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Abstract. The application of motion capture and pattern recognition
techniques are not yet established within the field of academic dance re-
search. This paper gives an overview of features and methods that can
be used for automated dance movement segmentation. They comprise
aspects that are represented in the growingly diverse literature on mo-
tion capture data and time series analysis. In the special case of tango
argentino, a model for application-specific segmentation is suggested.
This includes the idea of knowledge generation through segmentation
and considerations on feature selection for tango.
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1 Introduction

The sophisticated capturing of human movement has become available for a
broad audience in the past years. While modern digital motion capture technol-
ogy, such as inertial or optical systems, was introduced already during the last
few decades, it has mostly been a privilege of the entertainment industry. With
more affordable technology available, these systems have been incorporated in
many diverse fields of the study of human movement, providing large amounts of
data for analysis. Especially the science and the studies of dance are getting more
involved with digital approaches of capturing and analysis for their object of re-
search. They record sequences of dance, movement to music, short segments, or
just single motional patterns for in-depth examination. Specifically long record-
ings of dance are typical as they show all facets that come with the movement.
But often particular parts of these long sequences are needed, which asks for
segmentation of these recordings. Doing this manually can be cumbersome and
imprecise. Automatic segmentation can reduce the work load and simultaneously
function as a feedback model that might reveal facts with its segmentation about
the underlying dance structures.

While methods for automated time series segmentation in general (and es-
pecially for large databases, such as stock market data, climate data, and so on)
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are developed already since the 1990s, the research on dance motion data anal-
ysis has only begun to grow in about the last 10 to 15 years. Before that, and
still today, many segmentation approaches for movement data were motivated
by the need of the entertainment industry for short motion sequences, e.g. for
use in animation of movies or games. The methods naturally have other require-
ments than what is needed in scientific movement analysis, yet they are based
on common ground and are easily adaptable.

The paper seeks to give a compact overview of time series segmentation ap-
proaches that are relevant for the segmentation of human dance movement data.
This summary is collected with the aim of application in the special case of tango
argentino, the dance that is the research subject in the ongoing transdisciplinary
research project “Tango-Danceability of Music in a European Perspective”!. The
further goal is to segment recorded sequences of tango argentino to extract cer-
tain movement patterns, in particular the basic step. Due to the format and
scope of this paper, the focus will be on the overview of techniques and initial
theoretical considerations towards the case of tango argentino step detection.

Overview The remainder of this paper is structured as follows. In section 2
a short overview of time series segmentation is given, representing the current
state of the art. Following, section 3 lists features and representation for both
music and dance data that are both well established, as well as highly relevant for
the particular case presented later. Section 4 presents approaches of time series
segmentation strongly represented in the literature and applicable for the specific
case example. A distinction between features and segmentation methodology is
explicitly mentioned in the given literature. Both aspects often are combined into
methods based on a certain feature. The chosen combination depends strongly
on the application. The given features and methods, therefore can be combined
interchangeably and are described separately for a better overview. Finally, a
possible approach for applying the presented aspects in the special case of tango
argentino is described in section 5. This is based on a two-phase approach,
divided into (1) a low-level segmentation with unbiased feature selection, which
is used for knowledge generation to be applied in (2) a semantic approach based
on the characteristic kinematic features of the first phase, to be applied for
further segmentation.

2 Overview of Time Series Segmentation

Early approaches of time series segmentation were often based in the domain
of larger data bases. They comprised mainly financial data, weather data and
the like and many segmentations were basic pre-processing operations for fore-
casting and trend detection [2,21,22]. Another early focus was set on speech
recognition, working with audio data [13,18,20]. While the specific application
of these approaches differ considerably, their common ground is the time series

1 . . .
For more information see: dancetangomusic.com
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analysis and segmentation, which can often be generalized. These by now well
established methods can be used as a basis for the analysis of movement time
segmentation.

First approaches to segmenting movement data can be found in [4,35,34].
However, the approaches differ fundamentally as some are working mainly on
low-level features, focusing on the signal as information source itself [3,33]. Oth-
ers, especially more recent studies, are trying to incorporate additional factors
and pursue a high-level view of what Bouchard [5] calls “semantic segmentation”,
that is, informed segmentation, incorporating knowledge about the movement
in question [5,12,28,29]. In the domain of dance movement, an additional aspect
that can be considered is the music played or sound produced in general, which
provides even more features for automatic segmentation or detection of dance
movements [23,30,34].

The choice of representation of the captured movement data and the corre-
sponding extracted features also vary among different methods. Since capturing
absolute data (usually 3D position data) is confined by its governing coordinate
system (the one used by the motion capture system, [27]), many seek to use
some form of relative representation of the human body and its motion. This of-
ten involves joint angles, or positions of data points relative to the body [24,31].
Another option for representation and use as features are simple kinematic trans-
formations, such as velocity or acceleration and their angular counterparts [3,33].
In the context of feature selection additional research has to be mentioned which
works on the relationship of sound and movement and develops the analysis of
the two. Important studies in this field are [6,7], which link rhythmical elements
of music to their embodiment by dancers, or [10,26,38], which propose new meth-
ods of analyzing the intricate relationship of dance and music.

3 Feature Selection

A crucial part of automated segmentation is the selection of suitable features
(or the representation of the data, respectively). The following section therefore
sums up some of the most commonly used features in movement and music
analysis that can be considered common ground within the respective fields.

3.1 Music Features

Concerning possible features of music, the field of Music Information Retrieval
(MIR) already established a lot of possible techniques, algorithms, and de-facto
standards in music analysis?. As this extends beyond the scope of this paper,
only a few selected aspects are summarized, which might be of interest for the
given case of tango argentino. Additionally, it can be noted that some of the
given low-level features resemble those presented in subsection 3.2. This is no
coincidence, as many kinematic analyses were inspired by audio analysis and

2 For an overview see [9].
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general signal analysis, on which all these approaches are based on. Therefore
they are listed first.

Zero-Crossing A basic feature of signal analysis that is heavily used in speech
processing and MIR is the occurrence of zero-crossings in a signal. It is described
by the change of the sign of the signal’s value, either from positive to negative,
v; > 0 A w41 < 0, or from negative to positive v; < 0 A v;41 > 0. Counting
the instances of crossings, or determining their mean then results in the zero-
crossing rate. In speech recognition this is used to detect endpoints and describes
unvoiced sounds, or percussive sounds, regarding music.

Energy In the context of audio signals, the energy usually is connected to the
wave form representation of digital audio, i.e. the amplitude. A typical feature
then is the root-mean-square (RMS) energy, computed by taking the root average
of the square of the amplitude (as described for example in [19]):

Trms =

Applying this operation framewise yields an energy curve for the given signal.
Changes of high and low energy can then point to possible segmentation points,
indicating the presence of noise/sound/speech.

Tempo A simple description of music in the time domain can be given by the
tempo of the music. Seeing that tempo is a construct that arose mainly in the
context of classical western music, it can be more generally defined as beats per
minute (BPM). This describes the period of a recurring reference entity in the
music, usually described as the beat. The exact definition of the beat depends on
the specific kind of music (e.g. a steady bass drum, the implications of a meter,
etc.).

3.2 Kinematic Features

There is not yet a comprehensive, systematized overview of movement features.
Therefore, based on the given literature, some of the most applied aspects as
well as some that are found to be applicable in the special case of dance, are
considered. This includes only features relevant for motion data typically cap-
tured by a motion capture system (i.e. the representations described in Position,
Velocity, Acceleration and Angles), excluding classical image processing features
such as optical flow and the like.

Position, Velocity, Acceleration A basic way of representing movement data,
and also the most used one by motion capture systems, is position data and its
time derivatives. This might refer to the position of captured markers, virtual
markers, or body parts. It describes the position of a selected entity in regard
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to its position components in two (x,y), or three (x,y,z) dimensional space
respectively. An important aspect that has to be considered in using position
data as movement representation is their adherence to the coordinate system in
which they are captured. Since those are usually arbitrarily chosen depending
on the given capturing system, a transformation into a particular coordinate
system (e.g. those of a joint, or one defined by the PCA components of the data
[26,27]), or transformation of the data into a relative description, might be more
suitable. An example for this can be measuring the distance between hands to
define clapping movements. The local extrema of the Euclidean distance between
hand positions give a clue towards the endpoint of the movements.

An often more suitable representation, as it more closely describes the move-
ment itself, is a certain time derivative of the position. Inertial motion capture
systems usually deliver data in this format, using inertial measurement units
and gyroscopes to determine local acceleration and rotation. Since the deriva-
tives naturally depend on each other, velocity and acceleration are often used in
conjunction, looking for extrema in either one, via the other. A simple applica-
tion is for instance the detection of pivot points of a certain movement pattern
[17], i.e. the point in time where velocity and acceleration are close to zero,
indicating no motion and therefore an endpoint of motion patterns. The third
derivative known as jerk (jolt, surge, lurch), is generally used to describe the
smoothness of a movement (e.g. based on the minimum jerk model [11]). Higher
order derivatives are rarely encountered.

Angles Analogous to the linear displacement features relating to position as de-
scribed above, their angular counterparts are commonly used. The basis here
is the rotation of a body (marker, body part, etc.) in a superimposed reference
system. This also includes the time derivatives of angular velocity, angular ac-
celeration, and angular jerk (where again, higher order derivatives are rarely
encountered). Typically these descriptions refer to the joint angles, that is, the
minimum angle between two body segments connected by a joint (e.g. between
upper and lower arm), or the rotation of a body segment according to its parent
segment (e.g. the rotation of the shin in relation to the thigh, defined by the
knee joint). Similar to above, end and pivot points can be defined as angular
velocity and acceleration close to zero.

Zero-Crossing This description comes from the acoustical feature of the same
name (as described in section 3.1). It detects points in a movement signal (usually
velocity or acceleration) where its value changes the sign. This results in possible
end or pivot points of movements as described above. As this approach is highly
sensitive to noise, an advanced zero-crossing technique is presented in [33]. It
incorporates an additional threshold e around zero, taking into account noise
that might be, for instance, generated by the capturing system or slight motion
of the body®. Another adaptation of the basic method is proposed in [4], where

3 The human body is not able to stand completely still. This is subject of recent
studies exploring the phenomenon of micromovements [15,14].
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a weighted sum of zero-crossing of all joints is calculated, giving more weight
to body parts that define certain motion (e.g. hands and feet in unconstrained
movement).

Energy In movement, energy usually refers to the physical entity of energy, in
particular kinetic energy, which is often decomposed into translational and ro-
tational energy. This can be used in the context of semantic analysis, as it can
describe the abstract concept of effort put into a movement [27] (see section 4.2).
The calculation of kinetic energy however is not trivial anymore and only approx-
imates real values, as some assumptions have to be made regarding the mass of
different body segments. In the field of biomechanics several models have been
established for this, of which the Dempster’s model is usually sufficient for a
satisfying approximation in movement feature extraction tasks [8].

Curvature When using velocity and acceleration features to determine end and
pivot points, the trajectory itself is not taken into account. To incorporate this
aspect, Zhao [39] presents the computation of curvature ¢;, which is defined as
the rate of change of the velocity trajectory. It is computed in three-dimensional
capturing spaces by taking the cross product of the velocity v; and acceleration
a; at time 7:

Vg Ay
Ci = X a0 = |Vy| ,0; = |ay (2)
Uz az

This feature is suited to describe changes in direction of a motion trajectory,
even for non-zero velocity magnitudes.

4 Time Series Segmentation Techniques

This section presents an overview of methods and techniques that can be con-
sidered relevant for the automated segmentation of human movement data. Es-
pecially low-level features and approaches are explained, and a less detailed
summary of high-level works is given as they are mostly designed for very par-
ticular applications. In order to have a common basis for all presented topics,
the definition of a time series must be given, so misunderstandings stemming
from domain-specific interpretations can be avoided. A time series is therefore
generally defined as a sequence of time dependent values. To use this definition
within the domain of human movement data, an adaptation of [4] and [20] is fol-
lowed. A time series T' can then be defined more closely as an ordered sequence
of n pairs, consisting of vector v; and a point in time ¢; (as seen in Equation 4),
whereby v; is the value of an m-dimensional function.

T = {(’Ul,tl), (’Ug,tg), ey (Un—htn—l), (’Un,tn),} (3)

Since nearly all digital capturing techniques work on the basis of fixed frame
rates, in the case of human movement capturing it is more practical to consider
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only regular time series. These are defined by isochronous sample rates, i.e. a
constant time step At between consecutive pairs of the time series: Vi, 1 < i <
n : At = t;41 — t;. A segment then is a contiguous subset of a time series,
which is a time series itself, and a segmentation splits a given time series into
different segments. This does not result in a partition of the original time series
and the segments may overlap in ¢. Depending on the context, the latter factors
may be constrained to require no overlaps or a complete partition of the original
series. The dimensionality and type of the input sequence depends on the chosen
representation format. For most low-level features and segmentation techniques,
they are not relevant but work on generalized numeric vectors and scalars.

Processing a time series can be separated into the different processes of fea-
ture extraction, segmentation, and the actual application (e.g. of analysis, mod-
ification, etc.). Feature extraction describes the transformation of original data
to a suited representation (if not already so), application of filters, dimension-
ality reduction and so forth. The segmentation process itself can be classified
according to how the data is processed. In [4], the distinction is between ex-
plicit, implicit, and hybrid segmentation, where explicit describes techniques
where the segmentation phase happens in one-pass, implicit segmentation uses
a multi-pass approach incorporating error feedback for optimization of tempo-
rary results, and the hybrid uses explicit segmentation with additional feedback
modes. Additional classifications can be made according to the often used con-
cept of online and offline algorithms, describing the processing of data in a se-
quential manner, or the entire data set respectively [16]. These classifications are
of importance especially in regard to their performance and ability for real-time
application.

4.1 Low-Level Approaches

The approaches described here work mainly on a data-centric level, preferably
taking into account kinematic analysis. What they have in common, is the de-
scription of the general approach of analyzing and iterating over a given time
series, yielding an algorithm for processing time series. The exact segmentation
boundaries then depend on the chosen data representation. They can, however,
be combined with higher-level approaches, e.g. to include semantics and addi-
tional information. The given examples originate in database analysis but today
represent basic approaches for general time series analysis. The given descrip-
tions follow [4,16]. Some additional information is needed for these approaches:
first, some function that defines the error of a given segment (usually relating to
some optimal result or model); second, a distance measure might be needed to
describe the distance between two selected segments. As opposed to a feature-
based method, where certain value thresholds of a distinct feature define the
segmentation boundary, these algorithms require an error information, therefore
being implicit.

Top-Down The top-down approach takes the original segment, i.e. the entire
data set, and splits it recursively into smaller segments. It starts by considering
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all possible partitionings and their pairwise distances. The goal is to find the
partitioning where adjacent segments have the highest possible distance. This is
repeated recursively on the found segments until the errors of each individual
segment are below a given threshold. Alternatively, the choice of the partitions
can be based solely on the error of a given segment and a specified threshold,
ignoring thereby the distance between the two created segments. This yields a
complete partitioning with minimum error for all segments.

Bottom-Up Related to the top-down algorithm, bottom-up begins with a com-
plete partitioning of the time series. The level of granularity of these segments
can be chosen depending on the application. It then joins adjacent segments
given their distance, or the cost to merge them respectively. This is repeated
until the distance/cost meets a certain threshold and no more join operations
are possible. The approach can be slightly faster than top-down, depending on
the distance measure/cost function.

Sliding Window This simple online algorithm is the basis for many signal analysis
methods. It considers all possible segments by sliding windows of different sizes
of the entire time series, choosing appropriate segments by selecting those with
the smallest error. If a complete partitioning is desired, an easy approach is to
initialize the starting point of the window w; as the first point of the time series
t1. The size of the window, defined by its end point wen,q, then is incremented
until the error is below a certain threshold. Then the window is slided by setting
the new wy to the old weyq until the end of the time series is met. If only a subset
of segments are desired, the size of the window must be predefined, as well as the
step size by which the window is slided. Depending on the applications, several
iterations with different window sizes and step sizes might be used.

4.2 High-Level Approaches

The approaches in this section describe segmentation techniques for the specific
case of movement analysis and represent a small selection of the application-
dependent variety. Most of these work on a semantic level, taking into account
external information about the analyzed movement, e.g. knowledge about exist-
ing movement patterns, or motion features that characterize the given movement.

Hidden Markov Models Hidden Markov Models (HMM) are statistical models
that include different states and the transitions between them (for more infor-
mation see [32]). They can be well used for the recognition of different states
in a temporal sequence. This makes them suitable for the use with movement
sequences, such as gesture recognition, or dance applications [12]. Since HMM
are a supervised learning approach, training data is needed, i.e. the states of the
model have to be known in advance. This limits the application to certain kinds
of tasks, where uninformed segmentation is not possible.
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Motion Templates In [24], Miiller and Roder present a model for capturing the
spatio-temporal characteristics of an entire motion class, i.e. a defined move-
ment sequence, in a matrix representation called motion templates. They can be
learned from a given set of samples of a motion class or artificially constructed.
The used features are called relational motion features, which are boolean rep-
resentations of geometric relations of particular points of a body (cf. subsec-
tion 3.2). Given dimensions f (number of features) and K (number of time
samples or frames), a motion template is a real-valued matrix X € [0, 1]f <K
Learning a motion template from given training data yields a template for the
represented motion class. These can then be used for further segmentation and
identification, with the template as a reference entity for determining an error
or distance (such as in subsection 4.1).

LMA Classifier The LMA Classifier is a semantic segmentation approach devel-
oped by Bouchard [5]. It is based on the theory of Laban Movement Analysis
(LMA), a theoretical framework for describing and interpreting human motion.
The basic principle is the relation between the internal state of an individual and
the effect it has on the motion. The classifier is based on the concept of effort
(the quality of motion) in the four dimensions of space, time, weight, and flow.
Each of these dimensions is represented by a neural network. Given a movement
time series, the LMA classifiers can be used to determine segment boundaries
which are similar to the original data used to train the classifiers. This approach
gives the most freedom in regard to the quality of the analyzed motion, and
works therefore well with general movement data, i.e. the type of movement is
not known. However, it strongly depends on the training data of the LMA classi-
fier. It can be possible to train the latter with samples of a particular movement
repertoire (such as a certain dance) in order to apply it to specialized data. What
has to be considered for the given approach, is the difficulty of objectifying a
complex concept such as effort. The selection of low-level features strongly in-
fluences the resulting classifier. Employing LMA specialists is therefore a crucial
factor in describing the movements used for the training data.

5 Considerations in Applications: Tango Argentino

Tango Argentino is a performing arts genre that involves music, dance, and
lyrics. For this paper, the dance and music are of interest. It is an improvised
couple dance, characterized by a close embrace and close connection of the dance
partners from the waist upwards, and flexible and elaborate footwork made pos-
sible mainly by horizontal dissociation movements in both dancers waists. The
embrace is occasionally opened for short intervals of more elaborate movements.
The improvisation is based on a particular, limited movement repertoire and
set rules of basic body position, stride and turning, for both leader and fol-
lower. Movements are executed for communication, travelling, turning, and also
embellishing. This leads to three constituting elements of the dance, regarding
movement sequences: standing, walking, and turning. The element in question in
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the research project “Tango-Danceability of Music in a European Perspective”
[36] is the tango step, as this is the core aspect of the movement repertoire.
Following are the combinations of the basic elements, i.e. turning while walking
or standing.

As most other dances, tango argentino has a close relationship with the music,
even more so, since the music is the primary resource of inspiration for the
improvisations of the dancers. The classical tango repertoire* used in this study,
is based on even meters (typically four quarter notes i, i.e. four beats are grouped
together as a bar), and an absolute tempo of about 120 beats per minute (BPM),
with only slight variations in tempo. The intricate relationship of the movements
of the dance and the sound of the music is one of the questions of the research
project. What can be determined a priori is the temporal relation of the steps
and the beat. The tempo and steady beat, with emphasis on the first and third
beat of each bar, are connected to even and consistent steps that are carried
out on the first and third beat. This leads to a steady, basic walking pace of
approximately 60 BPM. Variations of these steps are then, for instance, double-
or half-time steps, resulting in short intervals of a walking pace of 120 BPM or
30 BPM, respectively.

Data Collection In the project [36], motion capture data of professional tango
dancers is collected. For this, an optical system with passive markers and eight
cameras by OptiTrack® is used. This system captures markers attached to a body,
yielding in marker position data (z,y,z), which can be fitted to reconstruct a
model of the captured body in a 3D environment. The level of granularity is
within millimetres in position and milliseconds in timing (the used frame rate
is 120 Hz). For both dancers a given marker set is used, as seen in section 5.
This is adapted to requirements of the dance, which includes removing the chest
marker, as it will be occluded most of the time, due to the close embrace, as well
as changing the leg markers from the front to the back, so as not to restrict their
freedom of movement (e.g. when the legs of the couple are connected). Further
processing then usually happens within a joint representation, a transformation
of the original marker set that represents anatomical landmarks in a human
body model. From this representation joint angles are easily computed. Music
for dancing is played and recorded back separately and synchronized manually
by means of a clapper (as used in film recordings) attached with markers as a
reference point in both recordings. Couples are asked to perform several move-
ment tasks to four different audio stimuli: three recordings of classical tango
music, and one click track with 120 BPM for reference. The tasks are performed
separately and as a couple. Performing as a couple includes free dancing with no

4 This comprises music from what is known as the golden age, the época de oro of
tango argentino. It took place in Argentina in the 1930s and 1940s. Musical com-
positions, performers, and dance styles of this period are generally considered a
form of benchmark against which all subsequent innovations and developments are
measured.

® http://www.optitrack.com/
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restriction, dancing with restriction to walking and turning, and dancing with re-
striction to only walking. Single tasks include tapping the foot to the beat, and
tango walking. This produces a wide variety of data suitable for the different
research questions that can also be used as reference entities between them.
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Fig. 1. The original full body marker set [25] used in the capturing of professional
tango dancers. It is modified according to the requirements of the close embrace and
footwork: the chest marker is removed, thigh and shin markers are moved to the back
of the leg.

Application The idea for the application specific segmentation of tango ar-
gentino data consists of two phases, which determine the selected features and
techniques used. As one aim of the project is to explain the characteristics of
tango dance, and consequently the tango step, in multiple dimensions, super-
vised segmentation techniques are not suitable as a first approach, seeing that
training data does not exist. In many studies manual segmentation is used to
generate this training data, which is not considered here, as this might be biased
by the person’s experience and personal preferences. Instead, the idea is to use
low-level techniques based on generally accepted, simple a priory knowledge that
can be used to determine features with as little bias as possible. Additionally,
the questions dealt with are working on the level of micro-timing, which cannot
be achieved by manual segmentation®. The type of data for this phase should

5 This does not imply that manual segmentation is not a valid approach for segmen-
tation, but rather that it is not appropriate in this particular context. It might,
however, well be considered for instance, as a measure in the evaluation of the
segmentation, or a reference entity for interpreting the embodiment and conceptu-
alization sound-movement relationships in dancers.
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therefore be the captures of a couple dancing to music, restricted to tango walk-
ing, as this can be used as representations of a potential prototype tango step.
Thus, the first phase consists of knowledge generation and extraction of possible
training data for the second phase. This can then work on the basis of a su-
pervised model, using semantic approaches, which are informed by the previous
phase. The features are chosen according to the kinematic characteristics of the
found segments. By generalizing the model to the abstract concept of a tango
step, it can be used in further segmentation tasks of all other kinds of tango
dancing data, as the basic concept of tango is always based on walking (also
in combination with turning, double- and half time, and so on). The length of
the segment is not relevant in this case, since it can be easily accounted for by
methods such as Dynamic Time Warping [1,37] or choosing time-independent
features.

For the first phase, the fact that regular tango steps are generally half the ab-
solute tempo of the music can be used as a constraint for the segments’ lengths.
Based on the low-level approaches described in subsection 4.1, sliding windows
with the length of a step and a time range around this can be applied. Choos-
ing appropriate error measures to determine whether a candidate segment is
accepted or rejected then might prove to be challenging, as features have to be
chosen, that are not subject to individual interpretation. One possibility is to
take general parameters that originate in gait analysis, as these determine what
is understood as a step. This comprises a resting phase with little to almost no
movement between steps. This includes, for instance, that feet cannot be lifted
off the ground at start and end points and have to be in spatial proximity, or
boundaries which are characterized by a minimum of overall motion. Alterna-
tively, potential segment boundaries can be searched for directly by iterating
over the time series, using the length of a segment in a subsequent iteration as
a decision rule for matching candidate points, and finally accepting candidate
segments based on the parameters described before. To detect potential segment
boundaries, features such as zero crossings or energy minima can be suited. All
segmentations can then be referenced to the music, accepting only those starting
at a stressed beat, i.e. the first or third in a bar.

Applying the first phase to a diverse data set of different dancers with dif-
ferent music, results in training data used in the second phase. A simple ap-
proach for this is then the sliding window, as the features for error or distance
measurement can be taken from the training data. These can consist of, for in-
stance, any kinematic feature averaged over the different training samples, and
a simple error measurement such as Euclidean Distance to the prototype step.
Another possibility is step recognition that adapts the idea of face recognition
based on eigenfaces. In the case of movement data, so called eigenmovements or
eigenmoves [3] can be computed with Principal Components Analysis of selected
kinematic features [6], especially position and its time derivatives and joint an-
gles. To allow a greater variance in the movement data itself (potentially up to
combined steps, such as turning midways), semantic approaches such as HMM,
Motion Templates or LMA classifiers can be used. In the given case, it would be
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useful to start with motion templates, as relational motion features can easily be
computed from previously generated training data. When including additional
motion sequences, such as pivoting while standing, or embellishing movements
such as kicks, HMM can offer deeper insight, as the temporal dependence of the
given motion states are taken into account.

6 Conclusion

Using pattern recognition for motion capture data is a popular approach for its
segmentation nowadays. The applications of the theoretical findings, however,
are mostly prominent with the entertainment industry, animation, media design,
or robotics. Therefore this paper presented an overview for the application within
the field of dance research, together with a specific example of its possible use. It
can be noted that a lot is moving within the analysis of human dance movement
data. Many features and segmentation techniques have already been established
or adapted from related disciplines. Some of the most present ones in current
literature are therefore listed, giving a compact overview. To illustrate their use
and to suggest a possible application within the academic research of dance, the
case of tango argentino was used. The suggested two-phase model of segmenta-
tion might improve the work with dance motion capture data, while serving as
an analytical tool at the same time. The simple requirement of unbiased feature
selection in the first phase can deliver insights into aspects of the dance by its
segmentation. In the case of tango argentino, it could deliver a descriptive set
of kinematic features, i.e. of what defines a tango step. These results can be
subsequently used in the second step for automated segmentation of other tango
data for further analysis. The next steps therefore include an application and
evaluation of the suggested model.
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Abstract. Playing classic board games such as Chess, Go or Backgam-
mon at a super-human level has always been an active area of research
in artificial intelligence as games provide excellent controlled environ-
ments for testing complex concepts. While many games were already
solved more than 20 years ago using specialized algorithms designed
with the help of human experts, some have remained extremely challeng-
ing for computers until very recently. New machine learning techniques
that combine classical search with convolutional neural networks trained
purely by playing against itself have made it possible to address even
the most difficult board games, like Go, which previously seemed impos-
sible for conventional methods. Those techniques are very general and
could also lead to advancements in other fields. In this paper we present
an overview of the current state of the art in automated game playing
including the latest developments such as DeepMind’s AlphaGo and Al-
phaZero. We analyze successful solutions and discuss the key techniques
necessary for achieving super-human performance in many board games.

Keywords: board games, machine learning, reinforcement learning, neu-
ral networks, MiniMax, Monte-Carlo tree search

1 Introduction

Humans have been playing board games like Chess or Go for hundreds if not
thousands of years. Those games present captivating intellectual challenges as
they test not only memorization and calculation skills but also require on-point
long-term strategy and rapid adaption to previously unseen situations. Despite
the rules of most classic games being quite simple, playing them at a highest level
requires immense amounts of knowledge, practice and talent. For some games
(especially Go) it is very difficult to pass on those skills to other players, even
more so to formalize it, as they rely heavily on intuition, having the right feeling
about which move to play next.

Trying to design computer programs that beat humans at something they
are extremely good at is already an interesting challenge by itself. What makes
classic games even more attractive for researches is that they represent sim-
ple, controlled environments for testing potential solutions to complex concepts.
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Techniques that achieve super-human play are likely also applicable in other
fields eventually leading to advances in solving actual real world problems.

IBM’s Deep Blue [3] defeating the world champion in Chess back in 1997
is still considered a milestone in artificial intelligence. More recently, in 2016
DeepMind’s AlphaGo [14] won against a top human player in Go, a game far
more difficult for computers than Chess. Especially developments in machine
learning and reinforcement learning have provided new possibilities for creating
game playing agents that learn entirely from data (generated by playing matches
against itself) without any human intervention resulting in novel strategies no
human thought of before.

In this paper we describe and analyze a number of successful solutions for
various games to figure out what it takes to design a program that achieves super-
human play in a board game with the hope of those techniques generalizing to
other areas of application.

1.1 Overview of the paper

Section 2 briefly describes several fundamental techniques necessary for under-
standing the state of the art game playing agents. In section 3 we describe a
representative selection of state of the art solutions for several different games.
These will then be analyzed in section 4 to deduce what is in general necessary
for achieving super-human performance in board games.

2 Fundamentals

First, we introduce some fundamentals that are necessary to understand the
current state of the art presented in section 3.

2.1 The Value Function

In this paper we deal with games where (starting with player one) two players
alternate in taking actions leading from one game state s to another game state
s’. When the game ends, i.e. when a state s* is reached in which, according to
the game rules, no more move is possible, both players receive a certain defined
reward. Usually the winner gets +1 and the loser —1 with both parties receiving
0 in case of a draw.

To play effectively, it is necessary to know how good a certain game state
is. This is usually captured by a concept called the value function. The value
function is a function v(s) that describes the reward player one is expected to
receive when the game is in state s and both players continue playing optimally.
In case of deterministic games this expected reward is precisely the best possible
outcome assuming no player makes a mistake, i.e. if v(s) = 1 player one can force
a win from this position regardless of what player two does. This is because if
there was an action for player two that leads to a state s’ with v(s’) < 1, then
v(s) would not be equal to 1 in the first place.
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Given the value function, it is easy to play perfectly. As player one simply
selects the action that leads to a state s’ with maximal v(s’) and as player two
do the same but for minimal v(s"). When applied to the true value function, this
greedy strategy is indeed optimal.

While this brief introduction should be sufficient for following the remainder
of the paper, the interested reader can find a detailed discussion of the value
function concept in [10].

2.2 Computing the Value Function

The actual value function can be defined recursively in a similar manner to
the optimal strategy described in section 2.1. Let s’ denote a state reachable
by taking an action in s, then v(s) = maxgv(s’) if it is player one’s turn and
v(s) = mingwv(s") if it is player two’s turn. For terminal states the value function
is defined by the game rules.

This recursion can be evaluated by a straight-forward depth first search,
called the Minimaz algorithm [11]. The emerging structure of a game state
s connected to all the states reachable by taking an action in s is commonly
referred to as the game-tree. The value of a node is computed by taking the
max,/min (as discussed in the previous paragraph) over the values of all child
nodes. This new value is then passed upwards to be used for the evaluation of
the parent node. Figure 1 shows an example of Minimax search in a game-tree.

Fig. 1. An example of a Minimax search tree

Minimax always needs to examine the entire game-tree. For a game with
branching factor b and an average length of ¢ it has O(b*) nodes. It is worth noting
that this number is typically much larger than the count of distinct games states
due state and consequently subtree repetitions. Hence, the Minimax algorithm
in its simplest form can only be applied to games with a small game-tree, like for
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instance Tic-Tac-Toe with less than 9! nodes. There exist various optimizations
to reduce the search tree while still retaining optimality. Alpha-beta pruning
[11] immediately cuts off branches that cannot improve the optimum anymore.
Transposition tables [11] keep track of already visited states to ensure that every
value is only computed exactly once even if a state is reachable through different
sequences of play. These and other techniques make it possible to address much
more difficult problems. For instance, they enable perfect play in Connect 4, a
game with to the order of 102 distinct states, guaranteeing a win for the first
player to make a move !.

As an alternative to enumerating the whole search-space, one could sample
tree trajectories and estimate the value of a position by averaging over the results
from all sampled games visiting this state (see Figure 2). This approach is called
Monte-Carlo tree search (or short MCTS). Usually trajectories are generated
by choosing the child node with the highest V(n) + U(n) where V(n) is the
current estimate of the value of node n and U(n) is an upper bound. U(n) gets
smaller the more often the node is visited and at the same time larger the more
simulations are run. This ensures that the algorithm generally selects nodes that
are already known to have a high value, which means that they are probably
good moves the opponent is likely to pick, but also explores some other moves
with still uncertain value. It is in some sense similar to classical Tabu search
[5] where particular good states are temporarily blocked to promote exploring
different parts of the search space. A common choice for U(n) is using the Upper
Confidence Bound 1 (derived from the Hoeffdings Inequality [7]), usually referred
to as the UCT algorithm, which guarantees that the search eventually converges
towards the Minimax result [8]. The most interesting property of Monte-Carlo
methods is that the estimate of the value function improves as more simulations
are run, in contrast a Minimax algorithm that explores only half of the state-
space is essentially useless. A survey of different MCTS variants can be found in
[2].

Even though the way of computing the value function explained in this sec-
tion is often referred to as searching, classical search algorithms like for example
A* [11] are not directly applicable in this context. This is mainly because they
are designed to find an action sequence that leads to a certain goal and not to
determine the value of specific nodes. They are also not optimized to consider
different actors with adversarial objectives.

2.3 Value Function Approximation

Estimating the value of a position in extremely difficult games like Chess or
Go with ~ 10%6 [4] (not counting repetitions) and ~ 107! [21] distinct board
positions respectively (and even more gigantic game-trees) just by using the
algorithms described in section 2.2 is completely intractable, different techniques
are necessary.

! John Tromp, http://tromp.github.io/c4/c4.html, visited: 2018-01-14
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Fig. 2. An example of Monte-Carlo search

The value of a node is computed as the average of all its successor nodes.

A more promising approach is to estimate the value of a state from charac-
teristics of the board position (i.e. which pieces are left on the board, where are
they, etc.) either by using human expert knowledge to construct game-specific
algorithms or by having the computer learn an evaluation function directly from
data. However, since in many games just slightly changing the location of a single
piece can turn a winning position into a losing one, just relying on an estimator
is in many cases not sufficient for creating a strong player. Most strong game
playing programs thus combine an efficient search algorithm with accurate value
function approximation.

3 State of the Art

This section describes a representative selection of concrete solutions for playing
different kind of board games at expert (to super-human) level. The discussed
systems were chosen in way that they cover most of the common and successful
techniques. In particular Stockfish (section 3.1) introduces search with value
estimation, TD-Gammon (section 3.2) learning by self-play via TD-learning and
Giraffe (section 3.3) a combination of those two approaches. AlphaGo (section
3.4) is an example where learning without supervision vastly outperforms all
other previous methods and AlphaZero (section 3.5) is the strongest engine for
several of the most difficult board games to date.

Other interesting systems not covered here include a self-learned Chess pro-
gram Knightcap [1], a world-championship caliber Scrabble program Maven [13]
and the perfectly playing Checkers program Chinook [12].

3.1 Stockfish

Stockfish 2 is one of the strongest chess-engines in the world playing much
stronger than top human players. It uses the same general ideas as Deep Blue [3]

2 T. Romstad, M. Costalba, and J. Kiiski, www.stockfish.com, visited: 2018-01-17
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(the first ever computer program to beat a top human player in Chess) but sev-
eral optimizations developed over the past 20 years lead to even higher playing
strength leaving humans essentially chance-less.

The core of Stockfish is a highly efficient implementation of a depth-limited
Minimax search while heavily utilizing alpha-beta pruning (described in sec-
tion 2.2). As the latter is only effective when good moves are discovered early
on since only then many branches can be cut off quickly, several heuristics are
in place to make sure more promising options are explored early. Furthermore,
for leaf-nodes with certain properties an additional special search is run to make
sure critical situations, like for instance queen exchanges, are not misjudged.
Other leaf-nodes are directly evaluated by a static scoring function. This metric
uses a large number of hand-crafted features, many of which were designed by
human grandmasters, incorporating a big part of what is known about chess to
date. Some of those features are: synergy between different pieces, existence of
certain promising board patterns, mobility of pieces or safety of the king (con-
sidering the structure of attackers/defenders). Stockfish can also use an opening
book, that contains moves believed to be ideal in the early stages of the game
(determined by humans and extensive precomputation), and an endgame solver
that enables perfect play when only very few pieces remain on the board. While
most of the evaluation function is hard-coded, some parameters like the weight-
ing of different factors were learned by automatically trying out many different
settings and evaluating them by self-play, some polynomial regression models
are also part of the scoring function.

Stockfish’s main strength comes from the evaluation function that gives high
quality estimates while being cheap to execute due to its highly specialized im-
plementation. This allows searching a very large number of positions (several
millions) in little time.

3.2 TD-Gammon

The first program that beat the world champion in the game of Backgammon
was TD-Gammon [20], a neural network trained exclusively by playing against
itself and applying temporal difference learning [17].

TD-Gammon only uses a relatively shallow neural network with a single
hidden layer to score positions without any kind of search. To select the next
move to play, the neural network evaluates all positions reachable by legal moves
(given the dice rolls) and then selects the action which leads to the position with
the highest expected value (as the game is inherently stochastic this represents
a real expectation and not just an approximation of a deterministic result). The
network takes as input the raw board as well as some expert features developed
for a predecessor program NeuroGammon [19].

The network was trained entirely by self-play using temporal difference learn-
ing (TD-learning). The main idea of TD-learning is to make the output of the
network at time ¢ similar to the output at time ¢ + 1. An intuition behind this
is that the value estimation should not rate a state as being good when one of
the opponent’s next moves can turn it into a bad position since if such move is
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available, the initial position is definitively not a favorable one. When a game
playing against itself has concluded, the error for every encountered state s, is
computed as the sum of the differences of the value predicted for s; and the
value predicted for each state in the future weighted by an exponentially decay-
ing parameter \. This assigns more importance to deviations from predictions
in the immediate future. The network parameters are then updated in standard
fashion in direction of the gradient as computed by back-propagation on the
errors for every state.

Due to the stochasticity of Backgammon, the value function is generally
relatively smooth as slight variations of the board state don’t change the value
too drastically (most of the time at least), thus the neural network by itself
works well enough and additional searching does not seem to be necessary.

3.3 Giraffe

Stockfish (described in section 3.1) relies heavily on its carefully hand-tuned
state evaluation. Several attempts have been made to replace this component by
an algorithm learned exclusively from raw data, in particular a neural network.
One of the most successful of those attempts is Giraffe [9].

Giraffe uses a relatively standard chess engine search (similar to Stockfish)
but performing position evaluation via a small three-layer neural network. In
addition to the actual board state encoded as a list of the coordinates of every
piece (instead of a bitmap with a 1 indicating that a certain piece-type is present
at that position), the network is also supplied with some low-level features, like
the number of squares a piece can move in each direction or the lowest valued
attacker and defender. While those things could theoretically also be figured
out by the network itself, this would require a substantially larger architecture
which would consequently cause both training and evaluation to be slower. Fur-
thermore, to save even more computation time, the first layer of the network is
not fully connected but the input features are split into three different groups
that are each only connected to a third of the neurons in the first hidden layer
respectively (the other two layers are fully connected though). Training data
was taken from both expert human and computer games. Additional samples
were generated by applying some random moves to the existing data so that
the network also learns to properly judge bad positions that occur frequently
during the search even though they are rather rare in real games. The neural
network was trained by randomly sampling a position from the training data,
playing twelve moves and then applying TD-learning as explained in section 3.2.
To speed up training significantly, they also bootstrapped the neural network
with a very simple evaluation function before starting the self-play learning.

Overall, Giraffe performed only slightly worse than Stockfish on a standard-
ized dataset for testing chess-engines when enough computation time was avail-
able but reached just candidate master level in real games. One of the main rea-
sons for this is that Giraffe can only consider significantly less positions (around
one order of magnitude) in the same time due to the neural network being much
slower than Stockfish’s specialized evaluation function.
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3.4 Alpha Go

Alpha Go was the very first Go program to beat a top human professional back in
2016. AlphaGo put together Monte-Carlo tree search with several different neural
networks that were trained both from expert data and also via reinforcement
learning by self-play [14].

AlphaGo uses a value-network that predicts the value of a board position
as well as two policy networks that estimate move probabilities p (indicating
how good it thinks every available move is). The value network and the slow
policy network use a convolutional architecture [6] receiving as input the raw
board positions and some simple tactical features like the number of liberties
or the result of ladder-searches (play-sequences that span the entire board but
can be easily evaluated with a simple algorithm). The fast policy network is just
a linear softmax over small pattern based features (i.e. the presence/abscence
of particular piece configurations on the board). All those networks are initially
trained to predict moves/game outcomes based on a database of expert games.
Additionally, the slow policy network is improved by reinforcement learning via
self-play (just by sampling from the policy, without the Monte-Carlo search
explained in the paragraph below) using the policy-gradient method [18] where
the policy is adjusted in the direction of maximum expected reward, in this case
with the highest probability of winning. The value network is also improved by
additional training on the generated self-play data.

For actually playing, AlphaGo uses the neural networks as an integral part
of a Monte-Carlo tree search. The next node is selected by a slight variation
of the UCT algorithm explained in section 2.2 where the calculation of U(n)
takes into account the prior move probabilities estimated by the slow policy
network, hence choosing states with higher priors more often. When a leaf node
is encountered, both the slow policy network and the value network evaluate the
position exactly once. Then one full game (also called rollout) starting from this
position is played by sampling from the fast rollout policy. The value of the leaf-
node is finally calculated as a linear combination of the estimated value from the
value network and the result of this rollout. It is then propagated upwards the
tree to update the predecessor values in standard Monte-Carlo fashion. AlphaGo
ultimately plays the action that leads to the node with the highest visit count.

3.5 Alpha Zero

AlphaGo as described in section 3.4 was consecutively improved to learn en-
tirely from self-play [16]. This eventually lead to a more general version, called
AlphaZero, which achieves superhuman performance not only in Go but also in
Chess and Shogi [15].

Similar to its predecessor, it combines Monte-Carlo tree search with a deep
neural network. AlphaZero utilizes a single convolutional neural network with
residual blocks [6] to estimate both the value of a state v and a vector of move
probabilities p at the same. Every leaf-node encountered during the Monte-Carlo
search is evaluated exactly once by this neural network. The estimated v is then
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immediately backed up to refine the move probabilities 7 of its predecessors, no
full rollouts are played. The neural network is trained entirely by playing games
against itself always using the most current version of the network. Whenever
a game is complete, the final move probabilities 7y (after the search) together
with the real game outcome z are used to update the parameters of the neural
network via gradient descent.

The input of the neural network is presented in form of an N x N plane for
every piece-type and every player with a one indicating that a certain piece of
a certain player is present at this location on the board. Additionally, they also
include a small number of extra planes to encode special rules, for example the
number of move repetitions or whether or not castling is still available in Chess.
The output for Chess and Shogi is encoded in rather interesting fashion, the
network returns a full plane of probabilities for every type of move where the
position in the plane indicates from where to pick up the piece and the number
of the plane which action to take, for instance moving a certain figure three fields
to the east.

4 Analysis

We will now analyze the different solutions described in section 3 to deduce what
is in general required to construct a program for playing a complex board game
at super human level.

Structured searching is hard to avoid as the value function of most classic
board games is highly non-smooth, i.e. a slight change of the board position can
lead to a completely different outcome. Accurately handling this without any
kind of look-ahead seems difficult (or even impossible). For games that involve
randomness this is not necessarily the case, in Backgammon moving a single
stone by one field does not make a big difference most of the time as all dice
roll results have equal chance of happening. This is also the main reason why
TD-Gammon could get away using just a neural-network with no (or in the
improved version [20] a two-turn) look-ahead. All the other programs discussed
in this paper rely heavily on searching, DeepMind reports that using just the
slow policy network for playing Go achieves results comparable with the existing
programs before AlphaGo but gets nowhere near the strength necessary to beat
top human players [14].

While searching is necessary, it is definitively not sufficient due to the abso-
lutely enormous amount of states in complex games. The key to making search
useful is to ensure that most of the time is spent considering actually interesting
positions, i.e. positions that are likely to occur in real games between competent
players. Stockfish achieves this by considering the (according to some heuris-
tics) most promising moves first so that alpha-beta pruning can quickly cut off
bad branches as moves with high value are typically already discovered early
on. AlphaGo goes a step further and uses a deep neural network to predict the
value of every possible move in one pass, so that the Monte-Carlo search can
focus mostly on the moves the network considers relevant. But even with those
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optimizations it is only possible to search up to a certain depth (that might
vary depending on how interesting a position is) after which the search has to
terminate and the program needs to rely on a different way of estimating the
value of this leaf-nodes.

There are many different approaches towards designing such a value function
estimator. One could either design a highly specialized algorithm based on hu-
man understanding of the game (as it is done in Stockfish) or learn a function
using a more general estimator, like a neural network. One of the main prob-
lems here is that the latter ones are usually a lot slower with the consequence
that the search can consider much fewer positions resulting in overall lower play-
ing strength. For instance this can be observed in the Giraffe project. Learned
functions must thus yield more accurate estimates than their hand-engineered
counterparts to make up for their lower execution speed. AlphaGos convolutional
neural network outperforms previous evaluation methods by a fairly significant
margin and can thus achieve much higher playing strength despite the estimator
being rather slow to evaluate. A common trick to get away with a smaller and
hence also faster neural network is to pass some useful additional features that
are rather difficult to learn from data but very easy to compute with specialized
algorithms (this is done both in Giraffe and AlphaGo).

In addition to training the value estimator using data from human expert
games (done in AlphaGo), training by self-play is not only possible (see TD-
Gammon, Giraffe and AlphaZero) but even seems to be essential for reaching
super-human performance with learned value estimation. AlphaGo with the neu-
ral networks solely trained with expert data was not enough to beat human
professionals, first continuous improvement by self-play eventually lead to beat-
ing one of the best human players. AlphaZero learns entirely from playing itself
and becomes stronger than the best engines to date in both Shogi and Chess
in which previous programs relied mostly on hand-engineered features. Another
big advantage of this approach is that the program is in no way biased by what
we currently think is the best way to play but it can discover new (and possi-
bly better) strategies completely on its own. Both TD-gammon and AlphaGo
had a significant impact on how humans play the games as they demonstrated
that several moves which were generally believed to be suboptimal are actually
stronger than their alternatives.

The most effective way of training a network by self-play seems to be to use
the refined values estimates after the search as new targets. This causes the esti-
mator to learn to approximate the result of the search leading to a better overall
value estimate and therefore to an even better approximation when searching
with the updated network, and so on. One can either use the results of the
search directly to update the network for the position the search was run for (as
it is done in AlphaZero) or use the results of some state in the future, i.e. via
TD-learning (done in TD-Gammon and Giraffe). The latter promotes temporal
consistency, which means that when the network predicts that state s is good,
then it should not predict that a successor state s’ is bad because then s should
not have been classified as a good state in the first place.
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Previously most successful game playing programs were designed similar to
Stockfish, an efficient search with a hand-crafted evaluation metric with the main
strength coming from being able to check a huge number of positions. This is
very unlike how humans play. Humans are able to judge positions very accurately
based on certain properties/features of the situation and only actively consider
(calculate) very few (in comparison to computers) actual move sequences. This
is because humans can identify promising moves and rule out clearly bad ones
extremely quickly, something computers struggle with. However, as it can be
seen at the examples of AlphaGo and AlphaZero, developments are going in the
direction of playing more human-like. AlphaZero considers only a fraction of
the positions (around 16000) Stockfish does (> 10°) but therefore uses a deep
convolutional neural network for significantly better judgment of the encountered
states.

In general, AlphaZero seems to strike a very good middle ground between
what machines excel at, i.e. searching many different position, and what humans
excel at, recognizing patterns on the board to evaluate a position. The former
allows it to find the perfect local play sequence and the latter allows it develop
general strategy, something conventional Chess-engines like Stockfish are typ-
ically not very good at (but which is not really necessary to beat error-prone
humans).

This very effective combination of two of the most powerful techniques in
computer science, search and neural networks, does not only seem applicable to
other classic board games but can probably also be extended to lead to advances
in other domains, especially as neural networks already work well for processing
natural data such as images or audio. Combining them with a search algorithm
could be a way to make up for their weakness in performing complex structured
strategic considerations.

5 Conclusion

In this paper we discussed several interesting approaches towards building agents
for playing classical board games at expert level.

Combining an efficient search algorithm with an accurate value approxima-
tion function can lead to super-human performance in classic games that have
been studied for centuries. Furthermore, this static evaluation of game states
does not need to be hand-designed using existing knowledge about the games
but can instead be learned exclusively by having the machine play itself. This
can lead to the discovery of novel strategies that were never though of before
and which eventually change the way humans play the game.

Since games like Go test incredibly complex concepts that are also very rel-
evant in real-world applications, it is very likely that recent breakthroughs, like
AlphaZero, can be adapted to other domains leading to significant advances of
the current state of the art.
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Abstract. In this paper different approaches for urban traffic scene un-
derstanding are discussed and compared. The focus will be on the de-
tection and understanding of urban traffic scenes like intersections based
on systems using light detection and ranging (LIDAR) and monocular or
stereo vision. Since the input data produced by LIDAR and monocular
or stereo vision are so different, most systems use either one or the other.
Nevertheless a system that can work with both LIDAR and vision based
input will also be discussed.
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1 Introduction

Autonomous driving is a topic that caught the interest of researchers all over
the world. With sensors becoming better and more available enormous progress
has been made in recent years [1].

But even though simple scenarios like driving on highways or country roads
have well working solutions, autonomous driving on urban roads is still a big
challenge. Urban roads have lots of characteristics that make them way more
complex than just driving on the right lane with the correct speed on a highway.

The focus of this paper is to discuss and compare different approaches for
understanding one of the key characteristics of urban traffic scenes, intersections.
Intersections feature a wide set of difficulties for self driving vehicles. The first
being the very detection of intersections and the classification of the intersection
style (T-shaped, +-shaped or even more complex shapes) [2]. Another challenge
is the semantic understanding of the current traffic scene that unfold while a
vehicle is coming near an intersection. To make the correct driving decision the
vehicle has to be able to understand not only which type of intersection it is
about to cross, but also what all the other traffic participants are about to do
[3,4]. This task can get troublesome in urban environments since they often
feature blind intersections without mandatory stopping as illustrated in Fig.1.

Most of todays vehicles are already equipped with localization systems con-
sisting of a Global Positioning System (GPS) and a Geographic Information
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Fig.1: A blind intersection without a line stop. The vehicle does not see if there
are any obstacles approaching from left or right. The vehicle should slow down
to be able to stop if necessary [5].

System (GIS). Even though one might think that GPS and GIS would be suf-
ficient for the correct detection of intersections, the task remains difficult. The
main disadvantage of GPS and GIS is, that they do not provide information
about other traffic participants. Additionally GIS is often missing and GPS data
is invalid or not reliable enough in many places. Also longitudinal and lateral
errors that are created by interference or noise affect the intersection detection
notably [2, 6].

Using vision based approaches was the common way to tackle the problem of
getting input data for autonomous driving systems in the past [7]. Under optimal
circumstances vision based systems are reliable. However, if the conditions are
not optimal, for example in adverse weather or on streets without lane mark-
ings or missing traffic signs, vision based approaches often reach their limits.
Gehring et al. [8] introduce a method to increase the robustness of stereo vision
during adverse weather. Their approach uses Semi-Global Matching (SGM) [9]
and combines it with a temporal prior, to predict future events, and a scene
prior, which is calculated from a generated representative traffic scene. With
this combination Gehring et al. [8] achieved a reduction of false positives (false
obstacle detection) by a factor of three and also could increase the correct detec-
tion rate by more than 2%. Fig.2 shows the improvement achieved during rain
and snowfall.

LIDAR has only become popular in recent years [1]. It works similar to radar,
but instead of sending and receiving radio waves, LIDAR sends light pulses and
detects the light that has been reflected by its surroundings. Conventional LI-
DAR systems consist of a single laser that fires into a rotating mirror. The
resolution of the point cloud, that can be retrieved from such systems, is way
to low to be used efficiently in autonomous driving. High-resolution LIDAR sys-
tems, that are used nowadays, were first used in the Defence Advanced Research
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Fig.2: Rain scene(top) and snow scene (bottom). Stereo reconstruction(red
= near, green = far) for this scene using SGM(left, SGM with temporal
prior(center) and width both temporal and scene prior(right) [8].)

Project Agency’s (DARPA) ”Grand Challenge” in 2007. Most of these sys-
tems use a rotating head that features 64 lasers, resulting in remarkably high
resolution point clouds. The downside of this much data is, that it becomes a
troublesome task to compute and evaluate the data in real time [10].

1.1 Overview of the paper

The rest of the paper is organized as follows. In Section 2 approaches for un-
derstanding urban traffic scenes that will be discussed in detail after a short
introduction into Hidden Markov Models (HMM) is given in Section 2.1. Sec-
tion 3 will feature the experiment results of the introduced approaches and their
comparison followed by a conclusion in Section 4.

2 Scene understanding approaches

In this section three approaches for classifying intersections and understanding
their semantics will be discussed. Since Hidden Markov Models (HMM) are often
used in these approaches for classification of the intersection style or the lane
association of objects, a short introduction to HMM is given.

2.1 Hidden Markov Models

Hidden Markov Models have been introduced in the early 1970s, but only gained
in popularity in the late 1980s. The main reason for their wide use is, that when
applied correctly they can be used for solving many real world problems [11].
Before introducing the problems we can solve with HMMs A\ = (A, B, 7) we
need to define its elements using a simple coin toss as example [11,12], that is
illustrated in Fig.3. Imagine 2 coins, ¢l and ¢2, being randomly tossed.

! DARPA Urban challange: http://archive.darpa.mil/grandchallenge
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Fig.3: Example for a HMM. S = {c1,¢2},V = {h,t}, A = see Eq:(2),
B = {be(h) = 0.2,b.1(t) = 0.8,bea(h) = 0.7,bea(t) = 0.3}, 7 = {0.5,0.5}

— The states of the HMM in this example would be the tossing of ¢l or ¢2. We

denote the states as S = {c1,¢2}. N is the number of states in the model. In
our case N = 2. We also have a sequence of states Q = (q1, ¢, ...q¢) where
gt € S is the state at time ¢ [11].

— The observations are the physical output of the modelled system. If you

are tossing coins the output is the side the coin lands on, head(h) or tail(t).
V = {h, t} is the set of observations and M = 2 the size of V. If we toss coins
t times we get an observation sequence O = (01,02, ...,0¢) where o € V is
the observation at time ¢ [11].

— Using Hidden Markov Models, in contrast to Markov Models, sometimes we
do not know in which state we currently are. We only know the probability of
changing from one state to another, or staying in the current state. Therefore

we get a probability matrix A = {a;;} where
aij = Plg41 = Sjlge = Si], 1<, <N (1)
describes the probability of state S; being followed by state S; in the state

sequence [11].
0.30.7
A= <0.6 o.4> ' @

In our example

— Same as the states the observations can also be hidden (unknown). In both
cases we need the probability of an observation during a given state

J, B ={b;(k)}, where
bj(k) = Plogatt|gs=S5;], 1<j<N, 1<k<M (3)

[11].
In our scenario B = {b.1(h) = 0.2,b.1(t) = 0.8,bea(h) = 0.7, be2(t) = 0.3}.
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— Since we have to start assuming that one of the states was chosen as the first
one, we also need the initial state distribution 7 = {m;}, m; describing
the probability of state S; being ¢; (the first state in the state sequence Q).
m={0.5,0.5} in our coin toss example [11].

Given all these parameters, we can solve problems of HMM, that are useful
in real-world applications. The most important of these are [12]:

The learning of a HMM A, given a training data set of observations O
Estimation of a HMM X = (A, B, m) that maximises P(O|\)

Find the best state sequence @ given O and A

Compute the probability that an observation sequence O was created by a
given HMM A, P = (O|\)

Ll

2.2 LIDAR based intersection recognition

The approach by Zhu et al. [2], that is discussed in this section, aims at recognis-
ing intersections and classifying them as road segements, T-shaped intersections
or +-shaped intersection. For this purpose they use a Velodyne HDL-64ES2 LI-
DAR sensor?, a high-end sensor with 64 lasers that produce 2.2 million points
per second with an accuracy of less than 2 centimeters and a range of 120 me-
ters. They preprocess the point cloud, that is received from the sensor and then
apply a beam model on the data to create feature vectors.

What distinguishes this approach from related ones is that it models the
intersection detection as a classification problem. Therefore any method that
is based on machine learning can be used to solve the issue. Furthermore the
starting point of the beam model, used to create the feature vectors, is not
fixed. It alters with the velocity of the vehicle. The faster the vehicle is going,
the further the starting point is away. Also their algorithm is capable of real
time intersection detection and classification [2].

Data preprocessing: The output of the LIDAR sensor is a 3D point cloud of
the surrounding area. To make the following steps easier this 3D point cloud is
projected into 2D space and other traffic participants, like car or pedestrians,
are removed using following steps:

1. The data is looked at from above. For each frame of data a grid map is
created. For all quadratic cells in the grid map the variance of elevation of
the corresponding points is computed [2].

2. If the variance of elevation is greater than a given threshold the value of the

grid cell in set 1, else it is set 0. The result of this operation is a 2D binary

image that resembles the scene in bird-eye view [2].

All regions of ones are surrounded by bounding boxes [2].

4. Using the width and length of the bounding boxes, vehicles and pedestrians
are detected [2].

©w

2 Velodyne LiDAR HDL-64E: http://velodynelidar.com/hdl-64e.html
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5. All regions belonging to vehicles or pedestrians get set 0. The rest of the
binary image, now without any unwanted obstacles on the road, is used for
the further process [2].

Beam model and feature creation: Next a beam model is used on the
binary image. First the distance D between vehicle and starting point of the
model is calculated like

D=5+uvxt (4)

where v is the velocity of the vehicle and ¢ is a pre-defined constant [2].

The starting point is in front of the vehicle with distance D. From there 360
beams, with a 1°angle between 2 adjacent beams, are sent. Each beam scans the
binary image linearly and stops, if it hits an obstacle (a 1 in the binary image).
If it doesn’t hit anything it will stop after a pre-defined length L [2].

With the normalized length of all 360 beams a 360-D feature vector is created
for classification. This can be done, because the normalized length histogram for
each class we want to classify (road segment, T-shaped intersection, +-shaped
intersection) is distinctive. A beam pointing towards a road segment is longer
than a beam pointing directly to a curb, because it can travel further before
hitting an obstacle. So in the normalized length histogram there is a peak for
each possible direction the vehicle can go. As illustrated in Fig.4 +-shaped in-
tersections have 4 and road segments have 2 local peaks [2].

-~
|
o - ! 06 N v -~

Normalizec lergth

20 300 350

1
0 50 100 150

200
Serial number of beam

Fig.4: Example of beam model histogram in intersection(top) and road seg-
ment(bottom) [2].

Classification: After all features are created, the problem of classification is
then formulated as a supervised machine learning problem with labelled classes.
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In the approach of Zhu et al. [2] it is considered a 2 stage two-class classification
problem. First between intersection and road segment and then, if it was clas-
sified as intersection, between +-shaped and T-shaped intersections. They use
a Support Vector Machine (SVM) [13] because of its good ability to learn from
small training sets.

2.3 Small-scale intersection scan model

Yang et al. [6] discuss the problem of intersection recognition and classification
on a similar basis as discussed in Section 2.2.

What separates them from the approach of Zhu et al. [2] is that their classifi-
cation of intersections, besides road segments, T-shaped and +-shaped intersec-
tion, also differentiates Y-shaped intersections. Additionally they use not only
real-time detection results, but also historic ones. To do so they use a particular
Hidden Markov Model with the real-time and historic detections used as the ob-
servation states. Another unique selling point is the capability of this approach
to deal with both LIDAR and visual, in this case monocular vision, data [6].

The Intersection Scan Model: The Intersection Scan Model (ISM), similar
to the beam model in 2.2, is used to detect the traversable detections a vehicle
could possible go on an approaching intersection.

The output of the ISM is an intersection model which is represented by

Mi:{Na;PTDv-PC}? (5)

where N, is the number of traversable directions, Prp = {TR.1, T Re2, ..., TRena }
contains the angle for each traversable direction and P, is the intersection cen-
ter [6]. M; will later be used as input for the Hidden Markov Model.

As seen in Fig.5a the ISM only scans in the region in front of the vehicle. It
has some parameters like the scan radius Ry, the scan resolution M = 360/A60
and the contour C of the model that can be adjusted to achieve better detection
results and are adaptive to the environment. For easier understanding Af =
1 resulting in a resolution of 360 beams when scanning 360°around the ISM
center [6].

Instead of stopping a beam when an obstacle is hit, as in the approach of
Zhu et al. [2], cach beam continues the scan till it reaches the length of Ry and
returns the number of Non-ground Points (obstacles like road curbs) it hit until
that. From these values a graph can be generated (see Fig.5b) that shows the
traversable directions [6].

Even though continuous troughs in the graph indicate that there are no
obstacle in this direction, these angle intervals can only be marked as traversable
directions T'R,, if the interval is also long enough. An interval too short means,
that the vehicle could not fit through this gap and that it possibly isn’t even
a road. To simply further calculations, only the center T'R., of each interval
TR, is used resulting in the previously mentioned angles for each traversable
intersection Prp = {T'Rc1,TRe2, .., TRena ) [6]-
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Based on the number of angles N, and Prp a classification between different
intersection types can be made. For example a T-shaped and a Y-shaped in-
tersection both have 3 traversable directions, but can still be seperated by their
angles Prp, which differ between the 2 intersection types. To further improve the
detection results not only results from a single frame are used, but also historic
ones. For this a HMM is used [6].

Traversable Direction
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i T 35 ' |\
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= |
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(a) (b)

Fig.5: (a) The ISM. (b) The graph for a +-shaped intersection as can be seen
by the 4 continuous troughs of the curve [6].

Hidden Markov Model: To be able to use a HMM effectively for the intersec-
tion detection, the driving scene is considered a Markov process, which means
that we can be sure that the current scene only is related to the last few scenes
but not to scenes longer in the past. The thought behind using a HMM is that
it is perfectly suited to detect hidden states from observable observations, as
discussed in Section 2.1 [6].

In [6] the hidden states are road, T-shaped intersection, +-shaped intersection
and other shaped intersection,

S ={sr,87,5+4,50}- (6)

The observations for each frame consist of the output of the ISM (see Eq.5)
and the previous detections results [6],

V = {M;,vpre}. (7)

The goal is to find the optimal state sequence Q* given an observation se-
quence @ and a HMM ), which is one of standard problems that can be solved
with HMMs as stated in Section 2.1. On of the most used algorithms for this
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problem is the Viterbi algorithm [14]. The Viterbi algorithm needs the probabil-
ity matrix A = {a;;} and the probability of an observation during a given state
B = {b;(k)} for it’s calculations [6].

Since we do not know both the Baum-Welch algorithm [15] is used to train
them to the HMM. The Baum-Welch algorithm in an expectation maximization
algorithm and finds the maximum likelihood estimation of the parameters A and
B given a set of observed feature vectors [6].

The ISM in LIDAR: The ISM can handle point cloud input from LIDAR
systems. Yang et al. used a Velodyne HDL-64E LIDAR which is equipped on
the top of a vehicle 2.25 meters above the ground. Since each frame sent by this
LIDAR system contains more than 130.000 points, again the data needs to be
preprocessed before further calculations can be made [6].

The pretreatment consists of building a grid map, the segmentation between
ground and obstacles and the clustering of objects as shown in Fig.6 and similar
to the preprocessing described in Section 2.2. The output of the pretreatment is
a 2D grid map that labels points as ground or obstacle [6].

|
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a. Raw 3D point cloud data b. Form a grid map c. F.iiminatcl'lhc ground points d. Eliminate E}n-gr()und obstacles

using 3D bounding box

Fig. 6: Petreatment of point cloud data [6].

Afterwards the ISM is used to recognise the road environment in front of the
vehicle. The center of the ISM is set about 9 meters in front of the vehicle and
C is set to be a circle (see Fig.5a). C' could be any shape as long as the values
returned are normalized. The detection result of the ISM is then combined with
some consecutive historic frame to improve the the accuracy of the intersection
detection [6].

The ISM in monocular vision: Yang et al. also describe the use of the ISM
on monocular vision data. In comparison to stereo vision monocular vision data
lacks depth information which makes the task of scene understanding an even
harder one.

For the ISM to work we need pixel wise segmentation of the input image. To
achieve this a Fully Convolution Network - SegNet [16] is used. SegNet is able
to model appearance (road, building), shape (Cars, pedestrians) and understand
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the spatial-relationship (context) between classes like road and footpath. Addi-
tionally it is efficient in terms of memory and computational time, which makes
it suitable for driving scene understanding [6].

Still the result by only using SegNet is not sufficient, because it returns
us many fuzzy boundaries. To get rid of those a sophisticated segmentation
by Dense Conditioned Random Field (Dense CRF) [17] is used. This method
uses a fully connected CRF that is defined on the complete set of pixels in an
image and is able to handle the immense graph, that this operations returns,
extraordinarily fast [17]. As shown in Fig.7 after the Dense CRF there are no
more fuzzy boundaries [6].

Dense CRF

§

Fig. 7: Comparision between segmentation results of SegNet and Dense CRF [6].

When using monocular vision the model contour of the ISM is set as a rectan-
gle to deal with the projection relationship of the camera (see Fig.8a). The model
center is then set at the center of this rectangle. The result of the scan is shown
in Fig.8b. Due to the non-linear angle changes it is harder to correctly interpret
the result. The Moving Windows method is used for this purpose with the win-
dow size adapting according to angular distribution as is shown in Fig.8b where
it is large for T'R1 while small in T R2. Again the HMM is used for consideration
of historic detection result in combination with the current one [6].

2.4 Understanding semantics by modelling traffic patterns

In Section 2.2 and 2.3 the main goal was to classify the intersection type. The
approach by Zhang et al. [4] look at the intersection problem in a different way.
Their main goal is not just to classify intersections into T-shaped and +-shaped,
but also to understand the high-level semantics of the current traffic scene in
the form of traffic patterns as seen in Fig.9. The experiments of [4] showed that
only a small number of learned traffic patterns is enough to handle most of the
scenarios at signalized intersections. Additionally their model is able to detect
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Traversable Directions Detection
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Fig. 8: Detection process in monocular vision [6].

other high-level knowledge like the current traffic light scene, without explicitly

A
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Fig.9: Example of traffic patterns [4].

Modelling Traffic Patterns: As stated before the model of [4] first learns
a subset of predominant pattern from training data. To interpret traffic scenes
these patterns are recovered from short monocular video sequences and then
vehicles are associated with the corresponding lanes.

The geometry model is defined as R = {¢, r, w, &} where ¢ is the intersection
center, r the orientation of our own car in respect to the intersection, w defines
the street width and « is the intersection crossing angle (see Fig.10a) [4].

For the understanding of traffic pattern and the vehicle-to-lane association,
semantic segmentation, 3D tracklets and vanishing points are employed. The
generative model is defined as:
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(a) Geometry model (b) Tracklet model (c) Lane Model

Fig.10: (a) road model parameters R = {¢,r,w,a}, (b) tracklet with 3 detec-
tions. Red: uncertain object detections d; in 3D. Green: True location of the
vehicle along the normal of the lane spline at distance h;. Blue: lane spline with
associated s;s (blue circles). (c¢) possible locations of a vehicle inside a lane [4].

p(e, R) = p(R)p(T|R)p(V|R)p(S|R) (®)

where the image evidence e = {T,V, S} consists of the vehicle tracklets T' =
{t1,....t,}, vanishing points V' = {vs,v.} and semantic labels S [4]. For the
likelihood calculation of V' and S a state of the art approach by Geiger et al. [3]
is used. To determine the vehicle tracklets T" a unique traffic-aware tracklet
model has been developed by Zhang et al. [4].

Traffic-Aware Tracklet Model: To achieve the goal of estimating the lane
association of vehicle, the tracklets of all vehicles in the scene must be deter-
mined. Drivable locations are symbolized by splines, that connect incoming and
outgoing lanes of an intersection. The latent variable [ represents the lane index
a tracklet is associated with. Additionally the stop-or-go state, the longitudinal
position and the lateral position of the tracklet are modelled [4].

The quality of the tracklet observations are essential for this approach. A 3D
tracklet is defined as a collection of object detections ¢t = {d;, ...,dy} and each
detection d; = {fi, b;, 0;} consists of the frame index f; € N, the object bounding
box b; € R*, and an orientation probability histogram o; € R8. For the detection
of objects a well known detector by Felzenszwalb et al. [18] is used [4].

The computation of tracklets takes place in tow stages: The first stage builds
short contiguous tracklets by associating detections using the hungarian method [19].
Additionally bounding boxes are predicted over time with the use of a Kalman
filter [20]. In the second stage, again using the hungarian method, this time on
tracklets, occlusion is overcome by joining tracklets that are up to 20 frames
apart and the bounding boxes are projected into 3D using error propagation [4].

To model the detected object positions in relation to the given spline curves
a few more variables need to be introduced. s € {1, ..., S} describes the anchor
point of an object at the spline curve, which corresponds to its longitudinal
position, and h € R denotes its true location along the normal direction of the
spline, or it lateral position, as illustrated in Fig.10b. b € {stop, go} stands for
the stop-and-go status of a tracklet and g; represents the pair g; = {s;,b;} to
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simplify further notation. Note that h and g are hidden states, that will later be
used in a HMM [4].

£ Pattern 2 Paﬂm 3 Pjem 4 Pa!m 5 Paim 6 Pjem 7 Piem 8 Palm 9 Paim 10
Pjem " Pagm 12 Paim 13 Paim 14 Paim 15 Paim 16 F’jem 17 Paim 18 Pjem 19

Pa!m 1 Pa!m 2 Paim 3 Paum 4 Pim 5 Paam 6 Piem 7 Pattern 8 Pattern 9 Pattern 10 Pattern 11

Fig. 11: All possible traffic flow patterns [4]

To be able to discuss traffic semantics, the latent variable a, which represents
the possible traffic flow pattern (see Fig.11), is introduced. With that now the
probability distribution over all tracklet observations can be described as

p(T.R) =" pla) [ 32 p)p(tallu, a. R) (9)
a no Iy

where uniform priors are assumed for the patterns a and the lane assignments
[ since we don’t know any distributions of these values. The likelihood of a single
tracklet p(t|l,a, R) is defined as

p(t|a, Z,T') = p(dl‘avla R) Hp(dz|d171a a, l7R) (10)

where d; is the first object detection and d~! = {dy, ...,d; 1} are all detec-
tions up to frame i [4]. For the further definition of p(d;|d~1,a,l, R) I refer to
the derivation of Zhang et al. [4].

The output of the traffic-aware tracklet model is the collection of all current
tracklets T = {t1, ..., ty }. With T given the road parameters, the traffic patterns,
the lane associations and the hidden states can be inferred [4].

Inference Even though the parameters R,a,l and the hidden states h and g
were already used, their real values are still unknown since we used uniform
priors for most of them.

We start with the road parameters R. Considering that Eq.8 cannot be com-
puted in a finite number of operations, R is calculated by using Metropolis-
Hastings samplings [21]. A proposal R’ given the current road parameters R is
accepted with a probability

A= mingy, P& Ra(RIR)

P R(RIR) 1
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where g(R’'|R) is the proposed distribution. To calculate the transition kernel
a combination of local moves, which change R slightly with symmetric Gaussian
mixture proposals, and global moves that sample R directly from p(R) [4].

The maximum-a-posteriori (MAP) [22] traffic pattern a are inferred by build-
ing the product over all tracklets t,, and marginalizing the lane associations [,
assuming a uniform prior on traffic patterns p(a)

N
p(alT, B) o [[ S pltala.bn R)  [4]. (12)

n=1 I,

Similar to that the lane association [ of a tracklet, given the traffic pattern
a and road parameters R, is obtained as the maximum of

p(lnla, tn, R) x p(tnla,ly, R)  [4]. (13)

With the MAP estimate of the traffic pattern and the lane association given,
the MAP assignment of the hidden states {gi, ..., gar} is calculated by marginal-
izing out the hidden states {hi, ..., has}, and running the Viterbi algorithm on
the resulting HMM [4].

3 Experiment Results

A well-founded comparison between the experiment results of the three intro-
duced approaches for intersection understanding is not possible due to two rea-
sons. First the different goals of the approaches are not similar enough. Especially
the approach of Zhang et al. that is introduced in Section 2.4 with it’s primary
goal to associate vehicles to lanes, stands out in this regard. Secondly the used
test data sets are also not quite comparable. Nevertheless I will compare them
after first introducing the different experiments.

LIDAR based intersection recognition The approach by Zhu et al. [2], ex-
plained in Section 2.2, used 2 different data sets for their experiments. Data set
1 focuses on frames with good road conditions with less interference from other
vehicles or pedestrians and contains 264 frames of +-shaped intersections, 136
of T-shaped intersections and 400 frames of road segments with no intersections.
Data set 2 has more challenging conditions with many other vehicles and pedes-
trians and contains 44 frames of +-shaped intersections, 56 frames of T-shaped
intersections and 100 frames of straight road segments. As stated in Section 2.2
a Velodyne HDL-64ES2 LIDAR is used for the data acquisition.

The experiments are separated in 2 parts. First only the classification be-
tween intersections and road segments was tested. The manually annotated
training set for this first test consists of 1300 frames. 150 of those are +-shaped
intersection, 150 T-shaped intersections and the remaining 1000 frames are inter-
section free road segments. For evaluation all intersections are labeled as positive
examples and the true positive rate (TPR), the true negative rate (TNR),
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the total accuracy and the area under curve (AUR) of the ROC curve are
used. The results are shown in Table 1a [2].

The second part of the experiment by [2] focuses on the classification be-
tween +-shaped and T-shaped intersections. The training set for this test
consists of the same 150 +-shaped and 150 T-shaped intersection of test 1. Here
T-shaped intersections are labeled as positive and +-shaped ones as negative.
The results can be seen in Table 1b.

SVM PERFORMANCE ON INTERSECTION AND ROAD SEGMENT SVM PERFORMANCE T'-SHAPED AND +-SHAPED INTERSECTION

CLASSIFICATION CLASSIFICATION

TPR  TNR Accuracy AUC TPR TNR Accuracy

Test Data 1  91.25% 96%  93.625% 0.987 Test Data 1~ 93.382%  80.681% 85%
Test Data 2 81% 84% 82.5% 0.938 Test Data 2 85.714%  79.545% 83%

(a) (b)
Table 1: (a) Classification between intersections and road segments. (b) Classi-
fication between +-shaped and T-shaped intersections [2].

Small scale intersection scan model What separates the intersection recog-
nition approach by Yang et al. [6] from others is that it can be used with LIDAR
and monocular vision data (see Section 2.3). Hence of course also the experi-
ment data needs to be recorded by both a LIDAR system, in this case a Velodyne
HDL-64E LIDAR, and a Point Grey camera for the monocular vision input.
The test data was acquired by driving around in the same urban environment
4 times (see Fig.12), each trip with a different speed. The environment contains
small-scale urban intersections and different scenes like trees, side-walks, dense
buildings and bushland. While driving around, the vehicle identifies all intersec-
tions that it passes using a personal computer (Inter(R) Core(TM) i7, 2.7GHz,
NVIDIA GTX970).

The results of the experiment are shown in Table 2. The qualitative result of
the LIDAR and the monocular vision are similar, with the LIDAR having the
advantage of about 100ms faster processing time. As stated by [6] the few misses
that occurred, happened because of illumination changes or sensor failures.

Understanding semantics by modelling traffic patterns As introduced
in Section 2.4, the approach of Zhang et al. [4] focuses on lane association of
vehicles. Their experiments build on the comparison of their results with results
of an older approach [23] by the same authors. The used dataset consists of
11 T-shaped and 49 +-shaped signalized intersection sequences. The sequences
last frame is captured when the vehicle is entering the intersection and the
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+-shaped

intersection

T-shaped
intersection

Other
intersection

Trip 1
Trip 2
Trip 3
Trip 4

IR

Fig.12: Experiment path (highlighted in yellow). Experiment trip 1 to 4 are
labeled in each intersection [6].

Trip Velocity Intersection Detection Time Trip Velocity Intersection Detection Time
(km/h) Type Numbers Hit (ms) (km/h) Type Numbers Hit (ms)
+-shaped 6 6 203 +-shaped 6 5 302

1 5+£20% T-shaped 4 3 189 1 5+20% T-shaped 4 4 311
Other 3 3 211 Other 3 3 351

+-shaped 9 9 197 +-shaped 9 8 316

2 10£10% T-shaped 5 4 189 2 10+10% T-shaped 5 4 352
Other 1 1 206 Other 1 1 311

+-shaped 10 10 215 +-shaped 10 9 308

3 15 10% T-shaped 6 6 198 3 15+10% T-shaped 6 6 321
Other 2 2 200 Other 2 2 360

~+-shaped 9 8 206 +-shaped 9 8 352

4 20+5% T-shaped 3 2 193 4 20+5% T-shaped 3 3 374
Other 3 2 192 Other 3 2 341

(a) (b)
Table 2: (a) Detection results using LIDAR. (b) Detection results using monoc-
ular vision [6].
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autonomous system would have to make a decision on what to do. The method
of [23] was run using the improved tracklets by [4] to make the comparison fair.

The results of the test (see Table 3) showed, that the approach by [4] achieves
better results at the estimation of the road parameters location (center of inter-
sections), intersection arm orientation, and the overlap of the inferred road area.
It also solves the problem of tracklet to lane association with astonishing better
accuracy as the approach by [23].

T-L error (all) | T-L error (>10m) Location Orientation Overlap Pattern error

Method | 3-arm ‘ 4-arm ‘ 3-arm | 4-arm | 3-arm | 4-arm | 3-arm ‘ 4-arm ‘ 3-arm ‘ 4-arm ‘ 3-arm ‘ 4-arm
[10] 46.7% | 499.9% | 179% | 30.1% |43m |54 m |3.3deg |8.0deg | 58.7% | 56.0% - -

Ours | 15.2% | 30.1% | 3.6% | 140% |5.7m |4.9m ‘ 24 deg | 4.3 deg | 61.5% | 61.3% | 18.2% | 19.4%

Table 3: Comparision between the test results of [4] (Ours) and [23] ([10]).

Comparison: After introducing the experimental results of all three approaches
lets make a comparison of their results. First I have to state, that the experiments
of the "Intersection Scan Model” [6] and ” Traffic Pattern” [4] approaches are not
very meaningful, because their test sets are very small with 61 and 49 test cases. I
narrowed the comparison to T-shaped and +-shaped intersections only, because
only the ”Intersection Scan Model” also differentiates other intersection types
too.

In Table 4 the percentage of correctly classified intersections is shown. For
data set 1 and 2 of the "LIDAR Beam Model” [2] these values were already given
in their experiments. I calculated the average between the 2 data sets to get a
better overall precision value. The experiment of the ”Intersection Scan Model”
showed the overall numbers of correctly classified intersections while driving with
varying speed. I accumulated these numbers to calculate the precision percent-
age.

Precision Comparison
Approach Evaluated Data T-shaped|+-shaped
Data Set 1 94,382%| 80,681%
LIDAR Beam Model Data Set 2 85,714%| 79,545%
Average of Data Set 1&2| 90,048%| 80,113%
. LIDAR 83,333%| 97,058%
Intersection Scan Model\\s 1 u1ar Vision 94,444%| 88,235%

lTraﬂic Pattern [Monocular Vision [ 8178%[ 80,6%‘
Table 4: Percentages of correctly classified intersections

For the "Traffic Pattern” approach it was difficult to decide what values to
choose for this comparison, since their goal was not to classify between T-shaped
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and +-shaped intersections, but to associate vehicles to lanes. The thought was
between the ”Orientation” results and the "Pattern error” (see Table 3). The
”Orientation” value indicates how precise the angle of the intersections was calcu-
lated. The ”Pattern error” shows how many patterns were incorrectly classified.
Since ”Orientation” does not say anything about the classification result and
”Pattern error” is an even more in-depth classification than simply T-shaped
or +-shaped, both values are not quite comparable with the results by the two
other approaches. In the end I decided to take 100—"Pattern error” as the pre-
cision of the ”Traffic Pattern” approach, which then indicates the percentage of
correctly classified patterns.

The best result were achieved by the ” Intersection Scan Model” using monoc-
ular vision data. It achieved a precision of 94,444% on T-shaped intersections
and 88,235% on +-shaped intersections. A general remark about a precision
difference between LIDAR and monocular vision cannot be made, because of
the small test data sets.

Another very important value when talking about autonomous driving is the
computation time an approach needs to come to a decision. This is important,
because to use a method of intersection classification in the real world it has
to be able to make decisions in time. In Table 5 the needed computation time
by the ”Intersection Scan Model” and the ” Traffic Pattern” approach is shown.
The "LIDAR Beam Model” approach did not state how fast its algorithm can
make decisions, but states that it’s capable of real-time decision making [2].

Computation Time Comparison

Approach Evaluated Data |Time(ms)

. LIDAR 200
Intersection Scan Model Monocular Vision 390
Traffic Pattern Monocular Vision 1000

Table 5: Computation time comparison

As can be seen in Table 5 the ”Intersection Scan Model” is way faster than
the ”Traffic Pattern” approach. It only needs an average about 200ms for the
classification when using LIDAR data and about 320ms when using monocular
vision data. On the other hand the ”Traffic Pattern” approach needs about 1
second to decide for a pattern and that only when the road parameters are
already given. The calculation of the road parameters themselves already need
about 1,5 minutes when using 15000 samples [4]. So there is no way that this
approach can be used in the real world, because it is way to slow.

4 Conclusion

In this paper I introduced three different approaches for the problem of urban
intersection understanding in regards to autonomous driving. It was shown that
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the approaches use LIDAR or vision based systems and that the processing of
those 2 different systems requires diverse methods. Nevertheless some methods
can deal with both types. Additionally a short overview over the experiment
results of the three approaches was given and a comparison between their results
made. I also briefly discussed Hidden Markov Models, since they are used in two
of the three approaches.

In future work I plan to develop novel solutions to the discussed problems.
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Abstract. X-ray screening, that generates either 2D or 3D images, has
a major impact on security aspects such as baggage handling. These
systems help to detect threat items like explosives or weapons within
closed luggage. Despite many research and developments regarding X-ray
technologies, automated object recognition is not precise enough to be
able to completely rely on it. Baggage screening still depends on human
operators. In this paper, different approaches for baggage screening are
compared to show the respective advantages and disadvantages. It will
also discuss the difference between industrial and medical X-ray screener
and finally, problems that currently exist in terms of X-ray screener and
object recognition are listed.

Keywords: X-ray, baggage screening, CT, object recognition, threat
detection

1 Introduction

X-ray screening and inspection systems are used wherever objects and defects
need to be detected non-destructively. Typically that’s the case with industrial
quality control, analysis of products like food inspection of cargos and for ar-
chaeological discoveries [14]. However X-ray screeners are also used as a security
technology, the best known are probably baggage screener at security checkpoints
in airports [5]. Since 9/11 and various other incidents, the security measures at
airports and other public places have increased [24] [5]. Since then, more and
more security research has been conducted to produce supporting technologies.
Especially in the field of baggage screening breakthroughs were accomplished,
which made it possible to scan every luggage before a flight takes place and with-
out producing too much extra loss of time. Different countries and researchers
took part in researching more precisely X-ray screener and therefore various ap-
proaches where achieved. Two predominant approaches lead to either 2D or 3D
X-ray projection images. These images can be obtained by various approaches
and have different advantages and disadvantages [24].
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1.1 Overview of the paper

This paper is intended to provide an overview and understanding of object recog-
nition within X-ray systems and therefore describes physic fundamentals (see
Section 2) as well as the current state of the art of X-ray technologies used for
baggage screening (see Section 3). Afterwards, some differences to medical X-
ray scanners are explained (see Section 4) and advantages, as well as limitations
of these technologies, are analyzed (see Section 5). Finally, the use cases are
inspected and the usage of automatic algorithms is summarized (see Section 6).

2 X-ray Fundamentals

2.1 Electromagnetic waves

1 period = 1 wavelength (7)

Propagation
direction
(k-vector)

Fig. 1. Representation of electromagnetical waves [12]

Electromagnetic radiation is a form of energy that consists of transverse
waves of electric and magnetic fields. These waves can travel through a space
of vacuum at the speed of light (approximately 3.0108 m/s). The electric and
magnetic fields components are orthogonal to each other as shown in Figure 1.
Electromagnetic waves vary in wavelength, which is a measure of distance be-
tween two identical peaks (1 period), and frequency, which indicates how often
the wave oscillates per second. Wavelength and frequency are inversely propor-
tional. Waves with higher frequencies have shorter wavelengths and travel faster
than waves with a longer wavelength and therefore lower frequencies. Further-
more the energy an electromagnetic radiation emits is inversely proportional to
the wavelength as well [12] [4].

X-Rays have short wavelengths (between 10nm - 0.0lnm) and high frequen-
cies, hence they are most energetic beside of gamma-rays. Figure 2 shows all
electromagnetic waves alongside X-rays with their wavelength.
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Fig. 2. Electromagnetic spectrum [19]

Depending on the density and atomic properties of matter, as well as the
energy of the X-ray, X-rays can either pass through matter, be absorbed by it,
or scattered upon impact.

Hard X-rays are the highest energy X-ray. They have the ability to penetrate
materials and are used for screening objects (in medicine, for security screening,
for quality control, etc.), whereas soft X-rays have less energy and therefore
don’t penetrate matter as easily as hard X-rays. Different materials absorb X-
rays at different rates because of their density. Steel has a very high density
and because of that only high-energy X-rays can permeate while lower-energy
X-rays are absorbed. Organic materials like bread can be passed by hard and
soft X-rays because of the low density [19].

2.2 Industrial X-Ray Imaging

Fig. 3. Example of a resulting image for a pistol scanned by an industrial X-ray scan-
ner [13]

X-rays come in different wavelengths. The lower the density of a substance
and the shorter the wavelength, the more transparent the substance is to the
X-ray. Unlike in medical fluoroscopy, the lower the density and thickness of a
material, the brighter it will be displayed. Higher density materials or really
thick objects are displayed dark, very high-density materials like lead crystal,
cement, and different metals will show up black [21]. This is because in industrial



4 A. Sebernegg

scanners the positive - and not the negative - image is portrayed. By showing the
silhouette of objects with high density, other items in front or behind that object
cannot be recognized on a simple X-ray image [15]. An image of different shades
of gray is the end result of an industrial standard X-ray screening as shown in
Figure 3.

Fig. 4. a) Electric shock device, b) switch blade knife, ¢) self defense gas spray Guardian
Angel, d) improvised explosive device (IED) [16]

A luggage inspection is a complicated task because objects, in reality, can
look very different to those displayed on an X-ray image. People therefore need
training and support to recognize objects on X-ray images [16]. A typical graphi-
cal support for this is to display different materials in different colors. Compared
to grayscale images, color images are more pleasant to look at and areas can be
recognized better because the human eye can distinguish many more colors than
gray values [11] [9]. Such color images that display baggage with threat objects
inside can be seen in Figure 4. A distinction is made between three main material
groups:

Shades of Orange represent organic materials
Shades of Blue represent inorganic materials

Shades of Green represent mixed materials
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3 State of the Art

X-ray scanners were not only developed for medical purposes but also for indus-
trial applications. Many different approaches have been pursued over the years
which led to a wide selection of products and advances. These various technolo-
gies can be divided into X-ray scanners that generate 2D images and computed
tomography that generates 3D computer models. For both technologies, X-rays
are used to obtain images. X-ray radiation can consist of numerous wavelengths.
As a result, X-ray beams can have a different amount of energies and therefore
the interaction with matter changes depending on the structure of the beam
and the properties of the matter. Knowing how a matter behaves at two or more
different energies provides more precise information about a material. Due to
this principle, mono-energy, dual-energy and poly-energy X-ray images can be
produced [15].

3.1 2D X-Ray Scanners

In a conventional 2D X-ray scanner, an image is created in a receptor positioned
opposite the source for the X-ray and which detects penetrating X-rays. The
items are represented by functions f(x,y,z) of the position. These functions are
then imaged as projections P(x,y) onto the x,y plane of the receptor. Through
that, the z-coordination is lost and the thickness of the items cannot be rep-
resented by the resulting image [24]. Four different systems, described in the
following subsections, make use of this method.

Standard X-ray Technologies use single-energy X-rays, which mainly pro-
duce grayscale images because the differences between materials cannot be iden-
tified. Therefore, the image shows only how much X-rays were able to pass
through the matter. This method depends highly on human operators. Without
material discrimination, threat items like explosives, drugs or poison are hard to
recognize and algorithms may only identify objects by their shape using pattern
recognition [10].

Dual-Energy X-ray Technologies with Single-View as well as other poly-
energy X-ray systems are using a range of different X-rays to gain more informa-
tion about the scanned object. Additional filters and two or more receptors in
dual-energy and poly-energy X-ray systems are used to capture different X-rays
(see Figure 5). X-rays are picked up before and after each filter. The filters block
out X-rays of certain wavelengths. Thereby a better representation of matter
with different densities and attenuation properties can be achieved by compar-
ing the resulting images. This leads to a better representation of the objects by
using colors for different materials. The distinction of matters is not only useful
for the human operator, it can also be used by automatic algorithms to detect
and mark certain materials. Furthermore, by using X-rays with different ener-
gies, objects can be displayed that would be hidden by high-density materials
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in mono-energy systems [22]. Single-View systems only present one view of the
scanned object to the operator. Usually, this view is from the top of the object.

Singks Enargy X-Ray Beam
sttt peeiar -

Al Available Erergy
{High and Lowj

(Hand L)-HuL

| Energy Detector

Hi Fass Filber

Fig. 5. Dual-energy X-ray system with two detectors in the front and the back. In
between is a filter located [22].

L

Fig. 6. Items are difficult to recognize when looked at from an unusual viewpoint.
Dual-Views can be helpful [16].

Dual-Energy X-ray Technologies with Dual-View or systems with multi-
view are using several X-rays and receptors to provide images from different
perspectives. Most of the time, dual-view systems show a view from the top and
one from the side. This gives operators more information about the content of
the luggage [23].

Backscatter X-ray Technologies are often found in airport body scanners
however, they can also be used for quick inspection of containers or luggage.
In contrast to X-ray systems that use transmission methods, backscatter X-ray
scanner detect the radiation that is reflected or rather backscattered from the
object [3]. Low-density materials like organic ones tend to scatter X-rays and
not many X-rays pass through. Therefore organics will not show up well on
images of standard X-ray scanner but can be detected by backscatter X-rays
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scanners [7]. In order to detect denser materials as well, which is important
for baggage screening, backscatter X-ray technologies can be combined with
a detector for penetrating X-rays. In this case, the system will generate two
different images — one by the transmission and one by the backscattering (see
in Figure 7) [10].

—i

X-ray Source

Transmission
Detector

p——y

X-ray Source

Target

2" Backscatter
Detector

Z Backscatter™ X-ray
of the same suitcase

Fig. 7. X-ray transmitted (top row) and X-ray backscattered (bottom row) methods,
with produced images [7]

3.2 3D Computed Tomography

X-ray Computed Tomography (CT) scan, also known as Computerized Axial
Tomography (CAT) scan, produces cross-sectional (tomographic) images by gen-
erating different 2D X-ray images from various angles [6]. The external and
internal structure of an object can be reconstructed by interpolating between
those cross-sectional images to produce volumetric images in the form of 3D
voxel(volume elements) images [1]. Therefore a three-dimensional representa-
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tion of the luggage is generated. Some CT-systems display those 3D models in
real time [8].

Just like 2D X-ray scanners, CT scanners can utilize distinct X-ray spectra
to examine the different density properties of matter. Dual-Energy Computed
Tomography (DECT) uses this advantage by scanning an object at two distinct
energies. By calculating the mass and density of an object, it can be determined
from which material the object consists. Today, DECT Scanners are preferred
over Single-Energy CT’s because of their more precise and effective distinction
of materials, which also enables automatically material-based detection of ex-
plosives [17].

CT scans provide much more information than conventional X-ray systems.
However, to achieve images from different angles, the X-ray source has to be
rotated around the baggage which makes the scanning-process more expensive
and slower than the conventional one [20].

4 Difference to medical scanners

Fig. 8. Example of a resulting image of an medical X-ray scanner [18]

X-ray baggage scanners are very similar to medical X-ray systems with few
exceptions. Newer baggage scanners make use of the different wavelengths of
polychromatic X-rays which is not necessary for most medical X-ray systems.
As already mentioned, X-rays that have a short wavelength and therefore high
energy can pass through many materials while X-rays with a long wavelength
can only penetrate low-density substances. Therefore, it depends on the density
of the materials, which wavelengths can pass through and which cannot. By
distinguishing which wavelengths passed the objects, X-ray scanners can resolve
a much greater range of substances. The substances can then be colored dif-
ferently which is another fact that differs from a medical system. To penetrate
dense objects as well, baggage scanners use stronger X-rays which wouldn’t be
possible in a medical X-ray scanners because they can cause lasting damage to
the human body. In contrast to medical CT’s, in most industrial ones, the X-ray
tube and the detector are at rest while the object rotates. Baggage screener are
an exception — in their case, it’s more practical to rotate around the baggage
just like in medicine.
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5 Limitations and Advantages of Different X-ray Systems

X-Ray systems have different advantages and limitations. They are therefore
used in different contexts and situations. An overview of these advantages and
limitations is given in Figure 9.

STANDARD DUAL-ENERGY BACKSCATTER cT
SINGLE VIEW SINGLE / DUAL VIEW SINGLE VIEW 3D

Material discrimination ® @ @ @
Threats detected ‘ ‘ E ‘ ‘ E
L PO PP 0P
Throughput @ @ @

FAST FAST VARIES SLowW

+ Distinguish between . .
materials and color-code for | | Distinguish between lowz G'ea__t spalla! TESDUEIDW (up
operators to a few millimeters)

Benefits * Low cost elements .
+ Can detecl explosives . Do 0 + Looks past/around high-
hidden behind object made Generates 2 images density objects
of heavy materials
« Can't distinguish between « Reduced penetration
various absorbing materials |- Can't distinguish as (esp. through high density |
Limitations + Tend to have higher false effectively between lighter malerials) s allorjv‘t]r;:;ct\gghput
alarm and overlooked threat | elements « Expensive, esp. if 2-sided 9
rates version needed.

Cost (estimated) © ©© © ©(‘_, © @@

Fig. 9. Table comparing different X-ray technologies [2]

5.1 Standard X-ray Systems and Single-View

Standard X-ray systems have the drawback of not being material specific, which
means that a distinction between organic matters like liquids and explosives is
not possible [24]. In addition, overlying or underlying objects with high density
may mask other potential threat items.

Single-View systems only show the shape of objects from one view which
also means, that it can be really hard to recognize objects if they are rotated. An
example for this is shown in Figure 10. This Figure shows (a) an example bag
with a threat item in it, (b) shows a resulting image after a 2D X-ray scan from
the top revealing the item of interest within the bag and (c¢) shows a different
scan from the side. The item of interest in (c¢) has a different orientation in which
the object is no longer clearly recognizable [8]. The difference of orientation is a
huge limitation of 2D X-ray systems with only one view which makes the detec-
tion of threat items not only hard for human operators but also for automated
algorithms. Moreover, no information about the depth of an object can be given.
In exchange, standard X-ray systems have the advantage of being cheaper than
other X-ray technologies and they have a high throughput, which means that
they can scan fast [10].
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Fig. 10. a) Example bag with a threat object, b) First orientation of pistol, ¢) Second
orientation of pistol [8]

5.2 Dual-Energy X-ray Systems and Multi-View

Contrary to standard X-ray systems, Dual-Energy systems have the advantage
of distinction of materials [23]. Colors are applied to show the difference between
the materials. This helps human operators to locate threat items but it can still
be hard to distinguish between different organic ones. Therefore many dual-
energy systems have automated algorithms which can flag suspicious organic
materials that have a similar density to known threat materials [22]. Systems
with Multi-Views have the additional advantage of displaying more views of
rotation. Objects can be difficult to recognize using only one viewpoint, therefore
a second view can help. Dual-Views may be an improvement, but sometimes even
two perspectives do not suffice [14].

Dual-Energy X-ray systems cannot easily distinguish the shape between var-
ious lighter elements like organic materials. Although they are more expensive
than standard X-ray systems, they are still cheaper than other technologies and
have a high throughput [10].

5.3 Backscatter Systems

Backscatter systems can display two different images of the scanned object and
are great for displaying organic materials but struggle with high-density ob-
jects. To make these systems efficient for baggage scanning, they need a second
set of equipment with X-rays that can pass through dense objects. Therefore
backscatter systems can be really expensive [10].

5.4 3D Computed Tomography

In combination with dual-energy X-rays — which is the state of the art of new
CT baggage screeners — more features of the object are provided [24]. Because
of their spatial resolution, CT’s can determine the depth of an object and it
can be viewed in every orientation. A human operator can just rotate the 3D
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model to look around items, which means more items can be viewed [10]. One
disatvantage of CT’s is, that they are time consuming and therefore don’t have
such a high throughput as other systems [14]. This is because of the computation
intensiveness of generating a 3D model. In addition, the cost of a CT system is
higher than most other X-ray systems [10].

6 Conclusion

Threat items are very difficult to detect within baggage. They are closely packed,
concealed by other objects or included within them. Sometimes, items are ro-
tated in such way that they are unrecognizable since the scan only shows a 2D
projection from a single perspective. Furthermore, threat items can show up in
all different kinds of shapes and materials. X-ray systems are tools that enable
security staff to identify such threat items without checking each bag by hand.
In this paper, 2D and 3D X-ray technologies were discussed and compared to
each other. All of them have some advantages and limitations, which means that
none of the described systems fits every situation but all of them have their own
use case.

Standard X-Ray Technologies cannot distinguish materials and only rep-
resent objects in a single view. Therefore, they cannot offer a precise security
inspection but they are cheap and time-efficient. In places with high-traffic and
a lower security, they can be used to detect weapons with a familiar shape.

Dual-Energy Sytems, on the other hand, are commonly used at airports [10].
They have a high throughput, can distinguish materials — which is important
in locations were explosive matters and some liquids are forbidden — and allow
the use of multi-views which helps to identify rotated objects. In general, they
can be seen as good all-arounder for places with high-security measures and a
lot of traffic. However, hidden objects and those unfavorably rotated in some
particular ways cannot be detected.

Another described technology are Backscatter which are mostly used in
body scanners but can also be useful for baggage screening. They can be valuable
when the shape of organic objects matters. For example, if foods are banned in
one place, these systems can be used for identification.

The last mentioned technology and the only one that produces a 3D model of
the scanned object are Computed Tomography Scans. These systems can be
powerful because of their high precision. By additional information such as depth
and a full view, threat items are likelier to be detected and suspicious items can
be better examined. CT’s are slower than other X-ray technologies and need
more space because of their additional equipment. This makes them less ideal
for places with a high-traffic. If CT’s are improved to faster technologies, maybe
we will see more of them in airports instead of the current used 2D Dual-Energy
X-ray scanner.

In all these systems automatic algorithms can be adapted to flag suspi-
cious looking items or those with a material similar to known threat substances
(except in the Standard X-ray system). They can also be used to hide informa-
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tion such as specific materials like cloth which can come in handy in baggage
screening because most of the time bags are filled with clothing and other objects
are only in between. Considering the complexity of the detection of threat items,
it’s hardly possible to find every item that can be designated as a threat. In all
these systems human operators are required, but algorithms can be of great help
and will be improved. Nowadays, security measures are being intensified because
of various events and this could lead to further development of baggage screening
technology.
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