
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms
TU Wien
Favoritenstr. 9/186-3
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801 - 18661
Fax: +43 (1) 58801 - 18697
E-mail: sek@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-138

183.151 Selected Chapters of Image Processing
SS 2016, Graphs: Matching and Distance

Student’s contributions

Wen Chao Chen, Max Langer, Daniel Pucher,
Carmine Sansone, Domenico Verlotta,

edited by Walter G. Kropatsch
Institute of Computer Graphics and Algorithms

Pattern Recognition and Image Processing Group 186/3

Abstract

This technical report presents a collection of selected papers, submitted by students in the
course ”Selected Chapters of Image Processing” (VU 183.151) of the Pattern Recognition
and Image Processing group during summer term 2016.

2016: Graphs: Matching and Distance
Basic document: Habilitation of Kaspar Riesen [1]

Most illustrations, algorithms and formulas are based on this basic document
and are not explicitly cited in all cases.

1 New Working Mode 2016

Each lecture unit (except begin) will be subdivided into three parts:

1. Summary of discussion of last lecture unit.

2. Presentation of new book chapters and/or related scientific articles.

3. Discussion lead by opponent.

2 Student’s Tasks

1. Select a topic and present in part 2 of the respective lecture unit;

2. as opponent: prepare a few initial critical statements (1-2 slides);

3. actively participate in the discussion;

4. Write a summary of the discussion of the preceding lecture unit.

Reports, presentations and slides are the basis for evaluation. Reports of
presentations and discussions are part of this script.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

1

3 Topics/Chapters 2016

KR refers to the Habilitation of Kaspar Riesen [1].
Date Speaker

Opponent
report

Topic (2+3) page

3. 3.2016 Walter Kropatsch Introduction
17. 3.2016 Wen Chao Chen

Carmine Sansone
Domenico Verlotta

(Sub-)Graph Matching
(KR sect.1)

3

7
7. 4.2016 Max Langer

Daniel Pucher
Wen Chao Chen

Graph Edit Distance
(GED; KR sect.2)

10

14
14. 4.2016 Daniel Pucher

Wen Chao Chen
Carmine Sansone

Benchmarking with Graph
Data Sets
(KR sect.A)

16

20
28. 4.2016 Carmine Sansone

Domenico Verlotta
Max Langer

Improvements by Search
(KR sect.4)

27

41
23. 6.2016 Domenico Verlotta

Max Langer
Daniel Pucher

Improvements by Learning
(KR sect.5)

43

A summary of selected chapters since 2002 completes this TR (p.45).

2

183.151 Selected Chapters in Image Processing AKBV SS2016

2

Graph Matching: Summary
Selected Chapters in Image Processing SS 2016

Wen Chao Chen (1129468)

April 13, 2016

1 Graph Matching

Graph Matching is a structural approach to pattern recognition which makes use of
graph data structures to outline relationships or similarities between certain patterns
through node representation and edge connectivity. Furthermore, by labeling nodes and
edges, additional information for pattern matching is provided. It is also very important
to note that by using graphs the pattern size and complexity are adaptive. The adaptive
size often becomes an argument which decides whether one opts for structural pattern
recognition, since feature vectors in the statistical approach are required to not only
have a fixed size, but also need to have corresponding pattern features in order to be
compared to each other. However, as the size of the feature vectors never change, the
complexity for the statistical approach also never changes, such that a greater efficiency
is given, compared to graph matching. The biggest worry is that the complexity of
graph matching increases exponentially, as nodes and edges are inserted into a graph
adaptively. In general, Graph Matching distinguished between two types: Exact Graph
Matching and Error-Tolerant Graph Matching. The complexity dilemma becomes even
more apparent in case of Exact Graph Matching, which is introduced next.

1.1 Exact Graph Matching

The objective of Exact Graph Matching is to provide information about the dissimilar-
ity of compared graphs. Therefore, it is a necessity to use a method which determines
whether or not two graphs or subgraphs correspond to each other such that a bijective
function mapping one graph g1 to another graph g2 can be defined. In regard to bi-
jective functions for graph matching, the concepts of Graph Isomorphism and Subgraph
Isomorphism have been established. Graph Isomorphism for two graphs only holds, if
the node and edge structure, as well as the labeling, are identical. Subgraph Isomorphism
can be seen as an extension of Graph Isomorphism, such that the conditions hold if an
induced subgraph of a graph g1 is isomorphic to another graph g2. Figure1 provides an
illustrative explanation.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

3

(a) (b) (c)

Figure 1: Graph (b) is isomorphic to graph (a), and graph (c) is isomorphic to a subgraph
of (a).

Considering that for subgraph isomorphism all possible subgraphs of the larger graph
have to be checked, it has been proven that subgraph isomorphism is NP-complete. That
means that there is unclear, how long the algorithm will have to perform in order to find
a solution or if there is a solution in the first place. Furthermore, the performance time
increases even more, as the complexity of a pattern increases. In general, graphs come
with a polynomial complexity, but if we were to restrict the problem of matching graphs
to a special class of graphs, e.g, complete graphs, the complexity could be reduced, since
the labeling would not have any significance anymore. The value resulting from the
isomorphism evaluation is either 0 for similarity or 1 for dissimilarity, which aims to be
an indication on the similarity of two graphs. However, this indication has no significance
whatsover, since 0 is only returned, if and only if graph structure and label are identical.
In all other cases, 1 is returned. A more significant dissimilarity is formulated, when
the Maximum Common Subgraph or the Minimum Common Supergraph is considered.
Roughly speaking, the Maximum Common Subgraph can be described as the greatest
common denominator of two graphs, while the Minimum Common Supergraph represents
the union of two graphs. Figure 2 gives an example for each case. By determining the
subgraph, or respectively the supergraph, it is now possible to compute distance measures
under consideration and in relation to the size of the graphs.

The introduced distance models based on the Maximum Common Subgraph are there-
fore,

dMSC(g1, g2) = 1− |msc (g1, g2)|
max {|g1|, |g2|}

. (1)

dWGU (g1, g2) = 1− |msc (g1, g2)|
|g1|+ |g2| − |msc (g1, g2)|

. (2)

dUGU (g1, g2) = |g1|+ |g2| − 2 |msc (g1, g2)| . (3)

where dWGU and dUGU can be reformulated in a way such that the Minimum Common
Supergraph is taken into consideration. When the definition of Minimum Common
Supergraph goes by,

2

183.151 Selected Chapters in Image Processing AKBV SS2016

4

Figure 2: Example for a Maximum Common Subgraph as well as a Minimum Common
Supergraph.

|MSC(g1, g2)| = |g1|+ |g2| − |msc (g1, g2)| . (4)

then the reformulated distance models,

dUGU (g1, g2) = |MSC (g1, g2)| − |msc (g1, g2)| . (5)

dWGU (g1, g2) = dMMSCN (g1, g2) = 1− |msc (g1, g2)|
|MSC (g1, g2)|

. (6)

concludes that the Maximum Common Subgraph represents a lower bound on the
similarity of two graphs, whereas and the Minimum Common Supergraph provides an
upper bound.

1.2 Error-Tolerant Graph Matching

For real-world scenarios, it is nearly if not completely impossible to find two identical
patterns due to noise. This, however, connotes that Exact Graph Matching is not
practicable, since all or part of the graph structures as well as the labeling have to be
preserved. Error-Tolerant Graph Matching takes a little different approach to graph
matching such that slight differences are not only tolerated, but the structure of a graph
itself is processed in order to provide information, whether or not two graphs are similar
to each other. In general, the concept of the Error-Tolerant Graph Matching can be
described as follows: The goal is to find a mapping from one graph to another, by
processing the graph through editing operations such as node and edge insertion and

3

183.151 Selected Chapters in Image Processing AKBV SS2016

5

deletion. For every processed operation, a cost is then assigned and the the algorithms
main aim is a minimization of the overall cost. A generalization of the overall cost is
illustrated in Figure 3.

Figure 3: The overall cost function of the Error-Tolerant Graph Matching paradigm.

Several approaches to Error-Tolerant Graph Matching have been proposed over the
years, of which some use relaxation labeling techniques, artificial neural networks, spec-
tral decomposition or Kernel machines. Another flexible and universal error-tolerant
graph matching paradigm is, the Graph Edit Distance, which also uses the concept of
cost minimization, and is discussed in the following chapter.

4

183.151 Selected Chapters in Image Processing AKBV SS2016

6

(Sub-) Graph Matching: Discussion Report.

Verlotta Domenico

March 7, 2016

Graph matching has applicationsin a variety of fields from computer vision to chemistry and

molecular biology. In graph matching, patterns are modeled as graphs and pattern recognition

amounts to finding a correspondence between the nodes of different graphs.

This processing is to be performed by a computer automatically without the assistance of a human

expert, a useful way of representing the knowledge is by using graphsthat rappresent a good way

of representing objects.

Definition Graph : Let LV and LE be finite or infinite label sets for nodes and
edges, respectively. A graph g is a four-tuple g = (V, E,μ, ν), where
• V is the finite set of nodes,
• E ⊆ V × V is the set of edges,
• μ : V → LV is the node labeling function, and
• ν : E → LE is the edge labeling function.
The set of all graphs over the label alphabets LV and LE (also referred to as graph domain) is denoted
by G . The size of a graph g is denoted by |g| and is defined as the number of nodes, i.e., |g| = |V|.

Exact and inexact graph matching

183.151 Selected Chapters in Image Processing AKBV SS2016

7

In model-based pattern recognition problems, given two graphs graph G1 and the data graph G2

the procedure of comparing them involves to check whether they are similar or not. Generally

speaking, we can state the graph matching problem as follows:

Given two graphs G1 = (v1, e1) and G2 = (v2, e2), with |v1| = |v2|, the problem is to find a one-to-

one mapping f : v1 → v2 with (u, v) ∈ e2 iff (f(u), f(v)) ∈ e1.

When such a mapping f exists, this is called an isomorphism, and G1 is said to be isomorphic to G2,

this type of problems is said to be exact graph matching.

The term inexact applied to some graph matching problems means that it is not possible to find an

isomorphism between the two graphs to be matched. This is the case when the number of vertices

is different in both the model and data graphs.

This may be due to the schematic aspect of the model and the difficulty to segment accurately the

image into meaningful entities. Therefore, in these cases no isomorphism can be expected

between both graphs, and the graph matching problem does not consist in searching for the exact

way of matching vertices of a graph with vertices of the other, but in finding the best matching

between them. This leads to a class of problems known as inexact graph matching.

Questions

 I’d like to implement an application to solve a determinate problem based on the subgraph

matching, can I solve my problem also if the problem is NP-complete?

Graph matching is considered to be one of the most complex problems in object recognition in

computer vision, the NP-complete problem is solvable (but the computation time is exponential).

In the lecture there are different type of algoritm we can use for the graph matching for example,

Random walks, Decision trees, VF2.

These type of the problem is impossible to resolve (we can find a solution but we don't know

that solution in the optimal solution) with an general algorith for the elevate complexite but you

can create a smart program that resolve a class of the problem (you can create an euristic that

dipens for a class of the applycation in this case we can find the optimal solution because we

considerat a class of the problem).

 How can we built a function cost and what is the influence that the function cost has on

the algorith that we chose to do the graph matching?

183.151 Selected Chapters in Image Processing AKBV SS2016

8

 A common way to make error-tolerant graph matching more efficient is to restrict

considerations to special classes of graphs. Examples include the classes of ordered graphs,
planar graphs, trees or graphs with unique node labels. If possible solve the problem of graph
matching in a easy way restricting the class of the graph.

 No one of this algorithms (Spectral methods, Graph kernels) use semantic information. We

have chosen to move our attention from the vector to the graph because with the graph we
can represent relationships among different parts of the underlying patternand but we use
algorithm that don’t use this information.

183.151 Selected Chapters in Image Processing AKBV SS2016

9

Graph Edit Distance

Max Langer

April 13, 2016

1 Definition

The basic idea of Graph Edit Distance (GED) is to measure the distance base on the
operations needed to transform graph g1 to graph g2. In the book by Riesen [Rie15]
three operations are considered: Insertion, Deletion and Substitution. By insertion
(Figure 1a) a node is added to the graph. On the opposite, by deletion (Figure 1b)
a node is removed from the graph. Substitution (Figure 1c) transforms one node into
another. This is important with labeled graphs.

(a) (b) (c)

Figure 1: The three operations: (a) Insertion, (b) Deletion and (c) Substitution.

Before considering GED, the definition of an Edit Path is important (Definition 1).

Definition 1 (Edit Path). A set e1, . . . , ek of k edit operations ei that transform g1

completely into g2 is called a complete edit path λ(g1, g2) between g1 and g2.

An Edit Path describes a set of operations, that transform one graph to another. As
can be seen there are an infinite number of different edit paths. A next step to obtain a
distance measure is to find an Edit Path that is as small es possible. This consideration
motivates the Graph Edit Distance (Definition 2).

Definition 2 (Graph Edit Distance). Let g1 = (V1, E1, µ1, ν1) be the source and g2 =
(V2, E2, µ2, ν2) the target graph. The graph edit distance dλmin

(g1, g2), or dλmin
for short,

between g1 and g2 is defined by

dλmin
(g1, g2) = min

λ∈Υ(g1,g2)

∑
e1∈λ

c(ei)

Υ(g1, g2) is the set of all complete edit paths and c(e) the cost for an operation e.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

10

Figure 2 shows an example Edit Path, that also is the minimum Edit Path and
therefore the base for the GED calculation. The path is λ = {(u1 → ε), (u2 →
v3), (u3 → v2), (u4 → v1)}. Because we know the resulting graph g2 we can find the
implicit edge operation necessary to transform the graph: {((u1, u2) → ε), ((u2, u3) →
(v3, v2)), ((u3, u4)→ (v2, v1)), ((u2, u4)→ ε)}

Figure 2: Example Edit Path.

2 Edit Cost Function

As can be seen in Definition 2 every operation is associated with a cost value. The idea
behind the function c(e) is that not every operation as equally costly.

To limit the possible Edit Paths for the GED calculation the cost function has to fulfill
the following three conditions.

1. Non-negativity: c(e) ≥ 0, for all edit operations e

2. Substitution over insert/delete: c(e) > 0, for all deletions and insertion operations
e

3. Triangle inequality: c(u → w) ≤ c(u → v) + c(v → w). This ensures, that only
one operation is used if possible instead of using intermediate nodes.

All those conditions considered the number of Edit Paths to take into account for
GED from graph g1 with n nodes to graph g2 with m nodes is mn.

Riesen gives two examples of cost functions. For unlabeled graphs the simplest cost
function is to define unit costs to insertion/deletion and have substitution free of cost,
because one node can not be told from another.

A more common situation are labeled graphs. For symmetry insertion and deletion
must have the same value τ . Substitution is calculated with respect to the node labels
(c(u→ v) = ‖µ1(u)− µ2(v)‖p).

To define good edit cost functions prior knowledge of the labels is important.

3 Computation

An exact computation can be done with an A*-based search method. This method uses
a tree to map all possible edit paths and find the smallest GED in the leaf nodes.

In Figure 3 the tree for the example in Figure 2 is given. Each layer represents all
nodes the node on the left side can be transformed to. The tree nodes show the current

2

183.151 Selected Chapters in Image Processing AKBV SS2016

11

cost for node and edge operations, leading to a cost of 4 in the shortest Edit Path marked
with a bold line.

Figure 3: Exact GED computation using a tree search.

Because this algorithm is exponential and therefore to time consuming to calculate,
approximations are needed. Riesen’s book deals with many different approaches.

4 Pattern Recognition

In the following three methods that can use GED in pattern recognition are discussed.

4.1 Nearest-Neighbor

Nearest-neighbor is a simple technique that uses N training graphs with corresponding
class labels. To find the correct class of a graph g the nearest training graph (GED is
minimal) is searched for. Graph g is labeled with this nearest training graph’s label.
For a better result k nearest neighbors can be considered, resulting in the class most of
them are in.

3

183.151 Selected Chapters in Image Processing AKBV SS2016

12

4.2 Kernel-Based

There exist many methods for statistical pattern recognition. To use these well estab-
lished statistical tools with graphs we relate to the kernel trick.

The kernel trick states, that every dot-product can be rewritten as a function if this
function is a positive definite kernel function. More formally that means that there exists
a mapping phi so that κ(x, x′) = 〈φ(x), φ(x′)〉.

A positive definite kernel function is a function κ that fulfills the following condition:

N∑
i,j=1

cicjκ(xi, xj) ≥ 0

∀N ∈ N,∀{c1, . . . , cN} ⊆ R,∀{x1, . . . , xn}

Utilizing this kernel trick, we can use every statistical tool, that uses the dot product.
Many statistical tools can be rewritten to do exactly that resulting in many available so
called kernel machines. One example is SVM.

There exist multiple positive definite kernel functions based on the GED, like−d(g1, g2)2.

4.3 Graph Embedding

As with the kernel based methods graph embedding allows the use of graphs with sta-
tistical methods. With graph embedding a graph is turned into a vector first and then
the statistical tool is used the same way as with feature vectors.

First prototype graphs P = {p1, . . . , pn} are defined. Those graphs have to be repre-
sentative and cover all possible classes. One would for example use a prototype of every
letter of the alphabet for letter classification.

In a next step a graph g ∈ G is mapped to a vector v ∈ Rn:

φP
n (g) = (d(g, p1), . . . , d(g, pn))

d(g1, g2) is the GED of g1 to g2.
The resulting vector can be used in statistical applications.

References

[Rie15] Kaspar Riesen. Structural pattern recognition with graph edit distance. 2015.

4

183.151 Selected Chapters in Image Processing AKBV SS2016

13

Graph Edit Distance: Discussion Report
Selected Chapters in Image Processing SS 2016

Wen Chao Chen (1129468)

April 10, 2016

1 Regarding the general understanding

• The defined substitution operation is only relevant for labeled graphs, since, logi-
cally, for unlabeled graphs, label changes do not matter.

• In case of a linked structure, one concept is deleting nodes and edges through the
adjacency matrix. Hereby, however, the edges are not automatically removed. It
is necessary to look through the whole graph in order to delete incident edges .

• One question that came up during the discussion were the given similarity kernel,
in particular −d(g1, g2)

2. Given the circumstance of requiring positive definite ker-
nels, the provided kernel example does not seem to make sense,since the condition
of a positive definite kernel function would not hold due to the to the minus-sign
in front.

2 Questions

• Is there additional use for the information we gathered in the edit path selection
procedure?

• Why don’t we consider graph contraction in addition to removal when computing
the graph edit distance? Using graph contraction for the purpose of building graph
pyramids also preserves graph connectivity. The graph can be shrinked that way,
and the inverse would deconstruct and reinsert a new edge. So in principal, we
can redefine the set of basic operations of the graph edit distance. As a matter
of fact, the operation set introduced in the book does not consider planar graphs.
However, with a proper definition using the redefined set of operations (including
contraction), we can preserve the planarity.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

14

See answer next page!

§q

§

cDn

c

?S
'' Ä'
ii+
§N
CD :'

ei (!§
l\Ö
aa

I
+§-
ß*
!nb
ß'I -i§
:-ö ,!:

tsEi
l!

cn<§

o

= -=i = = i. &:o= = +; ==: i
= =

IE-=l:
=

l=+1=a=.!=_=
=1 :;;- Z ===; ai =.'+7:=-.:- =;11+ ==aI:, !a:.; ; ;=

= ===r f 7 ::= ;: ==. = ==, a?12?;2 :? z-z = ; r' :.-==
=;

r r
===li1;

r
=;; =1f I=:r=;::;=_:tT:=1? | ;, >=1= :== : ;= ;-: a : _a = :; 1= -1:=,; 1 ä .==

==i
:

===1=='=-, 7 li ; l i 1
-

1 1 i
-:+! i_j,+:r, :r_; ;! i i .!

==r
l

i= "-, ,= t,==i.-==:i = ;
=:1

z:l=?-i i i , Z:i1 :: .'-!-=

-'- =lo
=- = =

=: ; = : : = u :'= =i
==-
!1 i i 1i1 =V= ! i'= : r= ;

=_==1.'_; ll =
f , i lZ=

=i,: ==, i a i;: =
i a 1? : ;

=:== i :
= = 1 -= .

=
1 I = , ; = =F- - =

- ,= i : 1 i
=

= = = =
Z I

=
1 '- - = = | 7

=1-i'-= jT=-ry1= ".;: =
: = = ==-=,3e.=:- i n, -- !1-':==t=-;,

=s1=:=i'1:i3 i1 -= - = : ! j-;r:": = = = ; 3 ?= =' i -r- -c x-F7i ? -t.-2 r-'1'l.- 2

== : =; z =; =1?=,-= ;; i:a;-,_=-:,i= i=: t; f i1=
t:_; = == jI 5= * -;

==:7".t
L-r.> 1=: -=. 17+'i1=;;= l

,::1:'t -+ ! 1 =;. = i,==; - z *; == = =,1;j1 1-_:: = n
= - - = -/;.' : ,+i;- __;i== r: =1V==:]_-= f

"; =: ==?1) t-=
=ji::i =

:t =7 =li
l1;!== ==; += ii r!1ii 1l; r:i ==;=; ,:i7:7iai;::;ti!-=; i§ t1;7t:-=:

=. _ -j=: =1 .i:f=7il rt= 1=i'_l=ijr'-1i1:; :l : : =,=: =: =., :=;1 =1=:t =11=i:; ==T;==i;i

h
-t

§

- .a:-/='^=-:-:';r'.)=2<.a=-=.2: r::=-=
.-l-.=11 -Z]=1-:a= F -J:72-i ;-':. i:-;=:=z
= : -.,/:.. : = t. -i: =:, = 1t;=-j-r.,'==- ='Z':., i :1=- :r='z= -r:_ ==zi2

--=1 7 gi=_= 1-i:=_:1"_i_7=<
.. =::=_", ==a="1-, 1 t 2:1ri=r=:ii;i;:=j=_i a=:-

: =.:::i.= , i==r.a7====1tr I=.;a_ - ,
-- 7 :, '!t - - I = --- .- -- i. - Z 'i. --. = : :- : 1 t.1 - : = =

1 ', -_ V .- - -.=)1 - ='=; "=. i 2. -=-Z=- ?>=';-===:j--
=: .:;-; 1 i=.-=-.7

= E_ "___ilr==1i111:-_,=a= : : : = _ = = -= :-: '! :'* a =): - __
=i =

a :,_:
=

r.; i: _:
= li=-:: =:=:.?: 9 =l'=;-.?:. 1;.=-:'^-'' .^1= : _ t. = .j .t 1. a -: !. -- =

:: =1==': =:i=.=== I =1i-:=)aalirtr!==ii .= r:r-;7 = -::2: i. :7=!;=1:====!-:=_ := --:=i;- it:'li+,r-: J ===ij1=;?r=-=1;=== := -=_'=-'2= 1 =;,'-='=,i- + ;=^=._:.l,_:!==a:;j=: --::-:1i+-

- =. '.4 = a.. - r-. a a
= =

'-.
= T-. - :

=.
:

= =
i - J: -

=
! = a ^. . - :.! ^. - i. =.

.'==:.'
=-

i- 3 ':.-?==Ta:r=1lr=^:_=- i _ -:
- =

. - v : I = _ -:
= -

=.
-_ = : . a ,= -. - - -. - =. x

== -===1--
=-=-.-= =

== -;--=^-==-':=:==>:=
:: ,.==1,1i >.1:i== i 1iE?:!11,=.=:1i==V =z:+=a. :; -=i1'=, i.- ./ :-=1:,_i. . :==l=1_i='.r=2;tf-. - J-.:'=-1 : 1--:=-.'-=t--7---.=i:.==-===i

=; :;';""-: i=.i=:l =;,:--u=-a7*=1==.=
1a : - -:1 tt]. -'= -7;=:

=-*-;'==
t-r=irtr.3':L+"=1-: ': :'zi'l: l:§=;ia =;=il=;T=;;;Z:-.?ii =; a++=l

=- ==1=-; .=l=:7 1 =i-;=.=:=-1=::--:;r-:i
== 7=Z==- -',1i1== 1.==+====:.-=-_ .=Z; :_= i=_==r fi:=t.= =l=l-:=7=1=-^

+e-i3-: := 1,;7,7': u.;'! i1=l --;.=1j.=r=. 1'1 lT=.i;

Why non PD kernels may be useful... from Michael Bauhaus and Horst Bunke, World Scientific

email by K.R.

3 Additional annotations

• One elimination of a single node is more devastating for a graph with low number of
vertices, compared to the deletion of a vertex from a graph with a large number of
vertices. A small change on a small graph may change the whole graph structure,
e.g change an unconnected graph into a connected graph.

• A major deficiency of the book is that there are no preconditions (e.g., for inserting
an edge, it would be a necessary precondition to know the two endpoints). Let’s
take a look at the incidence matrix which is another data structure of the graph in
order to illustrate the necessity of preconditions. The problem becomes apparent,
if we try to delete a vertex in the incidence matrix, since it will result in a pending
edge. Missing preconditions for the operations are a major deficiency. When
deleting a vertex, the vertex has to be part of the graph. How vertices are connected
plays a big role from a image perspective (e.g., closed and open envelope). However,
this is apparently not noticeable in either the adjacency or the incidence graph.
Another subject to consider is a series of operations, since not every operation
is available everytime (e.g, sometimes nodes have to be inserted first in order to
insert new edges). Riesen avoids this precondition by defining that the vertices are
considered first before turning to the edges.

• Concerning the computation of sets of graphs, the idea is to define the median of
the set of graphs to have statistical properties and a corresponding number to a
set of graphs. Example Given, letter drawing: There is a set of prototype. Now,
which is the graph that represents the mean of the set of graph. Use the Kernel
trick to do graph matching to sets of graphs by linear combinations.

• 2.1 talks about the inversion of an operation. However, there is no specific defi-
nition of the inversion, since insertion of a deletion is complex. (e.g., deleting a
vertex also deletes incident edges).

2

183.151 Selected Chapters in Image Processing AKBV SS2016

15

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation of Sorted Beam
Search

Daniel Pucher

Vienna University of Technology

daniel.pucher@tuwien.ac.at

April 13, 2016

Daniel Pucher (TU Vienna) April 13, 2016 1 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Overview

1 Definitions

2 Sorting Criteria

3 Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 2 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Quadratic Assignment Problem

• The graph edit distance belongs to the family of quadratic
assignment problems (QAPs) → NP-complete

• QAPs deal with the problem of assigning n entities of a
first set S to n entities of a second set Q.

• Assignments formally represented with permutations
(ϕ1, ..., ϕn) where the first entity s1 ∈ S is mapped to
entity qϕ1 ∈ Q, the second entity s2 ∈ S is mapped to
entity qϕ2 ∈ Q, and so on.

Daniel Pucher (TU Vienna) April 13, 2016 3 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Quadratic Assignment Problem

• QAPs are generally stated on sets with equal cardinality.

• A solution to a QAP corresponds to a bijective assignment.

• Therefore a number of empty nodes ε is added to every
node set of two graphs so that the number of nodes in
every graph is equal. This gives new node sets V+

1 and
V+
2 .

• Adjacency matrices A and B also offer equal dimensions.

Daniel Pucher (TU Vienna) April 13, 2016 4 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Quadratic Assignment Problem

Daniel Pucher (TU Vienna) April 13, 2016 5 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Quadratic Assignment Problem

Optimization problem:

The linear term refers to the sum of node edit costs.

The quadratic term refers to the implied edge edit cost.

The minimum cost permutation (ϕ1, ..., ϕn+m) and the
minimum cost edit path λmin are equivalent.

Daniel Pucher (TU Vienna) April 13, 2016 6 / 24

183.151 Selected Chapters in Image Processing AKBV SS2016

16

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Bipartite Graph Edit Distance

• Approximates computation of graph edit distance.

• Reduce QAP to an instance of a Linear Sum Assignment
Problem (LSAP).

• LSAPs optimize the permutation (ϕ1, ..., ϕn+m) with
respect to the linear term only.

• By omitting the quadric term, the structural relationships
between nodes is neglected.

Daniel Pucher (TU Vienna) April 13, 2016 7 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Linear Sum Assignment Problem

• LSAPs optimize the permutation (ϕ1, ..., ϕn+m) with
respect to the linear term only.

• By omitting the quadric term, the structural relationships
between nodes is neglected.

• To integrate knowledge about the graph structure, the
minimum sum of edge edit operation costs is added to the
corresponding node operation.

Daniel Pucher (TU Vienna) April 13, 2016 8 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Linear Sum Assignment Problem

Optimization problem:

The permutation corresponds to a bijective assignment of
entities in V+

1 to entities in V+
2 .

Daniel Pucher (TU Vienna) April 13, 2016 9 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Beam Search

• One major problem of the BP-GED is the over- or
underestimation of the true edit distance.

• Due to a few incorrectly assigned nodes in the complete
edit path ψ.

• Quality is improved by systematically varying the initial
assignment ψ. → Search Strategies

Daniel Pucher (TU Vienna) April 13, 2016 10 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria

• Sorting of node edit operations (ui → vϕi) ∈ ψ.

• The terminology Inverse is used for sorting strategies that
process less-evident edit operations first.

• Sorting strategies that process evident edit operations first
are named without the suffix Inverse.

• Evident edit operations are those that are supposed to be
correct with respect to the exact edit path.

Daniel Pucher (TU Vienna) April 13, 2016 11 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 1 - Confident

• The source nodes ui of the edit operations (ui → vϕi) ∈ ψ
are weighted according to ciϕi

∈ C.

Daniel Pucher (TU Vienna) April 13, 2016 12 / 24

183.151 Selected Chapters in Image Processing AKBV SS2016

17

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 2 - Unique

• The source nodes ui of the edit operations (ui → vϕi) ∈ ψ
are weighted according to

• The weight corresponds to the maximum difference
between the cost of the actual edit operation and the cost
of a possible alternative matching node for ui .

• Can be negative → current edit operation suboptimal

Daniel Pucher (TU Vienna) April 13, 2016 13 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 3 - Divergent

• Prioritize nodes ui that have a high divergence among all
possible node edit costs.

• For each row i in the cost matrix C

• High divergence → local node assignments that are easier
to be conducted.

Daniel Pucher (TU Vienna) April 13, 2016 14 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 4 - Leader

• Weights nodes ui according to the maximum difference
between the minimum cost assignment of node ui and the
second minimum cost assignment of ui .

• The higher the difference, the less difficult is the local
assignment.

Daniel Pucher (TU Vienna) April 13, 2016 15 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 5 - Interval

• Compute intervals for each row i and each column j of the
upper left part of C.

• Intervals δri and δcj are the absolute difference between
the maximum and minimum in row i (or column j).

• Compute mean of all row and column intervals: δ̄r and δ̄c
• Weights

• 1, if δri > δ̄r and δcϕi
> δ̄c

• 0, if δri < δ̄r and δcϕi
< δ̄c 0.5, otherwise

• When the intervals of rows and columns are larger than
the mean intervals, the row and column of the edit
operation are in general easier to handle than others.

Daniel Pucher (TU Vienna) April 13, 2016 16 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 6 - Deviation

• Means θ̄ri and θ̄cj and deviations σ̄ri and σ̄cj are calculated
for each row i and each column j of the upper left part of
C.

• Weights
• Initially, the weight for an edit operation is 0.
• If ciϕi < θ̄ri − σ̄ri , add 0.25 to weight, compute total

number p of assignments in row i that also fulfill this
condition and add 0.5/p to the weight.

• Repeat the previous step for column j = ϕi using θ̄cj and
σ̄cj .

Daniel Pucher (TU Vienna) April 13, 2016 17 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Sorting Criteria 6 - Deviation

Given an edit operation (ui → vϕi) ∈ ψ with cost ciϕi

• If the cost is lower than the mean minus the deviation, it
is assumed that the assignment cost is low enough to be
considered as evident.

• Weight increases if in the corresponding row or column
only few or no other evident assignments are available.

• Assignments with small weights correspond to difficult
assignments.

Daniel Pucher (TU Vienna) April 13, 2016 18 / 24

183.151 Selected Chapters in Image Processing AKBV SS2016

18

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

• Eight data sets with graphs representing molecular
compounds, fingerprint images, distorted letter drawings
and symbols from architectural and electronic drawings.

• Goal of the experimental evaluation is to research the
effects of the novel reordering procedures on the distance
accuracy.

• Beam search procedure is repeated ten times with random
permutations of the node assignments in ψ.

Daniel Pucher (TU Vienna) April 13, 2016 19 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 20 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 21 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 22 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 23 / 24

Daniel Pucher

Definitions

Sorting
Criteria

Experimental
Evaluation

Experimental Evaluation

Daniel Pucher (TU Vienna) April 13, 2016 24 / 24

183.151 Selected Chapters in Image Processing AKBV SS2016

19

DISCUSSION REPORT

Appendix A: Experimental Evaluation of Sorted Beam Search
Selected Chapters in Image Processing SS 2016

Carmine Sansone (1529804)

April 14, 2016

Introduction
The following document is organized in three parts:

 The first part is the presentation which summarizes the main concepts that have been illustrated by

the speaker.

 The second part is the question part and describes the questions that has been posed by the opponent.

 The third part is the discussion part and describes the reflections and the problematics raised during

the third part of the lesson.

Presentation
The graph edit distance problem can be reformulated as an instance of a Quadratic Assignment Problem. Given

two graphs, with n nodes and with m nodes, the first thing to do to reformulate the graph matching

problem in a QAP is to add m empty nodes to the first graph and n empty nodes to the second graph, in this

way we obtain two new graphs with the same number of nodes. We define a possible matching between the

nodes of the first graph and the nodes of the second graph with a vector of m+n dimension having the

following semantic: the number indicated in the i-th position of the array represents the number of the node in

the second graph that match with the i-th node of the first graph.

If we match a node of the first graph with an empty node, that means that we are deleting that node; if we

match an empty node of the first graph with a non-empty node of the second graph, that means that we are

adding that node; if we match a node of the first graph with a node of the second graph, that means that we

are replacing that node.

Every possible graph matching solution is represented by a different permutation of the array, there are (n+m)!

permutations in total. We can also assigned a cost to every possible matching according to the following cost

matrix

183.151 Selected Chapters in Image Processing AKBV SS2016

20

Let’s call A the adjacency matrix of the first graph and B the adjacency matrix of the second graph:

The permutation that represents the optimal solution to the graph matching problem can be find optimizing

the following function:

The cost of the optimal permutation is the same value of the graph edit distance.

The quadratic assignment problem is a NP-complete problem so even though in theory it represents a correct

way to find the optimal solution, in practice it can’t be used to solve the graph matching problem for

application of large size. For this reason we accept the fact that the optimal solution can’t be always found in a

linear time and reformulate the graph edit distance problem as a Linear Sum Assignment Problem. Using this

type of formalism we are not sure to find the optimal solution but we can implement this method to solve real

applications. To do this we exclude from the optimization the quadratic term.

183.151 Selected Chapters in Image Processing AKBV SS2016

21

We can summarize the reformulation of the graph matching problem according to the following steps:

Where:

 In the first step we build a cost matrix C* that is an alteration of the matrix C as such the matrix C*

adds a cost depending of the local structure of the edges.

 In the second step we use the LSAP optimization to find the permutation with the least cost.

 In the third step an approximate graph edit distance is derived from the assignment of step 2.

We denote this graph edit distance approximation algorithm with BP-GED (Bipartite Graph Edit Distance).

During the class we have investigated the possibility of improving the BP-GED using a Sorted Beam Search. We

have analyzed twelve different criteria (six criteria used in ascending order and six in descending order) to sort

the individual node edit operations and discussed together about an experimental evaluation of these

approach.

For the following section let assume that the node belongs to the first graph and that the node belongs

to the second graph. Let’s indicate the match between the node and the node as an edit operation

() ∈ ψ, where ψ is the set of all possible edit operations.

Each one of the following six criteria can be used two ways depending on whether the edit operations are

sorted in descending or ascending order. If we use the ascending order we call the criteria “inverse”.

Confident

For a given edit operation () ∈ ψ we assign to the node a weight equal to the value stored in the

cell (i,) of the cost matrix.

Unique

For a given edit operation () ∈ ψ we assign to the node a weight equal to maximal difference

between the cost of the current edit operation (), stored in the cell (i,) of the cost matrix, and the

cost of a possible alternative matching node (), stored in the cell (i,) of the cost matrix.

183.151 Selected Chapters in Image Processing AKBV SS2016

22

This value is negative if the current edit operations is suboptimal.

Divergent

The idea of this criteria is to prioritize nodes that have a high divergence among all possible node edit costs.

For each row of the cost matrix we compute a measurement of divergence according to the following formula:

Leader

This criterion weights the node according to the maximum difference between the minimum cost

assignment of the node and the second minimum cost assignment of .

According to the cost matrix, let assume that is the minimum cost assignment of node and is the

second minimum cost assignment of node . We can define the cost of according to the following formula:

Interval

For every row i ∈ [1,n] of the cost matrix we define the interval as the difference between the maximum

and the minimum value in the row i. Then for every column j ∈ [1,m] of the cost matrix we define the interval

 as the difference between the maximum and the minimum value in the column j.

After that we can define the mean value among the intervals with i ∈ [1,n] and the mean value among

the intervals with j∈ [1,m].

The weight assigned to a given edit operation () ∈ ψ is then:

() =

183.151 Selected Chapters in Image Processing AKBV SS2016

23

 Deviation

For each row i ∈ [1,n] and each column j∈ [1,m] of the cost matrix we compute the means and and the

deviations and of all entries in the corresponding row and column. Then, for each edit operation

() ∈ ψ we compute its corresponding weight according to the following set of rules:

To compare the different sorting criteria we have analyzed the results of an experimentation in which all the

twelve sorting criteria have been evaluated on different type of data sets. Eight date sets with graphs have

been used representing: molecular compounds, fingerprint images, distorted letter drawings symbols from

architectural and electronic drawing.

The beam search procedure have been repeated ten times with random permutations of the node assignments

in ψ. For every date set and for every sorting criteria it have been measured the mean relative overestimation

∅o (in percentage) with respect to the exact graph edit distance. In the experimentation have been also

measured how the different reorder strategies increase the mean run time compared to the original

framework BP-GED and its extended version BP-Beam.

From the experimentation we can conclude that using sorting criteria we can dramatically reduce the

overestimation of the BP-GED.

We can also observe that the Deviation-Inverse sorting criteria is in the top three on all data sets but on Alkane.

183.151 Selected Chapters in Image Processing AKBV SS2016

24

Questions

Q We have observed that if we iteratively combine the strategies with each other starting with

individually best sorting criterion and then combines the best criterion with the second best criterion

so on, we can reduce the overestimation of BP-GED. We have also observed that using four or more

sorting criteria at once flatten out the relative gain of distance accuracy.

Is it correct to assume that for future works we should take in account just the first three iteration?

 No, we can’t do generalization, we are not sure about the benefits that we can get using these sorting

criteria on other date sets. We could get this conclusion just in case that the data set used in our

specific application belongs to one the data set classes used in the experimentation.

Q In the data set of the LETTER they uses graphs to represent just fifty letters so they don’t represent the

entire alphabet and also they don’t represent letters that are hard to distinguish like “O” and ”0”.

Furthermore the maximum number of nodes for the data set of the LETTER is equal to nine.

How relevant are the results of the experimentation conducted on this data set ?

 In fact the analyses conducted on this date set is not so relevant. The size of the graph and the

structure of the graph is very relevant to conclude general statement from the experimentation.

For example the MUTA data set has a relevant size but it doesn’t have a relevant structure, in fact the

maximal number of nodes is equal to 417 and the maximal number of edges is equal to 112; it means

that the graphs are mostly disconnected so the edges don’t play a major role, for this date set we can’t

do general statements about the edges.

Another example of graphs with specialization are the graphs that belong to the MIVIA data set created

by Mario Vento. The particularity of these graphs is that they are generated randomly and we don’t

know how relevant could be the results of an experimentation on this date set for real applications.

183.151 Selected Chapters in Image Processing AKBV SS2016

25

Discussion

 From the results of the experimentation we can conclude for every data set which sorting criteria is the

best but we don’t know why. It should be interesting to know why a sorting criterium fits better for a

fixed type of graph, in this way we could choose the sorting criteria to use in a specific application in

according to the type of graph that we have to manage.

 In the beginning of our discussion we started with the idea to use the A* search algorithm to find the

better solution to the graph matching problem. This approach has the problem that doesn’t find the

optimal solution in optimal time. The A* search algorithm uses a heuristic to speed up the elaboration.

If cert constraints on the heuristic are satisfied we are sure to find the optimal solution also with the A*

algorithm with a time that depends of how good is the heuristic. The sorting criteria approach is similar

to the A* search because in both the cases we try to consider a short path among all the possible

solutions but we don’t have to impose any constraint.

The question is if there exists any constraint that we can impose on the structure of the graph or on the

cost function to guarantee that the optimal solution will always be found (as we do with the A*

algorithm).

o For example we know that if there is an ordering on the labels of the nodes we can solve the

graph matching problem in a linear time: sort the nodes of the two graphs according to the

labels and check the correspondences.

o Another example is the following: if we impose as constraint that we have an exponential

space available we can sort the nodes in a linear time and fine the correspondences in an easy

way.

 If we focus on a particular family of graphs (like a tree structure) can we define if there are some

benefits from the point of view of the different sorting criteria?

183.151 Selected Chapters in Image Processing AKBV SS2016

26

PRESENTATION REPORT

Improving the Distance Accuracy of Bipartite Graph Edit Distance

Selected Chapters in Image Processing SS 2016

Carmine Sansone (1529804)

April 28, 2016

Introduction
In the previous presentation it have been explained how to reformulate the graph edit distance problem as an

instance of a Quadratic Assignment Problem. With this formulation of the problem the optimal solution cannot

be always found because a QAP is a NP-complete problem. For this reason a new formulation of the problem

has been considered. The QAP is reduced to a Linear Sum Assignment Problem (LSAP). The solution found using

the LSAP formulation is not always the optimal solution to the original problem but can be computed to solve

practical problems. The graph edit distance approximation algorithm is denoted as Bipartite Graph Edit

Distance (BP-GED). The Figure 1 define the pseudo-code of the BP-GED algorithm. More details about this

algorithm and the notation used can be found in the previous discussion report.

Figure 1: Pseudo-code of Bipartite Graph Edit Distance algorithm

One of the major problems of the approximation framework BP-GED is that it over- or underestimates the true

edit distance quite often. The goal of this presentation is to describe some alternatives to this algorithm that

can better approximate the cost of the assignment to the cost of the optimal solution. These algorithms can be

classified in two types in according to the strategy used: improvements via search strategies and Improvements

via integration of node centrality information.

183.151 Selected Chapters in Image Processing AKBV SS2016

27

1 Improvements via Search Strategies
From the evaluation done can be observed that the BP-GED algorithm return a sub-optimal solution to the

original problem because of just few incorrect assignments present in the solution found. The idea is to modify

the sub-optimal solution found with the BP-GED trying to correct these incorrect assignments. An exhaustive

search cannot be done because there are (n+m)! different possible permutations of the solution found with the

BP-GED, where n is the number of the nodes of the first graph and m is the number of the nodes of the second

graph.

1.1 Iterative Search

Starting with the solution found with the BP-GED the idea is to use execute a series of iterations in which in

every iteration the node operations in with highest implied edge costs is prevented from the edit path

solution and a new solution is computed. Using a greedy approach in every iteration a node operation is

selected and excluded for all the following iterations. Iteration by iteration just the most promising node

operations survive to this process and are analyzed to find a better solution.

The Figure 2 describes the pseudo-code of the iterative search algorithm.

Figure 2: Pseudo-code of the iterative search algorithm

The first three steps are the same of the BP-GED. The line five define is the start of the iteration process. The

number of the iteration is defined by q that is a input parameter of the algorithm. In every iteration, one

particular cost entry
, associate to the node operations (→) ∈ ψ with high implied edge costs, is set

to ∞ such that the corresponding node edit operation cannot occur in the next assignments.

183.151 Selected Chapters in Image Processing AKBV SS2016

28

1.2 Floating Search

In the iterative search once a modification of the form
 = ∞ has been conducted, the corresponding node

operation (→) is lost for the remainder of the search procedure. The floating search is based on the

following idea: for every iteration restore all the elements in the cost matrix that have been set to ∞ in the

previous iteration to the original value if this restoration can improve the solution found. Every iteration consist

in a step in forward and some steps in backward where:

• A forward step means: set the cost entry
 associate to the node operations (→) ∈ ψ with

high implied edge costs to ∞;

• Backward steps (as long as the resulting solutions can be improved) means: resets the cost entries

to their original cost value;

The Figure 3 describes the pseudo-code of the floating search algorithm. This is a description of the variables

used in the pseudo-code:

• i is the number of foreword steps (and it is also the number of the entry of the cost matrix set to ∞);

• j is the number of backward step for a fixed forward step (j);

• d[0..q]: in d[i] is stored the cost of the solution found in the step i and in d[0] is stored the original

distance approximation of BP-GED;

• F is a structure where the node operations that we have prevented are stored.

183.151 Selected Chapters in Image Processing AKBV SS2016

29

Figure 3: Pseudo-code of the floating search algorithm

Until the line 10 the algorithm is almost the same that the iterative search. At the line 11 and 12 the data

structures d and F are updated. At line 14 the backward steps begin. Inside this circle all the prevented node

operations are restored to the original value one by one, and for every one of them a new solution is

computed. If during this circle a better solution than the current one is found a backward step is done and the

elaboration restart from the line 14. The best solution among the solution found in every iteration is returned

as final result.

1.3 Genetic Search

Every possible variation of the original node assignment ψ (obtained with the BP-GED) is represented by a

chromosome. Every chromosome has performance measurement called fitness. The fitness chromosome is

inverse proportional to the cost of the solution represented by the chromosome so the lower
 (g1, g2) is,

the better is the fitness of chromosome
 .

183.151 Selected Chapters in Image Processing AKBV SS2016

30

An initial population of chromosomes is defined with N-1 random variations of the original assignment ψ plus

the original assignment itself.

The idea is to create a population of solutions, every solution is a permutation of the solution found with the

BP-GED. The created population evolves in new generations of populations. Generation by generation the

exemplars of the populations should increase their fitness until the optimal solution (with the optimal fitness)

is found. There is no proof on the convergence of the genetic algorithms so a limitation on the number of the

generable population have to be defined. In the continue of this paragraph this process is explained in more

details.

Initial population

Let P(0)= {
 ,

 , …,
 } be the notation used to describe the initial population also called population at the

iteration zero.

Every alternative assignment
 with k∈[1,..,N-1] prevents one or more the edit operations (→) ∈ ψ

setting to ∞ the corresponding entries
 of the cost matrix. The alteration of the original assignment is done

by chance: every edit operation has a probability p to be prohibited. This probability is called mutation

probability.

Evolution

Given a population P(t) a new population P(t + 1) of assignments is built upon a subset E ⊂ P(t), referred as

parents. The parents are the f*N chromosomes with the best finest value, with f ∈ [0,1]. The parent are added

to the new population P(t+1). In this way the best solution found will be not lost passing from the population

P(t) to the population P(t+1). To create the remained N − |E| exemplars of the population P(t+1) the following

procedure is repeated N − |E| times:

Two assignments, ψ’ and ψ’’ are randomly selected from the set of parents E and combined to one

assignment. Let C’ and C’’ be the cost matrix corresponding to the assignments ψ’ and ψ’’. A new cost

matrix is computed in this way:

 Based on the new cost matrix the assignment ψ’’’ is computed and added to P(t+1).

The Figure 4 shows the pseudo-code of the genetic search algorithm.

183.151 Selected Chapters in Image Processing AKBV SS2016

31

Figure 4: Pseudo-code of the genetic search algorithm

Computational complexity problem

The evolution process continues until the best distance approximation has not been improved during the last δ

iterations. It is well known that genetic algorithms are not deterministic. Therefore, one might repeat the

complete search procedure s times from scratch and return the overall best approximation found in these s

runs.

For every one of the s runs in average t population are generated and for every population the two main steps

of the original approximation framework BP-GED are computed N times. This extended framework increases

the run time by the magnitude of (s · t · N) compared to BP-GED.

183.151 Selected Chapters in Image Processing AKBV SS2016

32

1.4 Greedy Search

In the algorithms described in the previous paragraphs, alternated versions of the original assignment ψ are

obtained modifying the cost matrix setting some entry to infinite and revaluating the BP-GED with the new cost

matrix. With this approach the original assignment ψ is varied by means of pairwise swaps of node

assignments.

The greedy search is similar to the iterative search, both of them have a greedy behavior. In contrast with BP-

Iterative this search variant cannot be generalized using a floating search strategy. This is because two forward

steps with pairwise swaps might not necessarily be independent from each other; for this reason backward

steps cannot be done. The Figure 5 describes the pseudo-code of the greedy search algorithm.

Figure 5: Pseudo-code of the greedy search algorithm

Until the line 4 the instructions are almost the same as in the previous algorithms. At the lines 7 and 8 two

cycles start, the first run on the index i ∈ [1,..,m+n-1] and the second one run on the index j ∈ [i,..,m+n]. The

Figure 6 shows an example of elaboration.

183.151 Selected Chapters in Image Processing AKBV SS2016

33

Figure 6: Example of greedy search algorithm

It can be observed that the array that represents the solution is divided in the following way: the element

behind the index i (green cells) are the elements of the array that have been elaborated. The elements of the

array referenced by the indexes i and j are the elements under analysis (yellow cells). The elements of the array

drew in gray represent the elements not analyzed jet.

At line 10 the swap is done. At line 11 the new solution obtained with the swap is analyzed: if the cost of this

new node operation is similar to the cost of the original node operation for less than a threshold means that

the considerate swap is promising. In this case the cost of the complete solution with the new node operation

is evaluated. If the cost of the new solution found is better than the current one, the swap is confirmed.

The threshold on the node operation cost is done using this threshold value: where ∈ (0,1] is an

input of the algorithm. If is high more possible combinations of swaps are taken in account but the

computational cost would be more high. If is low just the most promising swaps are considered.

1.5 Genetic Search with Swap Strategy

The genetic algorithm described in the paragraph 1.3 can be improved using a greedy approach to build the

initial population P(0) and to create the population P(t+1) given the population P(t).

 Initial population

Instead of create the chromosomes of the initial population alternating the node operations of the initial node

assignment ψ using the mutation probability p, the alternated versions of the original node assignment ψ are

created using pairwise swaps in according to the greedy search. The Figure 7 describes how the initial

population is built.

183.151 Selected Chapters in Image Processing AKBV SS2016

34

Figure 7: Creation of the initial population using the greedy search approach

Evolution

Given the population P(t), population P(t+1) is built in according to the following steps:

 All approximations from the set of parents E ⊂ P(t) are added without any modification to the next

population P(t + 1)

 The remaining N − |E| chromosomes of the population P(t+1) are creating repeating the following

procedure N − |E| times:

One single assignment ψ ∈ E is randomly selected. Using ψ, the subroutine described in Figure 7 is

carried with N=1. This mutated assignment is added to P(t + 1). The node assignment ψ is altered by at

most one additional swap.

183.151 Selected Chapters in Image Processing AKBV SS2016

35

1.6 Beam Search

Also in this case the alternated versions of the original node assignment ψ are created doing swaps. To decide

which swap has to be done to the current node assignment a tree search strategy is used.

A tree node is defined as triples (ψ, q, dψ) where: ψ is a certain node assignment, q is the depth of the tree

node in the search tree, and dψ is the approximate edit distance corresponding to ψ.

The idea is to do a breadth-first search. Let open be the set of unprocessed tree nodes. The nodes in open are

sorted in according two criteria: first in according to the deep and second in according to the approximate edit

distance. The breadth-first search is preferred to the best-first search (in which the nodes in the set open are

sorted in according to the approximate edit distance) because there is no correlation between the deep and

the approximate edit distance of a node. In fact in the best-first search the nodes that have a high value of q

should represent better solutions than the nodes with a low value of q.

The breadth-first search does a complete search in the solution space, for this reason a limitation on the size of

the set open is imposed. In the set open are stored just the best b unprocessed tree nodes where b is an input

parameter. This means that only the most promising nodes are expanded. Clearly pruning parts of the search

tree it might be that the optimal solution is lost during the search process.

The Figure 8 describes the pseudo-code of the beam search algorithm.

Figure 8: Pseudo-code of the beam search algorithm

183.151 Selected Chapters in Image Processing AKBV SS2016

36

1.7 Sorted Beam Search

The only difference to BP-Beam is that the original assignment ψ is first reordered according to a specific

sorting strategy before BP-Beam is carried out using the assignment ψ´ rather than ψ.

The Figure 9 describes the pseudo-code of the sorted beam search algorithm.

Figure 9: Pseudo-code of the sorted beam search algorithm

1.8 Experimental Evaluation

For the experimental evaluations, five data sets from the IAM graph database repository for graph-based

pattern recognition and machine learning are used:

• AIDS and MUTA: molecular compounds

• FP: fingerprints

• LETTER: distorted letter drawings

• GREC: symbols from architectural and electronic drawings

On each data set and for each graph edit distance algorithm discussed in the previous paragraphs the following

two performance indexes are computed

• The mean relative overestimation of the exact graph edit distance ∅o

• The mean run time ∅t compared to the original framework BP-GED.

The exact graph edit distance is computed with the A* algorithm. On MUTA data set the A* algorithm is

inapplicable because of lack of memory so the BP-GED is used as reference of optimal. To evaluate the BP-GA

just two on the five parameters are varied: population size and mutation probability.

BP-Iterative

As discussed in the previous paragraph, doing an elevate number of iteration the solution obtained with this

algorithm is improved. On the AIDS data, for instance, the mean relative overestimation ∅o can be reduced

from 12.68% to 9.64% with just one additional iteration. This improvement is very high when the number of

iteration goes from one to three but after that increasing the number of iteration just a small improvement can

be observed.

183.151 Selected Chapters in Image Processing AKBV SS2016

37

BP-Floating

With algorithm BP-Floating very similar results to BP-Iterative can be observed. In fact the improvements bring

from this algorithm respect the previous one are not so high. It can be observed that the run time of this

algorithm is higher than the previous one. If run time is crucial, BP-Iterative is clearly preferable over BP-

Floating.

BP-GA

Respect the two previous algorithms, the results obtained with the BP-GA are clearly improved. The Figure 10

shows how good are the results obtained with the BP-GA algorithm on the FP data set. On the picture (a) the

results obtained with the BP-GED are plotted and on the picture (b) the results obtained with the BP-GA are

plotted. Yet, this improvement is accompanied by increase the mean run time.

Figure 10: Comparison of the results obtained on the FP data set with BP-GED (a) and with BP-GA (b)

BP-GA-Swap

Compared to BP-GA a clear speed-up can be observed on all data sets. It can also be observed that the BP-GA-

Swap does not reach the same level of distance accuracy as BP-GA.

BP-Greedy-Swap

It can be observed that using the greedy search in combination with the swap strategy clearly improve the run

time and also the overestimation of the exact graph edit distance. The parameter θ has to be defined

considering a trade-off between the overestimation of the exact graph edit distance and the run time.

183.151 Selected Chapters in Image Processing AKBV SS2016

38

BP-Beam

As expected the performance of the BP-Beam are strictly correlated to the input parameter b. It can be

observed that doubles the b value doubles the run time but the overestimation can is reduced.

2 Improvements via Integration of Node Centrality Information

Rather than applying a post-processing search procedure to the assignment ψ the topological information of

individual nodes is exploited in order to achieve a better approximation of the true edit distance.

The idea is to assign a measure of importance to nodes u ∈ V according to the topology of their surrounding

nodes.

 Degree Centrality

The degree centrality

of a node ∈ V is defined as the number of edges connected to u

 Eigenvector centrality

The eigenvector centrality

of a node ∈ V is defined in the following way:

 is an element of the adjacency matrix A of the graph and is the largest eigenvalue of A and the

summary is done on all the neighboring of the node . The eigenvector centrality is different from the

degree centrality because in this case not all the neighboring of a node ∈ V have the same

importance. The eigenvector centrality can be high because a node has many neighbors or because it

has important neighbors (or both).

 Page rank centrality

The eigenvector centrality

of a node ∈ V is defined in the following way:

 is a slight variant of the node’s degree , it is defined as showed above to avoid division for zero.

Compared to eigenvector centrality, the major differences are the division by the degree and the free

parameter α. The value α has been set to 0.85 as Google does but there is no theory reason about this

choice.

183.151 Selected Chapters in Image Processing AKBV SS2016

39

Chosen a node centrality measurement the cost matrix is modified in according to the following formula:

where β ∈(0, 1) corresponds to a weighting parameter that balances the influence of the original cost and

the centrality measurement. In the experimental evaluation presented in it turns out that using the enriched

cost matrix C rather than the original matrix C, in general the distance approximation does not decrease the

overall overestimation.

The idea is to build t altered cost matrix using t different topology algorithms. The minimum value of all t

distance approximations computed on all the t different versions of the C matrix is returned as approximation

value.

2.1 Experimental Evaluation

For experimental evaluations, three data sets from the IAM graph database repository for graph-based pattern

recognition and machine learning are used:

• AIDS: molecular compounds;

• FP: fingerprints;

• GREC: symbols from architectural and electronic drawings;

•

On each data set and for each graph edit distance algorithm discussed two performance indexes have been

defined:

• The mean relative overestimation of the exact graph edit distance ∅o;

• The mean run time ∅t compared to the original framework BP-GED;

The three strategies described in the previous paragraph: degree centrality, eigenvector centrality and page

rank centrality have been evaluated changing the parameter β. The used values of the parameter β are: 0.1,

0.3, 0.5, 0.7 and 0.9. Also four possible combinations of the three centrality measure have been tested. It can

be observed that parameter β has negligible influence on the run time behavior.

Concerning the overestimation it can be observed that on all the data sets the page rank centrality measure

has got the best result. With the combination of the three centrality measures the mean relative

overestimation can be further decreased. As expect, the best results are achieved when all three centrality

measures are combined.

183.151 Selected Chapters in Image Processing AKBV SS2016

40

Improving the Distance Accuracy of
Bipartite Graph Edit Distance: Minutes

Selected Chapters in Image Processing SS 2016

Max Langer

May 23, 2016

1 Opponent Questions

1.1 Iterative Search: For a specific class of the problem, how can i find the
optimal value of the q?

The q parameter does not depend on the class of the problem. More iterations give
better results. The question is how long we can wait to obtain the result.

I q → ∞, is it the same as A*? This can be answered with no, because the iterative
search does not use backtracking, so the tree of the optimal solution can be rejected in
an earlier iterations.

q is limited on the number of operations.

1.2 Bi-directional search: Can we use this type of search for improving the
distance accuracy of bipartite Graph Edit Distance?

Bi-directional search Alternate searching from the start state toward the goal and from
the goal state toward the start. Stop when the frontiers intersect. Can (some-
times)lead to a solution more quickly.

The author does not use it, maybe it works well, but: You have to know two ends
(know the goal) to do two half searches and have to assume the same cost for both
directions.

1.3 Genetic algorithm

The genetic search is not deterministic. More chromosomes will need longer, but the
chances are greater to get a better solution. Again it is a time versus quality problem.

If we have apriori information, the genetic algorithm parameters can be tuned, but in
general this is not possible.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

41

1.4 Beam Search: Can we use a different strategy to reduce the number of
partial solution to be processed like Procut or Multi-Procut?

The basic idea of beam search is that only a fixed number b of (partial) solution to be
processed are kept in open at any time.

An huristic has to be defined. Here we use a trick for cut away: Take the most
promising partial solutions and cut away the others. Alpha beta pruning yields better
solutions, but needs longer. We go to the end of the tree and back again.

2 General Discussion

2.1 If we restrict the backtracking in A* to a fixed number, we decrease
the complexity.

One can use Tabu-search and skip already looked at branches for a time. In general
there exist many equally good solutions and it is not worth to try all.

Datasets used to try these approaches: small graphs, graphs with few edges. Are the
results the same for big connected graphs or other test data?

2.2 All algorithms are purely sequential. Because all operations are local,
how important is it whether you use a specific order? Are there parallel
strategies.

The main idea is to change one part and then another part.
Each modification generates new graph with cost c. Operations are independent of

each other in some strategies.
With an genetic algorithm we need a parent.
Can we partition graph in set of subgraphs (and donate them to new vertices)? Is

a matching of those smaller graphs, also matching of the larger graph. Can we find
the optimal solution that way? Use subgraphs that belong to each other. In pyramid
structure one can also preserve local properties.

A possible approach: Create pyramid, compare in higher lever and step down for
solution refinement.

2

183.151 Selected Chapters in Image Processing AKBV SS2016

42

Learning Exact Graph Edit Distance:
Minutes

Selected Chapters in Image Processing SS 2016

Daniel Pucher

June 27, 2016

The chapter 5 of KR has been presented only orally by Domenico Verlotta who was
unable to provide a proper scientific summary for these proceedings. The opponent was
Max Langer.

1 Opponent Questions

1.1 Can we learn an exact Graph Edit Distance? When not, can we predict
a reasonable value for ε or control learning to achieve a certain ε?

With SVMs the data is clustered and close clusters make the decision hard. So maybe
SVMs are not the best way to do this and other ways are better suited in some cases.

1.2 How does it come, that there are evaluation results that are worse than
both bounds of BP-GED?

They don’t have to stay in the bound, since the bounds are the distances from the
optimal. To denote these distances as ”Bounds” is a bit misleading.

1.3 Does it make sense to dismiss Node Edit Operations that are
considered not to be in the exact GED and retry other configurations.
Would this approach be reasonable?

To some extend yes, because if an edit operation is already bad the edit path might not
be good as a whole. A problem of dismissing might occur if the system favours some
edit operations over others. It could happen that edit operations that are favoured by
the system lead to bad edit paths.

1

183.151 Selected Chapters in Image Processing AKBV SS2016

43

2 General Discussion

2.1 What happens if more than one sequence of edit operations are
optimal?

An example:
Let Ψ = {x1, x2, ..., xn} be a complete (yet not necessarily optimal) edit path, where
edit operations are changed to find the optimal path.

And let λ1 = {a1, a2, ..., an} and λ2 = {b1, b2, ..., bn} be two optimal paths that are
equivalent except for the first edit operation.

If x1 = b1 than λ1 b1 is classified as incorrect. To solve this problem, both optimal
paths have to be taken into account.

2.2 Comments

Sequences who are equivalent to other sequences, transform one graph into another and
give the same results. Assuming that the validation through the features gives the same
values to all the features, only one sequence needs to be trained. For this, the edit
operations would need to be validated together and not separately.

No proof for the chosen features is given and the features are based on the C matrix and
the costs of the edit operations.

2

183.151 Selected Chapters in Image Processing AKBV SS2016

44

Speakers of Selected Chapters
organized1 since 2002:

SS 2002 AKdTI5: Walter Kropatsch: Anwendungen von Bildpyramiden

SS 2003(BV): Walter Kropatsch: BILDPYRAMIDEN + GRAPHEN

WS 2003(ME): P. Lienhardt (Poitiers): Fundamentals of Topology-based
Geometric Modeling.

SS 2004(BV): Wolfgang Förstner (Bonn): Projektive Geometrie

WS 2004(ME): Walter Kropatsch: Cognitive Vision

1In the above SS stands for summer term and WS for winter term, BV stands for image
processing and ME for pattern recognition.

3

183.151 Selected Chapters in Image Processing AKBV SS2016

45

SS 2005(BV): Walter Kropatsch: Repräsentationen in der Bildanalyse

WS 2005(ME): Nicu Sebe (Amsterdam): Multimedia Information Systems

WS 2006(ME): Samuel Peltier (Poitiers): Homology Groups (canceled)

SS 2007(BV): Eric Andres (Poitiers): discrete Geometry

WS 2007(ME): Walter Kropatsch: GRAPHS + Pyramids

SS 2008(BV): R. Gonzalez-Diaz (Sevilla): Extracting Topological Infor-
mation of 3D Digital Images

WS 2008(ME): Kropatsch, Helena Molina (Sevilla): Pyramids + Topol-
ogy

SS 2009(BV): Pedro Real Jurado (Sevilla): Computing ”holes” of 3D dig-
ital objects

WS 2009(ME): Luc Brun (Caen): Partition encoding: Geometrical and
topological challenges

SS 2010(BV): Walter Kropatsch: We are building a Topological Pyramid
and Rocio Gonzalez-Diaz (Sevilla): (Co-)Homology Groups of 3D bi-
nary images

WS 2010(ME): Kropatsch, Vucini, Chao Chen: Pyramids + Topology

SS 2011(BV): Horst Bunke (Bern): Basic Methodology and Recent Devel-
opments in Structural Pattern Recognition

WS 2011(ME): Claudia Landi (Reggio Emilia, I): Shape-from-function meth-
ods

SS 2012(BV): Max Göbel and Walter Kropatsch: Object Detection/Recognition
from 2D images

WS 2012(ME): KSFu Lecture Series: Pavlidis, Aggarwal, Huang, Kittler,
Jain, Bunke

SS 2013(BV): Walter Kropatsch, GbR2013: Graph-based Representations
in PR

4

183.151 Selected Chapters in Image Processing AKBV SS2016

46

WS 2013(ME): KSFu Lecture Series: Pavlidis, Aggarwal, Huang, Kittler,
Jain, Bunke, Chellappa

SS 2014(BV): W. Kropatsch, Thomas Druml (VetMed), Wolfgang Busch (GMI):
Image-based Phenotyping

WS 2014(ME): Walter Kropatsch: Selection of KSFu and BMVC Lectures

SS 2015(BV): Laszlo Nyul: Fuzzy techniques in image processing

WS 2015(ME): Walter Kropatsch, Nicole Artner, Ines Janusch, Aysylu
Gabdulkhakova: Selection of PRIP research topics 2015/16

SS 2016(BV): Walter Kropatsch, (Kaspar Riesen): Graphs: Matching and
Distance

References

[1] Kaspar Riesen. Structural Pattern Recognition with Graph Edit Distance,
Approximation Algorithms and Applications. Advances in Computer Vi-
sion and Pattern Recognition. Springer International, 2015.

5

183.151 Selected Chapters in Image Processing AKBV SS2016

47

