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Tracking Golden-Collared Manakins in the Wild1

Anna Gostler

Abstract

Male golden-collared manakins are tropical birds that perform an elaborate courtship dis-
play which determines their mating success. Biologists recorded the birds’ displays in the
jungle with high-speed cameras. To analyze what constitutes a good courtship performance
the biologists use the bird’s trajectory, which they currently obtain by manually annotat-
ing the videos frame by frame. Automatically tracking the bird can save a lot of time.
The videos of the courtship displays are challenging for a tracker: the bird is susceptible
to motion blur, quickly changes its appearance and often leaves the frame. The cluttered
background contains elements that visually resemble or occlude the bird. We present an
online visual tracking algorithm, which combines a Mixture of Gaussians model to detect
moving objects, a Convolutional Neural Network trained to recognize the male golden-
collared manakin, and a Kalman Filter as a motion model. Our tracker achieves better
accuracy and robustness on a dataset of videos of courtship displays than state-of-the-art
trackers.

1Supported by Nicole M. Artner



1 Introduction – Problem Statement
The golden-collared manakin (Manacus vitellinus) is a small tropical bird that lives
in the Panama forest. The males perform elaborate, acrobatic displays to court
mates [4]. During its courtship dance the male jumps between saplings, which
make up his court, producing loud wing snaps mid-flight. Mating success seems to
be related to superior motor skills [1] which allow a male bird to execute his dance
faster and more precisely – however it is not fully clear yet how exactly the courtship
dance has to be performed to impress a female.

To gain more knowledge about their dance, biologists recorded the birds in the
wild with high-speed cameras. Manually annotating every frame in a video is a
tedious process. So, our goal is to develop a tracker that generates bounding box
annotations automatically.

The following properties of the videos make tracking the birds challenging:
bird’s speed: While jumping, the bird changes its position very quickly.
motion blur: Strong motion blur can make the bird hard to recognize, as it loses
most of its local features.
bird’s size and shape change: The bird’s size and shape changes when it opens
or closes its wings, turns, or moves towards or away from the camera.
occlusion: The bird is often partly occluded by the sapling it sits on between
jumps. The bird can also be occluded by leaves or trees when it jumps or sits.
bird out of frame: The bird often leaves the camera’s field of view during the
dance.
bird’s trajectory: The bird’s trajectory is characterized by abrupt stopping and
starting, as well as direction changes (after landing the bird typically jumps in a
different direction).
background color: The forest is colored mostly green, yellow and brown – similar
to the golden-collared manakin male, which has a green body, black head and a
yellow neck, and the female, which is well-camouflaged in the forest due to its green
body.
background motion: There can be moving leaves and branches in the background.
The saplings often move when the bird lands on them.

Tracking is made easier, however, by the absence of camera motion.

2 Related work
All trackers described below track one object (called a target) in videos. For the
first frame of the video the trackers (with the exception of Oliva’s tracker) receive
the true location of the target (in the form of a bounding box) and then estimate the
location of the target in all the following frames. At each point in time the tracker
can only use the current frame and the previously seen frames, but no frames that
come later in the video (online tracking). Two of the presented trackers (TCNN
and C-COT) were among the top performing trackers in the VOT2016 challenge [5].
Both TCNN and C-COT use Convolutional Neural Networks (CNNs).
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2.1 Tree of Convolutional Neural Networks (TCNN)
TCNN [7] uses up to 10 CNNs, which are stored in a tree structure, where a CNN
in a child node is a fine-tuned version of the CNN in its parent node. This allows
the tracker to use multiple models of a target object, which can change appearance
both abruptly (CNNs in different branches) and smoothly (CNNs along the same
branch).

All CNNs use the same trained layers as a CNN pre-trained on ImageNet, except
for the fully connected layers and the output layer, which is reduced to size 2. The
output of every CNN is a score for target and background. The input to the CNNs
is a 75x75 pixels RGB image.

The tracker is initialized on the ground truth bounding box. For every following
frame, the new bounding box is found by first extracting target candidates around
the previous location of the target. Each of these target candidates is assigned a
score by at most 10 CNNs, that were most recently added to the tree. The scores for
each target candidate are combined into a weighted average, where CNNs that voted
for a candidate with higher confidence and that are considered to be more reliable
get a higher weight. The candidate which received the highest weighted average
score is chosen as the new target location. This 75x75 pixels candidate bounding
box is then tightened, using a regression function learned in the first frame, to get
the final bounding box estimate for that frame. Every ten frames, the model is
updated by adding a new CNN to the tree. The parent node of the new CNN is the
CNN, which performed best at scoring the 10 most recent frames. The new CNN is
a copy of its parent, which is additionally trained on the 10 most recent frames (see
Fig. 1).

(a) State estimation (b) Model update

Figure 1: TCNN keeps multiple CNNs in a tree structure, which score candidates
to determine the current target location (a). The model is updated by adding a new
CNN (b). The width of the black arrow stands for the weight of a CNN’s score.
The thickness of the outline indicates a CNN’s reliability. [7]

Advantages of TCNN:
• fine-tunes its CNNs during tracking to better fit the present data
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• can handle both abrupt and smooth changes of the model’s appearance

Disadvantages of TCNN:

• If a CNN was trained on incorrectly estimated bounding boxes that CNN is
erroneously fine-tuned to recognize background as target. Although TCNN
computes the reliability of a CNN to give such a CNN’s vote less weight, an
incorrect estimation decreases the overall performance of the tracker.

• searches the target around the previous location of the target – it might not
find a fast moving target

• does not use methods that models object movement

2.2 Continuous Convolution Operator Tracker (C-COT)
C-COT [2] aims for high accuracy in localizing the target by computing a continuous
confidence score function, which assigns a target score to every location in an image
patch centered on the previous target location. A high target score means that the
tracker is confident that a point inside the region is part of the target object.

The confidence score function is computed by convolving a set of learned contin-
uous convolution filters with a feature map, which consists of the input image patch
and convolutional layers, that are extracted from a CNN, that was pre-trained on
ImageNet. The parameters of the continuous convolution filters are refined at each
frame after tracking.

To train these filters, an image patch – centered on the target bounding box
and 25 times its size – is extracted from the frame. This image patch is input
to the CNN. In the process of classifying, the image patch is passed through a
series of convolutional layers that extract different types of features: shallow layers
extract low-level features, like edges, at a high spatial resolution, while deeper layers
extract high-level features, which are more suitable for image classification, but at
lower spatial resolution. To benefit from both properties, C-COT fuses the multiple
resolution feature map with an interpolation operator. The filters are trained to
assign a confidence score to the fused feature map that closely matches the desired
confidence score output, which is a Gaussian function centered on the estimated
location.

To localize the target, the trained filters are convolved with the interpolated
feature maps from the current frame to produce a confidence score. The target is
localized where the confidence score reaches its peak (Fig. 2).

Advantages of C-COT:

• computes a continuous score, which enables sub-pixel accuracy

• uses not only the final classification output of a CNN but multiple convolu-
tional layers

Disadvantages of C-COT:

• uses the CNN as a feature extractor, but there are not many consistent features
in our target (mainly due to motion blur)

• does not use methods that detect object movement
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Figure 2: Continuous convolution filters (second, from left) are applied to a multi-
resolution feature map (left) to produce a continuous confidence score of the target
(right, top). The target’s center is localized at the peak of the confidence score
(right, bottom, green box) [2].

• does not fine-tune its CNN on new data during tracking. It uses a CNN that
is trained only on ImageNet, which makes it vulnerable to blurry images [3].

• searches the target around the previous location of the target – it might not
find a fast moving target

2.3 Oliva’s Tracker
Oliva’s tracker [8] was developed to track golden-collared manakin males in videos
that were recorded earlier by the same team of biologists as the present data. In
those videos the background was in general less bright and less saturated than in
the present videos. Oliva’s tracker, however, is based on the assumption that the
neck of the golden-collared manakin male is yellow and highly saturated, which
distinguishes it from the background.

For each frame, the tracker builds a foreground mask using Mixture of Gaussians
(MOG) [9], and excludes from the foreground mask pixels whose hue and saturation
do not lie between fixed lower and upper thresholds. The Morphological opening
removes noise and enlarges the blobs in the foreground mask. The detected blobs are
associated with the target in the previous frame, based on their distance from the
current target location as predicted by a Kalman filter [10] and the similarity of their
hue histogram. The most similar blob is chosen as the target in the current frame.
Once the trajectory of the bird is determined for the entire video, its jumps between
saplings are described by parabolas, which are fitted using non-linear regression.

Oliva determined the thresholds for hue and saturation based on the dataset he
was using. For the evaluation of his tracker we used the same thresholds and did
not adapt them to the present dataset.
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Advantages of Oliva’s tracker:

• takes advantage of the fact that our dataset was recorded with a stationary
camera (blob detection, Kalman filter)

• delivers a compact description of the trajectory (parabolas)

Disadvantages of Oliva’s tracker:

• tracks only the bird’s yellow neck

⇒ The estimated bounding boxes do not contain the entire bird.
⇒ If the neck is not visible or the neck’s hue and saturation do not lie within

fixed thresholds, the bird cannot be reliably tracked.
⇒ Only the male has a yellow neck, so this tracker cannot be extended to

track the female bird.

• estimates the current location with a Kalman filter, which predicts an ongoing
movement of the target. In cases where the bird abruptly stops or changes
direction, the Kalman filter fails to correctly predict the birds location.
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3 ManakinTracker – Proposed Approach
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Figure 3: Flowchart of ManakinTracker.

We propose a tracker, that
• detects moving objects with a Mixture Of Gaussians model (MOG) [9],

• decides if a candidate location visually resembles a male golden-collared man-
akin with a fine-tuned Convolutional Neural Network (CNN),

• and estimates the location of the target using a Kalman filter [10] for frames
without reliable visual cues (see Fig. 3).

3.1 Mixture Of Gaussians: Blob Detection
As the videos were recorded with a stationary camera, we can use a method based on
background subtraction to segment the foreground. We chose Mixture Of Gaussians
(MOG) because it can handle small movements in the background. For every frame,
MOG generates a foreground mask from which we extract moving objects, called
blobs (Fig. 4). Out of these candidate blobs, we aim to select the ones that contain
the target – and discard those that contain other objects such as moving leaves,
branches or the female bird.
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Figure 4: Foreground mask (right) generated by Mixture Of Gaussians model of
frame (left). The blue box marks the extracted blob.

3.2 CNN architecture
To decide which candidates contain the target, we use a CNN, as CNNs have shown
top performance in object classification in images. Our CNN is based on AlexNet
[6], which is a CNN pre-trained on ImageNet, that takes 227x227 pixels RGB images
as input. We use the pre-trained layers of AlexNet for our CNN, except for the last
3 layers, which we replace with a new fully connected layer, a new softmax-layer
and a new output layer to match our two classes: target (i.e. male golden-collared
manakin) and background (i.e. forest). The output of our CNN is a background
score and a target score in [0, 1]. We fine-tune this new CNN with image patches
of male golden-collared manakins and background cropped from a set of sequences
in our dataset, that does not contain the sequence in which we currently track the
bird (see Section 4.1). During tracking the CNN is not updated further.

3.3 Kalman Filter
A Kalman Filter is used to predict the target location in absence of a reliable location
estimation. A reliable location estimation is given by a blob, or candidate location(s)
around the target’s previous position, that receives a high target score by our CNN.
We also use the Kalman Filter’s location estimation if we find more than one blob. In
this case, we select the blob that is closest to the Kalman Filter’s location estimation.
The linear Kalman Filter is initialized with the ground truth bounding box in the
first frame and updated with the estimated target location at each frame after
tracking. The linear Kalman Filter estimates an ongoing movement of the target at
constant velocity, based on the target’s previous locations.

3.4 Tracking
The male bird’s location is initialized with the ground truth bounding box in the
first annotated frame. For each frame, we detect blobs and classify them with our
CNN. Out of the blobs that receive a target score greater than t1, we select the
one that is closest to the location predicted by the Kalman filter as our main blob.
The bird can be partly occluded (e.g. by the sapling it sits on), so we add blobs
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to the main blob, which were classified as target (target score greater than t1) and
which are close to the main blob. Since we do not know the width of the saplings, we
consider two blobs as close if the distance between the two bounding box boundaries
is less than the largest width or height of one of the two blobs. If we find a blob
or combination of blobs, that fits these conditions, it becomes the target bounding
box for the current frame (Fig. 5).

Figure 5: The two small blobs (small blue bounding boxes) are combined into a
bigger blob (big blue bounding box). The white text indicates the blobs’ target
scores.

Figure 6: Bird is sitting and no blob was found (red box: candidate locations with
target score >= t2, blue box: blob, white box: final bounding box)

If we find no blobs in a frame or none that receive a high enough target score
we search the bird in the region around its previous location. This usually happens,
when the bird is not moving and thus not recognized as a blob. We shift the previous
bounding box to the left, right, top, bottom and diagonally and crop image patches
at these candidate locations. We resize these image patches to fit the CNN’s input
size and classify them with the CNN. A candidate location which receives a target
score of t2 or above, is assumed to contain the target. To avoid false positives, we
exclude candidate positions, which do not overlap with the majority of overlapping
candidate positions that were classified as target. The average of these candidate
locations is the bounding box for the current frame (Fig. 6). Since the bird tends
to sit still at the start of the video, we keep the initial bounding box if the CNN
assigns a target score of t2 or above to the image patch cropped at the bird’s initial
location and if we find no blob in that frame.

In our experiments, we achieved good results when we set the thresholds t1 and
t2 to 0.9 and 0.99, respectively. t2 is used for image patches that are not based on
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blobs and thus typically contain sitting birds. t2 is set to 0.99 instead of 1, because
we noticed that when the bird is sitting, the ground truth location usually gets a
score of 0.99 and above, but that candidate locations which receive a score of 1 are
often not a better estimation than those with a slightly lower score. t1 is set to a
lower value than t2 because t1 is used for image patches that are based on blobs. In
those cases the bird is typically moving which can make it harder to recognize for
the CNN due to motion blur and shape distortion.

In case we find no candidate locations, which we can assume to contain the tar-
get – because the bird is largely or fully occluded or unrecognizable to the CNN –
we will rely on the location predicted by the Kalman filter (Fig. 7). This prediction
can be unreliable because the bird might either move or sit while it is not visible.
The Kalman filter estimates the bird’s movement as a continuation of its previous
movement, which is only useful if the bird keeps moving while it is occluded. Be-
cause of this, we only use the Kalman filter’s estimation if we assume that the bird
is moving (i.e. not sitting). Otherwise, we use the bird’s previous location as the
current target bounding box.

Figure 7: Middle: The Kalman filter’s location estimation (black box) is used as
the bounding box output when the bird becomes invisible to the camera during a
jump. Left, right: The bird is visible and can thus be recognized by the CNN. (green
boxes: ground truth; red boxes: candidate locations classified as target; white boxes:
bounding box output for current frame)

We assume that the bird is sitting in the following cases:

• If both the current and the previous bounding box are based on blobs, and the
current bounding box is contained within the previous bounding box. This
case occurs either if the bird moved during sitting or if it has only been sitting
for a short time and is thus still recognized as foreground by the MOG model.

• If both the current and the previous bounding box are not based on blobs, and
the region of overlapping candidate locations in the current and previous frame
overlap by at least t3. t3 should be low enough to allow for slight movement
of the bird during sitting but high enough that slow jumping does not qualify
as sitting. Setting t3 to 80% gave good results in our experiments.

If the bird is recognized as sitting, the Kalman filter is re-initialized to the current
location, because the bird tends to jump in a different direction than before it landed,
and the Kalman filter would predict an ongoing movement in the same direction as
before the landing. If the bird leaves the frame – i.e. we estimate its location to be
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outside the frame – candidate locations are placed along the edges of the frame to
detect the bird when it re-enters the frame. To avoid a false positive detection while
the bird is outside the frame, the target bounding box estimate must be based on a
blob in this case.

Advantages of the ManakinTracker:

• uses a Kalman Filter and MOG, and thus does not rely only on the visual
information in a single frame but detects motion based on multiple frames

• uses a CNN, that is fine-tuned specifically to recognize male golden-collared
manakins (including highly blurry and partly occluded) with high accuracy

• In most cases (particularly during jumps) blobs give very accurate bounding
boxes and no further correction of the bounding boxes’ dimensions is necessary.

• can track the bird efficiently in most frames by classifying only a limited num-
ber of image patches extracted from blobs (usually 1-4 per frame)

Disadvantages of the ManakinTracker:

• is fine-tuned to track golden-collared manakins. To track a different target,
the CNN needs to be trained with ground truth data of that target.

• requires video sequences as input that were recorded with a stationary camera

3.5 Open Issues
Using blobs as bounding boxes works well as long as the entire bird moves – if the
bird sits still and moves only partly, for example only its head, the bounding box
enclosing the blob will only contain the moving part of the bird.

When the bird lands on a thin sapling, the sapling moves along with the bird,
which leads to a blob that includes parts of the sapling along with the bird. This
could be corrected in post-processing by adjusting bounding boxes, that strongly
increased in size shortly before the bird started sitting.

When we shift the bounding box to different locations around the previous lo-
cation, the bird is typically detected within multiple candidate bounding boxes.
Taking the average of those bounding boxes is often not the best estimation of the
bird’s location. The bird’s head alone seems to be easier to recognize for the CNN
than the tail alone. As a result, the averaged bounding boxes are often not centered
on the bird (see Fig. 8).

In some cases the tracker recognizes the female bird as the target, even though the
CNN was only trained on male birds. This suggests that the CNN is not dependent
on the male bird’s yellow neck for a correct classification. The downside of this is,
that if the male and female bird are both present in a frame the two have to be
distinguished by the tracker. One solution would be to train a CNN on images of
female birds also, which would require ground truth bounding boxes for the female
birds. Currently, we handle this issue by choosing the blob that is closest to the
location predicted by the Kalman filter if there are multiple blobs that get a high
target score.
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average bounding box:

candidate bounding boxes:

Figure 8: If the CNN classifies an image patch of the bird’s head as target (top
row, middle), but not an image patch of the bird’s tail (top row, left), the average
bounding box is biased towards the bird’s head (bottom row).

4 Evaluation
To evaluate the performance of the ManakinTracker, we compared it to the other
three trackers presented in Section 2: TCNN, C-COT and Oliva’s tracker. A good
tracker should be robust – avoid losing the target during tracking – and accurate –
achieve a large overlap between its estimation of the bounding box and the ground
truth. We evaluated the trackers’ performance on our test dataset (see Section 4.1).
When a tracker estimates a bounding box that has zero overlap with the ground
truth bounding box, the tracker is re-started at the next frame that has a valid
ground truth annotation. Only Olivas’s tracker is not re-started, because it cannot
be initialized with a ground truth bounding box.

4.1 Manakin Dataset
The dataset we use for evaluating the trackers consists of 78 video sequences. Every
second frame in a sequence has a ground truth annotation, except for frames where
the bird is out of frame. The ground truth annotations were provided by the biol-
ogists. Each sequence has 216 ground truth annotations on average (see Appendix
A for more detail).

All videos were recorded with stationary high-speed cameras in the Panama
forest. The video sequences show the male golden-collared manakin practicing its
courtship dance alone, or performing it accompanied by a female.

4.2 Metrics
We assess tracking performance based on two measures: accuracy and robustness.

Accuracy (bounding box overlap) is the average overlap ratio between the
estimated bounding boxes and the ground truth bounding boxes. To measure how
accurate a tracker’s bounding box estimate at frame t is, we calculate the over-
lap ratio between the estimated bounding box bt and the respective ground truth
bounding box gt.

accuracy(t) := area(gt ∩ bt)
area(gt ∪ bt)
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Robustness (number of re-starts) is determined by the number of times the
tracker has to be re-started during tracking. If the tracker loses the target, it is
restarted by re-initializing the tracker at the next frame that has a ground truth
annotation.

Bird’s speed: If the target moves fast, it can become harder to recognize due
to motion blur and harder to find than if it remained at its previous location. To
measure how fast the target moves from one frame to the next, we calculate the
overlap-ratio between consecutive ground truth bounding boxes gt and gt+1 for each
frame t and subtract the result from 1. If the bird’s speed is high for a larger number
of consecutive frames, that indicates that the bird is jumping between saplings; if
speed is above zero only for a small number of frames the bird keeps sitting while
moving (e.g. opening its wings or moving the head).

bird′s speed(t) := 1− area(gt ∩ gt+1)
area(gt ∪ gt+1)

Tracker Average overlap (accuracy) Average number of re-starts (robustness)
ManakinTracker (Ours) 58.3093% 1.2051
C-COT 49.0720% 4.6795
TCNN 53.3405% 7.1154
Oliva’s 1.7013% –

Table 1: Trackers’ average performance on the test dataset.

4.3 Results
Table 1 shows that ManakinTracker performed the best out of the three trackers,
both in terms of accuracy (58.3093% average overlap) and robustness (1.2051re-
starts per sequence on average). TCNN achieves higher accuracy (53.34%) than
C-COT (49.07%), but needs about 1.5 times more re-starts on average. Oliva’s
tracker achieved an average overlap of only 1.62%. In only 20 out of the 78 test
sequences, Oliva’s tracker could estimate at least one bounding box that overlaps
with the ground truth (see Fig. 15). The reason for the bad performance is most
likely that the fixed thresholds used to distinguish between background and target
based on hue and saturation do not fit the present data, in which the background is
brighter and more saturated than in the older videos. In cases where Oliva’s tracker
was able to track the target, overlap is still low (see Fig. 19) because the tracker’s
estimated bounding boxes contain only the bird’s neck instead of the entire bird.

To analyze the trackers’ results in more detail, we looked at the sequences where
each tracker reached its highest and lowest accuracy (see Figures 16, 17, 18, 19).
Figures 17, 18 show that all the trackers’ performance is strongly related to the
bird’s motion. While the bird sits, the bounding box overlap changes only slightly,
but when the bird’s speed is high for a number of frames (i.e. the bird is jumping)
accuracy tends to decrease strongly. In both the sequences where C-COT and TCNN
achieve lowest accuracy respectively (Fig. 17 and 18, left), as well as the sequence
where TCNN reaches maximum accuracy (Fig. 18, right) the tracker lost the target
while it moved at a high speed. On the other hand, C-COT and ManakinTracker
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both achieved maximum accuracy during sequence 90, in which the bird does not
move for the majority of the frames, but as soon as the bird’s speed increases,
accuracy decreases sharply for both trackers (Fig. 17, 16, right).

The ManakinTracker’s performance, however, can also increase when the bird is
moving (Fig. 16, left) because the ManakinTracker uses blobs as target candidates.
Those blobs are detected based on MOG and a fast-moving target can be an ad-
vantage for this technique because it shows up more clearly in the foreground mask
than a stationary or slowly moving object.

The ManakinTracker was re-started most often in sequences 10 (10 re-starts), 6
(10 re-starts), and 41 (7 re-starts) (Fig. 9). In sequence 10, the tracker is re-started
repeatedly when the bird sits, facing away from the camera, and the CNN detects
an orange leaf as the target instead. In sequence 6, the tracker is re-started when
both the male and the female bird receive a high target score, but the female is
incorrectly chosen as target because it is a blob and blobs, if classified as target,
are preferred as target objects by the ManakinTracker. In sequence 41 the tracker
is re-started when a yellow leaf, resembling the bird’s head, receives a higher target
score than the sitting bird, which is heavily occluded.

TCNN and C-COT both use CNNs pre-trained on ImageNet. The performance
of networks trained on the ImageNet dataset, which consists of still images, decreases
strongly if images are blurry [3]. In contrast, the ManakinTracker’s CNN was trained
also on blurry images, extracted from videos similar to the ones it was tested on.

TCNN and C-COT look for objects in the current frame that have similar features
to the target object in the previous frame. On our target, however, local features
(like points and edges) often disappear due to motion blur.

4.4 Performance of the ManakinTracker’s CNN
To train our CNN, we cropped image patches of size 227x227x3 (to fit the CNN’s
input layer) of the male golden-collared manakins centered on the ground truth
bounding boxes, and image patches of the background at locations other than the
ground truth bounding boxes. We then trained one CNN on the first half of the
crops (8806 samples of male bird, 7927 samples of background) and a second CNN
on the second half (8805 samples of male bird, 7926 samples of background). Both
CNNs reached an accuracy of 98% on the test set, which was the set of crops each
CNN was not trained on.

False negative classifications occurred if the bird was highly occluded, largely
out of frame or extremely blurry; false positives seem to be caused mostly by yellow
leaves which resemble the bird’s neck (Fig. 11). True positives could even be
achieved on image patches with different lighting conditions and also when the bird
is blurry or occluded (Fig. 10).

5 Conclusion
In this report, we presented the ManakinTracker, a novel approach to track male
golden-collared manakins in videos recorded in the wild. Our tracker can deal with
a fast moving target, using a method based on Mixtures of Gaussians, thus tak-
ing advantage of the fact that the videos were recorded with a stationary camera.
The ManakinTracker can classify image patches with high accuracy, using a CNN
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that was fine-tuned with image patches extracted from videos of golden-collared
manakins.

We evaluated the ManakinTracker’s performance on 78 sequences of golden-
collared manakins and it achieved higher accuracy and robustness than two of the
winners of the VOT2016 challenge and another tracker that was specifically designed
for tracking male golden-collared manakins in an older dataset.

6 Future Work
During the tracking process the CNN is not updated – we expect that fine-tuning
the CNN with images patches extracted during tracking would decrease the number
of tracking failures.

The ManakinTracker is also able to track the female bird, which does not have a
prominent feature like the male bird’s yellow neck, without any specific training. We
would need ground truth of the female bird, however, to quantify how well the female
bird can be tracked. We expect that we can easily extend the ManakinTracker to
track the female bird as well. However, this also poses a challenge to the tracker,
because we have to avoid confusing the two birds. The recommended solution is
to train a CNN with three classes: male bird, female bird, and background. This
would require ground truth bounding boxes of the female bird.

Another approach would be to train the CNN with more background samples.
Currently we extract about one background sample for every frame in the training
set. We could improve the CNN’s ability to classify female birds as background
by extracting many more background samples from the entire frame, so that we
get more samples of the female bird. This could also further improve the CNN’s
accuracy.

A possible solution to ensure that the bird is not lost while it is sitting, would be
to integrate a correlation filter in the tracker: if two image patches extracted from
consecutive frames at the same location have a very high correlation, we can assume
that the bird is still sitting at the same location and discard other candidates.
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Figure 9: Examples of frames that caused ManakinTracker to fail. Sequence 10
(top, left), sequence 41 (top, right), sequence 6 (bottom) (ground truth: green box;
estimated target bounding box: white box; target detected in candidate location:
red boxes; blob: blue box; white text: target score of blob)
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true positives: male bird classified as male bird

true negatives: background classified background

Figure 10: Examples of image patches correctly classified by our CNN

false negatives: male birds classified as background

false positives: background classified as male bird

Figure 11: Examples of image patches incorrectly classified by our CNN
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Figure 12: ManakinTracker: Overview
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Figure 13: C-COT: Overview
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Figure 14: TCNN: Overview

19



4  
5  
6  
10 
11 
12 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
70 
71 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
103
104
105
106
107
108

video no.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

accuracy (average overlap in %)

average accuracy over all sequences

Figure 15: Olivas’s tracker: Overview
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Figure 16: ManakinTracker
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Figure 17: C-COT
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Figure 18: TCNN
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Figure 19: Oliva’s tracker
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A Appendix
This table provides the names of the sequences, that we refer to when using the
respective sequence number in this report, along with the number of ground truth-
annotated frames in that sequence:

sequence number sequence name # ground truth-annotated frames
4 20170315_145443.21994752 193
5 20170315_145443.21994769 183
6 20170315_145443.22023677 193
10 20170316_065121.21994752 238
11 20170316_065121.21994769 242
12 20170316_065121.22023677 250
16 20170316_142215.21994752 160
17 20170316_142215.21994769 160
18 20170316_142215.22023677 161
19 20170316_151125.21994752 143
20 20170316_151125.21994769 144
21 20170316_151125.22023677 143
22 20170316_152525.21994752 148
23 20170316_152525.21994769 150
24 20170316_152525.22023677 149
25 20170316_154525.21994752 250
26 20170316_154525.21994769 250
27 20170316_154525.22023677 250
31 20170402_082143.21994752 226
32 20170402_082143.21994769 250
33 20170402_082143.22023677 235
34 20170402_085109.21994752 250
35 20170402_085109.21994769 250
36 20170402_085109.22023677 250
37 20170402_141006.21994752 250
38 20170402_141006.21994769 250
39 20170402_141006.22023677 250
40 20170402_152038.21994752 249
41 20170402_152038.21994769 250
42 20170402_152038.22023677 250
43 20170403_070820.21994752 250
44 20170403_070820.21994769 250
45 20170403_070820.22023677 250
46 20170403_074232.21994752 250
47 20170403_074232.21994769 250
48 20170403_074232.22023677 250
49 20170403_074259.21994752 250
50 20170403_074259.21994769 250
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sequence number sequence name # ground truth-annotated frames
51 20170403_074259.22023677 250
52 20170403_083222.21994752 250
53 20170403_083222.21994769 250
54 20170403_083222.22023677 250
55 20170403_083258.21994752 220
56 20170403_083258.21994769 220
57 20170403_083258.22023677 221
58 20170403_140649.21994752 182
59 20170403_140649.21994769 220
60 20170403_140649.22023677 219
61 20170403_140816.21994752 116
70 20170406_064801.21994752 235
71 20170406_064801.21994769 188
79 20170406_074047.21994752 220
80 20170406_074047.21994769 221
81 20170406_074047.22023677 221
82 20170414_142705.21994752 186
83 20170414_142705.21994769 187
84 20170414_142705.22023677 187
85 20170415_062646.21994752 250
86 20170415_062646.21994769 250
87 20170415_062646.22023677 250
88 20170415_075022.21994752 250
89 20170415_075022.21994769 250
90 20170415_075022.22023677 250
91 20170415_083144.21994752 250
92 20170415_083144.21994769 250
93 20170415_083144.22023677 250
94 20170416_082405.21994752 173
95 20170416_082405.21994769 166
96 20170416_082405.22023677 170
97 20170417_065607.21994752 250
98 20170417_065607.21994769 250
99 20170417_065607.22023677 250
103 20170425_074803.21994752 204
104 20170425_074803.21994769 201
105 20170425_074803.22023677 200
106 20170425_075212.21994752 100
107 20170425_075212.21994769 101
108 20170425_075212.22023677 101
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