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Skin Detection in frontal-view faces!
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Abstract

Skin detection plays an important role in a wide range of image processing applications such
as image classification, face detection, face tracking, content-based image retrieval, gesture
analysis and various human computer interaction domains. In recent years, the number of
skin segmentation approaches has grown. However, skin detection remains an open problem
due to its challenges illumination, complex background, camera characteristics and ethnicity.
This report presents a new model-based approach using classification learners with super-
vised learning on frontal-view face images. The proposed solution is based on independent
pixel classifiers, namely weighted kNN and decision trees. Both classifiers are trained from au-
tomatically labeled data and extend it by using Viola-Jones eyes and nose detectors and Active
Contour Model (ACM) to extract sample pixels of both skin and non-skin classes. Our evalu-
ation gives a comparative study with baseline state-of-the-art explicit thresholding methods.
This methodological approach is seen as a preprocessing step of the following master thesis
Automatic human-head and shoulder segmentation of frontal-view face images.

ISupported by Dipl.Ing. Dr.techn. Walter G. Kropatsch and Univ.Ass. Dr.techn. MSc
Nicole M. Artner



1 Introduction

Skin detection is the process of finding skin colored pixels and regions in an
image or a video [12]. It is the process of separating skin and non-skin pix-
els. In many computer vision applications this step is used as a preprocessing
step to find regions that potentially have human faces and/or limbs in images.
There is a lot of research on the topic of skin detection since many applications
rely on it. Examples for these applications are face detection and tracking [9]
or hand detection and tracking [11], retrieval of humans in databases and in-
ternet, automatic annotation, archival and retrieval [1], and content filtering,
parental control software and criminal investigation. Concerning the last one,
digital forensic experts are increasingly confronted with large amounts of data
and judging whether it contains digital contraband or not [32].

There is still no universal method developed for the detection and segmen-
tation of human skin since the skin appearance in images is affected by several
factors such as illumination, background, camera characteristics, and ethnic-
ity (see Section 1.2). These methods first detect skin pixels or regions based on
their color [12], then transform them into an appropriate color space and finally
use a simple skin classifier to label the pixel (see Section 2.1). Another approach
is training a model on a particular dataset, resulting in a model-based method
(see Section 2.2), or the third possibility is incorporating spatial information,
using a region-based methodology (see Section 2.3). Most of the research in this
area have focused on detecting skin pixels and regions based on their color [12].
Few approaches attempt to use texture information as another possibility to
classify skin pixels [26]. For more information on the current state-of-the-art
algorithms see Section 2.

1.1 Motivation

Skin detection is an important feature for several computer vision applications
and often used as a preprocessing step, deciding whether human beings are
found in an image or not. Such an image classification is for instance the pre-
liminary step to automatically assess data as pornographic material for content
filters, parental control software and criminal investigations [32]. Here the suc-
cess rate is measured on the correctly selected images rather than the correct
classification of every single pixel in the image.

The automatic retrieval of images from a database, a problem known as



content-based image retrieval (CBIR) is also an application, where skin-color
detection is often used as a preliminary step [21]. An early application pro-
posed by Gunsel et al. [16] uses skin detection to locate the anchorperson in TV
shows for automatic video annotation, archival, and retrieval. Liensberger et al.
[27] similarly provide a skin-color detection approach for online video annota-
tion.

Another motivation for skin detection is hand detection, hand tracking, or
further more detecting hand pose or gesture analysis. This is widely used in
Virtual Reality (VR) or Augmented Reality (AR) for navigation and object ma-
nipulation [20].

Skin color information can be added to other features such as shape and
geometry and can be used to build accurate face detection system [17] or track
heads and faces in an image sequence [42].

In this report, we present a skin detection approach based on supervised
classification learners, decision trees and weighted kNN. We concentrate on
images with frontal-view faces only and look at skin detection as a preprocess-
ing step for the following master thesis on Automatic human-head and shoul-
der segmentation of frontal-view face images. Therefore our main interest lies
on the classification of skin pixels around the silhouette of the face and neck of
humans (see Section 4.5). In the following sections of this report we will call our
approach Skin Detection based on Supervised Classification Learners (SDSCL).

1.2 Challenges

For computer vision systems skin detection is prone to many challenges and
still an open problem, while for the human visual system skin detection is easy.
Spillmann [38] describes the human perception with an example of seeing a
blue ball, were we all can agree in that the ball is perceived blue as whole, and
not as a ball having blue patches and some other color patches produced by
differences in illumination. Furthermore, the human visual system can dy-
namically adapt to varying illumination conditions, so it can preserve the ac-
tual color of the object [21]. In literature this is called color constancy [12] or
chromatic adaptation [8].

Most of the literature on human skin detection has focused on imaging of
the visible spectrum and using color information on those kind of images can
be a challenging task as the skin color in images is sensitive to various factors
[21]:



* [llumination: Changing the light source distribution, light source posi-
tion or the illumination level (e.g. indoor, outdoor, diffuse or specular
light, shadows, non-white lights) produces a change in the color of the
skin in the image as well (= color constancy problem). Most skin detec-
tion approaches in literature are concentrating on this illumination vari-
ation problem.

* Camera characteristics: The behavior of different cameras can differ even
under the same illumination. Hence the skin-distribution for the same
person differs depending on the camera sensors. Moreover, not all cam-
eras can capture the same level of dynamic range (the range of light in-
tensities from the darkest shadows to the brightest highlights).

* Ethnicity: Different ethnic groups and people across different regions vary
in skin color. For instance, under the same illumination condition the
skin color of African, Asian, Caucasian and Hispanic groups differ from
one another and range from dark, brown, yellow to white.

* Individual characteristics: Age, sex and different body parts of a person
have an effect on the appearance of skin color.

* Other factors: Complex backgrounds containing surfaces and objects with

skin-like colors produce false positive detection of skin. The persons hairstyle,

make-up and glasses, can produce unwanted shadows, reflection or un-
usual skin colors. Moreover, color bleeding (the colored reflection of in-
direct light from a nearby object) and motion captured with slow shutter-
speed can also influence the quality of the image due to blurring of colors
and respectively the skin color appearance.

Regarding the imaging of the non-visual spectrum such as infrared (IR) [21]
and spectral imaging [4] some of the problems can be overcome, such as par-
tially illumination conditions, ethnicity, shadows and make-up. Illumination
conditions are depending on the location where the picture was taken, since
IR-cameras have difficulties outdoors in bright daylight. Moreover, the expen-
sive equipment for these methods is another disadvantage and limitation for
specific application areas.

This report concentrates on skin detection techniques applicable on images
of the visible spectrum or single frames of videos.

Spillmann’s [38] example of the blue ball shows that the human percep-
tion is high-level. Human beings can detect skin in real scenes, in pictures
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or videos without problems [33]. However, when it comes to classifying single
pixels as skin or non-skin the task becomes difficult. The reason is that human
skin detection is not a simple low-level process, but a process in which high-
level mechanisms are involved, incorporating visually detecting hair, clothes,
etc and also some spatial diffusion mechanisms such as color and texture [38].

1.3 Overview of the Report

The remainder of this report is organized as follows: Section 2 gives a brief de-
scription of numerous state-of-the-art techniques in literature for skin detec-
tion using color. In Section 3 our supervised skin segmentation approach (SD-
SCL) is presented. Section 4 presents evaluations of the proposed algorithm on
multiple datasets concerning particularly frontal-view face images and it dis-
cusses them in an extensive comparative study with baseline state-of-the-art
approaches. Section 5 provides the summary and conclusions of this report.



2 State-of-the-Art

Saxen and Al-Hamadi [36] categorize color-based skin segmentation approaches
found in the literature into the following three groups of methods:

1. Threshold-based methods: simple decision rules and easy to implement.

2. Model-based methods: need training and testing procedures and thus
require datasets.

3. Region-based methods: incorporate neighboring pixels and are often com-
putational expensive and rarely used.

These three groups of skin segmentation methods are described in the follow-
ing subsection in detail.

2.1 Threshold-based Methods

One of the simplest and most commonly used human skin detection method is
to define a fixed decision boundary for different color space components [39].
For each color space component single or multiple ranges of threshold values
are defined. The pixel values of the input image that fall within those prede-
fined ranges are labeled as skin pixels, all the others are defined as non-skin.

It is important to select a color space, where skin color is a compact cluster
in order to be able to tightly model the skin class [12]. In the literature a variety
of color spaces have been used in skin detection with the aim of finding a color
space, where skin color is invariant to illumination or ethnicity conditions. In a
threshold-based approach the choice of the color space affects the shape of the
skin cluster, which further affects the detection process. Figure 1 shows den-
sity plots for skin-colored pixels from different people from different ethnicity
groups: Asian, African and Caucasian in different color spaces.

In the following subsections some of the most common color spaces are
discussed. For a better survey of different color spaces (e.g., RGB, YCbCr, HSV,
CIE Lab, CIE Luv and normalized RGB) for skin-color representation and skin-
pixel segmentation methods the reader is referred to Kakumanu et al. [21].
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Figure 1: Density plots of Asian, African and Caucasian skin in different color
spaces from Elgammal et al. [12]

2.1.1 RGB Color Space and Skin Detection

The RGB color space is the most commonly used color space in digital im-
ages [12]. It encodes colors as an additive combination of three primary col-
ors: red (R), green (G) and blue (B). One of the drawbacks of working in the
RGB color space is that luminance and chrominance cannot be separated. The
R,G,B components are highly correlated, so changing the luminance of a given
skin patch affect all three (R, G, and B) components. This can be observed in the
first row of Figure 1, where skin patches from images of Asian, African and Cau-



casian people are taken at random illumination and plotted in RG space [12].
Furthermore, the skin color clusters for patches from different ethnicity groups
are located at different locations in the RGB color space. Liensberger et al. [27]
are applying for their online video annotation a combination of YCbCr, normal-
ized RGB and RGB for skin detection. The final decision is made by taking votes
out of the three color spaces.

2.1.2 Orthogonal Color Space and Skin Detection

A different class of color spaces are the orthogonal color spaces, which include
YUV, YIQ and YCbCr. Transforming from RGB into any of these spaces is a lin-
ear transformation [12]. All these color spaces separate the illumination com-
ponent (Y) from the two orthogonal chrominance components (UV, IQ, CbCr).
Therefore, unlike the RGB color space the location of the skin color in the chromi-
nance components is not affected by changing the intensity of the illumina-
tion [12]. As can be observed in the second and third row of Figure 1 the skin
color of different ethnicity groups almost co-locates in the chrominance chan-
nels. The simplicity of the transformation and invariant properties made these
color spaces widely used in skin detection applications e.g. [37], [13].

2.1.3 Perceptual Color Space and Skin Detection

Perceptual color spaces are described by HSI, HSV/HSB, and HSL. They sepa-
rate three components: hue (H), saturation (S) and brightness, also called in-
tensity, value or lightness (I,V, or L). These color spaces are deformations of the
RGB color cube and are computed by a non-linear transformation. The bound-
ary of the skin color class is specified in terms of hue and saturation.The bright-
ness component I, Vand L is often dropped to reduce illumination dependency
of skin color. Shaik et al. [37] as well as Gasparini and Schettini [13] and Platzer
et al. [32] used these color spaces in their skin detection approaches.

2.2 Model-based Methods

A commonly used model-based method in literature are the histogram-based
Bayes classifier, also called skin probability map (SPM). It models the distribu-
tion of skin tones, is simple and computationally fast [21]. Yoo and Oh [43] use
in their approach a histogram model with naive Bayes classification for face
detection. The histogram is quantized into a number of histogram bins, where



each bin stores the count associated with the occurrence of the bin color in the
training data set. These bins are converted into probability distributions, which
corresponds to the likelihood a given color belongs to skin or the likelihood it
belongs to non-skin.

Other widely used model-based methods in literature are Gaussian classi-
fiers or Gaussian Mixture Models (GMMs) to approximate the skin-color dis-
tribution [21]. Greenspan et al. [15] show a mixture of Gaussians as a robust
representation that can accommodate large color variations, as well as high-
lights and shadows. They trained GMM with two components, where one com-
ponent captures the distribution of the skin color while the other captures the
distribution of the highlighted regions of the skin.

Lee and Yoo [25] compare the performance of a single Gaussian model (SGM)
with a GMM of six components. Under controlled illumination condition, skin
colors of different individuals in a orthogonal color space cluster in a small
region. Hence, in these conditions the skin color distribution can be mod-
eled through an elliptical Gaussian joint probability distribution function (pdf).
Once other image conditions have to be considered a SGM is not sufficient and
GMMs with multiple components have to be considered. The key idea behind
using multiple components is that different parts of the skin regions are illu-
minated in a different manner and they can be modeled by different compo-
nents [21].

Lii and Huang [28] propose a skin detection method based on the cascaded
adaptive boosting (AdaBoost) classifier, which consists of minimum-risk based
Bayesian classifier and models in different color spaces such as HSV (hue, sat-
uration, value), YCgCb (brightness, green, blue) and YCgCr (brightness, green,
red). Ma et al. [29] proposed the Semantically Constraint Skin Detection (SCSD)
method based on Random Forests. The semantic constraint is based on the de-
pendence between skin pixels and human body parts, to limit the influence
of background skin-like pixels. Khan et al. [24] compare their random forest
based skin detection approach with other classification learners like Bayesian
network, Multilayer Perceptron, SVM, AdaBoost, Naive Bayes and RBF network.
For their evaluation a dataset consisting of 25 videos from the internet with
8991 images was used with annotated pixel-level ground truth. Their results
show that the random forest with 10 trees performs best in terms of accuracy,
precision and recall and F-score.



2.3 Region-based Methods

A common region-based method used for skin segmentation is Region Grow-
ing [36]. The problem with Region Growing is the need of seed points. Abdullah-
Al-Wadud et al. [2] use a color distance map and based on this map they gener-
ate some skin as well as non-skin seed pixels. Then they grow them to capture
the appropriate regions. With this approach they do not generate much noisy
segments and do not need any prior training session. Saxen and Al-Hamadi
[36] propose a region growing approach computing the seed points by a Bayes
approach.

Khan et al. [23] propose a skin segmentation approach using graph cuts.
They model the skin segmentation as a min-cut problem on a graph defined by
the image color characteristics and a universal seed to overcome the potential
lack of successful seed detections. The advantage of their approach is that it
is only based on skin sampled training data making it robust to unseen back-
grounds. It exploits the spatial relationship among the neighboring skin pixels
providing more accurate and stable skin blobs.

In this paper we present a model-based supervised classification learner
based on independently decision trees and weighted kNN. We include high-
level information of the query image into the training set and show how this
improves the correct skin detection. The databases used as training and testing
sets were transformed from RGB color space into the orthogonal color space
YCbCr from which the two chrominance channels Cb and Cr represent the fea-
ture space.



3 Our Method

The author of this report proposes a novel skin detection algorithm based on
classification learners. In pattern recognition, classification is considered an
instance of supervised learning, e.g. learning where a training set of correctly
identified observations is available. In literature there are a number of algo-
rithms including [30]: Linear Classifiers, Support Vector Machines (SVM), Ker-
nel estimation like k-Nearest Neighbor (kNN), Boosting (meta-algorithms), de-
cision trees and neural networks (NN).

The novelty of the proposed approach lies in our improvements on the train-
ing set of the kNN and decision trees classifier (see Section 3.3).

3.1 Recall: Decision Trees

Decision trees [7] are characteristic in having fast prediction speed!, small mem-
ory usage’ and being easy to interpret. A disadvantage can be that they have
low predictive accuracy and tend to overfit, if the depth of the splits is not
pruned to a maximum number of splits [18].

In Figure 2 a simple tree with a maximum number of 4 splits can be ob-
served. To predict a response, the decisions in the tree beginning from the root
node down to aleaf node are followed. Each step in a prediction involves check-
ing the value of one predictor. Observing the decision tree in Figure 2 the first
predicator is the root node, and its decision is Cr < 140.5 to follow branch on
the left or Cr = 140.5 to follow the branch on the right. When a branch reaches
aleaf node, the data is classified either as type 0 (non-skin) or 1 (skin).

Increasing the number of splits on the decision tree usually increases the ac-
curacy on the training data [18]. However, predicting with an independent test
set might not show similar accuracy compared to the validation accuracy of the
training set. It can be said that a decision tree is as all classification learners
highly dependent on the training set and provides comparable accurate results
on new test samples if they are similar to the training set. This is one of the
reasons why the author chose the decision tree as classification learning model
for skin segmentation. Furthermore the author chose a maximum number of
splits of 100, gaining a huge number of leaves to make many fine distinctions
between the two classes. Adding information of the input image into the train-

1Speed: Fast 0.01 sec.; Medium 1 sec.; Slow 100 sec.
2Memory: Small 1MB; Medium 4MB; Large 100MB
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Figure 2: A simple decision tree classifier with a maximum number of 4 splits
trained with the UCI database (see more information on the database in Sec-
tion 4.1).

ing set as described in Section 3.3 improves the accuracy of the correctly classi-
fied pixels in the remainders of the input image.

3.2 Recall: Weighted k-Nearest Neighbor (kNN)

Nearest Neighbor classifiers [3] are characteristic in having slow to medium
prediction speed', medium memory usage? and being harder to interpret com-
pared to decision trees. They typically have good predictive accuracy in low di-
mensions. As dimensionality increases, the distance to the nearest data point
approaches the distance to the farthest data point, which might lower the pre-
diction accuracy [5]. In the k-Nearest Neighbor (kNN) algorithm categorizing a
query pointis based on its closest k neighbors in the training examples. Regard-
ing the weighted kNN the distances to the neighboring points are weighted.
Choosing a high number of neighbors can be time consuming to fit. After ex-
perimental results a number of 10 neighbors and a squared inverse distance
weight was defined fitting our purpose.
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3.3 Skin Detection based on Supervised Classification Learn-
ers (SDSCL)

To improve the performance of classification learners in particular decision
tree and weighted kNN regarding skin detection, we propose to extend the train-
ing set by adding high-level information of the query image. A series of prepro-
cessing steps were performed on the input image to extract this pixel informa-
tion to be incorporated into the training set.

Figure 3: Overview of the preprocessing steps: (1) Input image. (2) Detect eyes
and placing control points for the initial ACM mask (see blue line). (3*) ACM
Results (3a) Foreground & (3b) Background. (4) Extracting skin pixels (in color)
(5) Zoom into the selection of the extracted skin information.

Following the enumeration of the subtasks in Figure 3, at first, the eyes in
the input image Figure 3(1) are detected by Viola-Jones [41] to place the con-
trol points for an Active Contour Model (ACM) [22] in Figure 3(2). The shape
mask identified with the blue contour line in Figure 3(2) is the initial mask for
ACM. The purpose of this rough separation into foreground and background is
to segregate most of the background out of the image resulting in an incom-
plete background mask (3a) and a foreground mask (3b) with spurious seg-
ments including the subject. The last preprocessing step is the extraction of
human skin information of the query image, shown in Figure 3(4). With the
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same Viola-Jones algorithm [41], but different Haar-like features the nose of
the person is found in the image underneath the eyes location. Skin pixels are
extracted with this information from the region between the eyes location and
the nose bounding box, represented as the two skin boxes in Figure 3(5). The
first bounding box concentrates on skin extraction between the eyes of the sub-
ject, the second one under the eyes including the nose. Since the face is round
the author extracts a half disk-shape of skin information to reduce the possi-
bility of false positive background pixels around the cheeks of the persons face
(observe Figure 3(5) only colored skin pixels are considered).

In the further evaluation in Section 4 different independent variations of
supervised classification learners including pixel information of the input im-
age are discussed. These variations are defined in Table 1. tree and kNN are
generated using the UCI dataset (see description in 4.1) as training set. Ev-
ery following variation of the classification learners include information on the
input image in their training set to make them more individual in their predic-
tion/testing phase to the respective input image. tree-bg and kNN-bg include
the background mask segregated after ACM (see Figure 3(3b)) and tree-skin and
kNN-skin respectively the skin information from the query image computed af-
ter ACM (see Figure 3 (4)). The last three variations include both background
and skin information in the training set, once with the UCI database (tree-
SDSCL and kNN-SDSCL), and once without the UCI database (tree-exclusive
and kNN-exclusive). The last variation includes the information multiple n
times (tree-SDSCL-multiple and kNN-SDSCL-multiple).

Evaluations show that adding information of the input image into the train-
ing set noticeably improves the accuracy of the correctly classified pixels in the
remainders of the input image.
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Table 1: Different variations of semi-supervised classification learners includ-
ing pixel information of the input image. UCI is the database used as training
set in most of the variation. bg means that the training set includes background
pixels from the input image computed after ACM. skin means that the training
set includes skin pixels from the input image. n is a variable, which defines the
weighting of the additional training information.

Name (Abbr.) ‘ Method Training Set
tree decision tree UcClI

kNN weighted kNN UCI

tree-bg decision tree UCI + bg
kNN-bg weighted kNN UCI + bg
tree-skin decision tree UCI + skin
kNN-skin weighted kNN UCI + skin
tree-SDSCL decision tree UCI + bg + skin
kNN-SDSCL weighted kNN UCI + bg + skin
tree-exclusive decision tree bg + skin
kNN-exclusive weighted kNN bg + skin
tree-SDSCL-multiple | decision tree UCI + n * (bg + skin)
kNN-SDSCL-multiple | weighted kNN UCI + n* (bg + skin)

4 Evaluation

The proposed approaches based on the classification learners decision tree and
weighted kNN and their improvements were implemented in MATLAB3. In the
following qualitative and quantitative evaluations we compare them with base-
line skin detection based on explicit thresholding in the YCbCr Color Space [12]
(thresholdYCbCr), HSV Color Space [13] (thresholdHSV) and RGB Color Space
[13] (thresholdRGB).

The performed evaluations use the databases described in Section 4.1. They
provide ground truth on images with varying skin color and background con-
ditions as well as illumination and camera characteristics, i.e. the ground truth
dataset is representative for real applications.

In a further analysis, the ground truth is altered, concentrating the evalua-
tion on our region of interest: the silhouette of the face and neck of the subject
(see Section 4.5). For this evaluation quantitative and qualitative evaluations

SMATLAB: https://de.mathworks.com
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are performed.

Representative sample images from different databases were selected for
qualitative evaluations to demonstrate the performance and limitations of the
proposed approaches. Regarding quantitative evaluations the segmentation
results of the approaches were compared against the ground truth. In the con-
text of skin classification,

* true positives are skin pixels that the classifier correctly labels as skin.

* true negatives are non-skin pixels that the classifier correctly labels as
non-skin.

* false positives are non-skin pixels that the classifier erroneously labels as
skin.

* false negatives are skin pixels that the classifier erroneously labels as non-
skin.

The goal of a good classifier is to have low false positive and false negative rates.
As in any classification problem, there is a trade-off between false positives and
false negatives [12]. Having a soft class boundary the false negative rate is low
and the false positive rate is high, which results in a high recall value. Having
a tighter class boundary the false negatives are high and the false positives low.
This normally results in a higher precision value.

In the following evaluations, well known evaluation measurements were
computed including accuracy, precision, recall / true positive rate (TPR), false
positive rate (FPR), F1 score (harmonic average of the precision and recall), and
the sums of true positives (TP), false positives (FP), false negatives (FN), true
negatives (TN).

4.1 Databases

Experiments are conducted using the following public datasets which all except
for the last one provide a ground truth. The databases were transformed from
RGB color space into the orthogonal color space YCbCr, from which the two
chrominance channels Cb and Cr represent the two-dimensional feature space.

It is important to mention that for this report the primary focus is on im-
ages, where the face can be easily found with state-of-the-art face detection
algorithms, so the subject in the image is not occluded and face and shoulders
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are facing the camera. Therefore to filter out images, not satisfying the defined
criteria, the commonly used face detection algorithm from Viola and Jones [41]
was performed reducing the number of images per database. This removed im-
ages, where no face or eyes were found, i.e. hand and leg pictures, head pose
sideways images and therefore not detected, no humans in the image, face oc-
cluded, sun glasses occluding eyes etc. If no filtering is specifically stated in the
following descriptions of the databases then no images were removed.

UCI [6],[10]: is collected by randomly sampling B,G,R values from face

images of various age groups (young, middle, old), ethnicity groups (white,
black, and Asian), and genders obtained from FERET database and PAL

database. The dataset provides ground truth and contains 245.057 pixel

entries (50.859 skin and 194.198 non-skin).

dbSkinChile [33],[34],[35]: is collected from random in the wild images,
containing a variation of age, ethnicity groups (majority white), genders,
illumination and camera characteristics. The database provides ground
truth and contains multiple or single subjects, resulting, after filtering out
not satisfying images, into a total of 36 images.

Pratheepan [39]: is collected randomly from Google and images are cap-
tured with a range of different cameras, using different color enhance-
ment, under different illuminations, variation of age (young, middle),
ethnicity groups (white, Asian), and genders. The database provides ground
truth and contains 32 face images.

Faces*: this frontal face dataset is collected at California Institute of Tech-
nology, capturing 27 people under different light conditions, facial ex-
pression, ethnicity groups (mostly white and Asian), gender and complex
backgrounds. It provides images under different conditions with a com-
plex background, where the orientation of the head and shoulders is fac-
ing the camera according to the defined criteria we are focusing on in
this paper. The database does not provide any ground truth. Therefore,
for a small set of images ground truth was generated manually and those
samples were used in qualitative evaluations.

“Collected by Markus Weber at California Institute of Technology http://www.vision.
caltech.edu/html-files/archive.html
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4.2 Evaluation of Classification Learners

To evaluate which classification learning approach is better suited for skin de-
tection, different classifiers were tested using the UCI database (4.1) consider-
ing 90% as training set and 10% as testing set (see results in Table 2).

In Table 2 the validation accuracy represents the success rate on the respec-
tive training set computed by 5-fold cross validation. This validation method
protects against overfitting by partitioning the data set into folds and estimat-
ing accuracy on each fold. The procedure of training the classifiers was carried
out with an Intel 3.4GHz quad processor i7-3770 and 16 Gbytes of RAM, run-
ning a 64-bit Windows 10 operating system.

Observing the results in Table 2 the classification learner decision tree and
weighted kNN perform best regarding validation accuracy. Regarding the train-
ing time decision tree outperforms the other classifiers, being twice as fast as
the logistic regression, about ten times faster than weighted kNN and boosted
trees and hundred times faster than SVM. As for the prediction phase all clas-
sification learners perform similarly except for logistic regression. For further
evaluation the author selected the two most promising classification learners
decision tree and weighted kNN and performed the improvements on them re-
garding the training set as described in Section 3.3.

Table 2: Evaluating classification learners with UCI database (90% training set
and 10% testing set)

Classification Validation Training time Accuracy Precision Recall F1
Learners Accuracy (sec)
Decision Tree 0.9988 3.60 | 0.999 0.995 0.999 0.997
Weighted kNN 0.9988 28.15 | 0.998 0.995 0.998 0.996
Logistic Regression | 0.8993 9.66 | 0.898 0.764 0.735 0.749
SVM 0.9985 255.56 | 0.998 0.994 0.998 0.996
Boosted Trees 0.9973 38.91 | 0.998 0.993 0.999 0.996

Regarding the parameters distance weight and the number of neighbors k
multiple values have been evaluated for weighted kNN with UCI database as
training set. For the distance weight the following values were considered:

* Equal: no weight

1

* Inverse: Euclidean distance
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1
(Euclidean distance)?

* Square Inverse:

For the number of nearest neighbors k three different values were evaluated: a
fine number of 10, middle 30 and a coarse number of 100. Having many neigh-
bors can be time consuming to fit. The best results were achieved with k = 10
and a distance weight of square inverse.

4.3 Quantitative Evaluation of Classification Learners tree and
kNN

The classification learners tree and kNN (without any improvements on the
training set) are evaluated and compared with state-of-the-art approach ex-
plicit thresholding skin detection in YCbCr Color Space [12] (thresholdYCbCr),
explicit thresholding skin detection in HSV Color Space [13] (thresholdHSV) and
explicit thresholding skin detection in RGB Color Space [13] (thresholdRGB) in
Table 3.

The tree and kNN are trained with 90% (220.550 pixels) of the UCI dataset.
The remaining 10% (24.506 pixels) were used as testing samples for the five clas-
sifiers. The split was chosen randomly for ten iterations and the mean of all
iterations was calculated. The quantitative results show that for this particular
dataset the results of kNN and tree are very similar outperforming the three ex-
plicit thresholding skin detection algorithms regarding accuracy, precision and
F1 score. Recall is higher for thresholdYCbCr and thresholdRGB, because both
find more skin pixels (FN = 0) but as a drawback also categorize a large number
of background pixels as skin (see false positives (FP)).

Table 3: Quantitative evaluation on the tree, kNN and the state-of-the-art ex-
plicit thresholding approaches thresholdingYCbCr [12], thresholdHSV [13] and
thresholdRGB [13] with UCI dataset.

Approach Accuracy Precision Recall F1 ‘ TP FP FN TN
tree 0.9989 0.9947 0.9991 0.9969 | 5128.4 26.7 4.1 19346.8
kNN 0.9989 0.995 0.9993 0.9971 | 5128.8 26.2 3.7 19347.3
thresholdYCbCr 0.9874 0.9432 1 0.9709 | 5075.6 305.5 0 191249
thresholdHSV 0.9441 0.9351 0.7846 0.8534 3983 276.6 1092.6 19153.8
thresholdRGB 0.9599 0.8376 1 0.9116 | 5075.6 985.1 0 18445.3

For the training set of both classification learners the orthogonal color space
YCbCr was chosen. Observing the histograms of the UCI database once in RGB
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color space (Figure 4) and in YCbCr color space only considering the chromi-
nance components Cb and Cr (Figure 5) can be observed that in the RGB the
non-skin pixels overlap completely with the skin pixels making the correct clas-
sification harder. For the YCbCr color space only a smaller overlap can be ob-
served for this particular database, which makes it more suiting for a correct
classification.

UCIR uciGc uciB

Figure 4: 1-D histograms of skin vs. non-skin pixels of the UCI database in RGB
color space.

Cb of UCI Crof UCI

[ skin [skin
0.18 [non skin 8 [ non skin

0 50 100 150 200 250
Cr

Figure 5: 1-D histograms of skin vs. non-skin pixels of the UCI database con-
sidering the chrominance components of the YCbCr color space.

Figure 6 shows the incorrect classified pixels after training a decision tree
with UCI dataset once in RGB color space and once in YCbCr color space only
considering the chrominance components. In orange are the false positive and
in blue the false negatives. The decision tree trained in CbCr color space clas-
sifies 0.14% less incorrectly than the decision tree trained in RGB color space
regarding the UCI database.
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Figure 6: Incorrectly classified pixels from decision tree. Left: Result of trained
decision tree in RGB color space. Right: Result of trained decision tree in YCbCr
color space. In orange are the false positive and in blue the false negatives.

4.4 Qualitative Evaluation of tree and kNN

In Figure 7 some qualitative results are illustrated: the first column shows the
original image and in the corner the binary result of the skin ground truth.
Columns two to six show the results of the five classifiers.

Different samples from distinct databases were selected: captured with a
range of different cameras, under different illuminations (in Figure 7 e.g. (2)
having a slightly bluish tone, (4) being overexposed and (5) being underex-
posed), variation of age (young, middle), ethnicity groups and backgrounds
(from uniform in (6) and (7) to complex e.g. in (2)-(5)).

Similar to the conclusions of the quantitative results, for these particular
samples it can be observed that thresholdYCbCr and thresholdRGB are classi-
fying too much as skin leading to large false positive regions. This hinders the
further process of segmenting out the background from the person, as can be
seen specially in sample (3) and (4). Tree detects fewer skin pixels inside the
face, but shows better results around the silhouette of the person.

As mentioned in Section 2.1, RGB color space is not suited for color based
skin detection and color analysis because of mixing of color (chrominance)
and intensity (luminance) information and its non-uniform characteristics. Or-
thogonal and perceptual color spaces discriminate color and intensity informa-
tion even under uneven illumination conditions. Comparative studies by Shaik
et al. [37] as well as our experimental results in Table 3 and Figure 7 show that
thresholdYCbCr outperforms other explicit thresholding-based approaches for
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Original tree kNN thresholding thresholding thresholding
YCbCr HSV RGB

Figure 7: Seven examples: (1), (6), (7) are from Pratheepan; (2) is from dbSkin-
Chile; (3), (4), (5) are from Faces (California Institute of Technology)

the segmentation and detection of skin color in images.
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4.5 Silhouette Ground Truth

Since in this report the author analyzes the skin segmentation as a preprocess-
ing step for the following master thesis (Automatic human-head and shoulder
segmentation of frontal-view face images), the region of interest of skin detec-
tion lies on the silhouette of the persons face and neck. If the pixels around the
silhouette are correctly classified then the rest inside the silhouette can be la-
beled as face and everything outside the silhouette as background. For further
evaluations the ground truth is altered with morphological image processing
algorithms of erosion and dilation [40]. This way the evaluation concentrates
on the silhouette of the face and neck of the subject, for visual examples ob-
serve Figure 8.

Both morphological operators are used with a disk-shaped structuring ele-
ment [14] of radius 10. The fixed radius leads to the evaluation of ten non-skin
and ten skin pixels from the silhouette origin. With erosion the ground truth
boundary shrinks and with dilation pixels are added to the boundary. This new
ground truth is computed for all described databases in Section 4.1 except UCI,
since this dataset is provided in a csv-table format with randomly selected pix-
els from a number of images, where the original images were not provided with
the dataset.

4.5.1 Compare evaluations of Complete Ground Truth and Silhouette Ground
Truth

The region of interest on our skin detection approach is around the silhou-
ette of the persons face and neck. Similar to the evaluations done before (see
Section 4.3) the UCI dataset was chosen again as training set for the proposed
classification learners tree, KNN. The segmentation results of both approaches
are compared with the state-of-the-art explicit thresholding thresholdingYCbCr
approach by Elgammal et al. [12]. As test dataset randomly 25.000 (20.000 non-
skin and 5.000 skin) pixels of the dbSkinChile were selected, first from all pixels
and second only around the silhouette of the subjects in the images. This size
of test dataset was chosen to be able to compare the quantitative results with
the evaluation done in Section 4.3. The test samples of this particular dataset
are taken, since the ground truth can be modified as explained in Section 4.5.
In Table 4 the comparison of both evaluation methods on the two different
ground truths are illustrated, first considering the complete image (All Pixels)
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(32) (3b)

Figure 8: Focus in the evaluation of skin detection on the silhouette of the per-
son. First image is from Faces (California Institute of Technology), second im-
age from dbSkinChile.

and second only pixels around the silhouette (Silhouette). It can be observed
that thresholdYCbCr performs better than both classification learners concern-
ing skin detection in the entire image regarding this test set, but when it comes
to the pixels around the silhouette of the regarding dataset the performance of
the classification learners is better (observe box plot in Figure 9).

A Fl-score of 56.16% for tree for the skin detection around the silhouette
is fairly poor. The difficulty is that around the silhouette skin pixels are darker
due to shadows or other illumination conditions of the scene and the transi-
tion from skin to hair or background is captured depending on the quality of
the camera and its sensor. Moreover the manually generated ground truth by
humans is prone to have errors specially around the silhouette. In a study by
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Table 4: Quantitative evaluation on the proposed tree, kNN and the state-
of-the-art explicit thresholding approaches thresholdingYCbCr [12] first a test
dataset of pixels randomly selected in dataset dbSkinChile (All Pixels) and sec-
ond a test dataset of pixels only around the silhouette of dbSkinChile (Silhou-
ette). For ten iterations the mean is computed for accuracy, precision, recall
and F1.

Test set Approach Accuracy Precision Recall F1
All Pixels  tree 0.8649 0.6718 0.6333 0.652
kNN 0.861 0.6522 0.6527 0.6524
thresholdYCbCr 0.8255 0.539 0.8808 0.6688
Silhouette tree 0.7906 0.4826 0.6713 0.5616
kNN 0.7782 0.463 0.6819 0.5517
thresholdYCbCr 0.643 0.3486 0.9048 0.5032
e IT1 score by classifier _
0.66 : 7: ]
(re‘e (All) kl‘\lN (All) thresho\dY‘CbCr (All) tree (Sil) kl‘\lN (Sil) thresholdY‘CbCr (Sily

Different classifiers

Figure 9: Comparing the different classifiers with first a test dataset of pixels
randomly selected in dataset dbSkinChile (All) and second a test dataset of pix-
els only around the silhouette of dbSkinChile (Silhouette). For ten iterations the
mean and standard deviation of F1 score is illustrated as a box plot.

Liensberger et al. [27] people were asked to rate fragments of images as whether
they contain skin or not and their results point out that humans are not able to
detect skin without context. Classifying skin pixels manually around the sil-
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houette is difficult for humans as well.

In Figure 10, the normalized histograms of UCI database (first row) and
the reduced dbSkinChile database (second row) regarding only pixels around
the silhouette are plotted. Comparing the histograms with each other, for Fig-
ure 10(1) the two peeks skin and non-skin pixels are disjoint whereas for the
silhouette dataset in Figure 10(2) the two peeks of skin and non-skin pixels are
closing onto each other making a segregation more difficult. This is the reason
why the performance in Section 4.3 for all classifier is better regarding the UCI
database than with the reduced dbSkinChile dataset.
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Cb of dbSkinChile Silhouette (25.000) o Cr of dbSkinChile Silhouette (25.000)
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Figure 10: Normalized histograms: Comparing in YCbCr color space skin-pixels
with non-skin pixels from UCI database in (1) and pixels around the silhouette
from dbSkinChile in (2).
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4.6 Evaluating different variations of training set extensions

For the two classification learners tree and kNN background pixels or skin pix-
els or both pixel informations from the query image are included in the train-
ing set, leading to five different variations, as described above in Section 3.3.
These variations are compared with the two simple approaches tree and kNN,
which have no high-level information incorporated in their training set, and
the thresholdYCbCr in a qualitative evaluation.

Two representative samples were selected and the Figures (11 and 12) are
arranged as following: for every sample the first row illustrates the original im-
age, ground truth of skin, the generated silhouette representing the region of
interest (pink being skin pixels and yellow non-skin pixels). The last image on
the first row shows the result of thresholdYCbCr. The following two rows are
the results of the free and kNN classification learners and respective variations
with the extended training set (Section 3.3). In the results skin pixels are vi-
sualized as white and non-skin pixels as black. Regarding the area around the
silhouette, green pixels are correctly classified pixels, so all true positives and
true negatives, and misclassified pixels are red, equivalent to all false positives
and false negatives.

Both examples show that the supervised variations of the classification learn-
ers (explained in Section 3.3) improve the results, specially for tree-SDSCL and
kNN-SDSCL, which include background as well as foreground pixels of the in-
put image in the training set. Moreover, it can be concluded that the deci-
sion tree as a classifier with the support of information on the input in the
training set does provide better results than weighted kNN on most samples,
e.g. in Figure 12 detecting the hat of the baby as non-skin. The results in Fig-
ure 11 are very similar throughout all the supervised classification learner vari-
ations, detecting correctly most of the hair as non-skin, and segregating most
of the background correctly (except for tree-skin and kNN-skin). The output of
the supervised learners, which only use information of the input image in the
training tree-exclusive and kNN-exclusive minimize the false positive rate, but
therefore have a higher false negative rate. Adding the input image informa-
tion multiple times in the training set and weighting it higher has minimal im-
pact on the results when comparing tree-SDSCL, kNN-SDSCL with tree-SDSCL-
multiple, KNN-SDSCL-multiple.
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Figure 11: Sample from Faces (California Institute of Technology) and the re-
sults of thresholdYCbCr, the classification learners tree and kNN, and the five
variations on the training set. The detected skin is marked as white, the correct
classified pixels around the silhouette are marked green and the misclassified
are visualized as red.
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Figure 12: Sample from Pratheepan and the results of thresholdYCbCr, the clas-
sification learners tree and kNN, and the five variations on the training set. The
detected skin is marked as white, the correct classified pixels around the silhou-
ette are marked green and the misclassified are visualized as red.
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4.7 Evaluation of SDSCL

In this subsection we are discussing quantitative and qualitative results con-
cerning the proposed SDSCL approach and compare it with state-of-the-art
algorithms. For the evaluation we are using UCI database as training set for
the classification learners tree and kINN. As described in Section 3.3 free-SDSCL
and kKNN-SDSCL include in the training phase information on the input im-
age and the UCI database. Both quantitative results in Tables 5 and 6 are real-
ized with Pratheepan as testing set. In the first Table 5 the complete provided
ground truth has been considered. In the second Table 6 the results are regard-
ing only the correct classification around the silhouette of the subjects skin re-
gion. Qualitative results of three different skin detection databases Pratheepan,
dbSkinChile and Faces (see their description in Section 4.1) are provided in Fig-
ures 13, 14 and 15.

The results concerning the complete ground truth of skin are shown in Ta-
ble 5. The best performance regarding accuracy, precision and F1 measure is
our tree-SDSCL. All classification learners outperfom the state-of-the-art ex-
plicit thresholding methods regarding the Pratheepan database as testing set.
The explicit thresholding methods thresholdYCbCr and thresholdRGB are prone
to generally classify more pixels as skin, leading to a high value of true positives
but also false positives. This can also be observed in the precision value, which
considers the false positive rate in its calculation.

Table 5: Evaluation on the testing database Pratheepan concentrating on the
complete ground truth.

Approach Accuracy Precision Recall/ TPR FPR  F1

tree-SDSCL 0.934 0.852 0.848 0.052 0.841
kNN-SDSCL 0.926 0.818 0.869 0.067 0.831
tree 0.908 0.796 0.842 0.080 0.797
kNN 0.910 0.794 0.860 0.083 0.807
thresholdYCbCr 0.690 0.348 0.774 0.356 0.450
thresholdHSV 0.738 0.319 0.419 0.215 0.323
thresholdRGB 0.695 0.330 0.657 0.320 0.409

The results of Table 6 are evaluating the classification only around the sil-
houettes ground truth. Our proposed classification learners do not outperform
the explicit thresholding methods even though the same testing database of
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Pratheepan has been used for both evaluations (Tables 5 and 6). The differ-
ence is the alteration of the ground truth as described in Section 4.5 and ob-
serving the results of the F1-measure the best performing algorithm is thresh-
0ldRGB. Also regarding the recall value thresholdYCbCr and thresholdRGB per-
form better for a small margin. This is due to the high number of true positives,
which are considered in the calculation of the recall value. Regarding accuracy
and precision the supervised classification learner based on decision tree tree-
SDSCL outperforms the other algorithms.

Table 6: Evaluation on the testing database Pratheepan concentrating on the
silhouette as ground truth.

Approach Accuracy Precision Recall/ TPR FPR F1

tree-SDSCL 0.797 0.799 0.778 0.205 0.772
kNN-SDSCL 0.788 0.771 0.801 0.245 0.770
tree 0.764 0.757 0.778 0.264 0.743
kNN 0.765 0.753 0.793 0.274 0.751
thresholdYCbCr 0.698 0.64 0.914 0.515 0.745
thresholdHSV 0.720 0.754 0.600 0.181 0.644
thresholdRGB 0.775 0.732 0.882 0.333 0.789

To give here a further comparison, in the latest survey of skin-color mod-
eling and detection methods by Kakumanu et al. [21], the authors compare
skin detection strategies and their performance in terms of the true positive rate
(TPR) and false positive rate (FPR). Obviously it is difficult to compare these dif-
ferent published methodologies, since their is no uniform benchmark dataset
on skin detection like there is on general image segmentation and boundary
detection (Berkley Segmentation Dataset and Benchmark [31]). Therefore we
have to keep in mind that the results listed in this report are all concerning
their own dataset with respective ground truth.

The best performing algorithms regarding the quantitative results listed in
the report, show a confidence value of around 88.5%-99.4% TPR and 10%-15.5%
FPR. In our report regarding the Pratheepan dataset on the complete ground
truth (see Table 5), we can observe that for tree-SDSCL a 84.8% TPR, which is
for a small margin below the state-of-the-art results reported in the survey, and
5.2% FPR is achieved, which shows better performance. For a more detailed
discussion on the skin detection methods and their comparison we allow to re-
fer to Kakumanu et al. [21]’s survey.
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In Figures 13, 14 and 15 from three different testing databases Pratheepan,
dbSkinChile and Faces respectively three sample input images were selected,
giving a total of nine qualitative results. They are arranged as follows: for ev-
ery sample (1)-(3) in a figure the first row illustrates the original image, ground
truth of skin and the generated silhouette representing the region of interest
(pink being skin pixels and yellow non-skin pixels). The second row shows the
results of the classification learners (tree-SDSCL, kNN-SDSCL, tree and kNN)
and the thresholding methods (thresholdYCbCr, thresholdHSV and threshol-
dRGB). In the results skin pixels are visualized as white and non-skin pixels as
black. Regarding the area around the silhouette, green pixels are correctly clas-
sified pixels (true positives and true negatives), and misclassified pixels are red
(false positives and false negatives).

For the qualitative examples illustrated in this report we selected images
with a variety of different skin tones, background and illumination to give a
good representation on the tested samples. In the second sample in Figure 13
the face is illuminated from the side causing a shadow in the background and
different skin tone patches in the face of the subject. For the explicit threshold-
ing algorithms as well as tree, kNN these areas are difficult to distinguish and
classify correctly. Also the simple background shows difficulties for the thresh-
olding algorithms (observe thresholdYCbCr in Figure 13(2) and thresholdRGB
in Figure 13(3)) as for our improvements background information is included
into the training set and therefore the remaining background after ACM is clas-
sified correctly. Comparing the results from Pratheepan dataset in Figure 13 of
the classification learners tree, kNN with our improved tree-SDSCL and kNN-
SDSCIL, it can be concluded that our improvements have an noticeable impact
on the true and false positive skin detection and are concerning these samples
also performing better than state-of-the-art.

Looking at the qualitative results from testing dataset dbSkinChile in Fig-
ure 14 similar observation can be made. In sample (1) and (3) tree-SDSCL and
kNN-SDSCL show an improvement regarding false positives compared to the
simple classification learning results of tree and kNN and their results are also
noticeably better than state-of-the-art. The second sample (in Figure 14(2)) is
actually a negative example, where tree-SDSCL does not improve results around
the silhouette and performs worse than thresholdYCbCr.
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Figure 13: Qualitative results from Pratheepan: White pixels are skin, black non-
skin and around the silhouette green represent all true positives (TP) and true
negatives (TN) and red all false positives (FP) and false negatives (FN).

The qualitative results in Figure 15 concerning testing database Faces, show
the difficulty with complex background. Specially for the first two samples (1)
and (2) the explicit thresholding methods, tree and kNN fail completely in dis-
tinguishing skin from background, whereas tree-SDSCL and kNN-SDSCL show
significant improvements, leading to acceptable results.
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Figure 14: Qualitative results from dbSkinChile: White pixels are skin, black
non-skin and around the silhouette green represent all true positives (TP) and
true negatives (TN) and red all false positives (FP) and false negatives (FN)

It can be concluded that our novel supervised skin classifier improve re-
sults significantly when we are dealing with complex backgrounds, different
ethnicities and different illumination conditions. This simple state-of-the-art
approaches and the simple classification learners tree and kNN have problems
distinguishing between skin-similar pixels in the background and actual skin
pixels of the person since no contextual information is available. Nearly all nine
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Figure 15: Qualitative results from Faces: White pixels are skin, black non-skin
and around the silhouette green represent all true positives (TP) and true neg-
atives (TN) and red all false positives (FP) and false negatives (FN)

examples demonstrate the typical behavior of tresholdYCbCr and thresholdRGB
classifying more pixels as skin, leading to a high true positive and false positive
rate.

Allowing too much or too little light during exposure makes images darker
or brighter, respectively changing the natural tone of skin. A color space such as
YCbCr allows to compensate this problem by splitting color into the luminance
and chrominance components. In Figure 16 an example of over- and under-
exposed image can be seen, where the thresholdYCbCr results are spurious not
finding most of the skin pixels. Using the idea of classification learners in par-
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ticular looking at free the results are even worse, but after adding high-level in-
formation (skin pixels and background pixels of the input image) in tree-SDSCL
the results improve but having still erroneous regions.

Original thresholdYCbCr Original thresholdYCbCr

Figure 16: Examples of a under- and overexposed image where the results of
thresholdYCbCr and tree fail completely. Tree-SDSCL improves the skin detec-
tion but not sufficiently enough.
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5 Summary and Conclusions

Over the years different human skin segmentation solutions have been intro-
duced, but most of them are prone to errors and are not able to cope with the
variety of challenges arising with human skin on camera.

Firstly, low accuracy: when there is a wide variety of skin colors across dif-
ferent ethnicity, complex backgrounds and a variation of illumination condi-
tions, false positive skin detection is a common problem.

Secondly, luminance-invariant space: through the use of luminance in-
variant color spaces, like the use of the chrominance components Cb and Cr in
the color space YCbCr, results reveal that in certain instances they achieve more
robustness, but in others the absence of the luminance component decreases
performance [19].

Thirdly, require large training set: model-based methods require training
sets, and there is always a trade-off between the size of the training set and
classifier performance [39].

Fourthly and last, high computational cost: specially region-based meth-
ods incorporate neighboring pixels and are often computationally expensive
[36]. There is no general method suited for any problem regarding skin detec-
tion.

Skin segmentation is seen in this report as a preprocessing step of the fol-
lowing master thesis Automatic human-head and shoulder segmentation of frontal-
view face images, where the importance lies on the silhouette of the face rather
than the correct classification of skin pixels in the face of the subject. This
report presents a novel approach based on supervised classification learners,
called Skin Detector based on Supervised Classification Learners (SDSCL). We
propose to extend the training set of the kNN and decision tree classifiers by
adding automatically labeled subset of pixels extracted from the query image.
The skin pixels are cropped from the area below and between the eyes region
that is found by Viola-Jones detector. The non-skin pixels are extracted from
the area outside the face contour that is found by ACM landmark detector.

Evaluations on multiple datasets with frontal-view face images were dis-
cussed, and results were compared with explicit thresholding methods. Fur-
thermore we discussed the results with skin detection strategies summarized in
the survey report by Kakumanu et al. [21] measuring the performances in terms
of TPR and FPR. The evaluation shows improvements over several baselines
and is above the average of the best performing state-of-the-art algorithms re-
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garding FPR. Including information of the input image into the training set and
applying SDSCL on the remainder of the image, allows to reduce the number of
false positive detections significantly and the classification results around the
silhouette become more reliable.
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