
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms
Vienna University of Technology
Favoritenstr. 9/186-3
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: sek@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-134 July 1, 2015

Selected Student Papers Academic Year 2014/2015

Roland Doppler, Ludwig Kampel, Philipp Kniefacz,
Philipp Omenitsch, Adam Papp, Thomas Pinetz,

Christian Prossenitsch, Attila Szabo

edited by: Ines Janusch and Walter G. Kropatsch

Abstract

This technical report presents a collection of selected papers, submitted by students of
seminars and lectures of the Pattern Recognition and Image Processing group during the
academic year 2014/2015.



Contents

1 Introduction to Scientific Work (SE 186.824) 1
1.1 Roland Doppler - Comparison of Fine-Grained image recogni-

tion techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thomas Pinetz - Practical Metric Learning for the Person Re-

Identification Problem . . . . . . . . . . . . . . . . . . . . . . 21

2 Selected Chapters of Pattern Recognition (VU 183.111) 38
2.1 Ludwig Kampel - Bemerkungen zu Incremantal Surface Ex-

traction from Sparse Structure-from-Motion Point Clouds . . . 38
2.2 Philipp Kniefacz - A simple and fast edge-preserving smooth-

ing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Seminar in Computer Vision and Pattern Recognition (SE
186.837) 60
3.1 Attila Szabo - The 2D Local Binary Pattern, applications in

Face Analysis and observations on complexity . . . . . . . . . 60

4 Structural Pattern Recognition (VO 183.280) 76
4.1 Philipp Omenitsch - Structure in Motion . . . . . . . . . . . . 76
4.2 Adam Papp - Irregular Pyramids . . . . . . . . . . . . . . . . 83
4.3 Christian Prossenitsch - Efficient Classification using the Euler

Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1



Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms
Vienna University of Technology
Favoritenstr. 9/186-3
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: {e1126828}@student.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR June 17, 2015

Comparison of Fine-Grained image recognition techniques

Roland Doppler

Abstract

This paper presents a comparison of three different techniques for fine grained image recog-
nition. Based on these state of the art techniques I will explain their characteristics and
summarize them. Using this summary as a base I will show how we could use some of the
approaches to expand the capabilities of some techniques.



1 Introduction

[7] Fine grained image recognition refers to the task of distinguishing between
subordinate categories. For example a sport sedan is a subcategory of cars
or a basketball is a subcategory of balls. The techniques presented in this
paper will be able to distinguish between subcategories based on fine grained
details. For example, tasks could be the identification of bird breeds or face
recognition which represents quite hard problems because of the minimal dif-
ferences of the subcategories. In the near future computer vision systems,
which are capable of identifying objects based on fine details, will get more
important. Based on the fact that the total earth popluation is still growing
we need to develop efficient systems to support us in agricultural activities
[17]. But there are also many more use cases for fine grained image recogni-
tion.
A lot of effort has been made in the last couple of decades, including sparse
coding based image representation [20] or deep learning based unsupervised
image representation [16] and also support vector machine (SVM) based clas-
sifiers. Also a combination of convolutional neural networks (CNN) [11], as
feature extractor and SVMs as classifier have shown to be a competitive sys-
tem for fine grained image recognition. This paper should give an overview
over three state of the art techniques which uses a combination of CNN and
SVM for the fine grained image recognition task. This overview will show
which techniques have been used, based on this information we will conclude
how some of the teams behind those papers could benefit from approaches
used by other colleagues.
This paper is organized as followed: In section 2 (paper [8]), 3 (paper [17])
and 4 (paper [2]) we will look at state of the art techniques. And in the last
section 5 we will summarize this paper and suggest further improvements.

2 Learning Features and Parts for Fine-Grained

Recognition

This section presents an overview for the paper ”Learning Features and Parts
for Fine-Grained Recognition” [8] which was presented during the 2014 ICPR.
All statements and techniques, which are discussed in the following sections,
are based on the already named paper [8].

1



2.1 Introduction

The main goal for this paper [8] was to create a fully unsupervised system
for fine grained image recognition. This means that the following technique
presents a domain independent solution for the fine grained image recognition
task.

2.2 Technique

There are two major challenges that need to be solved before a system is ca-
pable of categorizing images based on fine grained details. First the system
must be able to differentiate between fine appearance details. It is necessary
to create an appearance description which is detailed enough and also dis-
cards unnecessary information. As shown in Fig. 1 the differences between
the two cars are so minor that descriptors such as SIFT [12] or HOG [3] may
not be discriminative enough.

The second big challenge is to determine where the discriminative parts
are, relative to the object, and how to detect them. One possible solution is
to annotate the relevant parts by hand but this may not scale up to handle
big datasets and different types of images. The solution should be a system
which is capable of learning features and parts to form a unified object repre-
sentation. In paper [8] convolutional neuronal networks (CNN) [11] are used
to learn appearance descriptors and perform unsupervised part discovery. So
the main tasks are feature learning and part detection which leads us to an
ELLF (- while ELLF stands for ”Ensemble of Localized Learned Features”)
representation of images.

The approach is to detect certain parts and compare their appearance
representation. For example on an input image A we detect n parts with our
part detectors. Let an be the appearance of part n from the input image A.
The concatenation of all (a1, a2, a3, ..., an) is now our ELLF representation.
With images represented by ELLF, we can train classifiers such as linear
SVMs to perform fine grained classification.
Once ELLF is defined the next step is to look deeper in the process how
ELLF is generated. This process can be split up in two major parts, feature
learning and part detection.

2



Figure 1: These two cars are both variants of VW Golf. The ”Golf V” is the
predecessor of the ”Golf VI” which is shown below. Both look very similar
and can only be differentiated by fine details.

2.2.1 Feature Learning

The fundamental task of feature learning is to describe certain details of
images. Since CNNs have shown to be very powerful in learning features
directly from pixels, this property is used for this fine grained recognition
task. The learning philosophy has the huge benefit that such systems are
capable to adapt to the idiosyncrasies of certain domains. In particular the
CNN gets an image as input and respond with probabilities of image classes.
After the training phase the fully connected layers of the neuronal network
are removed and the two convolutional layers are used as generators for pixel-
level appearance descriptors.

2.2.2 Part Detection

The goal of part detection is to obtain a collection of part detectors. Previ-
ous part detection algorithms often rely on human interaction in form of part
annotations. Paper [8] however describes an unsupervised approach. Based
on the fact that the objects are in the same pose, it is possible to discover
parts by local low-level cues. Localizing parts depends on an overall object
shape understanding. This means, that for example a blurred image of a dog
may have enough information to recognize the dog and the corresponding

3



head, tail and paws.

During the learning phase, the first step is to pick a seed image. Based on
the seed image it is necessary to find a set of images where the objects have
the same alignment - the neighbors (Fig. 2). To find images with the same
alignment it is necessary to perform a GrabCut [14] to remove influences
from the background, after that images with similar HOG [3] features are
selected.

Figure 2: Based on the ”Seed Image” it is important to find similar aligned
”Neighbors”. This illustration shows a white background for all images which
is typically black because of the GrabCut operation.

The next step is to select the relevant image parts of the same aligned
collection. A random selection pattern is created and applied to the seed-
and neighbor images (Fig. 3).

The last step is to select those areas, which contain a high amount of
information, relevant for the classification process. Areas with high energy -
measured by the variance of the HOG across the images - are selected (Fig.
4). Note that parts with high energy but low differences across the images
are not suitable for the learning process and need to be filtered out.

4



Figure 3: Based on the image collection we apply a random selection pattern.

Figure 4: Only those regions are selected which contain high amount of
information.

5



3 Fine-Grained Plant Classification Using Con-

volutional Networks for Feature Extraction

This section represents an overview of the paper ”Fine-Grained Plant Clas-
sification Using Convolutional Networks for Feature Extraction” [17]. The
following statements and techniques are all based on the named paper [17].

3.1 Introduction

The main motivation for this paper is the fact that in 2050 the world popu-
lation will be around 9 billion people. Therefore robot technology will play
an important part in the agriculture of the future. Based on the plant iden-
tification task of the LiveCLEF challenge the goal was to create a system for
plant identification. The task is to identify images taken from 500 different
herbs, trees, and fern species from France. These images often only contain
a part of the plant such as the branch, stem, leaf, fruit etc. Fig. 5.

3.2 Technique

The technique used in this paper relies on a CNN for feature extraction and
an extremely randomized tree [6] for classification. Often feature extraction
is done by hand. However this system uses a well trained CNN for feature
extraction and should therefore be able to scale well.

3.2.1 Convolutional Neural Networks as Generic Feature Detec-
tors

CNN are known since 1989, they were proposed by LeCun to recognize hand-
written digits [10]. Until now CNNs never were really applicable due to the
lack of large enough datasets and computing power. Since computing power
in form of CPU or GPU and large datasets are available, efficient algorithms
such as rectified linear units [19, 5] have been developed. With those effi-
cient algorithms CNNs can be trained on large datasets such as ImageNet.
To solve the image recognition or detection task CNNs are used as feature
extractor. This technique follows the approach of Razavian [13] and applies
a pre-trained CNN as feature extractor to the images of the LifeCLEF Plant
Task. For the solution presented in paper [17] a pre-trained network called
Overfeat [15] is used. The Overfeat network was originally used to detect

6



Figure 5: Example images for a representation of an apple tree. Those
categories A,B,C,D,E,F,G are from the dataset. [A] represents overall images.
[B] represents branches. [C] represents leafs. [D] are leaf scans. [E] show the
flowers. [F] represents the fruits. [G] shows the stem.

objects in images and output probabilities for each of the objects (Fig. 6).
The fully connected layers of the Overfeat network act as feature extractors
for the plant classification task. Overfeat will extract several feature vectors
from an input image, those vectors are then used as input for an extremely
randomized tree which will perform the classification.

3.2.2 Extremely Randomized Trees Classifier

An extremely randomized tree classifier is a supervised classification system,
in contrast to decision trees an extremely randomized tree learns the layout

7



Figure 6: Example illustration for the Overfeat Network [15]. This illustra-
tion is an enhanced version of the orginal version of the paper. The Overfeat
network would be able to detect all white wolves and their probabilities to
be a white wolf.

of its ensemble of trees from training data. The classifier outputs a proba-
bility distribution over all classes, in case of the LifeCLEF Plant Task, those
are about 500 different species. For each content category in the LifeCLEF
dataset a separate classifier is trained. To handle multiple samples from
each image the classification results of the extremely randomized trees are
combined to provide just one prediction per observation. A further difficulty
of the dataset is that there are multiple images in different categories for
one observation. To combine the distributed information the results for each
image are treated as a likelihood score. The scores are totalized into a sin-
gle distribution of prediction scores over the 500 different classes for each
observation.

4 Birdsnap: Large-scale Fine-grained Visual

Categorization of Birds

In this section the paper ”Birdsnap: Large-scale Fine-grained Visual Cat-
egorization of Birds” [2] is discussed. This paper relies on insights from
”POOF: Part-Based One-vs-One Features for Fine-Grained Categorization,
Face Verification, and Attribute Estimation” [1] which we also discuss in this
section.

8



4.1 Introduction

Birdsnap presents an online system for bird breed classification. This online
system is capable of classifying 500 North American bird species, the user
simply have to upload a picture of a bird and mark the head and the tail. It
is necessary to mark those regions to create an approximate bounding box.
Based on the uploaded picture the system tries to classify the bird breed
(Fig. 7).

Figure 7: Screenshot taken from http://birdsnap.com

4.2 Technique

There are two major ideas behind the birdsnap online platform. First there
is the one-vs-most classifier in contrast to the more common one-vs-all clas-
sifier. The second idea is to use image meta data, such as time and location,
which are produced by modern cameras, to improve the performance of the
classification system. However, the focus in this comparison paper will be
on the one-vs-most classifier since this part is more relevant for the task of
image classification. Birdsnap uses one-vs-most classifiers in combination

9



with POOF - ”Part-Based One-vs-One Features” [1] - to accomplish the fine
grained recognition task.

4.2.1 Part-Based One-vs-One Features

A straight forward approach to part-based recognition is to extract some
parts of the image and train a classifier. This approach heavily depends on
the domain of images, for example dogs can mostly be classified by there nose,
however this does not work for birds. POOF represents a learning framework
for learning a large set of discriminative intermediate-level features.
The process of learning these features is shown in the following steps. The
domain has to be labeled by classes and needs to have part location annota-
tions for all images.

1. The first step is to select two images from different classes. These
images must have two parts which are marked in both of them. In
the bird example shown in Fig. 8 these are the back and the head,
visualized through the red and cyan dots.

2. For both classes multiple images with the same part annotations (Fig.
8 [B]) are selected.

3. Based on the part annotations it is possible to align and crop all the
images to get a similar image view Fig. 8 [C].

4. In the next step the cropped images are tiled multiple times with dif-
ferent tiling scales (Fig. 9 [A]).

5. A linear SVM is trained for each tiling scale to distinguish between the
classes.

6. The trained SVM vector gives weights to every dimension of the base
feature in every grid cell. To each grid cell in each tiling the maxi-
mum absolute SVM weight over the dimension in the feature vector
that correspond to that cell (Fig. 9 [B]) is assigned. By thresholding
these weights a mask for the most discriminative parts between the two
classes is defined (Fig. 9 [C]).

7. The low-level feature is the concatenation of the base feature at the
masked cells in all tilings. Using this feature and all aligned images of
the classes, another linear SVM is trained.

10



Figure 8: This picture was taken from paper [1]. For purpose of this compar-
ison paper the original image was adopt. [A] represents the base selection of
two different classes. [B] shows corresponding images based on the selected
classes. [C] shows the correct aligned and cropped images. The red and cyan
dots represent part annotations.

To extract a POOF from an image the steps above are repeated - remem-
ber the input image must have two marked parts. Based on those parts a
base-level feature extraction is possible.

4.2.2 One-vs-Most Classifier

Some of the hardest problems in fine grained image recognition are these
where the systems should be able to distinguish between nearly identical
subcategories. While training a one-vs-all classifier a positive set with only,

11



Figure 9: This picture was taken from the paper referenced by [1]. For
purpose of this comparison paper the original image was adopt. [A] shows
the tiling in different scales. [B] represents the weighted tiles. [C] shows the
mask based on the weihgts.

for example Common Terns, and a negative set with Common Terns and
other species would be used. The problem with this approach is that a
classifier could latch to accidental features that distinguish the Common Tern
from other terns only in this particular training set and discard significant
features that distinguish terns from non-terns. To omit this problem the
most visually similar species from the training sets are prohibited. Birdsnap
uses a set of one-vs-most SVMs based on POOFs, which have been shown to
be excellent features for bird species identification [2].

5 Conclusion and Outline

In this section we will summarize the most relevant key stones from the
discussed papers, followed by an approach how it is possible to improve the
neighbor image selection from the paper ”Learning Features and Parts for
Fine-Grained Recognition” [8].

12



5.1 Summary

As outline we summarize the key features of the presented papers [8, 17, 2].

5.1.1 Learning Features and Parts for Fine-Grained Recognition

• The presented technique does not depend on human part annotations.
It works in a completely unsupervised manor.

• To extract features from images a CNN is used.

• The classification task is handled by a linear SVM.

• Not optimized for a special domain. Works completely domain inde-
pendent.

• Requires images with the same object alignment.

5.1.2 Fine-Grained Plant Classification Using Convolutional Net-
works for Feature Extraction

• Presents a solution for plant identification.

• Based on the approach of Razavian [13].

– Uses a CNN as feature extractor.

– Uses a linear SVM as classifier.

• Feature extractor based on the Overfeat [15] network.

• Extremely Randomized Tree as classifier [6].

• Solution for the LifeCLEF Plant Task.

5.1.3 Birdsnap: Large-scale Fine-grained Visual Categorization
of Birds

• As part of the paper a web-application called Birdsnap was released.

• Presents a solution for bird identification.

• Uses an one-vs-most classifier.

13



• Features presented by POOF [1].

• Requires part annotations for the images.

5.2 Related Thoughts

As shown in paper [8] (section 2) the used technique relies on images with
same alignment during the learning phase. This means that many existing
image datasets are not useable. Also it is not always possible to create an
own dataset. A second reason why it is sometimes necessary to use available
datasets is to compare test results with other approaches.
So it would be worthwhile to increase the number of possible datasets which
are applicable to the approach of this paper [8]. To overcome the constraint
of the same aligned images we use the alignment technique from the birdsnap
paper [2]. With this approach as foundation we would use domain specific
part detectors (Fig. 10) to get anchor points from our images.
We start, as described before in paper [8], with a seed image and try to find
aligned neighbors. Instead of using HOG to find neighbors we use our part
detectors and check which parts of the object are visible in the seed image.
As we know which parts are necessary to be visible we can search through the
dataset to find our neighbor images with the same parts visible. Now that we
have our neighbors we use our detected parts as anchor points to transform
all our images into a normalized view (Fig. 11). As the required neighbors
are selected and transformed we can proceed the task of fine grained image
recognition as it is described in paper [8].

5.3 Conclusion

Based on the three papers [8, 17, 2] it was shown [8] that CNNs are capable of
outperforming previous state of the art techniques such as LLC [18], BB [4]
and BB-3D-G [9]. As stated above, in section 5.2, there is room for improve-
ments, so we may see even better systems which are capable to outperform
the techniques discussed in this paper.

References

[1] T. Berg and P. N. Belhumeur. Poof: Part-based one-vs.-one features for
fine-grained categorization, face verification, and attribute estimation.

14



Figure 10: A selected seed image and his neighbors. It’s important that on
the neighbor images the same parts are visible. Red and cyan dots are parts
which have been detected.

Figure 11: Based on the detected parts the images are transformed to have
a similar perspective.

15



In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Con-
ference on, pages 955–962. IEEE, 2013.

[2] T. Berg, J. Liu, S. W. Lee, M. Alexander, D. Jacobs, and P. Belhumeur.
Birdsnap: Large-scale fine-grained visual categorization of birds. In
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-
ference on, pages 2019–2026, June 2014.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886–893
vol. 1, June 2005.

[4] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for
fine-grained recognition. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 580–587, June 2013.

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. arXiv preprint arXiv:1310.1531, 2013.

[6] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[7] A. Hubmer, A. Ion, W. G. Kropatsch, Y. Haxhimusa, and H. Hausegger.
How humans describe short videos - details of an experiment. Technical
Report PRIP-TR-113, PRIP, TU Wien, 2007.

[8] J. Krause, T. Gebru, J. Deng, L.-J. Li, and L. Fei-Fei. Learning features
and parts for fine-grained recognition. In Pattern Recognition (ICPR),
2014 22nd International Conference on, pages 26–33, Aug 2014.

[9] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations
for fine-grained categorization. In Computer Vision Workshops (IC-
CVW), 2013 IEEE International Conference on, pages 554–561, Dec
2013.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, Winter 1989.

16



[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. volume 86, pages 2278–2324, Nov 1998.

[12] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
volume 60, pages 91–110, Hingham, MA, USA, Nov. 2004. Kluwer Aca-
demic Publishers.

[13] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn fea-
tures off-the-shelf: an astounding baseline for recognition. arXiv preprint
arXiv:1403.6382, 2014.

[14] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: Interactive fore-
ground extraction using iterated graph cuts. In ACM SIGGRAPH 2004
Papers, SIGGRAPH ’04, pages 309–314, 2004.

[15] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[16] K. Sohn, D. Y. Jung, H. Lee, and A. O. Hero. Efficient learning of sparse,
distributed, convolutional feature representations for object recognition.
In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 2643–2650. IEEE, 2011.

[17] N. Sunderhauf, C. McCool, B. Upcroft, and P. Tristan. Fine-grained
plant classification using convolutional neural networks for feature ex-
traction. In Working notes of CLEF 2014 conference, 2014.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-
constrained linear coding for image classification. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
3360–3367, June 2010.

[19] S. Xiong, W. Guo, and D. Liu. The vietnamese speech recognition based
on rectified linear units deep neural network and spoken term detection
system combination. In Chinese Spoken Language Processing (ISCSLP),
2014 9th International Symposium on, pages 183–186. IEEE, 2014.

[20] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid match-
ing using sparse coding for image classification. In Computer Vision and

17



Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
1794–1801, June 2009.

18



21



Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms
Vienna University of Technology
Favoritenstr. 9/186-3
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: thomas.pinetz@student.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR June 17, 2015

Practical Metric Learning for the Person Re-Identification Problem

Thomas Pinetz

Abstract

Many different approaches prevail in the field of person re-identification. The most common
ones use metric learning for verification. In this paper I compare state-of-the-art methods
with each other and look for practical advantages in using them. Methods presented in this
paper differ entirely in their approach to solve the problem. Deep Metric Learning (DML)
uses a siamese neural network to solve the person re-identification problem from the input
data. Keep It Simple and Straightforward MEtric Learning (KISSME) is a statistical
approach to metric learning. Locally Alligned Feature Transform (LAFT) makes use of
view transformations to detect the same local features in different views. Those methods
are then compared with other state-of-the-art methods on the dataset VIPeR. In addition,
compared to existing papers I look at the various methods from a practical point of view.
I give recommendations on which algorithms to use, based on my results.



1 Introduction

Person re-identification is the task of matching images of people, observed
from different camera views, based on image appearence. Person re-identification
algorithms have important applications in various video surveillance tasks in-
cluding threat detection, human retrieval and human tracking. In addition,
the algorithms proposed in this field can often be applied to other fields in
pattern recognition. It is possible to save a lot of time and human effort on
exhaustively searching for a person from large amounts of video sequences.

Person re-identification systems using metric learning usually consists of
three steps: feature extraction, metric learning and classification. There are
many ways metric learning can be done: There is the statistical approach [10].
However with the recent resurgence of neural networks, some research has
been done to deploy deep learning to the person re-identification problem
[18].

The essence of person re-identification is very similar to biometric recog-
nition problems, such as fingerprint recognition. Mainly it is needed to find
a good representation and a good metric to evaluate the similarities between
samples. However person re-identification is extremely challenging because of
the large difference in poses, viewpoints, image resolutions and backgrounds
between the images taken by the different cameras. Accurate human pars-
ing [9] will benefit from this problem, by eliminating a lot of the difference
between the images, however it is another challenging task to be solved ac-
curately.

Another challenge which is less studied in existing work is ”cross dataset
person re-identification”. In the cross dataset person re-identification task
the system is trained on one database and evaluated on another one. This
challenge is closely related to practical systems. In practice a person re-
identfication system is pre trained on a huge dataset and then deployed to
the customer. However not much research has been done in this area and
I could only find results for the DML algorithm regarding the cross dataset
experiment.

This paper focuses on metric learning for person re-identification on
VIPeR [5]. VIPeR is the state-of-the-art dataset for the person re-identification
problem. Every recent relevant technique was evaluated on this dataset
[19], [10] [12].

Focus point of my work is to look at those methods from a practical point
of view. Therefore it is important, how a method would perform in a practical

1



system. For this point the algorithm has to deal with unknown views and
has to perform well on multiple camera systems. In addition, scalability and
future promise is another very important aspect in my evaluation. However,
there are not many datasets available for the person re-identification problem
and most of the datasets like VIPeR are not that big. Therefore scalability
can only be thought about in theory and can not be verified in practice yet.

The rest of the paper is organized as follows. In Sec. 2 I present related
work. Then, in Sec. 3 I cover general topics in Person Re-Identification
Systems. Sec. 4 is about the various approaches in Metric Learning. In Sec.
5 I present the results obtained with the various methods. Finally, in Sec. 6
I summarize and conclude the paper.

2 Related Work

This paper focuses on metric learning for the person re-identification prob-
lem. Related works are reviewed in four different aspects: feature repre-
sentation, metric learning for person re-identification, datasets for person
re-identification and other practical approaches.

In most techniques it is required to determine the features used in metric
learning manually. Therefore it is possible to gain a lot of performance by
choosing a better feature representation. A lot of research has gone into de-
termining which features work best for the person re-identification problem.
Features are either color or texture based. The most popular features include
HSV color histogram [4], [12], LAB color histogram [21], SIFT [21], LBP
histogram [12] Gabor Features [12] and their fusion. Recent advance in this
field is the color invariant signature [11]. DML is different hereby, because
it can choose its own features from the image pixels directly.

Based on the extracted features unsupervised methods for person re-
identification systems have been getting moderate results compared to other
state-of-the-art methods as can be seen in Sec. 5.3 [21]. Also there is a
method using a combination of unsupervised learning with supervised learn-
ing built on top of human salience, that achieved results comparable to other
state-of-the-art methods [20]. However state-of-the-art results have mostly
been achieved using supervised methods. RankSVM [20], [16] and metric
learning [18], [10], [12] are the most common supervised learning techniques.
Metric learning is the main stream technique, because of its flexibility. In
this paper I focus on the use of the different metric learning techniques.

2



Figure 1: Three stages of person re-identification systems taken from [17].

There are a few different datasets for the person re-identification problem.
Among them VIPeR [5] is most commonly used and every recent algorithm is
evaluated on this dataset. Another commonly used dataset is PRID 2011 [8].
DML uses this dataset as an alternative dataset for testing its cross dataset
experiment [18].

Recently [14], there has been some research with ”humans in the loop”
methods, which proved that performance can be drastically improved by
human intervention. With human feedback recognition rate for Rank1 went
up to 71.08% on VIPeR compared to 34.4% archieved with current methods
without human help. This would make person re-identification systems viable
in practice. However those results are not easy to reproduce, due to the
nature of the experiment. Closing the gap to human performance is the goal
for person re-identification research. However it is unlikely that any system
in the near future is able to reproduce those results without human help as
suggested by state-of-the-art recognition rates.

3 Person Re-Identification Systems

Systems built for person re-identification using metric learning usually consist
of the following three steps (Fig. 1) [10], [12].

1. Feature extraction

2. Metric Learning

3. Classification

In practice, it is needed to automatically detect pedestrians in incoming
images [13]. However VIPeR already provides detected images of pedestrians
so we can concentrate on the person re-identification problem.

3



3.1 Feature Extraction

A lot of research has gone into detecting good features for the person re-
identification problem as can be seen in Section II. A good feature represen-
tation maximizes the recognition rate and minimizes the memory require-
ment. In light of these results there are two main sources of features for
person re-identification: color and texture. There is a lot of manual work
to be done to detect good features, with high recognition rates. In practice
features are often combined by a sum rule or other linear methods to achieve
better results [19]. However a feature representation can be better, if it is
non linear. For those example DML excels, because it can learn its features
from the image pixels directly. These features can be highly non linear and
therefore a better fit for the images [19].

3.2 Metric Learning

After a representation of the images has been found, there are many differ-
ent ways to successfully use metric learning for person re-identification [10],
[12], [20]. To improve performance in the metric learning step a Principal
component analysis (PCA) algorithm is often used to reduce the dimension-
ality of the feature space [17]. However performance in the training step is
the least significant factor for practical applications, because the system is
normally delivered pre trained or only trained once at arrival.

3.3 Classification

In VIPeR there are only image pairs. This means that for every person image
taken from one camera there exists an image taken by the second camera.
However there is no third image of any person. Furthermore both cameras are
static and therefore use the same angle for every image. In practical person
re-identification systems we would need to be able to extend our system to
multiple cameras with varying views in a foreign environment.

4 Metric Learning Methods

There are a lot of different ways to perform metric learning. I will cover the
following methods:

4



• Deep Metric Learning (DML)

• Locally Alligned Feature Transform (LAFT)

• Keep It Simple and Straightforward MEtric Learning (KISSME)

4.1 Deep Metric Learning

The main idea of DML is inspired by a ”siamese” neural network [2], which
was first used for signature verification. A general neural network can not
be used for the person re-identification problem, because the subjects are
different and therefore it is not possible to use the ”sample → label” ap-
proach. However a ”siamese” neural network uses two completely identical
neural networks, which are combined by the output layer. Therefore we can
compare two image pairs by the similarity given by the output layer.

The Chinese Academy of Sciences train a convoluted neural networks for
each of their two cameras on the image pixels directly [19]. Afterwards, the
output of both networks is combined in the siamese network and evaluated
in a final output layer using the cosine function. The output of this function
is then taken as a likelihood, that both images show the same person.

In contrast to the original network [2] proposed, the one used by the
Chinese Academy of Sciences [19] does not share its weight. Therefore
the network is better suited for the person re-identification task, because it
can change its weights based on the camera views. This makes deep metric
learning more flexible in switching between view specific and general person
re-identification tasks. In practice the network is trained beforehand on a
huge dataset [18]. Then it is deployed to a new environment. For those
applications it is better to share the weights between the two networks to
make the training of the network view independent and better suited for new
environments.

Another major advantage of DML is, that it can learn a similarity met-
ric from image pixels directly. Far less time is needed to optimize features
automatically, than to look for them by hand. Learned features can be more
effective, because they are evaluated by the same objective function [19]. In
addition, the multi-channel filters learned by DML can capture the color and
texture information simultaneously and can thereby create highly non-linear
features, which are more reasonable than traditional methods, e.g., feature
concatenation and sum rule [18].

5



Figure 2: The structure of the siamese neural network taken from [19].

Figure 3: The structure of one convolutional neural network taken from [19].

In [19] the input image is split into three overlapping parts, as can be seen
in Fig 2. The first part includes the head. The second and third parts include
the body and legs respectively. Then for every part a different network is
trained with the same layers [19]. Each siamese network consists out of two
convolutional neural networks (CNN). Both convolutional networks consist
of 2 max pooling layers, 2 convolutional layers and a full connected layer with
an 500 dimensional output as can be seen in Fig 3. Using Binomial Deviance
[7] as cost function to optimize the neural network, we can get the forward
propagation function to calculate the cost from a sample pair by

Jdev = ln (e−2 cos(B1(x),B2(y))l + 1). (1)

where B1 and B2 are the output vectors of their respective convolutional
neural network and l represents a sample pairs label. The network can learn
its parameters with a standard Backpropagation algorithm for the derivative

6



of the cost function.
However there are disadvantages to using this method too. Because the

features are learnt it takes longer to train the network. In addition there is
a lot of training data needed to successfully tune the network. This is the
reason, why there is no benchmark with a gallery set of 512 images available
for DML. With 512 images as gallery set there are only 100 image pairs to
train the network on, which is not nearly enough for a good generalization.
To help in increasing the size of the training step data augmentation is used
in [18]. This means that for every pair (x,y) there also exists another pair
(y,x) for classification. Therefore the training data is doubled, which in turn
increases the rank1 recognition rate from 18.4% to 34.49% [18]. Based on
these results it is very likely that this method performs significantly better,
if more training data is supplied.

In a few months, the same research group as in [19] managed to improve
the performance significantly by tuning the parameters, which suggests that
this method still has a lot of room to grow [18]. In addition this algorithm
is also used in a cross dataset experiment in [19], which coincides more with
practical application. In a cross dataset experiment the algorithm is trained
on one dataset and then tested on another one.

In addition, similar networks have been applied to the face verification
[3] and the fingerprint verification problem [1] with similar results to the
ones obtained in person re-identification [19].

4.2 Keep It Simple and Straightforward MEtric Learn-
ing

Keep It Simple and Straightforward MEtric (KISSME) [10] approaches met-
ric learning from a statistical inference point of view. Features are manually
extracted from the images and concatenated into a feature vector. Therefore,
the optimal statistical decision is to test, whether a pair of feature vectors
(xi, xj) is dissimilar or not. This decision can be made by a likelihood ra-
tio test. So we test the hypothesis H0, that a pair is dissimilar versus the
alternative H1 in Eq. 2.

δ(xi, xj) = log

(
p(xi, xj|H0)

p(xi, xj|H1)

)
= log

(
f(xi, xj, θ0)

f(xi, xj, θ1)

)
. (2)

On the one hand a high value for δ(xi, xj) means that H0 is validated and

7



therefore the pairs of images are dissimilar. On the other hand a low value
for δ(xi, xj) means that H1 is validated and therefore the pair is similar.
The function f is a probability density function with the parameter set θ.
Assuming zero-mean Gaussian distributions Eq. 2 can be re-written to

δ(xi, xj) = log

( 1√
2∗π[ΣD]

exp(−1/2xTi,jΣ
−1
D xij)

1√
2∗π[ΣS ]

exp(−1/2xTi,jΣ
−1
S xij)

)
, (3)

where

ΣS =
∑

yi,j=1

(xi − xj)(xi − xj)T , (4)

ΣD =
∑

yi,j=0

(xi − xj)(xi − xj)T . (5)

Because the pairwise differences between xi and xj are symmetric, we
have a zero mean and θ1 = (0,ΣS) and θ0 = (0,ΣD). The maximum likeli-
hood estimate of the Gaussian is equivalent to minimizing the Mahalanobis
distances from the mean in a least squares manner. This allows KISSME
to find respective relevant directions for θ0 and θ1. By taking the log and
discarding the constant terms we can simplify Eq. 3 to

δ(xij) = xTij(
1∑
yij=1

− 1∑
yij=0

)xij. (6)

KISSME is a flexible method and can be applied to a variety of problems.
In [10] it is also to face verification and ToyCars [15] re-identification with
very similar results. No significant change is needed to apply this method to
other domains and still obtain comparable results to other state-of-the-art
methods [10].

4.3 Locally Alligned Feature Transform

The key idea behind Locally Alligned Feature Transform (LAFT) [12] is,
that we transform both views into a common feature space and then classify
from there. LAFT uses four types of visual features, namely LBP, HSV color
histogram, Gabor features and HOG features. The extracted features are
then combined to a feature vector, which is normalized to zero mean. To

8



Figure 4: The structure of the experts and the gating network taken from [12].

archive the common feature space we use a gating network and an array of
local experts as can be seen in Fig 4. Every image is separated into K regions
for the gating network. Then K2 experts are learned for every possible
combination. The gating functions in two image spaces are independent.
Therefore the gating function can be computed as follows

p(s = k|x, y) =
exp(φTk x)exp(ϕTk y)∑K

k′=1 exp(φ
T
k′x)exp(ϕ′Tk y)

,

φk, ϕk ∈ Rm.

(7)

Each local expert k does the alignment by projecting the two samples
(x,y) to be matched into a common feature subspace with linear projections
Wk and Vk. Then the parameters φk, ϕk and Wk, Vk are learned from train-
ing data. Both sets of parameters are in very high dimensional spaces and
therefore need to be regularized with priors. To φk, ϕk a Laplacian prior
is added. A log-determinant divergence is employed between Wk(Vk) and a
prior W0(V0), which are learned from regularized CCA. Those parameters
are then used in the objective function and optimized accordingly.

Finally in order to increase the discriminative power, a low-rank Maha-
lanobis Matrix Mk in each aligned common feature space is learned.

9



Figure 5: Example pairs from the dataset VIPeR taken from [5].

Even though this method is fairly complex to program it performs very
well on VIPeR. Also LAFT performs very well on more than two views and
can be extended easily to an arbitrary amount of cameras, which is also
subject for future work at the Chinese University of Hong Kong [12].

5 Results

For this paper I am evaluating the used algorithms on the state-of-the-art
dataset VIPeR [5].

5.1 Dataset VIPeR

VIPeR [5] contains 632 image pairs taken from two different views. Each
image in those pairs shows only one person. In addition, for every image
there is only one correct other match. There are 1264 images in total for
evaluation. Changes of pose, viewport and illumination are the main sources
of appearance variation between the image pairs as can be seen in Fig 5.
Most of the researched algorithms follow the procedure in [6]: The set of
images is randomly split into two parts of 632 images, namely the training
and test sets. In the test case, the two images of an image pair are separated
into a probe and a gallery set. One image in the probe set is then selected
and tested against the gallery set. So for each image in the gallery set we
have a likelihood that those two images are of the same person. This process
is repeated for every image in the probe set. In Tab 1 a gallery set of 312

10



Table 1: Recognition Rates on VIPeR [5] with a Gallery Set of 312 images

Method Rank 1 Rank 5 Rank 10 Rank 25

DML [19] 28.23% 59.27% 73.45% 89.53%

LAFT [12] 29.6% - 69.3% 88.7%

KISSME [10] 19.6% - 62.2% 80.7%

improved DML [18] 34.4% 62.15% 75.89% 89.65%

Salience Matching [20] 30.16% 52.3% - -

Unsupervised Salience [21] 26.74% 50.7% 62.37% -

images was used, as is specified in the standard protocol in [6]. A lower
amount of images in the gallery set would make the results too inconsistent.
Only few algorithms were evaluated on a larger gallery set. However, most
algorithms mentioned in this paper need a lot of training data to be used
effectively and therefore were not evaluated with a smaller amount of training
data.

5.2 Evaluation Metric

All algorithms are evaluated with a rank metric. Rank x means, that the
image corresponding to the probe image is in the first x most likely matches
in the gallery set, where x is an arbitrary number. Every algorithm was
evaluated on rank 1. However less algorithms are evaluated on a specific
higher rank number as can be seen in Tab 1.

5.3 Performance

As can be seen in Tab. 1 improved DML has the best recognition rate on
VIPeR [5]. In addition DML is very flexible in choosing its features and can
be applied to many different databases and even across databases. In Tab. 1
I included another state-of-the-art technique in Saliance Matching [20]. This
is another interesting technique that uses a combination of unsupervised
learning and supervised learning to obtain comparable results to other state-
of-the-art methods. This method performs slightly worse then improved
DML and sightly better than LAFT on the VIPeR dataset.

11



LAFT has a lot of steps, which in turn can all be tweaked to suit the
dataset better. Because of all these steps, it takes very long to train this
system. However LAFT has very promising results in systems with many
different cameras [12]. DML can also turn on parameter sharing to gain
a view independent network, however it still has not performed up to par
with LAFT. Slightly worse rank 1 recognition rate than LAFT is another
application of human salience. Unsupervised Salience Matching represents
the state-of-the-art for unsupervised methods [21]. KISSME can be imple-
mented very easily and there is not much optimization needed to tune the
algorithm. However this method has considerably lower recognition rates
than the other methods mentioned.

6 Conclusion

In my opinion practical person re-identification systems are not yet ready to
be used in practice without any human help. The recognition rates, although
constantly rising, are still abysmal for rank 1 recognition. Currently rank 1
recognition rates are capped at 34.4% as can be seen in Tab 1. However, to
reliably identify persons in a real world system 34.4% is not enough.

In addition, those recognition rates are on two fixed cameras with a lot
of time to prepare for this dataset. In practice a system will have to perform
up to par on a foreign environment with possibly multiple cameras, which
does not seem likely any time soon. In addition detecting if a person is
actually in an image and extracting that person from the image is also needed
for practical person re-identification systems, which is another challenging
problem.

With that said however, I think that DML is the most promising tech-
nique. Currently DML has not only the best recognition rates, but also
does not need manual labour to detect its feature. Additionally, it is easy
to scale the DML up as soon as enough training data are collected. More
data is very likely to provide a significant boost to recognition rate as can be
seen by how much data augmentation improves recognition rates currently
in [18]. Moreover, by sharing the parameter between the networks, DML is
view independent and therefore better suited as a pre trained algorithm for
real world systems.

KISSME is ideal as a first prototype. It can be trained fast and is easy to
implement. However recognition rates are too low to be deployed in a large

12



scale practical application and increasing the recognition rates is not easily
accomplished. On the plus side, KISSME is also very flexible and can be
applied to many different verification problems with similar ease and results.

LAFT has its uses in private system because of its view invariants. This
method has a comparable recognition rate to other state-of-the-art methods
and works very well with many different cameras. However feature selection
is very time consuming and it is very hard to verify which features work well
in which settings. In practical applications human help would be needed to
determine if the correct person has been detected.

Even though person re-identification systems are not yet ready for prac-
tical use without any human interaction, there is still a lot of room to grow
for DML. In my opinion increasing existing dataset sizes for the person re-
identification problem will help in increasing recognition rates for metric
learning tremendously and will be needed soon. Especially Deep Metric
Learning will benefit from a larger dataset.

Acknowledgment

I would like to thank Professor Dr. Kropatsch Walter and Univ. Assistant
Dipl.-Ing. Janusch Ines for providing me with such a fascinating topic. They
also helped me with all questions I had regarding this paper and provided
me with further material.

References

[1] P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition.
Neural Computation, 5(3):402–418, 1993.

[2] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah. Signature verification using a siamese time
delay neural network. International Journal of Pattern Recognition and
Artificial Intelligence, 7(04):669–688, 1993.

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 539–546. IEEE, 2005.

13



[4] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Per-
son re-identification by symmetry-driven accumulation of local features.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on, pages 2360–2367. IEEE, 2010.

[5] D. Gray, S. Brennan, and H. Tao. Evaluating appearance models for
recognition, reacquisition, and tracking. In IEEE International workshop
on performance evaluation of tracking and surveillance. Citeseer, 2007.

[6] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an
ensemble of localized features. In Computer Vision–ECCV 2008, pages
262–275. Springer, 2008.

[7] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of
statistical learning: data mining, inference and prediction. The Mathe-
matical Intelligencer, 27(2):83–85, 2005.

[8] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof. Person re-
identification by descriptive and discriminative classification. In Image
Analysis, pages 91–102. Springer, 2011.

[9] A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-supervised hier-
archical models for 3d human pose reconstruction. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages
1–8. IEEE, 2007.

[10] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof.
Large scale metric learning from equivalence constraints. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2288–2295. IEEE, 2012.

[11] I. Kviatkovsky, A. Adam, and E. Rivlin. Color invariants for person rei-
dentification. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 35(7):1622–1634, 2013.

[12] W. Li and X. Wang. Locally aligned feature transforms across views. In
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Con-
ference on, pages 3594–3601. IEEE, 2013.

[13] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter pairing
neural network for person re-identification. In Computer Vision and

14



Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 152–
159. IEEE, 2014.

[14] C. Liu, C. C. Loy, S. Gong, and G. Wang. Pop: Person re-identification
post-rank optimisation. In Computer Vision (ICCV), 2013 IEEE Inter-
national Conference on, pages 441–448. IEEE, 2013.

[15] E. Nowak and F. Jurie. Learning visual similarity measures for compar-
ing never seen objects. In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[16] B. Prosser, W.-S. Zheng, S. Gong, T. Xiang, and Q. Mary. Person re-
identification by support vector ranking. In BMVC, volume 1, page 5,
2010.

[17] P. M. Roth, M. Hirzer, M. Köstinger, C. Beleznai, and H. Bischof. Ma-
halanobis distance learning for person re-identification. In Person Re-
Identification, pages 247–267. Springer, 2014.

[18] D. Yi, Z. Lei, and S. Z. Li. Deep metric learning for practical person
re-identification. arXiv preprint arXiv:1407.4979, 2014.

[19] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Deep metric learning for person
re-identification. In Proceedings of International Conference on Pattern
Recognition, pages 2666–2672, 2014.

[20] R. Zhao, W. Ouyang, and X. Wang. Person re-identification by salience
matching. In Computer Vision (ICCV), 2013 IEEE International Con-
ference on, pages 2528–2535. IEEE, 2013.

[21] R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience learning for
person re-identification. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 3586–3593. IEEE, 2013.

15



38



Bemerkungen

zu

Incremantal Surface Extraction from Sparse

Structure-from-Motion Point Clouds

Ludwig Kampel

15. Februar 2015

1



Einleitung

Im ersten Kapitel werden Teile des in Incremantal Surface Extraction from Sparse Structure-
from-Motion Point Clouds [6] vorgestellten Verfahrens beschrieben. Im zweiten Kapitel wird
sodann auf diese Teile genauer eingegangen. Abschließend wird ein Szenario beschrieben, welches
den Algorithmus auf die Probe stellen soll.

1 Teilweise Einführung

In ihrer Puplikation
”
Incremental Surface Extraction from Sparse Structur-from-Motion Point

Clouds“ haben Christof Hoppe et al. eine Methode vorgestellt, die aus einer 3D Punktewol-
ke, welche von Bildern einer Szene gewonnen wurde, die Oberfläche der dargestellten Objekte
approximieren soll. Die besonderen Herausforderungen sind dabei einerseits, dass es der Al-
gorithmus ermöglichen soll, dass fortlaufend neu generierte Daten in der 3D Punktewolke in
die Approximation der Oberfläche miteinbezogen werden und andererseits, dass die Berechnun-
gen um dies zu ermöglichen in Echtzeit ablaufen können. In Peter Scholz’ Softwareentwicklung
eingebetteter Systeme ist der Begriff

”
in Echtzeit“ wiefolgt erklährt:

”
“Rechtzeitig“ oder

”
in Echtzeit“ versteht sich somit nicht als exakte wissenschaftliche

Definition, sondern als sehr variable Größe, die sich nach den jeweiligen (Echtzeit-) An-
forderungen der spezifischen Anwendungen und deren zeitlichen Rahmenbedingungen ori-
entiert und ausrichtet.“[9]

In diesem Zusammenhang bedeutet
”
in Echtzeit“ wohl, dass die Neuberechnung der Oberfläche

nach neu hinzugekommenen Datenpunkten nicht mehr Zeit in Anspruch nehmen soll als die
Generierung der Datenpunkte selbst.

Erstellen der Punktewolke

Das von Hoppe et al. beschriebene Verfahren geht von einer Punktewolke aus, wie sie aus
wie in [2] und [5] beschriebenen Verfahren (im Folgenden ist von SLAM Anwendungen die
Rede) gewonnen werden. Dabei ist ein wichtiges Detail, dass zusätzlich zu den gewonnenen
3D Punkten auch die Positionen der Kamerastandorte gespeichert werden, von denen aus die
verwendeten Bilder aufgenommen wurden. Zusätzlich wird eine Punkt-Kameraposition-Relation
R gespeichert, welche zu einem gegebenem Punkt P aus der 3D Punktewolke genau jene Paare
(P,Ki) enthält, für welche die Bildinformation des Bildes, welches von der Kameraposition Ki

aus geschossen wurde, zur Berechnung von P beigetragen hat. Im Folgenden sprechen wir davon,
dass die Kamera Ki den Punkt P erkannt hat.

Tetraedisierung

Dem in [6] vorgestellten Verfahren liegt eine Tetraedisierung (Zerlegung in Tetraeder) der 3D
Punktewolke zugrunde. In einem initialen Schritt wird zu den ersten, von der SLAM Anwendung
generierten, Punkten eine Delaunay-Tetraedisierung (im Folgenden kurz: DT) berechnet. Für
jeden weiteren neu hinzukommenden 3D Punkt wird die DT aktualisiert. Dies wird mit Hilfe
des CGAL Software Pakets [10] bewerkstelligt.

”
. . . we use the CGAL software package because it reports which tetrahedra are deleted

and created due to the insertion of a new point.“[6]

2



Die Information welche Tetraeder bei der Aktualisierung der DT aufgelöst werden und welche
neu hinzukommen, ist wesentlich für die Aktualisierung der Energiefunktion.

Extraktion der Sichtbarkeitsinformation und Energiefunktion

Die Energiefunktion besteht aus einem unären und einem binären Term für jeden Tetraeder:

E =
∑

i

Eu(Vi,Ri) +
∑

j∈Ni

Eb(Vi, Vj ,Ri),

wobei Ri die Menge alle Kamerapositionen ist, welche mit mindestens einem der Punkte, welche
den Tetraeder Vi aufspannen, in Relation R stehen und Ni die Menge der vier Flächennachbarn
von Vi ist. Zu einer gegebenen Tetraedisierung der abgebildeten Szene gilt es nun zu entscheiden,
welche der Tetraeder

”
jenseits/innerhalb“ (occupied) und welche

”
diesseits/außerhalb“ (free)

der zu approximierenden Oberfläche liegen. Die Gewichte in der Energiefunktion werden dann
entsprechend der jeweiligen Eigenschaft der Tetraeder verteilt.

”
Therefore, our main idea is that given the tetrahedralized point cloud, we formulate sur-

face extraction as a binary labeling problem, with the goal of assigning each tetrahedron
either a free or occupied label.“[6]

Die Approximation der Oberfläche ist dann genau die Grenze zwischen den mit
”
free“ und den

mit
”
occupied“ gekennzeichneten Tetraedern.

Die Information, welche Tetraeder als
”
free“ und welche als

”
occupied“ gekennzeichnet werden

sollen, wird aus der Punkt-Kameraposition-Realtion R gewonnen. Um die Gewichte für die
unären Terme zu bestimmen, wird im Wesentlichen gezählt, von wievielen Kamerapositionen
aus ein Tetraeder

”
vor“ oder

”
hinter“ einem von diesen Kameras erkannten Punkt liegt (siehe

Abbildung 1 ).

Abbildung 1: (a) Der Tetraeder V liegt hinter dem Punkt P . (b) Der Tetraeder V liegt vor dem Punkt P .
(c) Um den unären Term von V zu bestimmen, werden nur Kamerapositionen - angedeutet durch
die strichlierten Linien - verwendet, welche zu einem der Eckpunkte von V in Relation R stehen
(die Abbildung wurde aus [6] entnommen).

3



2 Bemerkungen

2.1 Spezialisierung des DT-Updates

Es können zwei im Wesentlichen verschiedene Anwendungsgebiete des in [6] vorgestellten Ver-
fahrens unterschieden werden. Einerseits Anwendungen, bei denen die 3D Punktewolke immer
dichter wird, beispielsweise indem die Bilder einer Szene von der Totalen hin zum Detail gehen
(siehe [6] S.8

”
Figure 6“). Andererseits gibt es Anwendungen bei denen die 3D Punktewolke

wächst, was bedeuten soll, dass ein signifikanter Anteil der neu hinzukommenden Datenpunk-
te außerhalb der konvexen Hülle der bestehenden Punktewolke liegt. Dies ist beispielsweise
der Fall, wenn die zugrundeliegenden Bilder

”
entlang“ einer Szene aufgenommen werden (sie-

he [6] S.7
”
Figure 4“ und

”
Figure 5“). In diesem Fall kann die zusätzliche Information über

die Art des Aufbaus der 3D Punktewolke ausgenuzt werden, indem man einen zu Sweepline
oder Gift-Wrapping (siehe [4]) verwandten Algorithmus verwendet, welche von dieser Tatsache
profitieren.

2.2 Optimierung des DT-Updates

Es ist bekannt, dass selbst vernünftig programmierte Algorithmen zur Erstellung einer DT im
R3 einer n-elementigen 3D Punktewolke eine Worst-Case Laufzeit von Θ(n2) haben (siehe dazu
beispielsweise Dwyer [4]). In vielen Fällen jedoch ist die Komplexität der DT linear, oder zu-
mindest nahezu linear in der Anzahl der Punkte (frei vom CGAL User Manual [7] übersetzt),
hierzu siehe ebenfalls [4] bzw. [1]. Die zumeist lineare Laufzeit kommt dadurch zustande, dass
sich das Update der DT nach dem Einfügen eines Punktes P zumeist auf eine lokale Nachbar-
schaft von P beschränkt und somit konstant ist.
Das von Hoppe et al. vorgestellte Verfahren ist für Anwendungen konzipiert, bei dem auch sehr
große Punktwolken (70.000 Punkte und mehr, siehe [6] 4.2) entstehen. Hält man sich zuätzlich
vor Augen, dass bei der beschriebenen Implementierung, abgesehen von der Initialisierung der
DT, inkrementell einzelne Punkte in die bestehende DT eingefügt werden, wird klar, dass man
in diesem Fall nicht davon ausgehen kann, dass die einzelnen DT-Updates in konstanter Zeit
berechnet werden können. Die Abbildung aus Figure 7 in [6] (siehe Abbildung 2) macht die Aus-
wirkungen eines DT-Updates, welches sich nicht lokal beschränkt auf die Laufzeit des gesamten
Algorithmus anschaulich.

Abbildung 2: Nach 25.000 eingefügten Punkten ist ein deutlicher Peak der Laufzeit zu erkennen. Die Abbildung
wurde aus [6] entnommen.

Ein DT-Update mit globalen Auswirkungen ist auch dahingehend zu hinterfragen, da es im
Allgemeinen keinen Sinn macht, die potentielle Oberflächenstruktur eines Objekts an einem

4



Ende, ausgehend von neuer Information über die Oberfläche am anderen Ende des Objekts zu
verändern. Die Bemühungen sollten also dahin gehen, sich über große Teile der 3D Punktewolke
ausbreitende DT-Updates zu unterbinden.
Eine unweigerliche Konsequenz einer lokalen Einschränkung des DT-Updates ist im Allgemeinen
der Verlust der globalen Delaunay-Eigenschaft. In [6] wird leider an keiner Stelle erwähnt, wozu
speziell die Delaunay-Eigenschaft der Tetraedisierung benötigt, beziehungsweise verwendet wird.
In der Referenzarbeit [8] von Labatut et al. ließt man allerdings:

”
Our choice of Delaunay triangulation as space subdivision for multi-view stereo recon-

struction is motivated by the following remarkable property: under some assumptions, and
especially if P (the pointcloud) is a

”
sufficiently dense“ sample of a surface, ..., then a

good approximation of the surface is
”

contained“ in Del(P), in the sense that the surface
can be accurately reconstructed by selecting an adequate subset of the triangular facets of
the Delaunay triangulation.“

Dies lässt vermuten, dass bei gegebener Feinheit der Punktewolke die Delaunay-Eigenschaft der
Tetraedisierung nicht notwendig für eine gute Approximation der Oberfläche ist.

Beschränkung durch Nachbarschafts-Schranke

Beim Hinzufügen eines Punktes P in die bestehende DT, wird zunächst jener Tetraeder V
ausfindig gemacht, in dem der Punkt liegt - wir sprechen hier zunächst nur von jenem Fall, indem
der neu hinzukommende Punkt innerhalb der konvexen Hülle der bestehenden 3D Punktwolke
liegt. Die Seitenflächen dieses Tetraeders werden sodann aufgelöst - d.h. aus der bestehenden
Tetraedisierung entfernt - und es wird ausgehend von der entstandenen nicht tetraedisierten
Teil-Punktewolke eine DT der gesamten Punktewolke berechnet. Dabei kann, wie bereits oben
erwähnt der Fall eintreten, dass immer mehr Tetraederseiten aufgelöst werden müssen und sich
das DT-Update somit ausbreitet. Die naheliegendste Methode dies zu unterbinden wäre, das
DT-Update a priori auf eine k-Flächennachbarschaft 1 des Tetraeders V zu beschränken. Daraus
resultiert unmittelbar konstante Laufzeit für das DT-Update nach dem Einfügen eines Punktes
und somit, in Abhängigkeit von der Anzahl der Punkte, lineare Laufzeit für die gesamte DT.

Beschränkung durch Edge Detection

Eine weitere, in gewissem Sinne dynamischere Möglichkeit der Beschränkung des DT-Updates
ist jene, Kanten in der 3D Punktewolke ausfindig zu machen, welche dann als Teilgraph der
Tetraedisierung auftreten sollen, also als Grenzen für die einzelnen DT-Updates genutzt werden
können. Dies kann beispielsweise mit Hilfe eines, wie in [3] vorgestellten Verfahrens in Kombina-
tion mit dem verwendeten SLAM Algorithmus bewerkstelligt werden. Dass die so detektierten
Kanten auch sicher in der DT als solche auftreten, kann verwirklicht werden, indem entlag der
detektierten Kante Punkte in einem hinreichend kleinem Abstand eingefügt werden. Da der
Nearest-Neighbour-Graph immer ein Teilgraph der DT ist, ist somit sichergestellt, dass die de-
tektierten Kanten in der DT liegen.
Die entlang der Kanten künstlich eingefügten Punkte müssen ebenfalls in die Punkt-Kameraposition-
Relation aufgenommen werden, was sich auf den benötigten Speicherpatz auswirkt. In [6] liest
man dazu:

1Die Flächennachbarn eines Tetraeders V sind all jene Tetraeder, welche mit V eine Seitenfläche gemein haben.
Die k-Flächennachbarschaft von V bezeichne die Menge all jener Tetraeder, welche durch bis zu k-maligem
Übergang zu Flächennachbarn, von V aus erreicht werden können.

5



”
Furthermore, we have to store the ray to tetrahdra assignment which requires a large

amount of memory.“

Vergleichend kann man also festhalten, dass eine Beschränkung durch eine Nachbarschafts-
Schranke zwar unnatürliche Schranken setzt, jedoch eine echte konstante Laufzeit für das
Einfügen jedes einzelnen Punktes liefert. Eine Beschränkung durch Edge Detection setzt hinge-
gen, in gewissem Sinne, natürlichere Schranken für das DT-Update, ist allerdings aufwendiger
in Bezug auf Speicher und Rechenzeit, sowie umfangreicher in der Implementierung.
Abschließend sei erwähnt, dass sich eine lokale Beschränkung des DT-Updates ein weiteres mal
positiv auf die Performance des Algorithmus auswirkt, da dadurch beim Update der Enegie-
funktion gegebenenfalls weniger Terme manipuliert werden müssen, was sich letzten Endes sogar
deutlicher auf die Gesamtperformance auswirken kann.

3 Herausforderung

Eine mögliche Grenze, an die der in [6] vorgestellte Algorithmus stoßen könnte, ist jene, des
Erkennens der Oberflächenstruktur einer Sparse-Structure (siehe beispielsweise Abbildung 3).
Da der entworfene Algorithmus dazu verwendet werden soll, die Oberfläche von ganzen urbanen
Szenen zu approximieren, ist es notwendig diesen Sonderfall genauer zu betrachten.

Abbildung 3: Ein Sparse Object

Auf den ersten Blick scheint das Problem zu sein, dass bei sogenannten Sparse Structures schlicht
wenig Oberfläche vorhanden ist, welche approximiert werden kann. Das eigentliche Problem
ist allerdings, dass falls die 3D Punktewolke nicht hinreichend fein ist, das zugrunde liegende
Verständnis

”
Tetraeder hinter Datenpunkten sind occupied space“ falsch ist (siehe Abbildung

4). Es folgt, dass die Korrektheit der
”
Logik“ des Verfahrens von der Punktewolke abhänging

ist. Tatsächlich ist dieser Sonderfall im Speziellen eine Herausforderung an den verwendeten
SLAM Algorithmus, da es an diesem liegt ob die räumliche Ausdehnung der einzelnen Bauteile
der Sparse Structure erkannt wird oder nicht.

6



Abbildung 4: (a) Die hier in Grau angedeuteten Bauteile einer Sparse Structure würden erkannt, nicht jedoch de-
ren räumliche Ausdehnung. Der Tetraeder

”
hinter“ dem Punkt P wird als

”
occupied“ markiert. (b)

Durch Detailaufnahmen wurde die räumliche Ausdehnung der Bauteile erkannt, die Markierungen
stimmen mit der realen Szene wieder überein.

Ein Test an einer Sparse Structure wäre jedenfalls eine Bereicherung jeder Präsentation dieses
Verfahrens, zumal dadurch entweder die Grenzen des Algorithmus aufgezeigt werden, womit
ein Gebiet für künftige Forschungen eröffnet wird, oder eine beeindruckende Leistungsschau
dargeboten wird.

Literatur

[1] Dominique Attali and Jean-Daniel Boissonnat. A linear bound on the complexity of the
delaunay triangulation of points on polyhedral surfaces. In Proceedings of the seventh ACM
symposium on Solid modeling and applications, pages 139–146. ACM, 2002.

[2] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-
time single camera slam. volume 29, pages 1052–1067. IEEE, 2007.

[3] Piotr Dollár and C Lawrence Zitnick. Structured forests for fast edge detection. In Com-
puter Vision (ICCV), 2013 IEEE International Conference on, pages 1841–1848. IEEE,
2013.

[4] Rex A Dwyer. Higher-dimensional voronoi diagrams in linear expected time. Discrete &
Computational Geometry, 6(1):343–367, 1991.

[5] Ethan Eade and Tom Drummond. Scalable monocular slam. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 469–
476. IEEE, 2006.

[6] Christof Hoppe, Manfred Klopschitz, Michael Donoser, and Horst Bischof. Incremental
surface extraction from sparse structure-from-motion point clouds. In British Machine
Vision Conference, pages 1–11, 2013.

[7] http : //doc.cgal.org/latest/Triangulation3/#title25. The cgal project.

[8] Patrick Labatut, J-P Pons, and Renaud Keriven. Efficient multi-view reconstruction of
large-scale scenes using interest points, delaunay triangulation and graph cuts. In Computer
Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

7



[9] Peter Scholz. In Softwareentwicklung eingebetteter Systeme.Grundlagen, Modellierung,
Qualitätssicherung, pages 39–73, 2005.

[10] CGAL User and 2012. http://www.cgal.org/Manual/4.0/doc html/cgal manual/packages.html.
Reference Manual. CGAL Editorial Board, 4.0 edition. The cgal project.

8



47



A simple and fast edge-preserving smoothing model

Philipp Kniefacz

February 27, 2015

1 Introduction

Edge-preserving smoothing is an approach to smooth regions of similar appearance while
retaining strong edges, so it is a technique to remove noise, weak edges and small
details whereas the overall structure of the image should not be lost. Recent edge-
preserving smoothing techniques, such as joint bilateral filter [Petschnigg et al., 2004],
guided filter [He et al., 2010] and rolling guidance filter [Zhang et al., 2014], use a so
called guidance image to perform this operation. Besides the classic application field for
edge-preserving smoothing as a preprocessing step for other computer vision techniques,
guided edge-preserving smoothing filters can be used for example in flash/no-flash de-
noising [Petschnigg et al., 2004] or image upsampling [Kopf et al., 2007].
Nowadays strong edges are often described as great intensity difference between neigh-
bouring pixels, so edge-preserving smoothing filters typically try to preserve such great
differences in pixel intensities and smooth away low differences, which results in edge-
aware filters. The problem with such filters is that they ignore a second important
measure to distinguish strong from weak edges: scale. Small structures can have great
differences in pixel intensities too, so using an edge-aware filter to remove such details is
hardly possible because those filters aren’t scale-aware - those structures are considered
as edges rather than structures to be removed.

In this work we propose a novel framework for edge-preserving smoothing. Like the rolling
guidance filter (RGF) proposed in [Zhang et al., 2014] it aims not only for edge-aware
filtering, but also for scale-aware filtering. Our model splits the tasks of smoothing and
edge preservation by using two different filters: a smoothing filter and a guided edge-
aware filter. In the first step the smoothing filter removes small structures from the input
image, but it also blurs strong edges. The second step tries to restore those smoothed
strong edges iteratively by applying the guided edge-aware filter.

In Section 2 of this work we present a short review of recent edge-preserving filters which
are most related to our work. Section 3 describes our edge-preserving smoothing model
in detail and gives some possible choices for the smoothing and the edge-aware filters. It
further introduces a simple edge-aware filter, by using an approach similar to [Pham and
Van Vliet, 2005] and discusses its properties. The results of our experiments and possible
applications of this new framework are presented in Section 4 and finally Section 5 gives
a short summary and presents possible prospective work on the topics discussed.

1



2 Related work

In the past edge-aware filters were a popular approach to edge-preserving smoothing.
Such filters smooth pixel intensities, but normally ignore the size of the structures in an
image, which means they aren’t scale-aware.
Whereas edge-aware filters only detect edges with great intensity difference, the bilateral
filter [Tomasi and Manduchi, 1998], being a combination of a Gaussian in the spatial do-
main and a Gaussian in the range domain, smoothes away small structures and therefore
detects only strong edges greater than a certain scale, depending on its parameters. While
the bilateral filter generates satisfying output images, it is very slow to compute. There-
fore different optimizations have been proposed to speed up the computation ( [Pham and
Van Vliet, 2005], [Paris and Durand, 2009], [Porikli, 2008], [Yang et al., 2009]), but these
are only approximations to the original bilateral filter, suffering from a loss in quality
or needing highly optimized code running on GPU’s, especially if aiming for real-time
performance.
To further enhance the bilateral filter, the joint or cross bilateral filter was introduced
( [Petschnigg et al., 2004], [Eisemann and Durand, 2004]), which uses a guidance image
to better remove noise or unwanted structures in an image.
Using this joint bilateral filter and exploiting its scale-awareness, the rolling guidance
filter (RGF) introduced in [Zhang et al., 2014] iteratively computes a guidance image to
apply the joint bilateral filter (or generally any edge-preserving smoothing filter) to the
input image. It is the most related work to ours, as it aims for scale-aware filtering by
blurring away small structures as well. But still there are some major differences:

• While the RGF iteratively computes a new guidance image to apply a guided filter
to the input image, we use a fixed guidance image and perform several filtering
steps.

• Instead of using one filter to iteratively perform the whole edge-preserving smooth-
ing operation, we split the tasks of smoothing and edge restoration/preservation by
using to filters: one for smoothing and one for edge-aware filtering. This makes our
model more flexible and easier to adapt to different applications.

3 Smooth and iteratively Restore

In this chapter we present a novel framework which performs edge-preserving smoothing
in two separate steps: it first uses a smoothing filter to remove small structures and then
a guided edge-aware filter to restore strong edges. While applying only edge-aware filters
leads to good results concerning strong edges, they lack at removing small structures
from the image, because those small structures often contain strong edges themselves.
Therefore it is necessary to remove those small structures before applying an edge-aware
filter, so that the edge-aware filter can smooth the image while preserving strong edges.
To achieve this, we first apply a different filter which removes small structures, but which
doesn’t care much about strong edges, relieving the edge-aware filter from the task to
remove small structures. This can be for example a spatial domain filter such as the
Gaussian filter. But applying the edge-aware filter to the blurry output of the smoothing

2



filter won’t result in any visually appealing images, it will most probably result in even
worse output than after applying the edge-aware filter on the original input. But we
still have the original input image, which has the best edge information we can have.
By extending the edge-aware filter to use the original input image as a guidance image,
we obtain a guided edge-aware filter which has no problems filtering the blurry output
of the smoothing filter. It chooses the strong edges from the original input image and
accordingly restores the blurry output image of the smoothing filter. This whole process
can be simply described as smooth and iteratively restore.

3.1 The Algorithm

In the following sections we will present some possible choices for the smoothing and
the guided edge-aware filter, but for now let us assume we have already chosen two such
filters. Let us denote the smoothing filter with S, the guided edge restoring filter RIG
using a guidance image IG, our input image with I and our output image with O. Then
our algorithm first performs a smoothing operation by applying S to the input image I.
This smoothing operation removes small structures up to a certain scale. How much it
removes depends on the parameters of S. Any smoothing filter, that removes unwanted
small edges and structures, can be used here, e.g. Gaussian filter, box filter, median filter,
...
Now we have a smoothed image with already removed small structures, but the strong
edges are smoothed as well. So our next step is to unsmooth those strong edges, while
smoothed regions without strong edges are left as they are. Therefore we apply RIG in an
iterative manner using n iterations. Putting those two steps together we get algorithm 1:

Input: input image I, guidance image IG, smoothing filter S, guided edge-aware
filter RIG , number of iterations n

Output: filtered image O

Blur image I with smoothing filter S: O = S(I)
for i = 1...n do

filter O with guided range filter RIG : O = RIG(O)
end

And that’s it! It is easily implemented as soon as you have two filters which fulfill the
requirements for S and RIG and because of its very flexible nature, the algorithm can be
easily adopted to the needs of your application.
We now present some possible choices for S and RIG so that our Smooth-and-Restore-
Framework results in fast and well performing edge-preserving smoothing filters.

3.2 Small structures removal

To remove small structures from an input image I we have to apply a smoothing filter
S. This can be for example a domain filter, such as a Gaussian filter or a box filter, but
can generally be any filter that smoothes away small structures. For this first step, it is
not important to choose an edge-aware filter, restoring strong edges is the goal of step
2, but you can of course choose your filter to be more complex (e.g. bilateral filter). We

3



experimented in particular with two different smoothing filters: the Gaussian filter and
the box filter, which can be applied several times to approximate a Gaussian filter.

3.3 Restore strong edges

After removing small structures we apply an edge-aware filter to restore strong edges, that
is a filter that smoothes differences in pixel intensities and not in pixel coordinates. Fur-
thermore we can choose the filter to be guided in that sense, that it uses a guidance image
to perform the filtering operation, such as the guided filter [He et al., 2010] or the rolling
guidance filter [Zhang et al., 2014]. To restore the strong edges from the input image
I we can just use I as guidance image, but for different applications (such as flash/no-
flash denoising, see [Petschnigg et al., 2004]) we might want to use other guidance images.

For the rest of this subsection we will use following notation: the original input image
(before applying S) will be denoted I, the output image of the first step (this is S(I))
will be denoted J and the output image of the whole algorithm will be denoted O.
We now present three possible guided range filters to use in our framework. In the result
section we show some output images generated with those filters.

3.3.1 2D Gaussian Range Filter

A simple range filter, that is used for example in the bilateral filter, is the Gaussian
function on the pixel intensities:

O(p) = α−1
∑

q∈N(p)

e−
1

2σ2
||J(p)−J(q)||2J(q) (1)

with p and q as pixel coordinates and the normalization coefficient α =
∑

q∈N(p) e
− 1

2σ2
||J(p)−J(q)||2 .

This is a weighted average working in a neighbourhood N(p) of p, that favours pixels q
with similar color. It detects strong edges (||J(p) − J(q)||2 is very high) and is there-
fore well suited to smooth while retaining strong edges. However to work on an already
smoothed image J , we modify (1) to use a guidance image:

O(p) = α−1
∑

q∈N(p)

e−
1

2σ2
||IG(p)−IG(q)||2J(q) (2)

with the normalization coefficient α =
∑

q∈N(p) e
− 1

2σ2
||IG(p)−IG(q)||2 . Here we still filter the

image J , but we use IG as a guidance image. We therefore detect the strong edges of the
guidance image IG and restore them in the smoothed image J .

3.3.2 Recognizing pixels in the same region

The 2D Gaussian Range Filter has two drawbacks: first of all, it is very slow to compute.
If our goal is a fast filter for real-time applications, this filter will not suit our needs,
especially if we are going to use it iteratively.
The second disadvantage is a bit more difficult to spot. What we actually want to achieve

4



is some kind of segmentation: we want that an edge-preserving algorithm recognizes
different regions/objects in our image, that it smoothes intensity discrepancies inside
those regions and that it sharpens the borders between those regions. The Gaussian
Range Filter detects regions only by comparing intensities of two pixels p and q, so it
actually works with following description of a region: two pixels p and q are in the same
region when they have nearly the same intensity value.
This is a somewhat simple definition of a region, so to define our next edge-aware filter
we use another description of a region: we say that two pixels p and q lie in the same
region when there is no strong edge between them. To see the difference between those
two descriptions, we can distinguish four cases:

I p and q are in the same region and have similar values

II p and q are not in the same region and have different values

III p and q are in the same region, but have different values , this means that there isn’t
a strong edge between p and q, but rather a smooth transition from p to q. In such
a case our goal is to smooth away this transition.

IV p and q are not in the same region, but have similar values, this means there is at
least one strong edge between them.

In two of these four cases, namely I and II, the Gaussian Range Filter behaves correctly.
In the other two cases it doesn’t, because it treats III as II and IV as if it were I. In
III the filter should give the pixel q a high weight, because q is in the same region as p.
Contrary in IV, the filter should give the pixel q a lower weight because q is in a different
region.
To overcome this problem, we introduce intermediate pixels t1, ..., tk−1 for some k > 1
lying between p and q and instead compare each ti to its neighbours ti−1 and ti+1 where
t0 := p and tk := q. Then, according to the differences ||I(ti)− I(ti+1)||, the filter could
better decide if p and q are in the same region or not:

i If all ti have almost the same intensity, then we would be in situation I as before

ii If p and q have different values and if there exists an i such that 0 ≤ i < k where
||I(ti)− I(ti+1)|| is very high, then we have at least one strong edge between p and q

iii If I(p) < I(t1) < ... < I(ti) < ... < I(tk−1) < I(q) or I(p) > I(t1) > ... > I(ti) >
... > I(tk−1) > I(q), then we are in situation IV and the filter recognizes that there
is no strong edge between p and q, because according to the ti’s there is a smooth
transition from p to q

iv Finally if p and q have similar values but there exists an i such that 0 ≤ i < k where
||I(ti)− I(ti+1)|| is very high, then we have at least one strong edge between p and q
and therefore they are in two different regions

So using intermediate points, the filter can correctly classify the relationship between p
and q. The next filter tries to approximate this behaviour while being separable and
therefore faster to compute.

5



3.3.3 Separable Gaussian Range Filter

We now proceed similar to [Pham and Van Vliet, 2005], who approximate the 2D bilateral
filter by simply applying a 1D bilateral filter first horizontally and then vertically. But
instead of approximating the whole bilateral filter, we only approximate the Gaussian
Range Filter (2). This leads to a filter which is not only separable, but which in addition
has the useful property of introducing an intermediate pixel as described above.
First we define two operators Oh,I and Ov,I as follows:

Oh,I(J)(x̃, y) = α−11

∑

x∈N(x̃)

e−
1

2σ2
||I(x̃,y)−I(x,y)||2J(x, y) (3)

Ov,I(J)(x, ỹ) = α−12

∑

y∈N(ỹ)

e−
1

2σ2
||I(x,ỹ)−I(x,y)||2J(x, y) (4)

with normalization coefficients α1 and α2. Those two operators compute a Gaussian over
the pixel intensities, but they do it only in one dimension: Oh,I filters horizontally and
OvI vertically. To obtain our final filter we simply combine those operators:

O(x, y) = Oh,I(Ov,I(J))(x, y) (5)

which can be written in a closed form as

O(x̃, ỹ) = α−1
∑

x∈N(x̃)

∑

y∈N(ỹ)

e−
1

2σ2
||I(x̃,ỹ)−I(x,ỹ)||2e−

1
2σ2
||I(x,ỹ)−I(x,y)||2J(x, y)

= α−1
∑

(x,y)∈N(x̃,ỹ)

e−
1

2σ2

(
||I(x̃,ỹ)−I(x,ỹ)||2+||I(x,ỹ)−I(x,y)||2

)
J(x, y)

(6)

again with α being the appropriate normalization coefficient.
There are two important aspects to note here:

• The resulting filter is by definition separable and therefore fast to compute.

• We could also try Ov,I(Oh,I(J)) which would result in a new filter because Oh,I and
Ov,I are not commutative!

In contrast to the Gaussian Range Filter, this filter doesn’t directly compare I(x, y) and
I(x̃, ỹ) but uses rather an intermediate pixel I(x, ỹ) and compares it to I(x, y) and I(x̃, ỹ).
Using the notation from above we have t0 = p = (x̃, ỹ), t1 = (x, ỹ) and t2 = q = (x, y).
To see how this separable filter differs from the Gaussian Range Filter, we look at the
computed weights in these two filters:

w1
p,q = e−

1
2σ2
||I(p)−I(q)||2 (7)

w2
p,q = e−

1
2σ2

(
||I(p)−I(t1)||2+||I(t0)−I(q)||2

)
(8)

We can rewrite (8) as follows:

w2
p,q = e−

1
2σ2

(
||I(p)−I(t1)||2+||I(t1)−I(q)||2

)

= e−
1

2σ2
||I(p)−I(q)||2e−

1
2σ2

2||I(t1)−I(q)||·||I(t1)−I(p)||

= w1
p,q · e−

1
σ2
||I(t1)−I(q)||·||I(t1)−I(p)||

(9)

Analogous to i - iv this leads us to three different cases:

6



• I(p) = I(t1) ∨ I(q) = I(t1) ⇒ w1
p,q = w2

p,q

If the intermediate pixel t1 equals p or q, then the resulting weight is the same as
in the first approach. This corresponds to the cases i and ii.

• I(p) < I(t1) < I(q) ∨ I(p) > I(t1) > I(q) ⇒ w1
p,q > w2

p,q

If the intermediate pixel t1 has an intensity value between p and q then although
there may be a (great) difference between p and q (which the first filter would
classify as edge), this filter increases the resulting weight. That’s because although
they differ, the intermediate pixel tells us they belong to the same region and the
there’s a smooth transition from p to q. This corresponds to iii.

•
(
I(t1) > I(p) ∧ I(t1) > I(q)

)
∨
(
I(t1) < I(p) ∧ I(t1) < I(q)

)
⇒ w1

p,q < w2
p,q

If the intermediate pixel t1 has a greater or smaller intensity value than both p
and q, then there is an edge between p and q and the resulting weight is therefore
smaller. This corresponds to iv.

The intermediate pixel t1 that is used here is not between p and q, but for small neigh-
bourhoods, it approximates the behaviour sufficiently good. We therefore get a filter that
is not only fast to compute, but that also uses an intermediate pixel to better distinguish
the regions of two pixels p and q.

3.3.4 Symmetric Nearest Neighbour Filter

The third edge-aware filter we used is the Symmetric Nearest Neighbour Filter (SNN)
first presented in [Harwood et al., 1987]. It compares the eight neighbouring pixels of a
pixel p and chooses of each of the four pixel pairs of opposite pixels the nearest neighbour
to p. p is then replaced with the mean (SNNmean) or the median (SNNmedian) of the
resulting four pixels. This leads to a very fast edge-aware filter.

4 Results

In this section we present some results obtained with our framework. All images are taken
from http://www.cse.cuhk.edu.hk/leojia/projects/rollguidance/index.html.
We compare the original image to the output generated by the rolling guidance filter
(RGF) and to our smooth and iteratively restore model (SIR) with different filters.
Whereas all results of the RGF are obtained in about 1s − 3s using their Matlab im-
plementation, the C++ implementation of our model takes at most 0.4s or is even faster
at about 0.04s, depending on the image size and filters chosen. The results where ob-
tained using an i7 Intel processor 3rd generation, the implementation uses only a single
core and no vector instructions, therefore there is still a lot of room for improvement.
Even without hardware optimizations the code runs extremely fast, therefore this model
is well suited for real-time applications.

7



Figure 1: Results obtained using RGF and using our model. Image size is 336× 471.
Top row: orignial image and output of RGF.
Bottom left: SIR with S=box filter iterated 3 times, R=SNNmean, n = 4, Time: 42.7ms
Bottom middle: SIR with S=Gaussian filter (σ = 1.5, kernelradius = 3), R=SNNmean, n = 4,
Time: 45.6ms
Bottom right: SIR with S=Gaussian filter (σ = 7, kernelradius = 3), R=fast separable range
filter (σ = 10, kernelradius = 3), n = 15, Time: 274.3ms

8



Figure 2: Results obtained using RGF and using our model. Image size is 500× 333.
Top row: orignial image and output of RGF.
Bottom left: SIR with S=Gaussian filter (σ = 1.5, kernelradius = 3), R=SNNmean, n = 5,
Time: 54.9ms
Bottom right: SIR with S=Gaussian filter (σ = 7, kernelradius = 3), R=fast separable range
filter (σ = 10, kernelradius = 3), n = 10, Time: 214.4ms

9



Figure 3: Results obtained using RGF and using our model. Image size is 387× 579.
Top row: orignial image and output of RGF.
Bottom left: SIR with S=Gaussian filter (σ = 2, kernelradius = 3), R=SNNmean, n = 8,
Time: 91.6ms
Bottom right: SIR with S=Gaussian filter (σ = 9, kernelradius = 3), R=fast separable range
filter (σ = 13, kernelradius = 3), n = 15, Time: 370ms

10



5 Conclusion and further work

In this paper we presented a novel framework for edge-preserving smoothing, which uses
a smoothing filter for small structure removal and a guided edge-aware filter to restore
strong edges. It can be used with a variety of different filters, of which a small subset
was presented within this paper.
The algorithm is very simple and therefore easy to implement, it consists of two steps:
first smooth once using the smoothing filter, then iteratively apply the guided edge-aware
filter.
Depending on the performance of the two filters and the predefined number of iterations,
the algorithm can be very fast. As our experiments show, already very few iterations
(3-5 iterations) lead to very good results, our framework is therefore very well suited for
real-time applications.
Further work on this topic includes experiments with more filters (especially guided edge-
aware filters) and to apply the model for different applications, such as texture separation
or as preprocessing step for image segmentation.

References

[Eisemann and Durand, 2004] Eisemann, E. and Durand, F. (2004). Flash photogra-
phy enhancement via intrinsic relighting. In ACM transactions on graphics (TOG),
volume 23, pages 673–678. ACM.

[Harwood et al., 1987] Harwood, D., Subbarao, M., Hakalahti, H., and Davis, L. S.
(1987). A new class of edge-preserving smoothing filters. Pattern Recognition Let-
ters, 6(3):155–162.

[He et al., 2010] He, K., Sun, J., and Tang, X. (2010). Guided image filtering. In Com-
puter Vision–ECCV 2010, pages 1–14. Springer.

[Kopf et al., 2007] Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. (2007).
Joint bilateral upsampling. In ACM Transactions on Graphics (TOG), volume 26,
page 96. ACM.

[Paris and Durand, 2009] Paris, S. and Durand, F. (2009). A fast approximation of the
bilateral filter using a signal processing approach. International Journal of Computer
Vision, 81(1):24–52.

[Petschnigg et al., 2004] Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe,
H., and Toyama, K. (2004). Digital photography with flash and no-flash image pairs.
ACM transactions on graphics (TOG), 23(3):664–672.

[Pham and Van Vliet, 2005] Pham, T. Q. and Van Vliet, L. J. (2005). Separable bilateral
filtering for fast video preprocessing. In Multimedia and Expo, 2005. ICME 2005. IEEE
International Conference on, pages 4–pp. IEEE.

[Porikli, 2008] Porikli, F. (2008). Constant time o (1) bilateral filtering. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE.

11



[Tomasi and Manduchi, 1998] Tomasi, C. and Manduchi, R. (1998). Bilateral filtering
for gray and color images. In Computer Vision, 1998. Sixth International Conference
on, pages 839–846. IEEE.

[Yang et al., 2009] Yang, Q., Tan, K.-H., and Ahuja, N. (2009). Real-time o (1) bilat-
eral filtering. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 557–564. IEEE.

[Zhang et al., 2014] Zhang, Q., Shen, X., Xu, L., and Jia, J. (2014). Rolling guidance
filter. In Computer Vision–ECCV 2014, pages 815–830. Springer.

12



60



The 2D Local Binary Pattern, applications in
Face Analysis and observations on complexity

Attila Szabo1

Vienna University of Technology
e0925269@student.tuwien.ac.at

Abstract. Face Analysis is an important research field in Computer Vi-
sion due to its many real-life applications. The Local Binary Pattern is an
important feature descriptor due to its simplicity and robustness against
illumination change. It has been used successfully in many solutions and
a high amount of extensions and improvements have been developed. In
this paper, an overview of the Local Binary Pattern is given and a selec-
tion of applications in Face Analysis is presented, while observations on
the complexity of these solutions are stated.

Keywords: computer vision, face detection, expression recognition, lo-
cal binary pattern

1 Introduction

Computer Vision is an active research field driven by many commercial and
real-world applications. The most common challenges in image processing ap-
plications include the many variances in captured images caused by change in
time, lighting conditions, camera quality, etc. as well as performance constraints
present in real-time applications.

For these reasons, the Local Binary Pattern (LBP) has quickly become one
of the most important tools in image processing. The LBP is invariant to illumi-
nation change and very quick and easy to compute, and with many extensions
proposed is able to deal with other common challenges as well.

While originally proposed for texture classification problems, the LBP has
also become very important in the field of face analysis. Human faces are of-
ten defined by local microstructures within certain regions and they are often
photographed in different lighting conditions, the images often needing to be
processed in real-time. The LBP is very well suited for and has often been suc-
cessfully used in face analysis.

Traditionally, the LBP in its simplest form has been extended many times,
and the systems using it grow increasingly complex. Additional knowledge and
parameters are incorporated, and more information is encoded in the LBP to
increase the overall performance. This raises the question to what degree it
makes sense to increase the complexity for potentially marginal results, and if it
is possible to find alternative ways to increase performance without leading to a
more complex model.



2

In this paper, the LBP operator is introduced and an overview of its notable
extensions is given. Then, an outline of the field of face analysis is given and ba-
sic solutions to common tasks are discussed. Finally, some important extensions
to these solutions are broached and two state of the art systems are discussed.
Overarchingly, notes and comments about the complexities of the presented ap-
proaches are given.

2 Related Work

There is a vast amount of classification systems using the LBP. A thorough
and comprehensive discussion on the topic can be found in the book Computer
Vision using Local Binary Patterns [10].

Very common is the concrete application of the LBP in face analysis, and
many solutions have been developed in recent history. A good and concise
overview of these solutions can be found for face analysis in the work of Huang
et al. [11] and for the specific application in expression recognition in the work
of Shan et al. [20].

A comprehensive study of commercially available systems and their modes
of operation is described in the book Local Binary Patterns: New Variants and
Applications [6].

Finally, free face detection services can be found on the internet, notably in-
cluding the services of Facebook and Picasa, and further resources for developers,
including code, can be found at www.facedetection.com [1].

3 Local Binary Pattern

3.1 Basic LBP

Fig. 1. Example for a simple Local Binary Pattern. left: Pixel intensity values. center:
Binary values after thresholding. right: Multiplication weights. Source: [10].

The original Local Binary Pattern operator [17] is a simple and efficient
method to describe the pixels of an image using their local neighbourhood. The



3

resulting labels are called LBP and they encode the local structure around a
pixel.

Figure 1 shows an example for an LBP derived from a pixel neighbourhood.
The center pixel is compared to its 3 × 3 neighbours. The value of the center
pixel is subtracted from each of the neighbours values, and the sign of the results
is binary encoded by assigning a 0 to strictly negative values, and a 1 to the
others [11]. A binary pattern is obtained by reading the binary numbers in a
clockwise direction, starting from the top left neighbour. The pattern is converted
to a decimal number by multiplying the binary digits with a power of two and
summing them up. This sum is the LBP and it is a unique label for each of the
256 possible patterns.

The LBP is very easy and fast to compute, making it suitable under circum-
stances that imply performance constraints, such as real-time image analysis
scenarios. Furthermore, the operator is invariant against monotonic gray level
changes, which can be caused by illumination change in real-world images [10].
This makes the operator very well suited for applications using images taken out-
side of laboratory conditions, such as photographies, in which such variations in
illumination are common.

3.2 Generalized LBP

Fig. 2. Different (P,R)-neighbourhoods. left: (8,1). center: (16,2). right: (8,2). Source:
[10].

One obvious disadvantage of the basic LBP is that it is spatially constrained
to a neighbourhood of size 3× 3. This means that only features of an image are
represented that can be measured within this scale, and larger-scale structures
are not adequately captured. To alleviate this problem, the LBP operator was
extended to use circular neighbourhoods of arbitrary size and number of sample
points [18].

The local neighbourhood is defined as a number of sample points arranged
on a circle centered around the pixel to be labeled. Figure 2 shows an example
for such neighbourhoods. The values for sampling points which are not in the
center of a pixel are calculated using bilinear interpolation.



4

For a pixel c, the LBP label LBPP,R is calculated using the number of sam-
pling points P and the radius R. With the pixel values as g, the label is obtained
using the following formula [18]:

LBPP,R(c) =
P−1∑

p=0

s(gp − gc)2
p

where s is a binary sign function defined as

s(x) =

{
1, x ≥ 0
0, x < 0

The operator is invariant against monotonic transformation of the gray scale,
meaning that the order of pixel intensities in the local neighbourhood is pre-
served. In addition, setting (P = 8, R = 1 results in labels similar to the basic
LBP [18].

3.3 Rotation Invariance and Uniform Patterns

In Computer Vision applications such as texture analysis, it is often desirable
for image features to be robust against rotation of the image. When the image
is rotated, the position of a pattern moves to another location (which is not
an issue if the position is irrelevant, i.e. LBP histograms), and the pixel values
of the neighbours move along the circular neighbourhood, corresponding to a
bit-shift in the pattern [18], except for patterns containing only 1s and 0s.

To remove this second effect, the LBP operator is extended to the rotation
invariant LBP using the following formula [18]:

LBP ri
P,R = min {ROR(LBPP,R, i)|i = 0...P − 1}

where ROR performs a circular right bit-shift i times. This means that each
pattern is mapped onto the pattern with the smallest decimal value that can
be reached using only circular right bit shifts. For example, 00101000, 10100000
and 10000010 all get mapped onto 00000101. The number of labels for 8 sample
points is reduced from 256 to This rotation invariant LBP is only truly invariant
to rotation of discrete angles, with a step size corresponding to P . However,
experimental results have shown that this descriptor is very robust to in-plane
rotations of images by any angle [10].

Another extension to improve discriminative properties are the so-called uni-
form patterns [18]. When considering the (circular) string of bits that forms a
pattern, the number of transitions from 0 to 1 or 1 to 0 are counted. If a pat-
tern contains at most 2 such transitions, it is a uniform pattern. For example,
00000000 (0 transitions) and 01110000 (2 transitions) are uniform patterns, and
10101010 (8 transitions) is not. Uniform patterns are mapped onto unique labels,
while all non-uniform patterns receive the same single label.

Uniform patterns carry more information than the non-uniform ones [11].
They encode significant image features such as bright/dark spots (only 0s or



5

Fig. 3. Uniform patterns. Source: [10].

1s) and edges (coherent half of the pattern is 1s and the other half 0s). Some
examples are shown in Figure 3. This method significantly reduces the number of
labels used while still retaining the good discriminative properties. It was found
experimentally that in face recognition applications, up to 90% of the patterns
are uniform [2], making LBP a valid choice for face analysis [21].

3.4 Further Extensions

Many different improvements to the LBP operator have been developed to extend
their applicability under certain circumstances [10] [11]. These improvements are
designed to result in better performance in certain areas and usually result in a
trade-off in higher computational cost or worse performance in other cases.

Improved Discriminative Power Notably, some proposed extensions aim
to improve the discriminative power of the LBP operator and make it suited
for a wider range of images, for example by encoding additional information
into the pattern or changing the shape of the neighbourhood. For example,
the Extended LBP [12] adds additional binary units to a label and uses them
to encode the actual gray value differences between the center pixel and its
neighbours, allowing to distinguish between relatively similar local textures at
the cost of higher feature dimensionality.

Fig. 4. left: Elongated LBP. Source: [14] right: Local Ternary Pattern. Source: [22]

On the other hand, the Elongated LBP [14] changes the shape of the neigh-
bourhood to an ellipse instead of a circle. The ellipse is defined by its major



6

axis A and its minor axis B, and has m equally spaced sample points on its
perimeter (Figure 4 left). Again, for finding the values of sample points not on a
pixel center, bilinear interpolation is used. By sampling an image point several
times at different rotations and scalings, anisotropic image features can be cap-
tured. The ability to encode feature orientation and magnitude is added, leading
to reportedly better classification performance in face recognition applications,
particularly with low-resolution images. However, a higher number of parameters
is introduced, leading to a more complex feature space.

Resistance to Noise Due to its nature, the LBP operator is sensitive to noise
since the neighbours are compared to the exact center pixel value. Some exten-
sions aim to improve the robustness of the operator against noise, such as the
Soft LBP [4], a trivial extension which introduces a threshold parameter to es-
tablish a tolerance range within which differences are ignored. This leads to less
sensitivity against noise, but gives up the strict invariance against illumination
change.

The Local Ternary Pattern [22] extends this idea and applies it to face recog-
nition. Because facial regions are described to be relatively uniform, it is impor-
tant to achieve a degree of robustness against noise in such uniform regions.
Using a tolerance parameter, a tolerance zone is established around a pixel, and
the local neighbourhood is decided to lie above (+1), within (0) or below (-1) the
zone. The result is subsequently split up into two binary patterns, one where one
the positive values are mapped to 1, and one where only the negative values are
mapped to 1. This procedure is shown in Figure 4 right. By using these patterns
in the construction of a feature vector, greatly improved classification results
have been reported in face recognition applications. The performance comes at
the cost of a reduced invariance to illumination change and double the amount
of patterns.

Fig. 5. left: Volumetric LBP. right: LBP with Three Orthogonal Planes. Source for
both: [24]



7

The Third Dimension It is possible to extend the Local Binary Pattern oper-
ator to the third dimension. This allows the operator to be applied on volumetric
data, such as dynamic textures and videos, in which the third dimension is the
time and represents temporal change in the data set. However, such volumetric
data can also be sensibly constructed from two dimensional images, for example
by conducting multi-scale, multi-rotation or frequency analysis and then order-
ing the transformed images in the third dimension by the change in parameter.

The trivial method to extend the LBP to the third dimension is the VLBP
[24], in which the two dimensional LBP is extracted from each time slice indi-
vidually and then treated as one coherent binary code. As can be seen in Figure
5 left, this leads to a spiralling sampling strategy, which results in sampling
issues and long feature vectors. Therefore, the LBP Three Orthogonal Planes
(TOP) [24] method is used to alleviate these issues. In this approach, the sam-
pling is performed along three (independently scalable) ellipses which lie on
three orthogonal planes in the three dimensional space centered around the im-
age point. The three planes are the spatial x-y plane and two spatiotemporal x-t
and y-t planes (Figure 5 right). The x-y plane provides the local image neigh-
bourhood information while the two spatiotemporal planes include the changes
over time. The computational complexity of this approach is lower and the re-
sulting feature vector significantly shorter compared to the VLBP.

The third dimension does not necessarily have to encode time. The GV-LBP-
TOP operator [13] applies a frequency transform based on Gabor Wavelets on
the image using different scales for the kernel, resulting in the response of the
filter to different frequencies. The multi-frequency representation of the image is
achieved by ordering the frequency images on a stack according to their scale.
Finally, the LBP-TOP operator is applied onto this volume to obtain a feature
representation of the image. While computationally complex, this approach is
reported to significantly outperform comparable methods, including the regular
LBP operator, in test scenarios of face recognition

4 Face Analysis

Face Analysis is an actively investigated topic in the field Computer Vision.
Research interest is generated by a variety of real world applications of face
analysis systems. Common applications include internet services, such as the
face tagging system in Google services and Facebook, face detection on digital
cameras, security applications, including face recognition in video surveillance
and person identification in access control. An overview of commercially available
face analysis systems and their performances, applications and properties is given
in the Face Recognition Vendor Test [15] [19], which provides benchmark values
against which new systems are compared.

The main applications can be categorized into face detection, in which the
existence, position and appearance of faces in an image is established, and face
recognition, which in turn is composed of face identification and face recognition,
the one-to-many and one-to-one comparisons of new faces against known ones



8

respectively [6]. The biggest challenges for these systems are the very high vari-
ability of faces, caused by the many different possible geographical settings, scene
illuminations, camera parameters and camera qualities, as well as the changes
in people themselves caused by age, clothing, diseases, make-up, etc. Further
challenges include a small sample size for face databases (typically only one)
and performance constraints for real-time systems.

In the core of a Face Analysis system is the feature representation used
to represent a face. To counteract the aforementioned difficulties, such a feature
representation should be robust against lighting and pose variations and fast and
simple to compute, making the LBP an attractive candidate for this purpose. The
important sampling points of the face image are typically found as a consequence
of dense sampling with subsequent machine learning techniques, or keypoint
identification pre-processing [6]. Using these feature representations, common
supervised or unsupervised classifiers are used for the classification task.

Fig. 6. Multi-Scale LBPs concatenated to one feature vector for use in Face Detection.
Source: [9]

4.1 Face Detection

The earliest Face Detection techniques scanned the entire image used local in-
formation of plain pixel values to decide whether or not a region belongs to a
face. This paved the way for using the LBP for this purpose, as was proposed
by Hadid et al. [9].

The goal of the system is to detect the position, (limited) orientation and
size of faces in an image. The image is divided into a regular grid and a mov-
ing subwindow samples the regions at different scales. The LBP is obtained by
concatenating the individual LBP histograms into one multi-scale feature vector
(Figure 6). A SVM classifier is then used to classify the samples, with the train-
ing database consisting of a large set of positive (face) and negative (not face)
examples, with the positive examples also having slightly rotated versions to
achieve some rotation robustness. The class distance of a sample point resulting
from the classification is labelled as the faceness of a region. If this value is high
enough, the region is deemed a face.



9

The approach is reported to result in as-good or better classification perfor-
mance as the preceding, similarly structured techniques, however while using a
much simpler and faster feature descriptor. On the other hand, since there are
no particular considerations concerning prior knowledge about faces or image
variance, a very large training database is needed to reach these results, and
even then not all types of faces can be covered without fail (Figure 7).

Fig. 7. Examples for detected faces, missed faces and false detections. Source: [9]

4.2 Face Recognition

In Face Recognition, the image of a face is recognized to be an already known
person. It was already recognized early on that including small local details is
highly important in building a discriminative face feature representation, which
led to the approach as proposed by Ahonen et al. [3]. The LBP is used to capture
these local details. The image is sampled in a regular grid at different scales and
the samples are concatenated to one global descriptor. Following the fact that
the training set usually contains only a few or only one image for a person,
a Nearest Neighbour classifier is used for classification. It is recognized that
particular areas of the face are more important for discriminability than others,
and therefore a weighted (Chi squared) distance function is used, in which the
weights are manually set by a simple perceptual model (Figure 8).

The resulting system is reported to provide improved classification rates
compared to preceding common approaches, which lies at around 80% for the
”difficult” test data sets. Though the approach is very simple, the fact that it
operates with relatively small feature vectors (not requiring dimensionality re-
duction methods) and without expensive pre-processing and still delivers these
good results makes it a fundamental starting point for subsequent works.

4.3 Expression Recognition

The recognition of facial expression has recently gained interest because emo-
tions are known to have a stark impact on the shape of human faces, leading to
strong deformations as the many different facial muscles contract. Recognizing



10

Fig. 8. Regularly sampled face and according weighting function (brighter blocks re-
ceive higher weights). Source: [3]

Fig. 9. A sample of images from the JAFFE database for use in Expression Recogni-
tion. Source: [8]

the emotional state of an individual by their facial expression helps to compen-
sate for those deformations and thus improves recognition rates. Following the
same reasoning as in Section 4.2, the LBP has been proposed as a feature de-
scriptor by Feng et al. [8] in what is basically the same fashion. However, since
emotional expression cues are interrelated (one muscle plays a role in multi-
ple emotions), the classifier uses a tournament scheme to iteratively distinguish
between two classes until the best fit is determined.

Similar to Section 4.2, the approach reportedly outperforms comparable ap-
proaches while being of lower complexity. Again, some basic knowledge about
the subject being included in the classifier causes improved classification rates,
leading to a large wealth of follow-up work.

5 Recent Works

Fig. 10. Important facial regions selected by AdaBoost. Source: [20]



11

Subsequent work in the field of Face Analysis using the LBP can be commonly
considered extensions to and alterations of the methods described in Section 4.
One very common technique is to combine the LBP with other feature extraction
operators in order to enhance the information contained within. This usually
means prefacing the LBP with a series of image transforms, a common example
being (multi-scale) frequency transforms, such as the Gabor filter [5]. Using
this method, the already very effective technique of frequency analysis can be
combined with the LBP.

The other common extension is to introduce knowledge about the structure
of a face into the system to localize key points and regions. These points are used
not only to rotate and scale the face into a normalized position on the image, but
also to localize important sampling regions themselves. This is commonly done
in two ways, either by utilizing expert knowledge to establish a model by which
these points can be identified, or by densely sampling the feature space and using
boost learning to emphasize important regions and de-emphasize unimportant
ones [20]. Figure 10 shows a set of such regions selected by AdaBoost for different
emotions from a test database after regular sampling using the LBP.

5.1 Action Unit Detection

Fig. 11. left : Key facial points and their contributions to different Action Units. right :
From left to right, original, bilateral filter, opening and black top-hat operators. Source:
[23]

Action Units are a term defined by the Facial Action Coding System [7]. They
define a set of movements of facial features and group them together as units
in order to be able to unambiguously measure facial expressions. Such Action
Units can be ”outer brow up”, ”outer brow down”, ”mouth corner up”, etc.
Using various models, these Action Units can then be interpreted as emotional
expressions. Each Action Unit contributes to a number of expressions, and the
combination of Action Units is used as a model of expression quantification.

In the recent work of Yuce et al. [23], an advanced expression recognition
system has been proposed to automatically detect Action Units. While techni-
cally operating on videos, the system only uses the neutral and the peak frame,
at which the Action Unit is at its maximum, and a set of image filters for feature
extraction.



12

First, preprocessing steps are taken. The face is divided into regions and,
using manual annotation, important points are localized and labelled with their
contribution to the different Action Units (Figure 11 left). The distances of
these points from the neutral frame to the peak frame is fixed as first feature
descriptor. Next, a set of filters is applied to the image. Bilateral filtering is used
to reduce noise across uniform image regions (domain filter) while preserving
edges (range filter). Morphological operators are used to emphasize areas of
import. An opening operator is applied to enlarge bright areas while a black
top-hat operator subtracts the bright regions, leaving only the emphasized dark
regions (Figure 11 right. Both these operators are modified versions of their
original namesakes which aim to preserve the shape of non-targeted regions.
Finally, the Uniform LBP is obtained, using an overlapping sliding sampling
window, and the histogram variation between the neutral and peak frames is
used as feature descriptor. All of the feature descriptors obtained this way are
then concatenated into one large feature vector. For classification, boost learning
is applied to emphasize the most relevant features and one SVM classifier is
trained for each Action Unit to be identified by this system.

This system reportedly delivers very high classification performance when
applied to a state of the art testing dataset. Across all Action Units, the average
overall classification rate is at around 92%, which is about 3% higher compared
to using only the LBP as a feature vector.

While the system performs better using simple image processing methods
compared to alternative approaches, it can be easily seen that it is still exceed-
ingly complex. A high number of parameters is introduced on top of the LBP,
including the filters used for the bilateral filter and the structure elements of
the morphological operators. In addition, the structural pre-processing is done
entirely by hand. The authors of the work state that automated methods for
finding these parameters should be future work for this system. In the light of
this, the system can likely not yet be used outside of test conditions, and is
possibly entirely unattractive in applications where such a high accuracy is not
necessarily needed at all.

5.2 LBP co-occurrence

Extracted LBPs are usually packed into a single histogram. However, neigh-
bouring LBPs are not independent, they contain information about each other,
meaning that this information is usually lost. By this motivation, Nosaka et
al. [16] introduced an extension to the LBPs which includes their co-occurrence,
the spatial relation between different LBPs, to increase the operators expressive
power.

To find the co-occurrence of LBPs effectively, this system uses sparse LBPs,
that is, + and x shaped 4-neighbourhoods. After the LBPs are extracted, adja-
cent LBPs are checked for co-occurrence by first defining a set of displacement
vectors and then establishing the co-occurrence matrix for each vector. The ma-
trix has one entry for each pair of LBPs, and a field contains the number of
these LBPs that are neighbours and can be reached using the direction vector.



13

Fig. 12. Different images with same LBP histograms, but different LBP co-occurences.
Source: [16]

The original LBP is included in this matrix and can be obtained by summing
up a column. All matrices are vectorized and concatenated to the final feature
vector.

The system was reportedly tested using a dataset of faces in which there
was a strong variation in lighting direction. It outperforms the original LBP
approach by about 10%, reaching around 90% classification rate when using the
x shaped neighbourhood. This is explained by that the feature vector is actually
shorter compared to the original LBP due to this approaches sparsity, causing
the original LBP to be too unstable in this application.

This approach is an impressive example that goes to show that by appropri-
ate application of the LBP operator, complexity can actually be reduced while
expressive power is increased. Possible future work could include incorporating
this feature descriptor into more complex, already established face recognition
sytems.

6 Conclusion

In conclusion, it can be seen that the LBP operator is rightfully regarded as
one of the most powerful feature descriptors in face analysis. The basic LBP is
already robust to one of its biggest challenges, illumination variance, while being
exceedingly simple to handle. Many extensions to the LBP have been proposed
and face detection, face recognition and expression recognition systems have
been developed and improved using the LBP. This improvement traditionally
comes with the introduction of new models, parameters and higher feature space
dimensionality. However, there are cases in which the clever application of LBP
can reduce complexity and lead to more efficient systems. In the authors opinion,
such less complex options should be increasingly pursued and existing work
should be integrated into already established solutions, in order to reach the
goal of less complex and more efficient face recognition systems.



14

References

1. Face detection home page. http://www.facedetection.com/. Accessed: 2014-06-26.
2. Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with local

binary patterns: Application to face recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(12):2037–2041, 2006.

3. Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with local
binary patterns: Application to face recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(12):2037–2041, 2006.

4. Timo Ahonen and Matti Pietikäinen. Soft histograms for local binary patterns. In
Proceedings of the Finnish signal processing symposium, FINSIG, volume 5, page 1,
2007.

5. Timur R Almaev and Michel F Valstar. Local gabor binary patterns from three
orthogonal planes for automatic facial expression recognition. In Affective Com-
puting and Intelligent Interaction (ACII), 2013 Humaine Association Conference
on, pages 356–361. IEEE, 2013.

6. Sheryl Brahnam, Lakhmi C Jain, Loris Nanni, and Alessandra Lumini. Local binary
patterns: new variants and applications, volume 506. Springer, 2014.

7. Paul Ekman and Erika L Rosenberg. What the face reveals: Basic and applied
studies of spontaneous expression using the Facial Action Coding System (FACS).
Oxford University Press, 1997.

8. Xiaoyi Feng, M Pietikainen, and Abdenour Hadid. Facial expression recognition
with local binary patterns and linear programming. Pattern Recognition And Image
Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 15(2):546, 2005.

9. Abdenour Hadid, Matti Pietikainen, and Timo Ahonen. A discriminative fea-
ture space for detecting and recognizing faces. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–797. IEEE, 2004.

10. Abdenour Hadid and Guoying Zhao. Computer vision using local binary patterns,
volume 40. Springer, 2011.

11. Di Huang, Caifeng Shan, Mohsen Ardabilian, Yunhong Wang, and Liming Chen.
Local binary patterns and its application to facial image analysis: a survey. Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 41(6):765–781, 2011.

12. Di Huang, Yunhong Wang, and Yiding Wang. A robust method for near infrared
face recognition based on extended local binary pattern. In Advances in Visual
Computing, pages 437–446. Springer, 2007.

13. Zhen Lei, Shengcai Liao, Ran He, M Pietikainen, and Stan Z Li. Gabor volume
based local binary pattern for face representation and recognition. In Automatic
Face & Gesture Recognition, 2008. FG’08. 8th IEEE International Conference on,
pages 1–6. IEEE, 2008.

14. Shu Liao and Albert CS Chung. Face recognition by using elongated local bi-
nary patterns with average maximum distance gradient magnitude. In Computer
Vision–ACCV 2007, pages 672–679. Springer, 2007.

15. M Ngan and P Grother. Face recognition vendor test (frvt). 2014.
16. Ryusuke Nosaka, Yasuhiro Ohkawa, and Kazuhiro Fukui. Feature extraction based

on co-occurrence of adjacent local binary patterns. In Advances in Image and Video
Technology, pages 82–91. Springer, 2012.

17. Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of tex-
ture measures with classification based on featured distributions. Pattern recogni-
tion, 29(1):51–59, 1996.



15

18. Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971–987, 2002.

19. P Jonathon Phillips, W Todd Scruggs, Alice J O’Toole, Patrick J Flynn, Kevin W
Bowyer, Cathy L Schott, and Matthew Sharpe. Frvt 2006 and ice 2006 large-scale
experimental results. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 32(5):831–846, 2010.

20. Caifeng Shan, Shaogang Gong, and Peter W McOwan. Facial expression recog-
nition based on local binary patterns: A comprehensive study. Image and Vision
Computing, 27(6):803–816, 2009.

21. Caifeng Shan and Tommaso Gritti. Learning discriminative lbp-histogram bins for
facial expression recognition. In BMVC, pages 1–10, 2008.

22. Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions. In Analysis and Modeling of Faces and
Gestures, pages 168–182. Springer, 2007.

23. Anil Yuce, Matteo Sorci, and J-P Thiran. Improved local binary pattern based ac-
tion unit detection using morphological and bilateral filters. In Automatic Face and
Gesture Recognition (FG), 2013 10th IEEE International Conference and Work-
shops on, pages 1–7. IEEE, 2013.

24. Guoying Zhao and Matti Pietikainen. Dynamic texture recognition using local
binary patterns with an application to facial expressions. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 29(6):915–928, 2007.



76



Philipp Omenitsch  24.01.2015 
 

1 
 

STRUCTURE IN MOTION 

Contents 
STRUCTURE IN MOTION ................................................................................................................................... 1 

Introduction .............................................................................................................................................. 1 

Augmented Multiresolution Reeb Graph (aMRG) [3] ............................................................................... 2 

Reeb Graph ........................................................................................................................................... 2 

Multiresolution Aspect ......................................................................................................................... 2 

Additional Criteria for augmented MRGs ............................................................................................. 3 

Markov motion graph [4] .............................................................................................................................. 5 

Topology Dictionary for 3D Video Understanding [2]................................................................................... 5 

References .................................................................................................................................................... 6 

 

 

Introduction 
With the help of multi camera 3D capture (see figure 1) and structure from motion techniques (i.e. Kinect 

[1]) 3D video data is becoming easier and cheaper to obtain. Although the recording itself is simple, huge 

amounts of data have to be managed (2 GB for 1 min [2]). We need a way to search the data and extract 

important scenes and features, since browsing the massive amounts of data is infeasible.  

 

Figure 1 Multi Camera 3D capture courtesy of [2] 

So far the most work regarding 3D video has been conducted in the area of video compression [2]. The 

approaches consist either of geometry compression on a per frame basis completely ignoring inter-frame 

compression or skeleton fitting, which needs apriori knowledge about the scene [3]. Using augmented 

Multi Reeb Graphs for scene representation achieves inter-frame compression and correlation without 

the need for apriori knowledge, because the descriptor is based on topology and object attributes.  



Philipp Omenitsch  24.01.2015 
 

2 
 

Markov motion graphs [4] can be used in order to represent states in a video sequence (i.e. very little 

motion over several frames) and the transitions between states and their repetitions (i.e. sport movie 

push ups). 

Augmented Multiresolution Reeb Graph (aMRG) [5] 

Reeb Graph 
The level sets on the surface of a shape can be described with a function µ. The Reeb graph is a graphical 
representation of the connectivity of a surface between its critical points. It describes the topological 
structure of a shape based on the connectivity of its level sets.  
 
Depending on which function one chooses for µ properties of the resulting Reeb Graph can be different. 
 

For the descriptor it is important to be rotation and scale invariant, this can be achieved with the function 

µ(𝑣) = ∫ 𝑔(𝑣, 𝑝)𝑑𝑆 
𝑝∈𝑆

, the integral of the geodesic distance g(v,p) from a point v to all other points p on 

the surface and by normalizing these distances by the maximal distance between any two points on the 

surface (so this measure becomes scale invariant, because if we normalize the distances by the maximum, 

the result will be distances in the interval of [0..1]). An example can be seen in figure 2. 

Figure 2 height function (left), distance to center of mass (middle), geodesic distance integral (right), image from [5] 

 

Multiresolution Aspect 
In order to be able to match Reeb Graphs with each other fast, one way is to compare them at different 

resolutions with each other. Otherwise one would always have to conduct expensive graph matching on 

the highest resolution between any two graphs. This is why it is better to first compare the graphs on a 

lower resolution in order to reject match candidates fast. This is accomplished by a logarithmic scheme, 

subdividing the function µ on the surface into 2R intervals to obtain R resolution levels. Each node is 

associated with a parent node in the lower resolution, this can be seen in figures 3 and 4. 

This also adds reliability to augmented Reeb Graph matching, because graphs can also be compared at 

one higher and one lower resolution. If they match on all levels, the probability is higher to have a true 

match. 

 

 



Philipp Omenitsch  24.01.2015 
 

3 
 

 

Figure 3 Reeb Graph of object with 2 resolution levels, image from [5] 

 

Matching augmented Multiresolution Reeb 

Graphs is faster compared to normal graph 

matching which is a NP hard problem (because 

of subgraph isomorphisms). Most of candidate 

matches can be invalidated early because of 

the multiresolution aspect, if the lowest 

resolution doesn’t match, one doesn’t have to 

check the higher (more expensive) levels. 

  

 

Additional Criteria for augmented MRGs 

Topological Consistency [5] (section 4.1) 

1. the parents m’ and n’ of m and n have been matched together at the previous level of resolution 
2. m and n correspond to the same interval of the µN function (it implies that only nodes at the same 

resolution are compared) 
3. if two nodes are matched, a same label is assigned to them and is propagated in both graphs to 

their connected neighbors following the two monotonic directions of increasing and decreasing 
values of µN respectively. Hence if two nodes m and n belong to a branch a of a graph on which 
some nodes have been already matched, they must have received the same labels to be also 
matched 

4. m and n are topologically consistent if the parents of their neighbors (if they have ones) have been 
matched at the previous level of resolution. 

A graphical illustration of an example can be seen in figure 5. 

Figure 4 Merging nodes from different resolutions, image from [5] 



Philipp Omenitsch  24.01.2015 
 

4 
 

 

 

Figure 5 need to verify matching of neighbours of parents in order to preserve matching at lower resolution, image from [5] 

 

Analytical, geometrical and colorimetric discrimination 

As introduced by Tung [5], taking into account not only topological features but also additional object 

features yields better results. For example, a leg and a hand of a human are topologically the same since 

they provide no locality, but geometrically we can find differences, such as length and diameter, so it is 

natural to extend Reeb Graphs with features of that class. This works especially well with objects that 

have symmetrical extensions and keep their topology also when they are deformed. Humans and animals 

belong to this class because of their joints, which allow deformation up to a certain extent, but hardly 

change topology (only when touching hips with their hands). The features taken into account for each 

node, to match two nodes in the graph are: 

 relative area of the set of triangles associated to a node in respect to total object surface 

 interval in which the node is in the µ function of the object 

 orientation by finding the main axis with Principal Component analysis and use angles of the spherical 

coordinate system for orientation of components of the object (i.e. body, left arm or right arm? Leg 

or arm?) compare figure 6 

 relative volume of surface region 

 extent of surface region 

 Koenderink shape index of surface region (local curvature) 

 Orientation of the triangle surface normal 

 Texture and color 

  

Figure 6 finding the main axis with PCA and orient components in respect to object coordinate system, image from [5] 



Philipp Omenitsch  24.01.2015 
 

5 
 

Markov motion graph [4] 
A markov motion graph can be used to model state changes and their probabilities. It is a weighted 

directed graph. To generate it from data, states are represented as nodes and state transitions become 

weighted edges. The sum of all outgoing edges must be equal to 1. The weight of an edge is determined 

by counting the total number of state transitions from one state to all other states and then normalizing 

the edge weights so ∑ 𝑃(𝑐𝑗|𝑐𝑖) = 1 𝑓𝑜𝑟 𝑖 = 1 …  𝑛. Additionally, nodes also have weights, according to 

the probability of the occurrence of the state in the data. For example, if states correspond to scenes in 

a video, the probability of one state would be the number of frames the scene occurs throughout the 

video divided by the number of total frames. For example, figure 7 has 3 scenes with total 11 frames. 

There are only transitions from Cj to Ck, half of the transitions from Cj, and all transitions from Ck go to 

Ci. 

 

Figure 7 A simple markov graph, image taken from [2] 

Topology Dictionary for 3D Video Understanding [2] 
For the video which needs to be analyzed features are computed on the model of aMRGs as 3D shape 

descriptors, similar frames are clustered based on a similarity measure over multiple frames [2] (section 

3.2). The measure will indicate high similarity if frames are similar (aMRG features). Next similar frames 

are added to existing clusters, if the similarity is lower than threshold τ, a new cluster is created. The 

measure can be computed by first calculating distance measures between consecutive frames and via 

matrix convolution over different window sizes, scenes can be easily classified. 

The clusters are assigned to nodes in a markov motion graph and the transitions between clusters are 

marked via edges, the edge weights describe the frequency of transitions. Once the clusters are annotated 

by hand, they can be used as a dictionary for analysis of different vides with similar settings (i.e. yoga). 

This approach has the advantage that it is online learning capable, since scenes that can be recognized 

can just be added to the according cluster, new scenes are recognized as such and can be annotated. 

Conclusion 
The Topology dictionary represents a new way for 3D video understanding. It can represents and 

summarize similar sequences efficiently. It provides a way to query for existing sequences (if they have 

been annotated before, similar sequences can easily be found). Topology combined with geometrical 

features are more robust than only geometrical features which can be susceptible to noise and 

deformations. 



Philipp Omenitsch  24.01.2015 
 

6 
 

References 
 

[1]  S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, 

A. Davison and A. Fitzgibbon, "KinectFusion: Real-time 3D Reconstruction and Interaction Using a 

Moving Depth Camera," ACM, New York, NY, USA, 2011. 

[2]  T. Tung and T. Matsuyama, "Topology dictionary for 3d video understanding," IEEE Transactions on 

Pattern Analysis and Machine, vol. 34, no. 8, p. 1645–1657, 2012.  

[3]  N. D. Cornea, D. Silver, X. Yuan and R. Balasubramanian, "Computing hierarchical curve-skeletons of 

§D objects," The Visual Computer, vol. 21, no. 11, pp. 945-955, 2005.  

[4]  S. Meynand and R. Tweedie, "Markov Chains and Stochastic Stability," Cambridge Univ. Press, 2008. 

[5]  T. Tony and S. F., "The Augmented Multiresolution Reeb Graph Approach for Content-Based 

Retriveal of 3D Shapes," International Journal Shape Modeling, vol. 11, no. 1, pp. 91-120, 2005.  

 

 

 

 



83



Irregular Pyramids

Adam Papp 1327381
e1327381@student.tuwien.ac.at

Vienna University of Technology

11.03.2015

Abstract

This seminar work was done by Adam Papp for the Structured Pat-
tern Recognition course in WS2014. This documentation mainly sum-
marizes the definition of irregular pyramids and decimation schemes
based on Introduction to Combinatorial Pyramids, Brun and Kropatsch
[3] and Pyramid segmentation algorithms revisited, Marfil et al. [11].
It contains a brief definition of segmentation and the comparison of
several segmentation algorithms done by Marfil et al. [11]. Finally a
conclusion is drawn from the presented information.



1 Introduction

Pyramids are hierarchical structures, which are representing the dataset in
multiple layers with decreasing resolution. The procedure to build up a
pyramid in a bottom-top manner using the general framework described by
Jolion [8] consist of the following steps:

Each level of hierarchy has a set of vertices and a set of edges G(Vl, El).

1. Selection of the vertices of Gl+1 among Vl: This selection step is a
decimation procedure and selected vertices Vl+1 are called the surviving
vertices.

2. Inter-level edges definition: Each vertex of Gl is linked to its parent
vertex in Gl+1. This step defines a partition of Vl. These edges can
be visualized as the vertical relationship, which represents connectivity
between adjacent levels.

3. Intra-level edges definition: The set of edges El+1 is obtained by defin-
ing the adjacency relationships between the vertices Vl+1. This can be
visualized as the horizontal relationship between vertices.

The set of sons of one surviving vertex at level 0 (also called the base level)
are called it’s receptive field. In this general framework vertices can contain
any information from pixel gray value to symbolic information. Intra-level
and inter-level relations of the vertices are also generalized in this framework.

Pyramids have two main varieties, regular and irregular. Although regu-
lar pyramids can be represented as graphs, it is more common to represent
them using a stack of arrays, due to their rigid structure. The sonparent
relationships are fixed and for each vertex in level l + 1, there is a N ×N/q
reduction window with constant reduction factor of sons at level l. This
structure has the advantage of low computational cost, however due to the
rigid structure it has such drawbacks as the non-connectivity of receptive-
field, the shift-dependence and the limited number of regions encoded at a
level. Regular pyramids have been applied to many applications successfully,
e.g. noise reduction or detection of global features at low resolution.

Irregular pyramids were introduced to overcome the drawbacks of regu-
lar pyramids. They can adapt dynamically to the image layout, by having
variable data structures and decimation process. The reduction factor be-
tween adjacent levels is not fixed, therefore irregular pyramids does not have

2



a well-defined structure, like the regular ones. They are represented as a
stack of successively reduced graphs. The height of the pyramid can grow to
arbitrary size.

Segmentation can be defined as a process, which decomposes a dataset
into groups according to some criteria. Internal properties of these groups
are used to identify them, while external properties (e.g. adjacency) can give
a better understanding of the dataset. Segmentation can be performed on
pyramid structures by selecting a set of vertices as region roots. The receptive
field of one region root is the set of vertices in the base level, which holds the
data of that region. The efficiency of a pyramid to solve segmentation tasks is
depending on the data structure of the graph and the decimation scheme used
to build the successive graph. Properties like height or preservation of details
are determined by the decimation scheme. The selection process of region
roots depends on the final application and it must be performed by a higher
level task, therefore it is hard to define what a ”good” [11] segmentation is,
but measurement functions have been proposed like the shift variance (SV)
proposed in Ref. [15], the F function proposed in Ref. [10] and the Q function
proposed in Ref. [2].

2 Irregular Pyramids

Irregular pyramids were introduced to overcome the drawbacks of regular
pyramids. They can adapt dynamically to the image layout, by having vari-
able data structures and decimation process. This section describes sev-
eral graph encoding structures and the stochastic decimation process. The
last subsection contains the evaluation of segmentation algorithms based on
Marfil et al. [11].

2.1 Stochastic Decimation Process

The stochastic method introduced by Meer [13], gives two constraints on a
set of surviving vertices:

1. Any non-surviving vertex v of level l has at least one surviving vertex
in its neighborhood, v′.

2. Two neighbor vertices v and v′ at level l cannot both survive.

3



These rules define the maximal independent set (MIS). In order to se-
lect the surviving vertices three variables are defined, p and q both binary
variables and x a uniformly distributed random variable between [0, 1]. The
value p is set to true if it is the maximum in it it’s neighbors. q is set to true
if it is not a maximum and it has no maximum in in’s neighborhood. Next
nodes with q = 1 are examined. They are set to p = 1 and q = 0 if they are
a maximum with neighbors around with q = 1. This process is iterated until
all q = 0. An example of selecting surviving vertices is visualized on figure
1.

Figure 1: The reduced graph deduced from the maximal independent set (a)
and the Parent-Children relationships (b). [3]

After the surviving vertices have been chosen (p = 1), the parent-son
(inter-edges) are defined. The first constraint of the MIS insures, that any
non-surviving vertex must have a surviving neighbor. Each non-surviving
vertex is attached to it’s surviving neighbor with the greatest value. Finally,
surviving vertices must be connected. Meer [13] proposed, to connect two
surviving vertex if they have a common child. The length of the connecting
path [3] is between 2 and 3 since the second constraint of the MIS forbids,
that two surviving vertices are adjacent.

Montanvert [14] has adopted the stochastic process to the connected-
component analysis framework, by applying the decimation process on sub-
graphs of the original graph. A function λ can be defined, which is set to
one if an edge connects two vertices of the same subgraph, else it is set to
zero. Using the λ function, two surviving vertices from different subgraphs
might be adjacent to each other. When the decimation process is restricted
to subgraphs, the connecting path can have the length 1.

Jolion [8] has adopted the stochastic process to the segmentation frame-
work. Instead of using local maxima of random variables, local maxima of

4



interest operators are applied. Jolion defined the interest operator as a de-
creasing function of gray-level intensity variance between neighbor vertices.
Thus the surviving vertices will be in homogeneous regions.

The disadvantage of the stochastic process, that it encodes the graphs as
simple graphs and no self-loop or multiple edge is allowed. This is visualized
on figure 2. The lack of multiple edges does not allow to represent multiple
connections between boundaries and the self-loop does not allow to decide
between adjacency and inclusion.

Figure 2: Inadequacy of the stochastic or adaptive decimation process. [3]

2.2 Bounded Irregular Pyramid

The bounded irregular pyramid (BIP) proposed by Marfil [12] is a structure,
that combines the simplest regular and irregular structures. The BIP struc-
ture was designed to achieve the adaptivity of irregular structures with a low
computational cost.

First, the algorithm works in a regular way by generating one surviving
vertex in level l+ 1, if the vertices at level l in a 2×2/4 window are homoge-
neous. This can be seen of figure 3. The vertices in the window are connected
with parent-son edges with the newly generated vertex at level l + 1.

In the next steps the irregular part of the pyramid is built. A combined
regular-irregular pyramid is visualized on figure 4. First step is the twining,
where two orphan neighbor vertices of the regular structure are linked into
a virtual vertex if they are similar. Afterwards, virtual neighbor orphan
vertices are linked if they are similar. Next, the parent-son edges are defined
by virtual parent search, where each virtual orphan vertex is linked to the
most similar non-orphan virtual vertex. Finally, intra-level edges are defined,
by connecting two virtual vertices, if their reduction windows are neighbors,
which means, that the windows have at least two adjacent vertices.

5



Figure 3: Regular vertices of the BIP and their inter-level edges a) after the
generation step, b) after the parent search step. [12]

2.3 Dual Graph Contraction

Kropatsch [9] proposed the contraction of edges by using a Contraction Ker-
nel. An example kernel can be seen on figure 5. A Contraction Kernel is
defined by a set of surviving vertices S and a set of non-surviving edges N
on a graph G(V,E) such that:

• (V,N) is a spanning forest of G,

• each tree of (V,N) is rooted by a vertex of S.

The decimation of a graph by contraction kernels differs from the stochas-
tic decimation process by two surviving vertices may be adjacent in the con-
tracted graph and a non-surviving vertex may be connected to its parent by
a branch of a tree. Since surviving vertices can be adjacent, the Contraction
Kernels does not necessarily define a MIS. This is important to consider, in
order to control the height of the hierarchy.

In the first step, the contraction reduces the number of vertices while
maintaining the connections to other vertices. This may induce redundant
edges, therefore the dual graph representation is needed where these edges
can be characterized.

The key idea of the dual graphs is that a contraction in a graph implies
a removal in its dual and vice-versa. Given an initial planar graph G, the

6



Figure 4: Two levels of the BIP graph hierarchy. [12]

Figure 5: The contraction Kernel (S,N) composed of three trees. Vertices
belonging to S are represented with filled circle inside. [3]

vertices of its dual G are located inside every face of G. The graph Gl+1 is
computed from Gl by removing the dual of the non-surviving edges N .

In the second step, the removal of redundant edges encoded by a Con-
traction Kernel is applied on the dual graph, Removal Kernel [3]. The edge
contractions performed in the dual graphs must be followed by edge removals
in the original graph to preserve duality. Such edges in the dual can be found
with incident vertices degree lower than 3.

The advantage of this reduction scheme is, that each edge in the reduced
graph encodes one boundary between two regions and inclusion relationship
may be differentiated from adjacency. The drawback of this structure is the
increase of memory usage and computation time since two data structures
must to be handled. The difference between figure 2 and 6 shows the ad-
vantage of the dual graph framework, in figure 6 the two boundaries are

7



represented with two edges.

Figure 6: Two steps of the graph reduction operation encoded by Contraction
Kernels. [3]

2.4 Combinatorial Pyramid

Combinatorial pyramid is a stack of successive combinatorial maps. Combi-
natorial maps define a general framework which allows to encode any subdi-
vision of nD topological spaces orientable or non-orientable with or without
boundaries. [3] In this section 2D combinatorial maps are considered. An
example of such a 2D combinatorial map can be seen on figure 7. A combi-
natorial map is a triplet G = (D, σ, α), where

• D is a finite set of darts. Each edge of a planar graph is subdivided
into two darts.

• σ is a permutation on D and it allows to retrieve vertices.

• α is an involution on D and it allows to retrieve edges. If darts are
encoded by positive and negative integers, the involution α may be im-
plicitly encoded by α(d) = −d,∀d ∈ D. This comes from the definition
of an involution, f(f(x)) = x.

The advantage of the combinatorial map formalism is, that the dual of
G = (D, σ, α) is defined as G = (D, ϕ = σ ◦ α, α), which allows the implicit
encoding of the dual. ϕ allows for each dart to get the next dart on the same
face.

8



Figure 7: The combinatorial maps corresponding to G4 and its dual. The
lower part of this figure represents an encoding of the permutation σ by an
array of integers. [3]

The idea behind the combinatorial pyramid is to combine the advantage
of combinatorial map with the contraction kernel defined by Kropatsch [9].
The map reduction is done by the following kernels:

1. edge contractions by contraction kernel G/α(d) = G \ α(d),

2. redundant edge removals by removal kernel, G\α(d) = (D\α(d), σ′, α).

In the combinatorial map the removal operation is encoded as an update
of the permutation σ. If permutation α is implicitly encoded by the sign,
then there is no need to update it. The contraction of an edge is equivalent
to a removal operation in the dual combinatorial map. The same removal
operation can be performed by substituting ϕ by σ in the removal operation.
The update of the permutation σ preserves the orientation of the original
map. This operation is illustrated on figure 8.

9



Figure 8: Preservation of the orientation using combinatorial maps. [3]

2.5 Evaluation of Segmentation Algorithms

This subsection relies on the work of Marfil et al. [11]. In their work, they
have used the shift variance (SV ) proposed in Ref. [15], the F function
proposed in Ref. [10] and the Q function proposed in Ref. [2] as quantitative
measurements to evaluate segmentation algorithms.

The function SV measures the variance of segmentation results between
slightly shifted versions of the same image. Marfil et al. [11] have taken a
128× 128 pixel window and shifted in both vertical and horizontal direction
with a maximum of 11 pixels resulting in 120 images to compare with the
original one. The root mean square difference is calculated by equation (2),
where di is the pixel-to-pixel color difference between the segmented images.
The total SV variance is computed by equation (1).

SV =
1

120

120∑

j=1

RMSDj (1)

RMSDj =

√ ∑
d2i

128× 128
(2)

Figure 9: The equation SV [15] to measure shift-variance between segmen-
tation results.

The function F uses the following rules:

• Regions must be uniform and homogeneous.

• The interior of the regions must be simple, without too many small
holes.

10



• Adjacent regions must present significantly different values for uniform
characteristics.

The F function is computed by equation (3) for an I image with size
N ×M , where R is the number of regions, Ai is the area of region i and ei
is the regions average color error.

The Q function uses the same rules, but penalizes the existence of small
regions. It is computed using equation (4), where R(Ai) is the number of
segmented regions with area equal to Ai.

Marfil et al. [11] have compared several segmentation algorithms, some of
their results are shown in table 12 and 13. Image 14 shows one image and it’s
segmentation results. They have compared segmentation algorithms which
are utilizing regular pyramids(LinRPyr [5] and WeiRPyr [7]) and algorithms
which are utilizing irregular pyramids:

• ClaIPyr [1] - using simple graph encoding,

• BouIPyr [12] - using a combination of 2 × 2/4 regular window and
simple graph encoding,

• HieIPyr [6] - using dual graph encoding and

• ComIPyr [4] - using combinatorial pyramid.

The decimation processes of these algorithms have not been studied dur-
ing this seminar work, therefore a final conclusion on the efficiency of the
graph encodings should not be drawn from these results. It is planned to
further investigate these methods. Furthermore after discussing with the
author of HieIPyr [6], the implementation used by Marfil et al. [11] was a
MATLAB prototype, therefore the speed comparison should not be used for
any conclusion.

In table 12 the quantitative results can be seen of the segmentation algo-
rithms. From this table the following conclusions were drawn:

F (I) =
1

1000(N ×M)

√
R

R∑

i=1

e2i√
Ai

(3)

Figure 10: Function F [10] to measure segmentation goodness.

11



Q(I) =
1

1000(N ×M)
√
R

∑R
i=1[

e2i
1+logAi

+ (R(Ai)
Ai

)2]
(4)

Figure 11: Function Q [2] to measure segmentation goodness.

• Irregular pyramids archive better accuracy than regular ones.

• Shift-variance is more dependent on irregularity than on decimation
process.

• Combination of regular and irregular structure achieves efficient com-
putation on the cost of shift-variance.

In table 13 the processing time, hierarchy height and number of regions
can be seen. From this table the following conclusions were drawn:

• Irregular pyramids have higher hierarchy then regular ones.

• The BouIPyr [12] achieves lower hierarchy, then regular ones.

Name Fmin Favg Fmax Qmin Qavg Qmax SVmin SVavg SVmax

LinRPyr [5] 765.8 1070.4 1515.5 1052.1 1524.9 2105.4 37.8 66.9 83.5
WeiRPyr [7] 791.2 1072.8 1428.2 1133.7 1480.6 2034.2 49.6 69.9 98.5
ClaIPyr [1] 329.3 840.2 1290.0 479.1 1062.7 1590.3 18.0 28.8 42.8
BouIPyr [12] 198.6 711.7 1556.1 339.4 1086.7 1919.8 26.4 44.1 84.5
HieIPyr [6] 201.7 689.2 1201.6 458.3 957.8 1521.5 18.5 27.1 35.9
ComIPyr [4] 234.3 618.8 934.9 415.5 878.5 1294.5 21.3 30.7 42.8

Figure 12: F, Q and shift variance values. Average values have been obtained
from 30 different images. [11]

12



Name tmin tavg tmax hmin havg hmax NRmin NRavg NRmax

LinRPyr [5] 0.94 1.37 1.81 9 9 9 17 81.6 203
WeiRPyr [7] 0.31 0.40 0.58 9 9 9 19 79.7 148
ClaIPyr [1] 2.51 3.96 7.68 17 36.7 72 9 84.1 210
BouIPyr [12] 0.65 0.76 0.84 5 6.1 7 4 72.2 198
HieIPyr [6] 4.07 4.29 4.91 10 11.6 18 23 76.2 149
ComIPyr [4] 1.32 2.88 12.8 9 74.4 202 25 91.6 238

Figure 13: Processing times, height of the hierarchy employed by the seg-
mentation algorithm and number of obtained regions. Average values have
been obtained from 30 different images [11]

3 Conclusion

This seminar work has summarized briefly the irregular pyramid structure.
Different graph encodings and decimation schemes were studied, in order
to have a deeper understanding of the topic. The summary of different
graph encodings can be seen in table 15 and are visualized on figure 16.
To have an overview of segmentation using pyramid structures, some of the
results of Marfil et al. [11] were studied and used. In the Bounded Irregular
Pyramid [12] structure, they have used a simple graph encoding, which is
less accurate for describing external properties of regions, but sufficient for
their motion-tracking algorithm. This shows well the claim, that in general it
can not be defined what a ”good” [11] segmentation is, in their case a simple
structure is enough for the higher level application.

The irregular pyramid data structure has great potential in segmentation.
There exists 3D and nD extensions of graph encodings like the Combinatorial
Map. In case of using more complex graph encoding than simple graphs,
adjacency relations can be derived from the pyramid. This can provide useful
additional information for higher level tasks.

13



Figure 14: (a) Input image #2; (b) segmentation images associated to (a)
using different algorithms. [11]

Pyramids Regular Simple irregular graph Dual irregular graph Combinatorial map
Receptive field regular shape arbitrary shape arbitrary shape arbitrary shape
Segmentation scheme linking adaptive decimation adaptive decimation adaptive dual contraction
Region(vertex) not connected connected connected connected
Boundaries(edge) not connected not connected connected connected

Figure 15: Basic hierarchical properties of image embedding. [3]

Figure 16: Codification of connected components by several irregular pyra-
mid data structures: (a) 8× 8 image layout; (b) encoding by a simple graph
pyramid; and (c,d) encoding by a dual graph or combinatorial pyramids. [11]

14



References

[1] P. Bertolino and Annick Montanvert. Multiresolution segmentation us-
ing the irregular pyramid. In Image Processing, 1996. Proceedings.,
International Conference on, volume 1, pages 257–260 vol.1, Sep 1996.

[2] M. Borsotti, P. Campadelli, and R. Schettini. Quantitative evaluation of
color image segmentation results. Pattern Recognition Letters, 19(8):741
– 747, 1998.

[3] Luc Brun and Walter Kropatsch. Introduction to combinatorial pyra-
mids. In Gilles Bertrand, Atsushi Imiya, and Reinhard Klette, editors,
Digital and Image Geometry, volume 2243 of Lecture Notes in Computer
Science, pages 108–128. Springer Berlin Heidelberg, 2001.

[4] Luc Brun and WalterG. Kropatsch. Construction of combinatorial pyra-
mids. In Edwin Hancock and Mario Vento, editors, Graph Based Rep-
resentations in Pattern Recognition, volume 2726 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg, 2003.

[5] P.J. Burt, Tsai-Hong Hong, and Azriel Rosenfeld. Segmentation and
estimation of image region properties through cooperative hierarchial
computation. Systems, Man and Cybernetics, IEEE Transactions on,
11(12):802–809, Dec 1981.

[6] Yll Haxhimusa and Walter Kropatsch. Segmentation graph hierarchies.
In Ana Fred, TerryM. Caelli, RobertP.W. Duin, AurlioC. Campilho, and
Dick de Ridder, editors, Structural, Syntactic, and Statistical Pattern
Recognition, volume 3138 of Lecture Notes in Computer Science, pages
343–351. Springer Berlin Heidelberg, 2004.

[7] Tsai-Hong Hong, K.A. Narayanan, S. Peleg, Azriel Rosenfeld, and
Teresa Silberberg. Image smoothing and segmentation by multireso-
lution pixel linking: Further experiments and extensions. Systems, Man
and Cybernetics, IEEE Transactions on, 12(5):611–622, Sept 1982.

[8] J.M. Jolion and A. Montanvert. The adaptive pyramid: A framework
for 2d image analysis. CVGIP: Image Understanding, 55(3):339 – 348,
1992.

15



[9] Walter G. Kropatsch. From equivalent weighting functions to equivalent
contraction kernels. In Dimitrov (Eds.), Digital Image Processing and
Computer Graphics: Applications in Humanities and Natural Sciences,
pages 310–320, 1997.

[10] Jianqing Liu and Y.-H. Yang. Multiresolution color image segmenta-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 16(7):689–700, Jul 1994.

[11] R. Marfil, L. Molina-Tanco, A. Bandera, J.A. Rodrguez, and F. San-
doval. Pyramid segmentation algorithms revisited. Pattern Recognition,
39(8):1430 – 1451, 2006.

[12] R. Marfil, J.A. Rodrguez, A. Bandera, and F. Sandoval. Bounded irreg-
ular pyramid: a new structure for color image segmentation. Pattern
Recognition, 37(3):623 – 626, 2004.

[13] Peter Meer. Stochastic image pyramids. Comput. Vision Graph. Image
Process., 45(3):269–294, March 1989.

[14] Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchical im-
age analysis using irregular tessellations. In O. Faugeras, editor, Com-
puter Vision ECCV 90, volume 427 of Lecture Notes in Computer Sci-
ence, pages 28–32. Springer Berlin Heidelberg, 1990.

[15] David Prewer and Les Kitchen. Soft image segmentation by weighted
linked pyramid. Pattern Recognition Letters, 22(2):123 – 132, 2001.

16



100



E�cient Classi�cation using the Euler

Characteristic

Structural Pattern Recognition

Christian Prossenitsch, 0925433

February 7, 2015

1



Abstract

The aim of this report is to reason about similarities and di�er-

ences between the image descriptor "Euler Characteristic Graph" (EC

Graph) by Richardson et al. and the region detector "Maximally

Stable Extremal Regions" (MSER) by Matas et al. The algorithms

have di�erent �elds of application, but share some common techniques,

which will be subject to further evaluation.

2



1 Introduction

The "Euler Characteristic Graph" (EC Graph) by Richardson et al. [4] is a
descriptor for supervised image classi�cation based on the Euler Characteris-
tic. An image is characterized with simple local features. To bring these local
features into a more global context, they are thresholded and the Euler Char-
acteristic is calculated thereof. The EC Graph encodes information about
the spatial distribution of the local property. This information is missing in
common statistical descriptors, e.g. in a Bag-of-Words algorithm which is
used for SIFT. [4]

"Maximally Stable Extremal Regions" (MSER) by Matas et al. [3] are
used as a method for detecting discriminant regions in images. MSER can be
used in wide-baseline matching, where images taken from di�erent viewpoints
are tried to put into correspondence. MSER is based, like the EC Graph,
on thresholding a gray-level image. It is observed that local binarization is
stable over a range of thresholds in certain regions. These are the regions of
interest because they posses many desirable properties. They are invariant to
a�ne transformation of image intensities, covariant to adjacency preserving
transformations on the image domain and they are stable, since only regions
which are almost unchanged over a range of thresholds are selected. [3]

2 Algorithms

The EC Graph is based on thresholding local features and calculating the
Euler Characteristic thereof. It is de�ned as follows:

χ = V − E + F (1)

V is the number of vertices, E is the number of edges and F is the
number of faces. The Euler Characteristic can be calculated for any ob-
ject constructed from 0, 1 and 2-dimensional cells (e.g. vertices, edges and
faces). More informally, the Euler Characteristic is the number of connected
components minus the number of holes for a two-dimensional set. [4]

For a binary image, the Euler Characteristic is calculated by counting
0-cells (vertices or pixel corners) which are bordering a 2-cell with a value
of "1", minus 1-cells (edges or pixel edges) which are bordering a 2-cell with
a value of "1", plus the number of 2-cells (pixels or faces) with a value
of "1". More formally, this can be put as in equation 2, where x(k) is a
cell of dimension k, d is the highest dimension and Nd

(
x(k)
)
are all d-cells

in the immediate neighborhood of x(k). Equation 3 shows an alternative

3



representation of the Euler Characteristic, where Mf (k) is the number of k-
dimensional cells bordering a d-dimensional cell with a value of "1". The EC
Graph can be calculated by thresholding the initial image a number of times
and calculating the Euler Characteristic for each outcoming binary image.
[4]

fk
(
x(k)
)

= 1[∃x(d)∈Nd(x(k)):fd(x(d))=1] (2)

χf =
n∑

k=0

(−1)kMf (k) (3)

However, this would yield a runtime of O(NT ) for a grayscale image,
where N is the number of cells and T is the number of thresholds. Richard-
son et al. propose an algorithm with a runtime of O(N + T ). Essentially,
they calculate a histogram with the given thresholds as bins for every di-
mension. The cells are assigned their highest neighboring 2-dimensional cells
and get binned accordingly. Afterwards, the histogram bins are added to
their respective Euler Characteristic number according to the formula in 1.
The histogram bins are summed up during the iteration, because a higher
threshold also incorporates the thresholds below. [4]

MSER are also based on thresholding a grey-scale image. An extremal
region is characterized as a connected component where, for a maximum in-
tensity region, the intensity is greater than the regions boundary and smaller
for a minimum intensity region. If we threshold a grey-scale image multi-
ple times, the set of all connected components of all resulting binary images
would be the set of all maximal regions. [3]

A maximally stable extremal region is characterized as an extremal region
which is stable over a range of thresholds. In other words, the region is an
MSER if its size does not change signi�cantly over some threshold levels.
In [3] it is formalized as follows: Let Q1, . . . ,Qi−1,Qi, . . . be a sequence of
nested extremal regions, i.e. Qi ⊂ Qi+1. Extremal region Qi∗ is maximally
stable i� q(i) = |Qi+∆\Qi−∆|/|Qi| has a local minimum at i∗ (|.| denotes
cardinality). ∆ ∈ S is a parameter of the method. [3]

The algorithm of [3] sorts pixels of a grayscale image by their intensities
with a binsort algorithm. Afterwards, the pixels are marked in the image
and a list growing and merging connected components and their areas is
maintained with the union-�nd algorithm. The outcome is a data structure
which is storing the area of each connected component as a function of in-
tensity. Intensity levels that are local minima of the rate of change of the
area function produce MSER. Each MSER is represented by the position of
a local intensity minimum and a threshold. [3]

4



Figure 1: The EC Graph with the Shape Index as a local feature for di�erent
objects of the TOSCA dataset (compare [4])

The union �nd algorithm has a runtime complexity of O(n log log n),
where n is the number of pixels in the image. [3] The robust wide-baseline
algorithm proposed by Matas et al. [3] uses MSER to establish correspon-
dences between images. Forssén et al. [1] propose an a�ne invariant shape
descriptor based on SIFT and MSER.

3 Discussion

Although MSER and the EC Graph have di�erent �elds of application, they
share some similarities. MSER is a region detector which can be used to
establish correspondences between images taken from di�erent viewpoints
[3]. EC Graph, on the other hand, is an image descriptor which can be
used for image classi�cation [4]. Figure 1 shows the EC Graph at multiple
thresholds, �gure 2 shows MSER and the application of the robust wide-
baseline algorithm to detected correspondences.

5



Both MSER and the EC Graph rely on image thresholding and use bin-
ning for their speci�c algorithms. The EC Graph calculates the Euler Char-
acteristic for each threshold and MSER searches for local minima of the rate
of change of the area function at each threshold. Furthermore, both meth-
ods seem to be robust to transformations and image illumination. The EC
Graph is invariant to topological transformations and yields good results in
the classi�cation of illumination distorted images (98.9 % classi�cation ac-
curacy for the original images and 91.8 % for the distorted ones) [4]. MSER
are invariant to a�ne transformations of image intensities and covariant to
adjacency preserving transformations [3].

Figure 2: Two pictures taken from di�erent viewpoints with detected MSER
and epipolar geometry (compare [3])

6



References

[1] Per Erik Forssén and David G. Lowe. �Shape Descriptors for Maximally
Stable Extremal Regions�. In: Proceedings of the IEEE International

Conference on Computer Vision (2007).

[2] Stephen B. Gray. �Binary Images Dimensions�. In: IEEE Transactions

on Computers C-20.5 (1971), pp. 551�561.

[3] J Matas et al. �Robust Wide Baseline Stereo from Maximally Stable
Extremal Regions�. In: In British Machine Vision Conference (2002),
pp. 384�393.

[4] Eitan Richardson and Michael Werman. �E�cient classi�cation using
the Euler characteristic�. In: Pattern Recognition Letters 49 (Nov. 2014),
pp. 99�106.

7


