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2D tracking of Platynereis dumerilii worms during spawning

Daniel Pucher, Nicole M. Artner and Walter G. Kropatsch

Abstract

Platynereis dumerilii are marine worms that reproduce by external fertilisation and exhibit
particular swimming behaviours during spawning. In this paper we propose a novel worm
tracking approach that enables the 2D tracking and feature extraction during the spawning
process of these worms. The gathered data will be used in the future to characterise and
to compare male and female spawning behaviours.
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1 Introduction to Platynereis dumerilii

Platynereis dumerilii are marine polychaete worms (Lophotrochozoa, annel-
ida, nereididae), which swim only when sexually mature, in order to repro-
duce. The timing of reproductive spawning events in this species is synchro-
nized with the moon phase, whereby spawning in nature occurs primarily
during new moon. This together with chemical pheromone signaling allows
mature male and female worms to locate one another and engage in spawning
behaviors that constitute the nuptial dance. See Figure 1 for an image of a
male and female worm.

Figure 1: Image of a male (red) and female (yellow) worm.

The spawning behaviors of male and female worms are important for suc-
cessful fertilization of the gametes. The spawning process consists of four
general phases: Pre-spawning, engaged spawning, gamete release and post-
spawning. During pre-spawning, male and female worms typically swim in-
dependently of one another, usually with lower speeds, and display a linear
body shape. Engaged spawning is initiated when male and female worms
come into close contact and sense chemical pheromones secreted into the
water by the opposite sex. This is accompanied by a noticeable change in



swimming behavior for both sexes: swimming speeds increase (particularly
for males), and worms either begin to swim in circles, or swim in tighter cir-
cles (particularly for females). Other changes in the plane of swimming are
more frequently observed in both sexes during engaged spawning behavior.
During gamete release, sperm and eggs are secreted into the water, which
particularly for female worms, results in a dramatic change in body area,
length and overall shape. The time individual spawning phases take varies
and depends on the worms and their willingness to engage. Some worm pairs
are better matches than others, which can result in shorter spawning phases.

This work is done in cooperation with biologists of the Max F. Perutz Lab-
oratories GmbH. The goal of the biologists is to analyse these spawning
behaviours in a quantitative manner, and to characterise and compare male
and female-specific spawning behaviours.



1.1 Properties of worm anatomy

The body shape of the worms does not have any branches and is linear or
curved, based on the movement. A worm is able to bend to form a circle.
Length and area of its shape are ambiguous between male and female worms
and can change over time.

Male and female worms can be distinguished by their color and anterior
/ posterior segment border, which can be seen in Figure 2.

Figure 2: Image of a female (top) and a male (bottom) worm with their
segment borders (Scale in cm).

Worms are divided into a head and a tail part by the segment border and
the position of the border is different for male and female worms. Relative to
their whole body length, male worms have a longer tail than female worms.
Therefore, the segment border is closer to the head.

During the different spawning phases the overall shape of the worms changes.
Especially for female worms, the body length and the area changes during
the gamete release as eggs are secreted into the water. During the different
spawning phases the curvature also changes for both worms.



1.2 Organization of the Thesis

This thesis builds on a previous paper [11] submitted to the Computer Vision
Winter Workshop 2016. Parts of the original paper have been reused for this
work. The thesis is divided into the following sections:

Section 1 gives an introduction to the Platenereis dumerilii worms, their
spawning process and anatomical properties.

Section 2 states the task of this work and describes the worm features that
are extracted from the videos.

Section 3 discusses existing methods for animal tracking.
Section 4 gives an overview on the tracking setup.
Section 5 explains the general segmentation and tracking approach.

Section 6 gives some definitions that are used throughout the rest of the
thesis and explains the skeletonization process in detail.

Section 7 gives an overview of the feature extraction. The curvature esti-
mation and computation of the normalized shape are explained in more
detail.

Section 8 discusses evaluation results.

Section 9 concludes the thesis and gives an outlook on future work.



2 Task formulation

The aim is to develop methods that enable the tracking of spawning worms
from captured videos and extract features to quantify behaviours. With
this information a video should also be cut automatically depending on the
spawning phases.

For the tracking, it is important to distinguish male and female worms in
every frame of a captured video, label them and keep track of those labels.
This thesis focuses on the extraction of features for the analysis of behaviours.
The tracking task is simplified by only considering videos with single worms.

Based on the worm properties (see Section 1.1) and their behaviour (see
section 1) the following features were selected together with the biologists:

1. Curvature

In general the coarse curvature of the worm’s body provides information
on the directionality of swimming. For example, a mostly straight linear
profile would be indicative of linear swimming, while smoothly curved
body profiles would indicate circular swimming. Good resolution of
finer-scale body curvatures along the length of the worm is also impor-
tant. For example, a linear profile with several bends could indicate an
acceleration of swimming speed, or 'wriggling’” movements, depending
on the amplitude of the curvatures. Such wriggling movements can be
seen in males when they are stopping to secrete sperm. Similarly, as
gametes are released from the tail, mapping fine-scale curvatures at the
tip of the tail could be used to map gamete release events, or charac-
terize sex-specific gamete release behaviours. For example, fast small
tail flicks in males during sperm release, and curling of the tip of the
tail in females just prior to egg release have been observed.

2. Normalized shape

A normalized representation of the worms shape allows the compar-
ison of different worms (or of the same worm at different times in a
video). This gives the biologists a new method in analysing spawning
behaviours independent of the anatomy of the individual worms.



3. Length and area

During the gamete release phase the length of the body and its area
change, especially for female worms. Therefore, these features are a
good indicator for the beginning of this phase.

4. Velocity

The velocity is a good indication for the beginning of the engaged
spawning, as the swimming speeds increase for both sexes. Further-
more, it is valuable information for the tracking.

5. Trajectory

The trajectories give information on the interaction between the two
worms. Furthermore, for individual worms, the curvature of the trajec-
tory can be compared to the curvature of the worm. A high correlation
indicates a circular movement and increases the robustness of the cur-
vature estimation.



3 Existing tracking approaches

The tracking of animals and the extraction of features to quantify behaviours
is not a new field of application. Caenorhabditis elegans (C. elegans) are
roundworms that have been used as model systems in neuroscience for years
and the demand for robust computational methods has lead to a number
of different tracking systems like Nemo [14], OptoTracker [12] or a tracking
system developed by Chatenay and Schafer [2].

These worm trackers are capable of tracking worms and extracting a variety
of different features. Unfortunately, they are developed for C. elegans worms
who differ in their appearance as well as their locomotion from Platynereis
dumerilii. Furthermore, some of them are only capable of tracking single
worms while others terminate tracking of animals if they collide and assigns
new tracks after they separate again. This does not guaranty a continuous
trajectory of a single worm for a whole video sequence, which is an important
requirement for our behaviour analysis. Other animal tracking projects like
AnTracks (www.antracks.org) or ”Visual Ants Tracking” by Ying [15] are
capable of tracking animals, but do not extract any features.

Therefore, this thesis proposes a new system that is capable of tracking
Platynereis dumerilii worms and offers feature extraction including a new
method to compute normalized shape forms.



4 Experimental setup

An existing setup at the laboratory is used for the worm tracker. It consists of
a light-tight box, a mounted infrared camera and an ordinary PC to capture
the videos. Worms are placed inside a cylindrical bowl refered to as arena.
Figure 3 shows the arena with two worms.
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Figure 3: Image of the arena with two worms taken from a captured video.

Videos are taken at a size of 1280x960 pixels with 43 frames per second.
Since the spawning in nature occurs at night and the biologists want to re-
produce this environment in the lab, it is important that the camera captures
the videos in infrared light. Regarding 3D movements of the worms, the sin-
gle camera setup has some limitations, as they might conceal parts of their
body from the cameras viewpoint, resulting in a flawed representation.



For example, the worms tend to turn sideways when moving fast. This
results in a change of the body area as the worms are viewed from the side.
In addition, the worms segment border (see Section 1.1) is not visible in such
cases. Figure 4 shows three frames of the same worm in the same video just
a few seconds apart. These frames illustrate frequent variations in the worms
appearance.

a) b) c)

Figure 4: In the first frame a) the worm turned sideways, therefore the
segment border is not visible and the body area is different to the other
frames b) and ¢). In those frames, the segment border is visible.

Changes in body area also happen when a worm overlaps itself and is
therefore not entirely visible to the camera.

Analysis of spawning videos have shown, that worms mostly move horizon-
tally near the water surface. Therefore, the collaborators decided to use this
single camera setup and neglect the few cases where the gathered data is
flawed due to 3D movement. Nevertheless, the setup might change in the
future using three cameras instead of one to solve the issue with the 3D
movement.
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5 Segmentation and tracking

This work focuses on the tracking of single worms. Although, only single
worms are segmented and tracked at the moment, it is still possible to anal-
yse separate spawning behaviours in male and female worms. For this the
biologists add eggs or sperm manually to the arena and the worms react to
them. This allows to study isolated spawning behaviours.

The proposed segmentation and tracking approach assumes continuous move-
ments of the worms. To track a single worm it is first segmented from the
background. This is done with a simple background subtraction for every
frame of the video. For the subtraction, it is important that there is at least
one frame at the beginning of the video with an empty arena, which serves
as the background image. As this image serves as the background image
for the whole video, it is assumed that the arena does not move nor that
the illumination changes during the video. This assumptions are met by the
current setup (see Section 4).

After the background subtraction the resulting image is converted to a bi-
nary image, based on a global threshold level of 0.1. This threshold was
defined empirically. To remove noise and smooth the boundary of the binary
worm shape, a number of morphological operations are applied: morpho-
logical closing, to remove small holes, is followed by morphological opening,
to remove small objects. A majority filter with a 3-by-3 neighborhood is
applied to the binary worm shape after the opening and closing to create a
smoother boundary. The majority filter sets a pixel to 1 (foreground) if the
majority of pixels in its neighborhood have the value 1 (foreground) and to 0
(background) otherwise. The resulting binary image is a collection of regions
that correspond to changes in relation to the empty arena. Ideally there is
only one region representing the worm. As the worm produces some noise
when moving in the arena (particles or bubbles in the water, reflections on
the edge of the arena), there might also be some noise in the binary image.
Therefore, only regions whose area is above a given threshold are considered
as worms. This threshold is based on the minimum and maximum area of
the worms in the test videos (see Section 8.1). As the regions generated by
noise are very small, this approach works well with the current setup.
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For the tracking, the worms are labeled at the beginning of a captured
video. Then, the distance between the head positions in consecutive frames
is calculated and the label is assigned based on the smaller deviation. This
approach already works well for single worms, but it is too simple to track
pairs of worms, as they tend to overlap and the distance of head positions
alone is not a robust criterion.

6 Shape representation

6.1 Definitions

The skeleton describes the center line of a worm, is delimited by two end-
points and is represented by an ordered list of points in an 8-connected
curve S = (D1, .oes Doy )s Di = (@i, yi) With i = 1, ..., ngpe where ngge is
the number of points on the skeleton.

An alternative and more compact encoding for the skeleton would be
the Freeman chain code [6], but since the coordinates of the skeleton
points are necessary to compute the curvature, chain codes are inap-
propriate.

The points p; of the skeleton S are ordered from head to tail by com-
paring the endpoints of the skeleton in the current frame with the
endpoints in the previous frame. The initial ordering is defined by the
selection of head and tail through the user in the first frame.

Section 6.2 gives a detailed description of the skeletonization approach.

The head position py..q of a worm is the first point of the skeleton S:
Phead = (T1,51) € S.

12



6.2 Skeletonization and pruning

Given the binary region of the worm, there are two common approaches to
compute its skeleton: morphological thinning and morphological skeletoniza-
tion with the medial axis transform (MAT) algorithm. Both approaches were
tested and they give different results as the morphological thinning generates
fewer spurious branches. See Figure 5 for a comparison between the two ap-
proaches for a sample worm.

Figure 5: Illustration of the worm skeletons (white) computed from the bi-
nary region (outlined in red). The left skeleton was computed using morpho-
logical thinning and the right one using skeletonization (MAT) technique.

Since the skeleton of a worm is defined as a center line between two end-
points, spurious branches are removed if the computed skeleton has more
than two endpoints. A pruning algorithm is used, that preserves the longest
overall branch of the skeleton, which conforms to the non-branching property
of the worm. The algorithm currently only works if the original skeleton has
2 or more endpoints and no loops.

First, the longest overall branch of the skeleton is determined. This is done
by computing the maximum geodesic distance on the skeleton for every end-

13



point. After these distances are computed, the endpoints associated with
the largest geodesic distance give the endpoints of the longest overall branch.
This branch corresponds to the diameter of the skeleton. If there are more
than two endpoints with maximum geodesic distance, the longest overall
branch is not unique. This can happen, if there are two branches with equal
geodesic distance on one of the worms ends. In such cases, one of the end-
points is chosen arbitrarily. This arbitrary decision does not have an effect
on the overall length of the worm. However, it effects the estimation of the
curvature as both branches usually point in different directions.

After the two endpoints of the longest overall branch have been found, they
are marked as the "true” endpoints. All other endpoints and their corre-
sponding branches (a branch from an endpoint to the nearest branch point)
are deleted. This process is repeated until there are two endpoints left. The
result of this algorithm is the skeleton, the longest overall branch without
any spurious branches.

After all spurious branches are removed, the difference between the two ap-
proaches (thinning and MAT) lies in the position of the endpoints and the
skeleton line.

In this thesis, the skeleton obtained by the morphological thinning is used
since the MAT approach creates more spurious branches and the result of
pruning effects the estimation of the curvature if there is no unique longest
branch in the original skeleton.
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7

Feature extraction

Features are extracted for every frame of the captured video and are based
on the binary region and/or the skeleton of a worm.

1.

Curvature

The curvature is estimated along the skeleton S with a method based on
osculating circles. Curvature values are computed for every point on the
skeleton. Subsection 7.1 gives a detailed description of the curvature
estimation.

Normalized shape

The normalized shape is computed using the skeleton S and a distance
transform of the binary worm region. Distance values at the position
of the skeleton give the minimum distance to the region border and
are used as radii to draw the normalized shape using circles. Subection
7.2 gives a detailed description on the computation of the normalized
shape.

Length

The length of a worm is calculated with the geodesic distance between
the endpoints of the skeleton S plus the radii of the circles at the first
and last skeleton point. It is important to include the circle radii as
the skeleton endpoints do not always touch the outline of the binary
worm region.

Areq

The area of a worm is the sum of all foreground pixels of the binary
worm region. It is the zeroth moment.

Velocity

Velocity v is defined as the rate of change of position with respect to
time v = %f. The change in position Az is measured between two
consecutive frames and is given by the Euclidean distance between the
two head positions ppeqq in the frames. The time At is given by the

time between two frames.
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6. Trajectory

The trajectory of a worm in a video sequence is described by a chrono-
logical list of head positions ppeqq from every frame of the video se-
quence. The tangent of the trajectory provides information on the
direction of the worms movement and its curvature provides informa-
tion on circular movements. Figure 6 shows a section of a trajectory
from a single worm video.

Figure 6: Part of a video frame with an overlay of the head trajectory. The
trajectory is taken from a short sequence of a single worm video.

16



7.1 Curvature

According to Hermann and Klette [9], the estimation of the curvature along
a discrete curve can roughly be divided into three categories: the derivative
of the tangent angle, the derivative of the curve and the radius of the oscu-
lating circle. In this thesis a method based on osculating circles is used as
it is fast and the implementation is simple. Gray [7] defines the osculating
circle of a curve C' at a given point P in the continuous space as the circle
that has the same tangent as C' at point P as well as the same curvature.
These circles are approximated with the circumscribed circles of triangles on
the discrete skeleton curve. Casey [4] defined the circumscribed circle as the
unique circle that passes through each of the triangle’s three vertices.

Given the definition for the skeleton S, let the neighbourhood k£ be 1 <
k< L%J if ngre is odd and 1 < k < (V%J — 1) if nge is even. For each
point p; on S a triangle is defined between the three points p;_x, p; and p;1x.
Then the radius r of the triangles circumscribed circle allows to calculate the
curvature at p; by % See Figure 7 for a visualization.

Figure 7: Illustration of the circumscribed circle (blue) for a single point p;
on a skeleton. The circle passes through every vertex of the triangle (red)
formed by the points p;_, p; and p; with & = 10.

17



The radius of the circumscribed circle is defined as r = 4*‘3’;&, where a, b

and ¢ correspond to the side lengths of the triangle and area is the area of
the triangle. The area of a triangle is given by:

1 oy 1
area =1 x|y yp 1
x3 ys 1

with (21, 91) = pi—k, (¥2,y2) = p; and (T3, Y3) = Pitk-

The sign of the area gives an indication on the orientation of the triangle
and therefore an indication on the direction of the curvature. Finally, the
curvature ¢ is given by the inverse of the radius ¢ = mdlms. It is positive if
the curvature is on the right side and negative if the curvature is on the left

side of the skeleton curve. See Figure 8 for a visualization of the curvature.
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Figure 8: Image of a worm with its skeleton (top) and a plot of the estimated
curvature of the worm for a fixed neighbourhoods & (bottom).
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7.2 Normalized shape

To compute the normalized shape representation, we follow a recent strategy
which is known as co-registration, where shapes are first straightened or flat-
tened to then register different views/deformations of the same normalized
shape [1].

The normalized shape representation of a worm is achieved with a back-
ward medial axis transform approach. It is based on the distance transform
of the binary worm image, which labels each pixel of the worm with the FEu-
clidean distance to the nearest boundary pixel. For every point p; = (x;, y;)
of the skeleton S, the corresponding value of the distance transform is looked
up. Those distances then serve as the radii for the circles and are related to
the radii of the circles used by MAT. See Figure 9 for a visualization.

Figure 9: Part of the distance transform of a worm with circles drawn for
four points on the skeleton.

Since the original skeleton of a worm might have spurious branches that
are removed during the skeletonization process, the distances for the spuri-
ous branches are not looked up, causing inaccuracies in the normalized shape
representation.
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For the normalized shape representation, the distances between the cir-
cle center points correspond to the distances between these points on the
skeleton. This way the proportions are maintained. Figure 10 shows the
results of this method, where in the first visualization only the outlines of a
sub-sampling of circles are drawn to show the general idea.
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Figure 10: Plots of the normalized representation of a worm using the out-
lines of 24 circles to visualize the general idea (top) and a complete shape
visualization with all 115 filled circles (bottom) of that worm.
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8 Evaluation

8.1 Datasets

For the evaluation two datasets were used. The first dataset (referred to
as "video dataset”) consists of 7 different single worm videos with female
worms only. All videos have a resolution of 1280x960 pixels and a framerate
of 43 frames per second. Table 1 shows additional information of the video
dataset.

Table 1: Video dataset

video | duration | max worm area | min worm area
1 01:05 min 2674 px 890 px
2 01:24 min 3351 px 1260 px
3 00:44 min 3640 px 201 px
4 01:29 min 6071 px 1396 px
) 01:37 min 2104 px 466 px
6 03:02 min 2486 px 550 px
7 02:07 min 3219 px 821 px

The second dataset (referred to as ”image dataset”) consists of 100 images
selected from the video sequences of the video dataset. The images show the
single worms in different stages of the spawning process. Figure 11 visualizes
the body area of every worm in the image dataset.
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Figure 11: Body area for all images in the image dataset. The subdivision
(dotted lines) corresponds to the 7 different videos the images were taken
from.
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8.2 Morphological operations

Three different morphological operations are used to remove noise and smooth
the boundary of the binary worm image: opening to remove small objects
(noise), closing to remove small holes and majority to smooth the boundary
of the worm region.

To evaluate the morphological operations, the difference between the original
binary worm region and the morphed region was computed for every worm
image in the image dataset. The difference was evaluated for two cases: The
first case describes the pixels that were added to the original worm region
and the second case describes the pixels that were removed from the original
worm region. Figure 12 shows the changes to the original worm region after
all morphological operations have been applied.

10

pixels added to original worm region
—— pixels removed from original worm region
8 ——sum of changed pixels

changed pixels in %
of original worm region

worm image

Figure 12: Changes after a morphological closing followed by a morphological
opening and majority is applied on the original worm region.
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Figure 13 shows the two best and the two worst examples of worm regions
after the morphological operations.
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Figure 13: Images of the best and worst results obtained by the morpho-
logical operations. Pixels that were added to the original worm region are
highlighted in green, pixels that were removed are highlighted in red.
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8.3 Curvature estimation

An important factor in the accuracy of curvature estimation is the neighbour-
hood k. A discrete circle with a radius of 40 pixels created with Bresenham’s
circle algorithm [3] was used to test the accuracy. Figure 14 shows the results.
As the error gets too big for small neighbourhoods, it starts at 0.05 * ne
. With increasing neighbourhood £ it can be observed that the error gets
smaller. The same is true for a constant neighbourhood %k but an increasing
radius, which corresponds to the multigrid convergence theorem, where the
accuracy is expected to increase as the grid resolution (or in our case the
circle radius) increases [10, Chapter 10].
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Figure 14: Plot of the avg- and max-error for the curvature estimation of a
circle with radius 40 and increasing neighbourhood k.

So the accuracy gets better with increasing k. Unfortunately, this accu-
racy comes at a price, as small curvatures are overlooked in the process if k&
is too big. This corresponds to the sampling theorem as the neighbourhood
defines a sampling window for the curvature estimation. Another problem
with a constant neighbourhood k are points at the beginning and the end
of the skeleton curve. For points p, with a < k there are no neighbourhood
points p,_; defined. The same is true for points p, with b > n — k where no
neighbourhood points p, are defined. This problem is currently solved by
disregarding those points on the curve.
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curvature in px
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To evaluate the accuracy for different curvatures and alternating cur-
vature directions, a synthetic line was created. The line is composed of
7 semi-circles with different radii who are connected horizontally (see Fig-
ure 15). The ground truth of the line can be computed with the radii of the
semi-circles.

Figure 15: Synthetic line composed of 7 semi-circles.

Figure 16 shows the effect of different neighbourhoods k on the estimation
of the curvature. The chosen neighbourhoods correspond to the optimal
neighbourhoods % for the semi-circles 2 (k = 219), 4 (k = 125) and 6
(k = 31).
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Figure 16: Estimation of the real cruvature (gt) with three different neigh-
bourhoods k.
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curvature in px

With £ = 125 and k£ = 219 the estimation at the center of the larger
semi-circles (1,2,3 and 4) is better in comparison to k& = 31. Unfortunately,
this also results in a higher error in the transitions between two consecutive
semi-circles. Furthermore, smaller curvatures are overlooked. With k£ = 31
the overall estimation is more accurate although the curvature estimation for
the smallest semi-circle (7) is still error prone. Therefore, the same evalua-
tion is repeated with a smaller neighbourhood k.

Figure 17 shows the results of the curvature estimation with an optimal
neighbourhood k& = 15 for the smallest semi-circle (7). This shows a good
estimation for the two smallest semi-circles (6,7), but it also results in higher
errors for the larger semi-circles.
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Figure 17: Estimation of the real cruvature (gt) with a small neighbourhood
k = 15 px.

Figure 18 shows the curvature estimation with the optimal neighbour-
hood k = 282 for the largest semi-circle (1). This results in higher errors for
the estimation of the smaller circles and errors in the transitions.
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curvature in px
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Figure 18: Estimation of the real cruvature (gt) with a large neighbourhood
k = 282 px.

To evaluate the effect of discretization on the results, a second synthetic
line was created by rotating the line in Figure 15 by 45 degrees counterclock-
wise. Figure 19 compares the result for the curvature estimation of both lines
with a fixed neighbourhood k& = 31.

On the tested synthetic line the neighbourhood k£ = 31 gives the best
result and shows good estimations for all semi-circles but the smallest (7).
For the smaller semi-circles (6,7) the neighbourhood k& = 15 shows better
results. Since the possible bending radii of the worms depend on their size,
the overall accuracy can be improved by adjusting the neighbourhood £ to
the size of the worm when computing the curvature. To restrict the actual
neighbourhood, 31 is set as an upper bound and 15 as a lower bound.

In this thesis, the value for the neighbourhood k is defined with respect

to the number of skeleton points as k = max (15, min(31, nge * 0.15)). The
factor 0.15 was defined empirically.
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curvature in px
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Figure 19: Estimation of the real cruvature (gt) with a neighbourhood k =
31 px for both lines.
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8.4 Normalized shape

To evaluate the normalized shape representation the original binary worm
region is compared with a shape projection. The shape projection is created
by drawing circles for every point p; of the original skeleton S with the
associated radius obtained by the normalized shape computation. Figure 20
shows the error rates of the shape projection compared to the original worm
body area. The minimum error is 1.02 %, the maximum error is 8.89 % and
the mean-error for all images is 3.2 %. Figure 21 shows the two best and the
two worst results for the shape projection.
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Figure 20: Error rate of the shape projection for every image of the evaluation

dataset. The subdivision corresponds to the different videos the images were
taken from.

a) 1.02 % b) 1.27 % c) 737 % d) 8.89 %

Figure 21: Images of the two best (a and b) and the two worst (¢ and d)
results obtained by the shape projection. The projected shapes are drawn in
white and the original worm body areas in red.
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The results shown in Figure 21 correspond to the images 3 (a), 40 (b),
45 (c) and 83 (d) of the evaluation dataset. The worm in image 83, where
the shape projection produces the biggest error, is one of the smallest worms
in the dataset (see Figure 11). This suggests, that the error rate of the
normalized shape correlates with the worm size. Therefore, the errors for
other worms that are of similar size were checked. Table 2 shows the results
which indicate that there is no correlation between the size of a worm and
the accuracy of the normalized shape representation.

Table 2: Error values for the shape projection
image | area error
80 640 px | 2.97 %
81 601 px | 3.00 %
82 614 px | 6.35 %
83 630 px | 8.89 %

Since the normalized shape is computed with a backward medial axis
transform approach, it seems natural to assume that the shape projection is
free of errors when based on an already projected shape. Experiments have
shown, that this is not the case. Figure 22 shows the error rates of another
shape projection based on the first projected shape. The majority of shape
projections is error prone.
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Figure 22: Difference in the area of the second shape projection compared to
the first projected shape (blue). Difference in the area of the first projection
compared to the original worm area is also shown (red). The subdivision
corresponds to the different videos the images were taken from.
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This experiment was repeated 20 times, revealing that the shape pro-
jection gets better after some iterations for the majority of shapes in the
dataset. Figure 23 shows the error rates after the 7th iteration.
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Figure 23: Error rate of the 7th shape projection compared to the 6th pro-
jected shape. The subdivision corresponds to the different videos the images
were taken from.

These experiments show that the normalized shape projection is not the
inverse of the MAT and depends on the shape of the worm. Figure 24 shows
the shape projections for the two worst cases of the image dataset that still
show a difference of the area in the shape projection after 20 iterations.

For 96 out of 100 images the shape projection has a 0% area difference in
the 20th iteration. Independent of the worm shape and the iteration, the
difference in % with regard to the the previous projection is always below

9%.
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image 52

original projection 1 projection 10 projection 20
image 65
original projection 1 projection 10 projection 20

Figure 24: Change of the shape projection after different iterations. The red
pixels highlight the changes to the previous picture.
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8.5 Temporal worm analysis

Temporal experiments were performed on the video dataset to show changes
of features over time and how they correspond to the spawning phases.
Around the time of the gamete release where the female worms secrete their
eggs into the water they get smaller and therefore shorter. This can also
be observed in plots of the worm length and gives the biologists information
on the phase of the spawning process without having to look at the video
material.

Figure 25 shows an example of the change of the worm length between frames
600 and 1000 where the gamete release starts. To hide outliers of the original
worm length in the plot, the data was smoothed with a moving average filter.
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Figure 25: Smoothed worm lengths for a female worm right around the time
of the gamete release (marked in red).
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Figure 26 shows an example on how the length of a female worm changes
during an entire spawning process. For this plot the original data was not
smoothed to also show special outliers. Annotation A marks a special case
where the worm is overlapping itself resulting in a faulty binary area and
skeleton. The problem here is the 3D movement of the worm.

gamete release
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ey
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0 ! \ \ ! ! \
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

frames

Figure 26: Change of worm length over time. During the gamete release the
worm gets shorter. Annotations A and B mark special cases.

Another special case, where the 3D movement results in erroneous data

is marked with annotation B. Here the end of the tail is not visible to the
camera which makes the worm appear shorter in the video.
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runtime in seconds

8.6 Runtimes

Runtimes of the main operations for the segmentation, tracking and feature
extraction were computed for all videos in the videos dataset. Figure 27
shows the mean runtimes per frame in a barchart. Figures 28 and 29 show

boxplots of the runtimes.
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Figure 27: Barchart of the mean runtimes per frame of the main operations

for the tracking and feature extraction.

For the background subtraction the runtime is constant for all videos as
it is performed on the whole image, i.e. independent of the worm. Blob de-
tection depends on the amount of noise that is present after the background
subtraction and the skeletonization depends on the shape of the worms. Both

are different for every video in the dataset.

Computing the normalized shape and curvature has the same runtime for
all videos and depends on the number of skeleton pixels of the worms.

For an input video, the mean runtime for all operations is 4.8 times real

time.
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Figure 28: Boxplot of the runtimes per frame for the operations background
subtraction (1), blob detection (2), skeletonization (3), normalized shape (4)
and curvature (5).
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Figure 29: Boxplot of the runtimes per frame for the operations background
subtraction (1), blob detection (2), skeletonization (3), normalized shape (4)
and curvature (5).
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9 Conclusion

This thesis presents a novel approach for the analysis of the spawning pro-
cess of Platynereis dumerilii worms, that enables both tracking and feature
extraction in captured videos.

The tracking is new for this type of worms, as alternative approaches fo-
cus on different worms or other animals. The feature extraction also offers a
new method to compute normalized shape representations that follows a re-
cent strategy, which is known as co-registration. This can give the biologists
a new method to study the changes in the worms shape during the spawning
process independent of their deformation.

The accuracy of the normalized shape representation depends on the original
worm shape in the video and can be free of errors in the best case. In gen-
eral, the error was always below 9% of the original shape for all tested worms.

The evaluation of the curvature estimation has pointed out the importance
of the neighbourhood parameter k and its influence on the accuracy of the
estimation. One mature flaw is also the lack of curvature information at the
ends of the skeleton. This information is important to the biologists, since
tail flicks in male worms and curling of the tip of the tail in female worms
can be observed during gamete release.

Temporal experiments on worm videos have shown how extracted features
can help to identify the different phases of the spawning process.
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9.1

1.

Future work

Tracking of two worms

The method currently used to track single worms also works for two
worms if they are physically separated, but as they get close to each
other or overlap, the current method might fail. In the future, the
method will be extended to consider cases where the worms are close to
each other or even overlap. Ideas to achieve this include the comparison
of more features than just the head positions of consecutive frames. A
combination of all other features could yield an appropriate approach
in distinguishing male and female worms.

Segmentation

There exist special cases, where a single worm overlaps itself due to 3D
movement in the water. This results in regions and skeletons, which do
not represent the worm correctly and therefore the extracted features
are flawed as well. One solution could be the watershed method [8] as it
might be superior to the simple threshold based segmentation method.

Skeletonization

The skeletonization works only if there is no loop in the original skele-
ton. Such a loop might occur if the worm forms a circle. This will be
addressed in the future.

The pruning approach currently chooses endpoints of the skeleton arbi-
trarily if there is more than one branch in the skeleton with maximum
geodesic distance. This negatively influences the curvature estimation
if the wrong endpoints are chosen.

Clurvature estimation

The curvature estimation has some flaws and is not robust enough.
In the future, we will look into alternative approaches to compute the
curvature of discrete curves. Roussillon and Lachaud [13] base their
method around maximal digital circular arcs. Other methods rely on
digital straight segments (DSS) recognition [9] [5].
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