degree it may be a local maximum, singular slope, slope, or saddle.
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Proposition 2 Let there be a vertex in the primal graph, which is a face minimum or a
face maximum. By removing a redundant edge that is incident to this vertex, the LBP
class of this vertex may only change, when its LBP class prior to the removal was a slope.

Proof of Prop. 2 Prior to the removal of a redundant edge, the orbit of the vertex
corresponding to the face maximum contains at least 2 consecutive 1-bits, and the face
minimum at least 2 consecutive 0-bits. By removing a redundant edge, this sequence of 0-
or 1-bits gets shortened by 1 LBP value. This removal thus does not affect the number
of 0/1 and 1/0 transitions, and thus does not change the LBP class if the vertex was
a local minimum, local maximum, or a saddle. If the vertex was a singular slope, then
only the multiple occurring 0- or 1-bits may be shortened, and thus not changing the LBP
class. Finally, if the vertex was a slope, then it may only change its LBP class, when
a shortening of a 0- or 1-bit sequence with length 2 occurs. Assume a slope of degree 4,
i.e. [0011]. By removing a redundant edge, only the two LBP codes [011] or [001] may
remain, and thus defining a singular slopes in both cases. �

In the dual graph, the removal of a redundant edge corresponds to a contraction of two
vertices, where one of them is a singular slope. The only constraint here is, that the
contraction is performed at the edge, that contains the single occurring 0- or 1-bit of
the singular slope. This single occurring 0- or 1-bit of the singular slope is always paired
with an opposite bit of the other vertex. By contracting the two vertices, the opposite
bit gets replaced by n bits of the same “polarity” from the singular slope.

Proposition 3 Let a redundant edge prior to its removal separate two faces, where one
of them is a singular slope, and the other a saddle or a slope. By removing the redundant
edge, the LBP class of the new face will be preserved, and thus will be a again a saddle
or a slope.

Proof of Prop. 3 Consider a merging of a saddle [0101] and a singular slope [0111]
in the dual graph. The single occurring 0-bit of the singular slope is paired with a 1-bit
of the saddle. A contraction causes the paired edge to be removed and the remaining 0-
and 1-bit sequences of both vertices to be combined at the point of merging. This way
the previously existing 1-bit of the saddle is replaced by 3 1-bits of the singular slope,
resulting in the LBP code [011101] or [010111], which is again a saddle. Analogously, the
slope [0011] can only be extended by the 3 1-bits of the singular slope to the new LBP
code [001111], which is again a slope. �

Proposition 4 Let a redundant edge prior to its removal separate two faces, where both
of them are singular slopes. By removing the redundant edge, the LBP class of the new
face will be a singular slope or a slope.

Proof of Prop. 4 A constraint on the merging of two singular slopes is, that at least one
of them has to be merged at the edge of the single occurrence of a 0- or 1-bit. Consider
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this first singular slope to have the LBP code [0111]. Then the other singular slope has
to be paired with the single 0-bit, that means it can have the LBP code [0111] or [1000].
In the first case, any 1-bit of the second singular slope is replaced by 3 1-bits of the first
singular slope, and the resulting LBP code is [011111], which is a singular slope. In the
second case, both singular slopes are merged at their single 0- or 1-bits, and the resulting
LBP code is [000111], which is a slope. �

As can be seen, the only changes in the LBP classes in the primal and dual graph are
between slopes and singular slopes. One important aspect of this observation is, that this
removal of redundant edges can be chained together to completely remove singular slopes
in the dual graph, such that the only remaining LBP classes in the dual graph will be
slopes and saddles. As will be seen in the next section, it is also possible to completely
remove saddles, with the exception of the outer face, such that only slopes remain in the
dual graph. This way the whole dual graph will only consist of slopes, and thus describe
all structural information within a face as two directed paths between a face minimum
and face maximum.

Another observation is, that the representative image REP (I) is identical, when it
is computed from the combinatorial map representing I before and after removal of
redundant darts. This is due to the fact, that Algorithm 4.1 for computing the represen-
tative image computes the longest monotonically increasing paths between two reachable
vertices. Since the removal of a redundant edge preserves the longer path inside a face
that is a singular slope, this removal has no effect on the representative image.

4.3 Removal of Dual Saddles

In this section we will describe a method proposed in [GDKCL14] to remove dual saddles
in an image. By applying this method, then merging plateaus, and then removing all
redundant edges, it is possible to obtain an image representation, where except for the
outer face, each face is a slope.

Prior to the merging of plateaus, with exception of the outer face, every vertex in
the dual graph has the degree 4. In case of the outer face, the degree of the vertex is
2(M +N − 2), where M and N are the image dimensions. Saddles, that are inner faces,
can be identified very easily by looking at the number of 0/1 and 1/0 transitions in the
orbit of the dual vertex representing the face. Since the LBP code of this saddle can
only be [0101] or [1010], the number of 0/1 and 1/0 transitions is 2 from each. This also
means, that inside a face that is a saddle, there are 2 face minima and 2 face maxima.
This is the only LBP class of faces, that has this characteristic. For this reason, to
transform a dual saddle into a slope or a singular slope, it is necessary to split up this
face, so that each new face has only one face minimum and one face maximum. Addi-
tionally it is necessary to perform this operation without any loss of structural information.
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This transformation of a face that is a saddle can be performed by dividing it into
4 sub-faces. In the original image this operation translates to the insertion of a new
sub-pixel in the middle of the face:

Let g(x) be the grayscale value of a vertex x. Then the choice of the new grayscale value
g(v) of the vertex v inside the face depends on the relationships between the individual
face minima and face maxima. Let a and d be the face minima, b and c the face maxima,
and g(a), g(b), g(c), and g(d) the corresponding grayscale values. Then there are two
possibilities to choose the value g(v), namely:

1. if g(a) = g(d) < g(b) = g(c) (resp. g(a) < g(d) < g(b) < g(c)), then g(v) =
g(d)+g(b)

2

2. if g(a) = g(d) < g(b) < g(c) (resp. g(a) < g(d) < g(b) = g(c)), then g(v) =
g(a) = g(d) (resp. g(v) = g(b) = g(c))

In the first case, either both diagonal pairs are equal, or none. Here it is important that
the inserted vertex receives a grayscale value g(v), which preserves the face minima and
face maxima. Therefore the new grayscale value is in between the interval of the face
minimum with the higher value, and the face maximum with the lower value. In the
second case, only one of the diagonal pairs is equal. This situation suggests, that in
between the diagonal pair is a connection, and thus the new vertex and the diagonal pair
should form a plateau. Notice, that at this point no structural information is added or
lost. The structural relationships between the face minima and face maxima remain the
same, because it is still unknown which of the two face minima is structurally smaller, or
which of the two face maxima is structurally greater.

This insertion of a new vertex causes the original face of degree 4, to be split into
4 new faces of degree 3. Since the face minima and face maxima remain preserved, the
only two possible LBP codes of the new faces may be [001] and [011], which are singular
slopes. The single occurring 0- or 1-bits correspond to the bounding edges of the original
face. This way, after merging plateaus, it is possible to remove these edges, because they
describe redundant binary relationships. An illustration of this insertion of a new vertex
and subsequent removal of redundant edges, and the effects on the primal and dual graph
can be seen in Figure 4.3.
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(a)

(b)

Figure 4.3: Effects of inserting a new vertex into a face that is a saddle, and subsequently
removing redundant edges. These effects are shown both on the (a) primal-, and the (b)
dual graph. Notice in the dual graph on the right side, that no vertices are drawn. This
is because the removal of an edge in the primal graph corresponds to a contraction in the
dual graph, and all of the vertices in the dual graph were contracted towards outside.

4.4 Structural Correctness
All of the explained concepts in the previous sections have their existing equivalents in
the order- and graph theory, and in this section we will make a connection between them.

Definition 11. Non-strictly Partially Ordered Set
A non-strictly partially ordered set is a set P with a binary relationship RP ⊆ P × P ,

such that for all x, y, z ∈ P :

• (x, x) ∈ RP (reflexivity),

• (x, y) ∈ RP ∧ (y, x) ∈ RP ⇒ x = y (anti-symmetry), and

• (x, y) ∈ RP ∧ (y, z) ∈ RP ⇒ (x, z) ∈ RP (transitivity).

Definition 12. Strictly Partially Ordered Set
A strictly partially ordered set is a set SP with a binary relationship RSP ⊆ SP ×SP ,

such that for all x, y, z ∈ SP :
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• (x, x) /∈ RSP (irreflexivity),

• (x, y) ∈ RSP ⇒ (y, x) /∈ RSP (asymmetry), and

• (x, y) ∈ RSP ∧ (y, z) ∈ RSP ⇒ (x, z) ∈ RSP (transitivity).

In analogy with a set of integers, the relationship (x, y) ∈ RP can be rewritten as x ≤ y
(or equivalently, x ≥ y), and the relationship (x, y) ∈ RSP can be rewritten as x < y
(or equivalently, x > y). Every non-strict partial order can induce a strict partial order
through (x, y) ∈ RP ∧ x 6= y. Similarly, every strict partial order can induce a non-strict
partial order through (x, y) ∈ RSP ∨ x = y.

Definition 13. Non-strictly Totally Ordered Set
A non-strictly partially ordered set P is called a non-strict totally ordered set, if all

of its elements are comparable, i.e. (x, y) ∈ RP ∨ (y, x) ∈ RP , ∀x, y ∈ P .

Definition 14. Strictly Totally Ordered Set
A strictly partially ordered set SP is called a strict totally ordered set, if all of its

elements are comparable, i.e. (x, y) ∈ RSP ∨ (y, x) ∈ RSP , ∀x, y ∈ SP .

Definition 15. Cover
In a strictly partially ordered set SP , for x, y, z ∈ SP the relation “x is covered

by y” can be expressed as (x, y) ∈ RSP such there exists no element z with (x, z) ∈
RSP ∧ (z, y) ∈ RSP .

Having introduced the theory of partially and totally ordered sets, it is further possible
to define an image and its structure.

Definition 16. Digital Grayscale Image
Let I be a non-strict total set of integers in the range [0 255], and let there be some

neighborhood definition between the elements of I, e.g. 4-, 6- or 8-neighborhood. Then by
mapping this non-strict total set together with the neighborhood definition onto a grid, a
grayscale image is formed.

Note however, that the individual pixels of the newly generated image do not form a
total set anymore. The reason for this is, that not all of the pixels are connected through
chains of “≤” relationships. For example two local minima cannot be connected through
such a chain, and thus they are not comparable. This way, the set of pixels of an image
form merely a non-strictly partially ordered set.

Definition 17. Image Structure
Let P be the non-strictly partially ordered set of grid elements (pixels) of an image
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induced by the order of the gray values. Then this set can also be interpreted as the
structure of the image.

Notice, that with this definition we separate the image structure from the grayscale
values of the pixels, and let it be defined purely by the “≤” relationships mapped onto
the grid.

When an image is represented as an attributed graph G = (V,E), the vertices represent
the pixels, the edges the neighborhood relationships, and the attributes stored at V the
gray values. The image structure also defines a non-strict partial ordering of V . By
merging pixels with equal values and removing self-loops in G a new reduced graph
G′ = (V ′, E′) is created, and a strict partial ordering of V ′ can be defined. This also
allows to assign a direction u → v to each edge (u, v) ∈ E, turning G′ into a directed
acyclic graph (DAG).

Definition 18. Minimum Equivalent Graph [MT69]
Let G = (V,E) be a DAG. Then the minimum equivalent graph G∗ = (V,E∗) is

the smallest sub-graph of G, such that there is a path from vertex u to vertex v in G∗

whenever there is a path from u to v in G.

Definition 19. Transitive Reduction of a Graph [AGU72]
Let G = (V,E) be a DAG. Then the transitive reduction Gt = (V,Et) is a graph with

a minimum amount of edges, such that there is a path from vertex u to vertex v in Gt

whenever there is a path from u to v in G.

Notice that the difference between the minimum equivalent graph G∗ and the transitive
reduction Gt is, that Gt does not necessarily need to be a sub-graph of the original graph
G. One observation however is, that if the original graph is a planar DAG, then G∗ and
Gt are identical [AGU72]. Another observation by the authors is, that the computational
complexity of the transitive reduction is equivalent to the computational complexity of
performing a Boolean matrix multiplication. This computation can be done in polynomial
time, and the currently fastest algorithm has the complexity O(n2.373) [Wil12].

A property of the minimum equivalent graph G∗ is, that any edge in G∗ may be
contracted, and the strict partial ordering of the remaining vertices of the resulting graph
remains preserved. This property is based on the fact, that the minimum equivalent
graph is equal to the covering relation of the original graph [PH15]. What this means
is, that if there is an edge between vertices u and v in G∗, then there does not exist a
longer path between these two vertices in G∗. This way a contraction of an edge in the
minimum equivalent graph does not produce any cycles.

As it is explained in [AGU72], the transitive reduction of a graph G can be obtained,
by “successively examining the arcs of G, in any order, and deleting those arcs which
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(a) G (b) Gred (c) G∗ = Gt

Figure 4.4: An example where the reduced graph Gred is not equal to the minimum
equivalent graph G∗. Vertices of the graphs are the yellow squares and directed edges
are displayed as arrows. (a) is the original graph, (b) shows Gred, and (c) shows the
minimum equivalent graph G∗, which is equal to the transitive reduction Gt.

are ‘redundant’, where an arc α = (u, v) is redundant if the graph contains a directed
path from u to v which does not include α”. From this algorithm description follows,
that G∗ = Gt ⊆ Gred ⊆ G, where G is the original DAG, G∗ the minimum equivalent
graph, Gt the transitive reduction, and Gred is the graph obtained by removing redundant
edges from G, which correspond to single occurring 0- or 1-bits of dual singular slopes.
The observation that Gred is not necessarily equal to Gt and G∗ comes from the fact,
that singular slopes stretching over multiple faces are not identified and this way some
redundant edges may remain in Gred. An example of such a case, where Gt = G∗ 6= Gred

is shown in Figure 4.4. The left image shows the original graph, the middle one shows
Gred and the right one Gt = G∗. Notice, that in the middle image both faces are slopes,
but when looking at the outer border, the LBP class is a singular slope.

An image segmentation is a subdivision of an image into a number of connected, non-
overlapping, heterogeneous regions, where all pixels inside such a region share some
homogeneous properties. These properties may be for example color, texture, some
higher-level similarity measure, and so on. When an image segmentation is captured
using a graph, then each vertex inside this graph corresponds to a region, and edges
represent neighborhood relationships. In this work, we also define the direction of the
edges, by mapping the image structure onto the graph capturing the image segmentation.
This way smaller than (<), greater than (>), or greater or equal than (≥) relationships
are mapped onto the edges, and an ordering of the individual segmented regions is created.
This allows us to define a structurally correct image segmentation:

Definition 20. Structurally correct image segmentation
An image segmentation is structurally correct, if the mapped structural relationships

onto the segmentation regions satisfy all properties of a non-strict partial ordering. If
additionally all regions with equal values have been merged, then a strict partial ordering
has to apply.
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CHAPTER 5
Structurally Correct Image

Segmentation (SCIS) Algorithm

With the theory explained in the previous chapters we are able to propose a new struc-
turally correct image segmentation algorithm. It is based on successively removing
redundant edges and merging similar regions, while preserving all structural constraints.
The main idea of this algorithm is that all the faces in the graph are slopes, and thus all
of the structural information with respect to a face is captured as two directed paths
between a face minimum and a face maximum. This way, if a merging operation causes
a face to turn into a singular slope, redundant edges can be identified and removed, and
new larger faces that are slopes are generated. In this work we represent an image as
a graph with 4-connectivity, because a combinatorial pyramid is required to be planar,
and it is not possible to construct planar graphs with 8-connectivity for images of size
greater that 4×4 [KBL07]. This reduced neighborhood connectivity has however no effect
on the LBP classes of individual regions if dual saddles are removed, as it is shown in
[CGDK15].

Algorithm 5.1 describes the Structurally Correct Image Segmentation (SCIS) algorithm
proposed in this work. The input of this algorithm is a 2-dimensional grayscale or color
image I. From this image an attributed combinatorial pyramid in canonical representa-
tion is constructed in line 3. Each dart pair is assigned a weight, which represents the
similarity between the associated vertices, w(ui, uj) = |F (ui)− F (uj)|, where ui and uj

are vertices and F is some feature. For grayscale images F can be defined as the intensity
of a region F (ui) = g(ui), and for color images F (ui) = [ri, gi, bi] for the RGB color
distance, F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)] for the HSV color distance [SM00],
or other features.

The Structurally Correct Image Segmentation (SCIS) algorithm consists of several
methods:
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Algorithm 5.1: Structurally Correct Image Segmentation (SCIS) Algorithm
Data: 2-dimensional digital image I
Result: A combinatorial pyramid in canonical representation capturing the

segmentation process
1 k := 0;
2 Initialize vector J ;
3 Initialize combinatorial pyramid C in canonical representation from image I;
4 C ′ := RemoveDualSaddles(C);
5 C0 := MergeP lateaus(C ′);
6 repeat
7 C ′k := RemoveRedundantEdges(Ck);
8 D := C ′k.getActiveDarts();
9 if D = ∅ then

10 return C ′k;
11 end
12 J := sortDartsByWeights(D);
13 while J.hasNext() do
14 d := J.getNext();
15 get vertices u and v associated to darts d and α(d);
16 val := computeNewV alue(C ′k, u, v);
17 if fitsSurroundingLBP (C ′k, val) then
18 Ck+1 := contractEdge(C ′k, d);
19 k := k + 1;
20 break while;
21 end
22 end
23 until Ck = Ck−1;

• RemoveDualSaddles(): This method is based on Section 4.3. Here it is necessary
to check the LBP class of each dual vertex, and process vertices that a saddles. In
the combinatorial pyramid data structure this corresponds to traversing all orbits,
thus the complexity is O(|D|), which is equal to visiting each edge twice. The
insertion of new vertices can be done by extending the α- and σ-permutation, and
then relinking the σ-permutation. This operation needs to be done for each newly
inserted vertex and is thus linear in the number of new vertices.

• MergeP lateaus(): Plateaus can be identified by checking each edge, if the incident
vertices have the same values. In the combinatorial pyramid data structure this
relationship is encoded at the darts as binary attributes l(d). Thus here it is
sufficient to check for each pair of darts if l(d) = l(α(d)) = 1 applies, thus the
complexity is O(|E|).

• RemoveRedundantEdges(): The removal of redundant edges can be performed
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by computing the minimum equivalent graph of Gk. As was mentioned in the
previous chapter, this operation has polynomial complexity, with the currently best
performing algorithm having O(n2.373) [Wil12]. This part of the SCIS algorithm is
the most expensive one, and in the next section we will show, that it is sufficient
to remove redundant edges corresponding to single occurring 0- and 1-bits of
dual saddles in combination with verifying that the new computed value fits all
surrounding LBP values.

• sortDartsByWeights(): The sorting of the darts is necessary for the subsequent
processing. The algorithm selects the dart with the lowest weight, and verifies if it
can be merged. If it cannot be merged, then the dart with the second lowest weight
is picked and verified. This is done until a suitable dart for merging is found, or else
the algorithm stops. As both darts of an edge have equal weights, it is sufficient to
select only the odd or even darts from the active darts. The sorting can be done
in O(n logn) in each iteration of the algorithm, where n = |E| = |D|/2. Another
approach is to store the edges in a sorted set, which allows multiple entries with
the same values. After each merging, the edges incident to the new vertex are
removed from the set, updated, and then reinserted. This way the complexity of
filling the set in the beginning is O(n logn), and then in each iteration the update
of the set is O(2m logn), where m is the number of updated elements, and in most
cases m� n.

• computeNewV alue(): The computation of the new value of the region depends on
the application. This may be for example the mean or median of all the pixels in
the region, or any other approach. In this work we utilize the mean operation. To
speed up the computation, we additionally save the area of each region, and then
when computing the new value, it is sufficient to compute the area-weighted mean
of both regions.

• fitsSurroundingLBP (): This operation verifies, if the newly computed value
satisfies all of the binary relationships stored at the incident edges. Since the two
vertices that are candidates are not merged yet, this operation is equal to checking
all the edges incident to the two vertices, minus the edges that connect them. In
the following image, the edges that need to be checked are marked with green color:

In the combinatorial pyramid data structure this operation corresponds to checking
two orbits minus the α-connected darts of the candidate edge, i.e. σ∗(d) \ d and
σ∗(α(d)) \ α(d).
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• contractEdge(): The contraction of the edge is implemented based on Section 2.2,
and includes the modification of the σ-permutation and an update of the stored
attributes.

The part of algorithm with the variable complexity is in the nested while − loop in
lines 13 − 22. Here the algorithm selects edges with ascending weights and verifies if
they satisfy the surrounding structural constraints, until a fitting one is found. One
observation here is, that the complexity of this part depends on the amount of texture in
an image. Images with little texture find fitting edges very early, and highly textured
images have to verify a higher number of edges. This way images with a lot of texture
require more time for processing. In the best case, where after merging plateaus only
regions with non-equal values remain, the complexity of the outer and inner loop is
combined O(|V | − 1), because in each iteration the first edge is selected, and the final
equivalent contraction kernel is a tree. In the worst case, the last edge is selected, and
therefore the complexity is O(

∑N
i=1 |Ei|), where N is again |V | − 1, and Ei is the set

of edges at level i after redundant edges have been removed. In case all the pixels in
the image have equal values, the algorithm terminates at line 10. The run-time of the
algorithm applied to an artificial image with Gaussian noise and successively blurred
copies of the image is shown in Section 5.2.

5.1 Redundant Edges and Surrounding LBP

A property of a redundant edge is, that neither of the incident vertices is covered by
the other. This means, that between two vertices u and v there is always at least one
vertex w, such that u < w < v. Because of this property, there does not exist an interval
of possible new values when u and v are merged, as the merged region would have to
receive a new value that is at the same time greater and smaller than w. From this
follows, that if not all redundant edges get removed in line 7 of the SCIS algorithm, they
will be skipped in lines 16− 17. This way, instead of computing the minimum equivalent
graph G∗, it is sufficient to just compute the graph Gred.

Proposition 5 The SCIS Algorithm preserves the structural correctness of the image.

Proof of Prop. 5 The SCIS Algorithm computes the reduced graph Gred, and skips
during contraction any edges included in G∗\Gred, effectively allowing only contraction
of edges of the minimum equivalent graph G∗. A contraction of any edge in G∗ does not
produce any cycles, see Section 4.4, and thus the strict partial ordering of the regions of
the image is preserved. �

In the first iteration of SCIS, all of the redundant edges are present in C0, and the
RemoveRedundantEdges() function has to check each orbit in the dual graph if it is a
singular slope. From this follows a complexity of O(|D|) in the first iteration. Then
in each subsequent iteration it is sufficient to check, if the merged edge did not create
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any faces, that are singular slopes. Since a contraction operation in the primal graph is
equivalent to a removal in the dual graph, only the incident faces need to be analyzed:

In this image the dual graph before and after merging two primal vertices is shown. The
vertices in the image represent the incident faces of the edge that was contracted. A
contraction in the primal is a removal in the dual, and thus the red edge is removed in
the graph on the left. On the right, this dual removal caused both dual vertices to change
LBP classes from slopes to singular slopes, and thus the edges marked with green color are
redundant edges, and can be removed in the primal graph. As can be seen, the verification
if new singular slopes were created can be reduced to O(|ϕ∗(d) \ d|+ |ϕ∗(α(d)) \ α(d)|),
where d and α(d) are the darts representing the contracted edge in the previous iteration.

5.2 Complexity with Amount of Texture

As was mentioned earlier, the part of the algorithm with the variable complexity is
in the nested while-loop in lines 13 − 22. Here the algorithm iterates over the edges
in ascending order of their weights and picks the first edge, where the merging of the
incident vertices satisfies the structural constraints of the local neighborhood. This
approach suggests, that lowly textured regions get merged fast, and highly textured
regions slowly. In this context, the “amount” of texture found locally around a region
is defined by the variation of grayscale or color values of adjacent regions. This way, if
the variation of grayscale or color values in the local neighborhood gets reduced, the
“amount” of texture should decrease, and consequently the time to segment the image
using the SCIS should decrease accordingly. To verify this, we let the algorithm run on
a set of artificially generated images and measured the run-time. This set consists of
an image with dimensions 300x300 and pixel values of 0.5 with additive Gaussian noise
(µ = 0, σ = 0.01), that is blurred with Gaussian filters of increasing variance. The noisy
non-blurred image has a mean pixel value of 0.499, with the lowest value of 0.014 and the
highest 0.999. During filtering, the border regions are handled by replicating the values
of the other side. Figure 5.1 shows a plot of the results with the σ of the Gauss filters on
the x-axis and the run-time in seconds on the y-axis. The non-filtered noisy image is
excluded in the plot, and the run-time for this image was 2393 seconds. As expected, the
run-time increases with the “amount” of texture in an image. In general the form of the
run-time curve is exponential, with just some very slight deviations. These deviations
can occur for example when the blurring caused some region configurations, so that less
redundant edges could be removed, and thus more edges needed to be tested.
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Figure 5.1: A plot showing the run-time of the SCIS algorithm based on the amount of
texture in an image. A highly textured image with Gaussian noise was iteratively blurred
with a Gauss filter of varying variance. The x-axis shows the variance of the filter, and
the y-axis shows the run-time in seconds.

5.3 Region Merging History

An important property of the SCIS algorithm is, that highly textured regions remain
preserved up to a high level in the pyramid. This is due to the fact, that these highly
textured regions are composed of sub-regions which pose many structural constraints on
each other. On one hand the edges between these sub-regions have rather high values
and thus get selected as merging candidates by the algorithm in a late stage, and on the
other hand the newly computed values by the algorithm very often do not satisfy the
binary relationships stored at the incident edges. This way lowly textured regions are
preferred by the algorithm for the merging in the lower levels of the pyramid. Figure
5.2 shows three natural images and their corresponding merging history. Dark regions
in the “merging history image” were merged early, and bright regions were merged late.
Notice in the top row, that the corn in the middle of the image, as well as the black
beans on the right and the stripes of the bag get merged late, and that the regions that
correspond to shadows or dirt get merged early on. Similarly, notice how in the middle
row the sky and the dark areas get merged early, and how the highly textured crown of
the tree and the bushes get preserved up to a high level of the pyramid. Also observe in
the bottom row, that the latest merged regions are around the airplane, and then at the
regions, where the sky blue and clouds get mixed.

Another observation here is, that these “merging history images” resemble images
showing the magnitude of edges. In these images the magnitude is high at pixels, where
the intensity in the local neighborhood changes abruptly, and low, where there are flat
regions. Analogously, highly textured regions have a high variance in the intensity of
the pixels in the local neighborhood and thus get preserved longer. This reflects in the
“merging history image” as pixels with high intensity.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Merging history of the Structurally Correct Image Segmentation (SCIS)
Algorithm shown on two example images. Images (a), (c), and (e) show the original
images, and (b), (d), and (f) show the merging history. Darker regions were merged early
by the algorithm, and bright regions were merged late.
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Image Name Min Slope Singular
Slope Saddle Max

∑
pre

∑
after

∑
slopes∑

after

220075.jpg 8299 60198 53201 15922 7997 165779 145617 0.778
210088.jpg 8432 65597 45708 16693 8710 167479 145140 0.766
106024.jpg 7864 46611 46147 14796 7764 164338 123182 0.753
12084.jpg 13779 51776 66488 26406 13045 174544 171494 0.689
108070.jpg 15808 44466 66788 30273 14880 177319 172215 0.646
119082.jpg 13112 33480 60637 25787 13364 167606 146380 0.643
14037.jpg 10525 28158 42172 19626 10243 167897 110724 0.635
145086.jpg 14849 40906 56727 28665 14446 175965 155593 0.627
102061.jpg 13315 27505 52649 25366 12948 170883 131783 0.608
101085.jpg 19065 33162 65904 37159 18638 182784 173928 0.569
156065.jpg 19033 34794 63424 37141 18724 183483 173116 0.567
196073.jpg 20239 26138 63783 40395 20761 185005 171316 0.524

Table 5.1: Topological class statistics for some randomly selected natural images from
the Berkeley Image Segmenetation Dataset. The first column contains the names of the
images, columns 2-6 show the individual topological classes, column 7 shows the number
of regions after inserting new vertices into the image graph to remove dual saddles,
column 8 shows the number of regions after merging plateaus, and the final column shows
the percentage of slopes and singular slopes versus all regions.

5.4 Topological Classes in Images

In this section we show topological class statistics of some randomly selected natural
images selected from the Berkeley Image Segmentation Dataset [MFTM01]. All of the
shown images have dimensions 481×321 or 321×481, and thus the same number pixels,
namely 154401. Each of these images has been stored in a combinatorial map, dual
saddles have been removed by inserting new vertices, and plateaus have been merged, so
that it is possible to classify each region into one of the topological classes. Table 5.1
shows the name of each of the selected images, the distribution of the topological classes,
number of regions after inserting new vertices, number of regions after merging plateaus,
and the percentage of combined slopes (slopes + singular slopes) from all topological
classes. The statistics have been sorted descending by the percentage of combined slopes.

The main observation here is, that the number of singular slopes remains at a rather
stable level. On the other hand, with increasing percentage of combined slopes, the
number of local minima, local maxima, and saddles decreases, and the number of regular
slopes increases. This behavior generally suggests, that images with a low percentage
of combined slopes contain a high local variation in terms of grayscale or color values,
and thus can be seen as rather highly textured. Such a high grayscale or color variation
in the local neighborhood coupled with many local extrema cause pixel configurations,
where it is often necessary to insert new vertices to remove dual saddles. This can be
confirmed by looking at the overall number of vertices prior to and after plateau merging.
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Analogously, images with a high percentage of combined slopes contain many local
gradient-like features and less local variation, and thus can be seen as weakly textured.
This observation can be verified by looking at the images in Figures 5.3 and 5.4.

The first figure shows the last three images from Table 5.1, which have a low com-
bined slope percentage. As can be seen, these images contain large regions with high
color variation. In the left image these regions are the three stone statues, the pebble on
the ground below the statues, and the grass. In the top image these regions are the corals
together with the overgrown wall on the right, and in the bottom image these regions are
the sand and the snake. The second figure shows the first three images from Table 5.1.
These images have a high combined slope percentage, which is caused by large blurred
and gradient-like regions. The left image consists essentially only of gradient-like regions,
namely the fish which is gradually shaded from orange to a dark yellow, and the corals
which have a clean transition from light blue to dark blue color. The remaining two
images on the right both are focused on the main objects, the cowboy and the penguin,
which causes the objects in the background to be blurred, and thus have no fine texture.

(a) 101085.jpg

(b) 156065.jpg

(c) 196073.jpg

Figure 5.3: Highly textured images selected from the Berkeley Image Segmentation
Dataset. Observe that these images contain rather high local variation in terms of color
values, which causes it to contain many local extrema and saddles.
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(a) 210088.jpg

(b) 220075.jpg

(c) 106024.jpg

Figure 5.4: Weakly textured images selected from the Berkeley Image Segmentation
Dataset. Observe that these images contain little local variation in terms of color values,
gradient-like regions, and some large blurred regions.
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CHAPTER 6
Evaluation

In this chapter we will perform a quantitative evaluation of the Structurally Correct
Image Segmentation (SCIS) algorithm and compare it to five other segmentation al-
gorithms. The chosen dataset for the evaluation is the Berkeley Image Segmentation
Dataset [MFTM01] which consists of 300 natural images of sizes 321×481 or 481×321
divided into a training set of 200 images and a test set of 100 images. Since none of
the used algorithms for the evaluation require training, we have decided to use the 100
test images. The Berkeley Segmentation Dataset additionally provides ground-truth
segmentation data produced by 30 human subjects, where each test image has at least 5
ground-truth segmentations. In these images, the main objects of interest are 22 human
subjects, 43 animals, 10 man-made structures, 12 landscapes, and 13 other objects such
as airplanes, cars, and so on. From a textural point of view, 22 images have little texture,
57 have medium amount of texture or an approximate ratio of lowly and highly textured
regions of 1:1, and 21 images are highly textured. This way advantages and disadvantages
of the texture preservation property of the SCIS algorithm can be analyzed and verified.

Image segmentation algorithms can be generally divided into two classes, namely
boundary- and region-based methods [FMR+02]. The distinction between these two types
is made based on the way pixels and their local neighborhood are handled. Boundary-
based algorithms take the discontinuity between pixels and their neighbors into consid-
eration, e.g. edge information, whereas region-based algorithms rely on the similarity
between pixels. This similarity can be defined by some homogeneity property, such as
similar colors, textures, etc. The SCIS algorithm falls into the region-based category,
as the image is represented using a graph, and the merging is performed by finding
the lowest weighted edge (highest similarity) which satisfies structural constraints. To
compare the proposed SCIS algorithm, we selected four other region-based segmentation
algorithms and one hybrid algorithm, which will be described in Section 6.2.
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There are generally two types of image segmentation evaluation procedures:

• Qualitative, and

• Quantitative methods.

Qualitative methods rely on a subjective evaluation by human subjects. In this case the
human subjects have to decide, whether the result of a segmentation algorithm is good
or bad using some grading method. As this evaluation method is purely subjective and
different observers provide different opinions and gradings, we focus on quantitative meth-
ods. Quantitative methods can be divided into analytical and empirical methods [Zha96].
Analytical methods evaluate the image segmentation algorithm in terms of its intrinsic
properties, such as complexity, efficiency, etc. On the other hand, empirical methods
evaluate the results of the algorithm, that means how close the computationally generated
segmentation is to one or more reference segmentations. These reference segmentations
are usually produced by humans in natural images, and a-priori defined in artificial
images. The performance of the image segmentation algorithm using empirical methods
is measured using evaluation functions. The analytical evaluation of the SCIS algorithm
was performed in Sections 5.2 and 5.3. In this chapter, we will perform an empirical
evaluation and comparison of the proposed SCIS algorithm and five other algorithms
with respect to two well-known evaluation metrics, namely the Global Consistency Error
(GCE) [MFTM01], and the Probabilistic Rand Index (PRI) [UPH07]. These metrics will
be described in more detail in the next section. The characteristic of these two metrics is,
that they are based on the overlap of the regions of two segmentations. We chose this type
of evaluation metrics, because it coincides with the functionality of the region-based seg-
mentation algorithms. In contrast, the boundary-based segmentation methods are usually
evaluated using metrics, which are focused more on the dissimilarity properties of re-
gions, such as Boundary Precision-Recall Curves [MFM04b] or the F-Measure [MFM04a].

The following chapter is divided as follows: Section 6.1 describes the Global Consistency
Error and the Probabilistic Rand Index used for evaluating the computer generated
segmentation to a set of ground-truth segmentations, and Section 6.2 provides an overview
of the other five segmentation algorithms used in the evaluation. Section 6.3 shows the
results of the evaluation and Section 6.4 discusses the advantages, disadvantages, and
observations about the SCIS algorithm. Section 6.5 includes a gallery of some of the best
and worst results, and finally Section 6.6 contains an overview of open problems and
future work.

6.1 Metrics
In this section the Global Consistency Error and the Probabilistic Rand Index evaluation
metrics will be described. Both of these metrics are based on the overlap of the regions of
two segmentations, and the main advantage of these methods is that local refinement of
segmentations is taken into account. In our evaluation we use ground-truth segmentations
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on natural images produced by humans. As it is studied in [MFTM01], the segmentations
produced by humans are generally consistent in segmenting individual objects, but the
degree of granularity of the segmentations varies. For this reason local refinement is
a factor which needs to be taken into consideration in segmentation evaluation. This
granularity of segmentations can be also observed and thus studied in algorithms which
provide a sequence of correlated segmentations, such as our proposed algorithm and
several other we used for evaluation.

6.1.1 Global Consistency Error (GCE)

The Global Consistency Error (GCE) and the Local Consistency Error (LCE) were both
introduced in [MFTM01]. Let \ denote the set difference, and |x| the cardinality of the
set x. If R(S, pi) is the set of pixels corresponding to the region in segmentation S that
contains pixel pi, then the local refinement error is defined as

E(S1, S2, pi) = |R(S1, pi) \R(S2, pi)|
|R(S1, pi)|

.

As can be seen, this local refinement error is not symmetric. This means that E(S1, S2, pi)
is 0 only if S1 is a refinement of S2 at pixel pi, but not vice versa. To provide a measure
in both directions, the Global- and Local Consistency Errors are defined as

GCE(S1, S2) = 1
n
min

∑
pi∈I

E(S1, S2, pi),
∑
pi∈I

E(S2, S1, pi)


and

LCE(S1, S2) = 1
n

∑
pi∈I

min
{
E(S1, S2, pi), E(S2, S1, pi)

}
,

where n is the number of pixels in image I. As can be seen GCE is a “tougher” metric
compared to LCE, because LCE allows refinement in both directions in a single region,
whereas GCE allows only one direction per region. For this reason we chose to use only
the GCE metric for our evaluations. These metrics have two extreme cases where the
value is 0, namely when S1 and S2 are perfect overlaps, i.e. S1 = S2, or when S1 is a
perfect refinement of S2, i.e. S1 ( S2, and vice versa. The second extreme case happens,
if the number of regions in the segmentations produced by the segmentation algorithms
is exactly 1.

6.1.2 Probabilistic Rand Index (PRI)

The original Rand Index [Ran71] was proposed by William Rand as a way to evaluate
clustering methods. The main idea is to observe how pairs of points are placed into
clusters in two different clusterings. Specifically, a similarity between two clusterings
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exists, if the elements of an individual point-pair are placed together in a cluster in each
of the two clusterings, or if they are assigned to different clusters in both clusterings.
On the other hand, if the elements of a point-pair are placed in the same cluster in one
clustering and in different clusters in the other clustering, then no similarity exists.

Let X be the set of N objects (or points) to be clustered, X = {x1, x2, ..., xN},
and Y be a specific partitioning of these objects into K disjoint sets called clusters,
Y = {Y1, Y2, ..., YK}. Each cluster is a set of the given points, Yk = {xk1 , xk2 , ..., xknk

},
with

∑
nk = N and nk ≥ 1 for k = 1, 2, ...,K. Then the measure of similarity between

two clusterings of the same data, Y and Y ′, can be defined as

c(Y, Y ′) = 1(N
2
) N∑

i<j

γij ,

where

γij =


1 if there exist k and k′ such that both xi and xj are both in Yk and Y ′k′

1 if there exist k and k′ such that xi is both in Yk and Y ′k′ while xj is in
neither Yk or Y ′k′

0 otherwise

.

A property of the similarity measure c(Y, Y ′) is, that c = 0 if the two clusterings Y and
Y ′ have no similarities (i.e. one clustering consists of a single cluster and the other only
of clusters containing single points), and c = 1 if the two clusterings are identical.

A segmentation of an image can also be interpreted as a clustering of the individ-
ual pixels. Here the set of pixels P = {p1, p2, ..., pN} corresponds to the set of points
X, the segmentations S and S′ to Y and Y ′, and the segmentation labels li and l′i to Yi

and Y ′i . Then the previous equation can be rewritten in the context of measuring the
similarity between two image segmentations as [UH05]:

RI(S, S′) = 1(N
2
) N∑

i<j

[ I(li = lj ∧ l′i = l′j) + I(li 6= lj ∧ l′i 6= l′j)],

where I is the identity function.

The Probabilistic Rand Index (PRI) [UPH07] is a generalization of the Rand Index
and is able to compare one segmentation to multiple ground-truth segmentations. Let
S be the computer generated segmentation that is compared with a manually labeled
set of ground-truth segmentations S{1...K}. The label of pixel pi is denoted by li in
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segmentation S and by lki in the manually segmented image Sk. Then the Probabilistic
Rand Index is defined as

PRI(S, S′{1...K}) = 1(N
2
) N∑

i<j

[ I(li = lj)Pij + I(li 6= lj)(1− Pij)],

where

Pij = 1
K

K∑
k=1

I(lki = lkj ).

One characteristic of the PRI is that it does not penalize a refinement of a region, if
there is support for this subdivision in the set of ground-truth segmentations. If however
all segmentations in the ground-truth set agree on a region, then the refinement will be
penalized. It is thus expected that this measure correctly evaluates a segmentation which
is similar to different levels of granularity in the ground-truth segmentation set.

6.2 Algorithms
In this work we compared our proposed SCIS algorithm with five other algorithms. Four
of these algorithms are, same as the SCIS algorithm, region-based, and one of them is a
hybrid algorithm.

• Greedy: This algorithm is a simplification of the SCIS algorithm, where no redundant
edges are removed and no structural constraints are respected. Same as the SCIS
algorithm it models the image as a combinatorial pyramid, it performs contractions
and simplifications, and preserves topology and the segmentation history of the
image. The algorithm always selects non-incident edges with the lowest weights
in the whole image and performs contractions, thus the Greedy denomination.
This algorithm is good for a comparison of the isolated effect of the preservation
of structural correctness in a segmentation algorithm. This algorithm has no
parameters. As this algorithm is implemented using a combinatorial pyramid,
a history of contractions is available. During an iteration multiple edges are
contracted, and after each iteration the segmentation is evaluated. The results for
each image are thus correlated.

• IntExtMST : This is an implementation of the algorithm proposed in [HK03] using
combinatorial pyramids. This algorithm compares the internal and external contrast
between regions to make decisions whether two regions are merged. The novelty
of this algorithm is that edges are selected using Borůvka’s algorithm [Bor26] and
thus a Minimum Spanning Tree of the image is built. The only parameter in this
algorithm is α, which sets preference on the size of the merged regions. In our
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evaluation we use a fixed value of α = 1000, as it is one of the two best performing
α-values specified by the authors. Similarly to Greedy, this algorithm performs
multiple contractions during one iteration. By using a combinatorial pyramid, the
history of contractions is available and thus the segmentation results for each image
are correlated.

• Eff-Graph: This is an algorithm proposed by Felzenszwalb and Huttenlocher [FH04],
and an implementation of this algorithm from the authors is available on the internet.
This is one of the first algorithms that use the principle of the internal and external
contrast. The functionality is essentially the same as in IntExtMST, but without
using Borůvka’s algorithm. This algorithm has 3 parameters, namely σ which
defines the size of a Gaussian filter, min which sets the minimal region size in a
post-processing step, and α which sets the same preference on the size of the merged
regions as in IntExtMST. Because we want to keep small details, we use default
values of σ = 0 and min = 10. This algorithm provides no history of segmentations,
just a final segmentation. To get segmentations with various numbers of regions
we vary the last parameter α in a range [0, 5000]. The resulting segmentations are
thus not correlated.

• Mean-Shift: This algorithm is based on a mean-shift segmentation approach pre-
sented in [CM02]. An implementation can be found on the internet in form of the
application EDISON, which is an abbreviation for “Edge Detection and Image
SegmentatiON system”. This algorithm performs a clustering in a 5-dimensional
space, where 3 dimensions are the L∗u∗v∗ color components and the remaining 2
dimensions are the spatial coordinates. This algorithm has 3 parameters, namely
hs and hr which define the kernel bandwidths in the spatial and color dimensions,
and m which defines the minimal region size in a post-processing step. The result
of this algorithm is a single segmentation corresponding to the parameters, thus
the results with different region sizes are not correlated. We use the default value
m = 10, and use equal for the kernel bandwidths. These kernel sizes are iteratively
increased in an interval [1, 15].

• Turbopixels: The last used algorithm for the evaluation is an algorithm based on the
superpixel approach. The idea is to divide the image into a lattice-like structure of
compact regions (superpixels) by iteratively dilating seeds which adapt to the local
structure of the image. We use an implementation of the paper [LSK+09] available
on the internet. This approach grows the individual regions in different directions
at different speeds. The growing speed is defined by the proximity to other regions
and the local image structure. This algorithm has only one parameter, namely n
which defines the number of initial seed points and thus also the final number of
regions in the segmentation. The results of this algorithm are not correlated. Even
though this algorithm works on a completely different principle than all of the other
algorithms used in the evaluation, we decided to include it because the effect of a
completely different approach on the GCE and PRI metrics can be studied.

58



We evaluate and compare these algorithms both on color and grayscale versions of the test
images. All three algorithms that we implemented (SCIS, Greedy, IntExtMST) utilize
the same similarity measure to weight the edges, and the mean operator to generate new
region values. In the case of grayscale images we use the absolute difference between
region intensities, i.e. w(ui, uj) = |g(u)− g(uj)|, where g(ui) and g(uj) are the intensities
of regions ui and uj . Color images are transformed into the CIE L∗a∗b∗ color space
and the edges are weighted using the perceptually uniform CIEDE2000 color difference
[SWD05]. Using this approach we hope to get segmentation results closer to the human
perception, than by simply using the RGB color space. The Eff-Graph algorithm weights
edges in grayscale images using the absolute intensity difference. For color images the
algorithm is run three times for each color channel in RGB color space. If two neighboring
pixels appear in the same component in all three of the color channel segmentations, then
they are put into the same component in the final segmentation, otherwise the pixels will
be in two separate components. The Mean-Shift algorithm transforms all images into
the L∗u∗v∗ color space corresponding to the first 3 dimensions. Grayscale images are
handled as RGB images with all channels being equal to the grayscale image. Finally,
the Turbopixels algorithm utilizes the grayscale image gradient to make decision how fast
which region should grow in what direction. RGB images are being linearly transformed
to grayscale images.

6.3 Results

For the visualization of the results we utilize the method proposed by Hanbury and
Stöttinger in [HS08]. We run all six segmentation algorithms with the discussed param-
eters on the 100 test images of the Berkeley Image Segmentation Dataset [MFTM01],
and plot the results on a graph with the number of regions on the x-axis and the GCE-
resp. PRI error on the y-axis. An example of such a graph can be seen in Figure 6.1,
where the results of the Greedy algorithm for color images are shown. Here each blue dot
represents a segmentation result. Since only two of the total six segmentation algorithms
are able to produce a segmentation with a specific amount of regions, namely the SCIS
and the Turbopixels algorithms, the results have to be clustered. This is done by placing
the results into a number of non-uniform sized bins. Regions where there is a high
concentration of segmentation results and the variation along the y-axis is high get small
bin sizes, and regions with a low concentration of segmentation results and low variation
along the y-axis get larger bin sizes. The borders of these bins are illustrated in Figure
6.1 as red vertical lines. Then for each bin the mean number of regions and mean GCE-
and PRI error is computed and plotted as a red colored star. Finally, to obtain the GCE-
and PRI error curves, the mean GCE- and PRI errors for each bin are connected, marked
as thick red lines in Figure 6.1.

Notice in Figure 6.1, the overall trend of the data is that at a high number of regions the
variation along the y-axis is rather low, and at a low number of regions the GCE rises
quadratically. Also notice that at the very left end the GCE falls back down to 0. This
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Figure 6.1: An example of generating the GCE error curve for color images of the Greedy
algorithm. The segmentation results are marked as blue dots, the bin boundaries are
marked as red vertical lines, the mean GCE error of each bin is marked as a red star,
and the thick red line shows the GCE error curve.

is the second extreme case of the GCE we discussed in Section 6.1, where the number of
regions in the computer generated segmentation is lower than in the ground-truth data,
and the ground-truth data becomes a refinement of the other segmentation. All of the
GCE error curves show the same form, even for the algorithms with uncorrelated data.
For this reason, all GCE error curves can be evaluated by their maximum GCE, as well as
by the form of the curve. A good segmentation should have a low maximum GCE and the
curve should be increasing in a slow fashion, the later (lower number of regions) the better.

The form of the PRI error curves for all algorithms is also the same, namely a rather
steady profile at above 500 regions, and then a fast decline towards 0 as the number of
regions approaches 1. This decline is an expected result, as the PRI metric penalizes
cases where two points in the same region in the computer generated segmentations
should be in two different regions in the ground-truth data. A good segmentation thus
should have a high as possible PRI for as few regions as possible.

To maintain a good readability and to be able to better focus on the comparative
results, we include all plots with the exact segmentation results and the error curves in
Appendix A. In this section we plot the GCE- and PRI error curves of all algorithms for
grayscale and color images next to each other in corresponding plots. We divide each
comparative plot into two plots, namely an overview of all the error curves in a region
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interval of [0, 10000], and a zoomed in plot at the region interval [0, 700]. The GCE plots
for grayscale and color images can be seen in Figures 6.2 and 6.3 resp. Figures 6.6 and
6.7. The PRI plots for grayscale and color images can be seen in Figures 6.4 and 6.5 resp.
Figures 6.8 and 6.9.

Figure 6.2: A comparative plot of all algorithms for the GCE metric for grayscale images
for all regions.

Figure 6.3: A zoomed in comparative plot of all algorithms for the GCE metric for
grayscale images for regions in the interval [0, 700].
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Figure 6.4: A comparative plot of all algorithms for the PRI metric for grayscale images
for all regions.

Figure 6.5: A zoomed in comparative plot of all algorithms for the PRI metric for
grayscale images for regions in the interval [0, 700].
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Figure 6.6: A comparative plot of all algorithms for the GCE metric for color images for
all regions.

Figure 6.7: A zoomed in comparative plot of all algorithms for the GCE metric for color
images for regions in the interval [0, 700].
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Figure 6.8: A comparative plot of all algorithms for the PRI metric for color images for
all regions.

Figure 6.9: A zoomed in comparative plot of all algorithms for the PRI metric for color
images for regions in the interval [0, 700].
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6.4 Discussion

One of the main observations about the SCIS algorithm is, that the whole GCE error
curve is shifted more to the right and the incline is much slower, when compared to all
other segmentation algorithms. This bad performance comes from the texture preserving
property of the SCIS algorithm, because weakly textured regions are undersegmented in
favor of preserving highly textured regions. Here the highly textured regions consist of a
high number of very small connected components, whereas the weakly textured regions
are merged very early and generally consist of a few large connected components. These
large components then generate a high GCE error, because they stretch over multiple
smaller components in the ground-truth segmentations. To verify this observation, we
compared the sizes of the regions of the IntExtMST and the SCIS algorithms at the
same level of the pyramid. To give an example, Figure 6.10 shows the sorted region
sizes of the IntExtMST and the SCIS algorithms for the image “43074.jpg” (shown in
Figure 6.11a) at 3440 regions. Notice, that more than 90 percent of the regions in the
IntExtMST algorithm have a size in the interval [10, 100], whereas around 90 percent of
the regions in the SCIS algorithm have a size in the interval [1, 10]. Then, the sizes of
the regions in the remaining 10 percent of the SCIS sharply increase up to a maximum
of more than 10000. These large regions are exactly the weakly textured regions, which
are merged early in the segmentation process and also cause a high GCE error early on.

The maximum GCE error of the SCIS algorithm for grayscale images is the second worst.
This bad performance can be explained by the lack of information, as the number of
values in an 8-bit grayscale image is 256, and in a color image 2563. The problem is,
that a texture may consist of different colors that have similar brightness, and thus when
the image is converted to grayscale, all of these colors receive nearly the same grayscale
value. This way in a color image there is clear evidence for a texture, but in the grayscale
image all of this structural information is much less accentuated. When comparing the
maximum GCE error for color images, the SCIS algorithm provides better results than
the Greedy and the Eff-Graph algorithm, and is on the same level as the Turbopixels
algorithm. In both the grayscale- and color images, the Greedy algorithm provides the
worst performance with respect to the maximum GCE error. This result is expected, as
this algorithm chooses simply the edge with the lowest weight and performs a contraction
on it. No assumptions regarding redundant edges, internal- or external contrast, or
structural correctness are being made. Adding structural constraints to the segmentation
process provides clearly an improvement, as can be seen when compared to the SCIS
algorithm.

The same observation about the right shift of the GCE error curve also applies to
the PRI error curve. However, in the case of the PRI error metric, the SCIS excels above
all algorithm in terms of a steady high PRI score. For grayscale images, the PRI error
curve starts falling off at around 2500 regions, and the algorithm starts performing worse
than all other algorithms at around 1500 regions. In case of color images, the PRI error
curve starts falling off at around 1500 regions, and the algorithms performs worst at
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(a)

(b)

Figure 6.10: Sorted region sizes for the image “43074.jpg” of the (a) IntExtMST and the
(b) SCIS algorithm at 3440 regions. Notice, the graphs have a logarithmic y-axis for a
better overview.

around 350 regions. When considering the fact that most of the connected components
at each level of the pyramid are in the interval [1, 10], this means, that the segmentation
happens at regions, where there is evidence for segmentations at different granularity
levels produced by human subjects. This way the segmentations do not get penalized
by the PRI error metric. This result suggests, that highly textured regions carry more
visual information that is more important to us humans, than lowly textured regions. As
a consequence, the SCIS segmentation algorithm may find its application in the field of
image compression. On one hand side, the use of the canonical representation of the com-
binatorial pyramid allows a full reconstruction of the image from the apex at the storage
costs of the original image. If the full merging history is not required, it is sufficient to
only store a far more reduced attributed graph at the current level of the pyramid. On
the other side, the algorithm performs a reduction in region size, while at the same time
maintaining the visually important features of the image. During evaluation we observed,
that around 70 percent of the regions in a medium textured image may be contracted,
while perceptually observing only a minimal change in the image. For a test image from
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the Berkeley Image Segmentation Database of size 481×321 = 154401 pixels this means,
that it may be reduced to around 45000 regions, while keeping the most important
information. To give an example, observe the two images shown in Figure 6.11. The top
image shows the original image of size 481×321 and a total number of 154401 pixels, and
the bottom image shows the segmentation result of the SCIS algorithm at 46000 regions.
Notice, that the bird is perfectly preserved, as well as all of the dry grass. Only a change
can be observed at the blurry green background, but perceptually this change plays only a
minimal role. To show even a higher compression, observe Figures 6.12 and 6.13. The first
figure shows a reduction using the SCIS algorithm to 15000 regions, which is a reduction
of around 90 percent, and the second figure shows a reduction to 5000 regions, which is a
reduction of around 97 percent. Observe, that the highly textured regions are still very
well preserved. A comparison of the results of the SCIS- and the IntExtMST algorithms
at 12904 regions (region reduction of 92 percent) can be seen in Figure 6.14. Notice how
the highly textured wing and the dry grass in the foreground are preserved almost without
a perceptual change by the SCIS algorithm in the top image, while the IntExtMST
better preserves the rather “uninteresting” green background at the cost of destroying
the fine texture of the bird and the grass. An obvious disadvantage of the SCIS is, that
if the main object of interest in an image is less textured than the background, then it
will be reduced early in the process, which may in some cases cause bad perceptive results.

The Turbopixels algorithm provides as expected good results in both metrics. This
is given by the fact that this approach ignores any texture and purely looks for well
defined edges, which in the Berkeley dataset clearly separate the main object from the
“uninteresting” background. All of the regions have almost the same size and are evenly
distributed over the whole image. This algorithm provides an even refinement of the
ground-truth segmentations, which explains the good scores in the GCE metric. The
PRI metric however penalizes a refinement of large regions and thus the lower PRI
scores over the course of the whole segmentation. The IntExtMST and the Eff-Graph
algorithms have a tendency to produce regions of almost the same size, but they are
more centered around a texture of a region. In general the segmentations produced by
both algorithms produce similar results like the Turbopixels algorithm and thus also
provide similar results in both metrics. The Mean-Shift algorithm is based on a clustering
approach in 5-dimensional space. A textured region can be seen in 3-dimensional color
space as a cluster, where the variation along the individual axes depends on the degree of
“texturedness”. Blurred and low textured regions get merged, and highly textured regions
get preserved to a certain degree. This would also explain the good scores in both metrics.

We implemented the SCIS algorithm using Visual C++ on a 32-bit Microsoft Win-
dows platform. The average computation time for the test images of the Berkeley Image
Segmentation Database of sizes 481×321 and 321×481 were on a 2.66 GHz Intel Core 2
computer 70 seconds for color images, and around 40 seconds for grayscale images. As
was mentioned in Section 6.2, we used the CIEDE2000 distance for color images, and the
absolute intensity difference for grayscale images.
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(a)

(b)

Figure 6.11: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 46000 regions by the SCIS algorithm.
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Figure 6.12: A reduced image to 15000 regions by the SCIS algorithm from Figure 6.11a.

Figure 6.13: A reduced image to 5000 regions by the SCIS algorithm from Figure 6.11a.
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(a)

(b)

Figure 6.14: A comparison of the reduced images to 12904 regions by the (a) SCIS- and
the (b) IntExtMST algorithm. The original image is shown in Figure 6.11a and has the
size 481×321 and a total of 154401 pixels.
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6.5 Gallery

6.5.1 Best Results

(a)

(b)

Figure 6.15: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 12352 regions by the SCIS algorithm, which is a reduction
by 92 percent. Notice the well preserved fine texture of the coral in the middle.
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(a)

(b)

Figure 6.16: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 9264 regions by the SCIS algorithm, which is a reduction
by 94 percent. Even though the background is destroyed, notice the extremely well
preserved fur of the animal and the bark.
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(a) (b)

Figure 6.17: A comparison of an (a) original image of size 312×481 with 154401 regions
and its (b) reduced version with 9264 regions by the SCIS algorithm, which is a reduction
by 94 percent. This example shows how well generally low textured images are preserved.
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(a)

(b)

Figure 6.18: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 9264 regions by the SCIS algorithm, which is a reduction
by 94 percent. Notice how well the fur of the squirrel is preserved. Once the background
is just a little bit blurry, the clear regions are preferred.
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6.5.2 Worst Results

(a)

(b)

Figure 6.19: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 15440 regions by the SCIS algorithm, which is a reduction
by 90 percent. Notice that the main object of interest, which is the animal, is less textured
than the rocks. At this point regions of the animal are getting merged earlier than the
background.
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(a)

(b)

Figure 6.20: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 12352 regions by the SCIS algorithm, which is a reduction
by 92 percent. Notice how the individual highlights of the rocks (local minima and
maxima) are well preserved, even though they are rather uninteresting for the content of
the image.

76



(a) (b)

Figure 6.21: A comparison of an (a) original image of size 312×481 with 154401 regions
and its (b) reduced version with 15440 regions by the SCIS algorithm, which is a reduction
by 90 percent. Notice how the stone statue is merged together with the ground, even
though they have rather different colors.
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(a)

(b)

Figure 6.22: A comparison of an (a) original image of size 481×312 with 154401 regions
and its (b) reduced version with 15440 regions by the SCIS algorithm, which is a reduction
by 90 percent. Notice the step-effect of the SCIS algorithm on smooth gradients like the
sky in the image.
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6.6 Future Work

In Section 6.4 we proposed to use the SCIS algorithm in the field of image compression
due to its texture preserving properties. These properties allow a high reduction in region
number, while keeping the perceptively important information of an image, encoded as
textured regions, intact. There is however a distinction to be made between reduction
in region number, and an overall reduction in terms of storage costs. Currently, the
whole merging history of the combinatorial pyramid can be stored at the storage costs
of the base combinatorial map with the canonical encoding scheme. Dependent on the
size of the currently active set of darts, the combinatorial map representing the current
partition of the image changes in size. As it was explained in Section 6.4, it is possible to
merge around 70 percent of all regions in a medium textured image, while perceptually
observing only a minimal change in the image. At this point it would be possible to “cut
away” the passive part of the canonical combinatorial pyramid, and store the “reduced”
combinatorial pyramid at lower storage costs. If some compression artifacts are allowed,
then it would be possible to “cut away” the pyramid at an even higher level. The problem
however is, that even though the “reduced” combinatorial pyramid uniquely stores the
structure of the image in terms of adjacency and inclusion relationships of regions, it is
still necessary to store the mapping of regions onto the image grid. Observe the following
two partitions of an image:

As can be seen, both images have the same dimensions and are divided into three non-
overlapping regions. The combinatorial maps encoding the neighborhood relationships of
the regions are also identical. Without a mapping of the regions onto the image grid,
it would not be possible to deduce which of these two image the combinatorial map is
encoding. Currently, this mapping of regions onto the image grid is stored explicitly
and without any compression. One of the open problems of the SCIS algorithm is to
incorporate a method to also store this mapping efficiently in terms of storage costs.

In Section 5.4 we shortly outlined our observations about the relationships of the distri-
bution of the individual topological classes, total number of regions in an image, and the
“amount” of texture in an image. Further research in this direction may result in a way to
quantify the “amount” of texture in an image, which may provide a better understanding
of current textural classifiers.

The SCIS algorithm was originally developed and proposed for 2-dimensional images,
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however it can be extended to higher dimensions, so that it is for example able to
segment whole sequences of images in a video. For this purpose it would be necessary
to extend the topological classification using 3-dimensional Local Binary Patterns, and
the identification of redundant edges. This identification and subsequent removal of
redundant edges may provide, together with the minimization process for 3-dimensional
combinatorial maps proposed in [Ill06], an even higher reduction in terms of the amount
of edges.
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CHAPTER 7
Conclusion

In this work we presented a new image segmentation algorithm which is based on Local
Binary Patterns and the Combinatorial Pyramid, called Structurally Correct Image
Segmentation (SCIS) algorithm. The main idea is to remove redundant edges, while at
the same time preserving all reachability relationships and local structural correctness to
perform a segmentation. We evaluated and compared the SCIS algorithm on the test
images of the Berkeley Image Segmentation Dataset to five other algorithms using the
Global Consistency Error (GCE) and Probability Rand Index (PRI) error metrics. A
comparison of the SCIS algorithm to its simplified version, which does not take structural
correctness into consideration, was performed and it was shown on both metrics that
better results were achieved when taking structural constraints into consideration. The
SCIS algorithm has shown comparably good results in the GCE metric to four existing
algorithms, which are based on internal- and external contrast relationships, Minimum
Spanning Trees, Mean-Shift clustering, and superpixel approaches. This performance is
given due to the sequence at which different types of regions are merged, namely weakly
textured and blurred regions are merged first, while highly textured regions are preserved.
This segmentation behavior causes that the perceptually important content of the image
is well preserved at a low number of regions, which can find an application in image
compression. The PRI metric shows that the SCIS algorithm has the highest overall
score when compared to the other five segmentation algorithms, and it also confirms that
a refinement of segmentations takes place at regions where there is evidence of multiple
levels of granularity of segmentations performed by human subjects.
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APPENDIX A
Appendix

In this appendix we display plots with the exact segmentation results for all evaluated
algorithms and the corresponding GCE- and PRI error curves. All the metric- (GCE,
PRI), image type- (grayscale, color), and algorithm information corresponding to each
plot can be found in the description below each one of them.

A.1 GCE Error Curves for Grayscale Images

Figure A.1: GCE error curve of the Greedy algorithm for grayscale images. The segmen-
tation results are marked as blue dots, the mean GCE error for each bin is marked as a
red star, and the GCE error curve is marked with red color.
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Figure A.2: GCE error curve of the IntExtMST algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.3: GCE error curve of the Eff-Graph algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.
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Figure A.4: GCE error curve of the Mean-Shift algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.5: GCE error curve of the Turbopixels algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.
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Figure A.6: GCE error curve of the SCIS algorithm for grayscale images. The segmenta-
tion results are marked as blue dots, the mean GCE error for each bin is marked as a red
star, and the GCE error curve is marked with red color.

A.2 PRI Error Curves for Grayscale Images

Figure A.7: PRI error curve of the Greedy algorithm for grayscale images. The segmen-
tation results are marked as blue dots, the mean GCE error for each bin is marked as a
red star, and the PRI error curve is marked with red color.
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Figure A.8: PRI error curve of the IntExtMST algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the PRI error curve is marked with red color.

Figure A.9: PRI error curve of the Eff-Graph algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the PRI error curve is marked with red color.
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Figure A.10: PRI error curve of the Mean-Shift algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the PRI error curve is marked with red color.

Figure A.11: PRI error curve of the Turbopixels algorithm for grayscale images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the PRI error curve is marked with red color.
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Figure A.12: PRI error curve of the SCIS algorithm for grayscale images. The segmenta-
tion results are marked as blue dots, the mean GCE error for each bin is marked as a red
star, and the PRI error curve is marked with red color.

A.3 GCE Error Curves for Color Images

Figure A.13: GCE error curve of the Greedy algorithm for color images. The segmentation
results are marked as blue dots, the mean GCE error for each bin is marked as a red
star, and the GCE error curve is marked with red color.
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Figure A.14: GCE error curve of the IntExtMST algorithm for color images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.15: GCE error curve of the Eff-Graph algorithm for color images. The segmen-
tation results are marked as blue dots, the mean GCE error for each bin is marked as a
red star, and the GCE error curve is marked with red color.
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Figure A.16: GCE error curve of the Mean-Shift algorithm for color images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.17: GCE error curve of the Turbopixels algorithm for color images. The
segmentation results are marked as blue dots, the mean GCE error for each bin is marked
as a red star, and the GCE error curve is marked with red color.
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Figure A.18: GCE error curve of the SCIS algorithm for color images. The segmentation
results are marked as blue dots, the mean GCE error for each bin is marked as a red
star, and the GCE error curve is marked with red color.

A.4 PRI Error Curves for Color Images

Figure A.19: PRI error curve of the Greedy algorithm for color images. The segmentation
results are marked as blue dots, the mean PRI error for each bin is marked as a red star,
and the GCE error curve is marked with red color.
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Figure A.20: PRI error curve of the IntExtMST algorithm for color images. The
segmentation results are marked as blue dots, the mean PRI error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.21: PRI error curve of the Eff-Graph algorithm for color images. The segmen-
tation results are marked as blue dots, the mean PRI error for each bin is marked as a
red star, and the GCE error curve is marked with red color.
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Figure A.22: PRI error curve of the Mean-Shift algorithm for color images. The
segmentation results are marked as blue dots, the mean PRI error for each bin is marked
as a red star, and the GCE error curve is marked with red color.

Figure A.23: PRI error curve of the Turbopixels algorithm for color images. The
segmentation results are marked as blue dots, the mean PRI error for each bin is marked
as a red star, and the GCE error curve is marked with red color.
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Figure A.24: PRI error curve of the SCIS algorithm for color images. The segmentation
results are marked as blue dots, the mean PRI error for each bin is marked as a red star,
and the GCE error curve is marked with red color.
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