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Institute of Visual Computing and HCT

Pattern Recognition and Image Processing Group 193-03

Abstract

This technical report presents a collection of selected papers, submitted by students in the
courses “Selected Chapters of Image Processing” (VU 183.151) and “Seminar of Computer
Vision and Pattern Recognition” (SE 186.837) of the Pattern Recognition and Image Pro-
cessing group during summer term 2018. “Selected Chapters of Image Processing” was
organized as presentations followed by disussions lead by an oponent.



Contents

Christian Brändle
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Vascular Structure Skeletonization: A Survey 66

1



2D-Warping of Space-Filling Curves
Christian Brändle

TU-Wien, Technical University of Vienna
Wien, Karlsplatz 13, 1040 Wien

Abstract—We evaluate certain possibilities of warping space-
filling curves to different 2D domains. The domains are described
by their contours and are preprocessed to establish a topology
equal to a disk. We compare different possibilities according to
their accuracy and other qualities of the mappings. Discrete as
well as continuous mapping schemes are evaluated.

I. INTRODUCTION

The goal of this review is to find a warping scheme between
two 2D domains defined by their corresponding outer border.
The actual warp should then transfer a space-filling curve from
one domain to the other.

Figure 1. Target domain (red) is cut to be topologically equivalent to fixed
source domain.

If a domain has holes, and as such more boundaries, it is
cut in a way that only an outer boundary remains. That means
we make the domain topologically equivalent to a disk. To
make two 2D domains topologically equivalent to a disk we
introduce cuts in the target domain. How to optimally cut a
surface into a disk can be read for instance in [EHP04]. We
just illustrate here a possible cut of such a domain, see Figure
1.

Further we want to define a mapping between the two
domains that is continuous and bijective. The two illustrated
patches, that are forming the domains respectively, are refer-
enced to as the domain or source domain for the green patch
on the left and co-domain, target domain or image of our
mapping for the red patch on the right.

Figure 2. The received deformation of a local patch in the target domain can
be significanly different depending on its location.

Further we want that local deformations, such as stretch in
the surrounding of certain points of the domain and the co-
domain, are as low as possible. This is easiest formulated by
further constraints on the domain transformation as we will see
later. However, as illustrated in Figure 2, we have to accept that
local deformations in different parts of the mapping (domain
or co-domain) are different and inhomogeneous in comparison
to each other.

Our domain is fixed, it is the unit-square that contains a
space-filling curve, like for instance a Hilbert curve. We will
call this domain in short unit-domain. Once again our co-
domain consists of a patch cut topologically to a disk that
should contain the warped space-filling curve.

We define then a coarse model consisting of a quad-grid,
a triangulation or any other model that captures certain data,
like points, curves, areas and the like, from the unit-domain
and transfers it into the co-domain.

The fine model consists of samplings on the space-filling
curve itself, not limited on specific data points of the grid or
tessellation used in the coarse model anymore. The reachable
sampling points are continuous from their nature, as we can
define a continuous parameter value on the curve, find a point
in the unit-domain and map that point into the co-domain. This
mapping is either established by certain interpolation schemes
between data elements of the coarse model or it is defined
directly if the established model captures both, the coarse and
the fine representation.

II. SPACE-FILLING CURVES

Here we will only give a very brief description of space-
filling curves and especially of the Hilbert curve to provide a
setup for warping such curves from their constructive domain
to an arbitrary co-domain in 2D.

A. Definitions

According to Bader et al. [Bad12] to describe a space-
filling curve we first need to introduce a sequential order
on a d-dimensional array of elements, a so called mapping.
The mapping maps the range of array indices {1, . . . , n}d to
sequential indices {1, . . . , nd} and vice versa.

To change from the discrete to a continuous mapping
the sequential index set becomes a parameter interval, for
instance the one dimensional unit interval [0, 1] or the multi-
dimensional unit interval [0, 1]d.

We can define a curve then

Definition II.1. Curve. We can define a curve f : I → Rn as
a continuous mapping of a compact set I ⊂ R into Rn.
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Usually I is the unit interval [0, 1] and we want to find
a curve that visits each point in the unit square without self
intersections. Such a continuous and surjective curve is called
a space-filling curve. It cannot be injective as several parameter
points can be mapped to the same image point.

B. Graphical Construction of Space-Filling Curves
As a space-filling curve is a sort of fractal curve it is based

on self-similar elements. To construct such a curve we can rely
on a graphical iteration scheme that will be illustrated with a
certain curve, the Hilbert curve. It is a recursive procedure,
that resembles a quadtree generation, see Bader et a. [Bad12]:

Figure 3. The first three iterations of the Hilbert curve [mit].

• The square target domain, starting with the unit square,
is subdivided into four subsquares.

• A space-filling curve is found for each subsquare. It is
obtained as a scaled-down, rotated or reflected version of
the original curve.

• The reflection and rotation is chosen in such a way that
the four partial curves can be connected.

From each iteration to the next all existing subsquares are
subdivided and connected by a pattern that is obtained by
rotation and/or reflection of the fundamental pattern. From
each iteration to the next, four copies of existing iterations are
connected. The copies are rotated and reflected such that their
start and end points can be connected. This is illustrated for
the first iterations in Figure 3. Encoding of the curve could
also be done with the RULI chain code [FK94].

C. Evaluation of Space-Filling Curves
The finite iterations provide an approximate solution to the

Hilbert curve. But we want to compute the corresponding
Hilbert mapping, that means to find an image point to the
corresponding parameter value of the curve.

If we think of the basic properties of the Hilbert curve we
see that a given parameter is approximated by nested intervals.
Each interval is one of the four quarters of its predecessors,
starting with the parameter interval I . Further, the target
is approximated by nested subsquares. Each subsquare is a
scaled, transposed and rotated Hilbert curve section, see Bader
et al. [Bad12].

We consider the boundaries of nested intervals in quaternary
representation:

[
0, 1

4

]
= [04.0, 04.1],

[
1
4 ,

2
4

]
= [04.1, 04.2],[

2
4 ,

3
4

]
= [04.2, 04.3],

[
3
4 , 1

]
= [04.3, 04.0],

(1)

When we construct the Hilbert curve, each of the four
identical subcurves is filled in one of the four subsquares. To
map the parameter of the curve in the 2D domain we have to
compute its relative position in the respective subsquare and
repeat till we get the desired resolution.

For each subsquare we require a transformation operator
that maps the unit square in the correct subsquare by operators
H0, H1, H2 and H3. The quaternary digits tells us the intervals
and therefore the subsquare as well as the operator that has to
be applied, see Bader et al. [Bad12].

Figure 4. Detection of subsquare corresponding to given interval.

The operators Hi first scale and then performs a combina-
tion rotations, reflections and translations.
• H0 performs reflection on the main diagonal
• H1 translates by 1

2 in y-direction
• H2 translates by 1

2 in both x- and y-direction
• H3 performs a reflection in both x- and y-direction
The function value h(t) of the Hilbert curve is then calcu-

lated via three steps:
• Compute the quaternary representation of parameter
t = 04.q1q2q3q4 . . .. If the parameter lies in the q1-th
interval h(t) is in the q1-th subsquare.

• In the q1-th subsquare parameter t corresponds to local
parameter t̃ = 04.q2q3q4 . . .. We compute h(t̃), which
is the scaled down rotated Hilbert curve in the q1-th
subsquare.

• Transform the local h(t̃) into the original square by
applying operator Hq1 to h(t̃).

Repeated in a recursive fashion we can calculate the
2D-coordinates of a point on the Hilbert curve with respect
to it’s 1D parameter value t with arbitrary precision. Figure 4
illustratetes the tracking of the corresponding subsquare of an
example interval.

III. WARPING

Given a source image I and the correspondence between
the original position pi = (ui, vi)

T of a point in I and its
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desired new position qi = (xi, yi)
T for indices i = 1, ..., n,

generate a warped image I ′ such that I ′(qi) = I(pi) for each
point i. Here I and I ′ represent the intensities, colors or any
arbitrary data of the images, see Kheng et al. [Khe08].

Figure 5. Forward and backward mapping between domain and co-domain
[Khe08].

There are two different strategies, namely forward mapping
and backward mapping that map a data point from the domain
to the co-domain or vice versa, see Figure 5.

While in continuous space it doesn’t make a difference in
which direction we transform, in discrete space this is an
issue. With forward mapping, if we start from a grid point
in the source domain, we won’t hit an grid point in the target
domain exactly. With backward mapping it is the same issue in
the other direction. For digital images we prefer a backward
mapping, as sampling in the target domain can be done in
desired resolution and corresponding interpolation is done in
the source domain.

IV. POINT-BASED WARPING

In a point-based warping scheme we identify so called
corresponding landmarks c̄i in the source and c̄′i in the target
domain that are used for alignment. Data points in between
are interpolated in a certain fashion according to the warping
scheme applied. The mapping of the landmarks themselves
can be seen strict or soft depending how important other
constraints, like smoothness of transition, are in comparison.

The basic formulation is a polynomial transformation, in
generic form [Khe08]

u =
∑

k

∑

l

aklx
kyl (2)

v =
∑

k

∑

l

bklx
kyl (3)

The functional representation f(x̄) = f(c̄) of the Trans-
formation T with k parameters β = (β1, β2, . . . , βk) is an
ordinary system of linear equations where we search a β such
that

T (β, c̄i) = c̄′i; i = 1, . . . , N (4)

is satisfied. If the system of equations is overconstrained (K
< 2N) then we solve for the minimum squared error

arg min
β

[

N∑

i=1

(c̄′i − T (β, c̄i))
2] (5)

instead. If the system is underconstrained, we can impose some
extra constraints and find a regularization and a solution that
optimizes for that criterion.

Figure 6. Polynomial Transformation for k parameters β [Whi17].

If polynoms are used, then the constraint points ci are used
with their respective powers ci,j , c2i,j , . . . , c

k
i,j which leads to

a transition matrix T that is not well conditioned, see Figure
6.

Because of that an inversion of the matrix with an ordinary
pseudoinverse, like in equation (7), is better replaced by a
singular value decomposition, like in equation (10).

TTTβ = TT c (6)
β = (TTT )−1TT c (7)

T = UWV T (8)
T−1 = VW−1UT (9)
β = T−1c (10)

A. Radial Basis Function - based Warping

One possibility of warping between two different sets of
landmarks is given by radial basis functions, see Whitaker et
al. [Whi17]. The RBF formulation is a polynomial transfor-
mation where the functional representation f(x̄) is a weighted
sum of basis functions

f(x̄) =
N∑

i=1

kiΦi(x̄) (11)

Φi(x̄) = Φ(|x̄− x̄i|) (12)

Figure 7. Comparison result between different polynomial degree about
moving the control-points. From left to right: without polynomial, with
constant, with linear, with quadratic [KLYL09].
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As a sum of radial basis functions cannot capture an
affine transformation of control points exactly we have to
add an additional polynomial to capture such transformations.
Further the polynomial is used to relax the exact mapping of
controlpoints in favor of a lower bend energy on the domain,
see Arad et al. [ADRY94]

f(x̄) =
N∑

i=1

kiΦi(x̄) + p2y + p1x+ p0 (13)

(14)

We then define T x(x̄) and T y(x̄) respectively

T x(x̄) =
N∑

i=1

kxi Φi(x̄) + px2y + px1x+ px0 (15)

T y(x̄) =

N∑

i=1

kyi Φi(x̄) + py2y + py1x+ py0 (16)

(17)

Finally, we impose constraints and solve the linear system
to find k′s and p′s to fit the data points

T x(x̄i) = x′i T x(x̄i) = y′i (18)
N∑

i=1

kxi = 0
N∑

i=1

kyi = 0 (19)

N∑

i=1

kxi x̄i = 0

N∑

i=1

kyi x̄i = 0 (20)

Figure 8. Solve RBFs for landmarks as constraints [Whi17]

The resulting equation system is seen in Figure 8. The effect
of using different polynomials in addition to the radial basis
function can be seen in Figure 7 of Kwon et al. [KLYL09].
Finally we can use different kernels in the RBF like Gaussian
kernels or thin plate spline kernels, see equation (21).

Φi(x) = |x− xi|2lg(|x− xi|) (21)

The problem with this deformation is that the shape under-
goes undesirable local non-uniform scaling and shearing, see
Schaefer et al. [SMW06].

V. MESH-BASED WARPING

Here we will discover certain possibilities to generate a
mapping from our domain in our co-domain with different
meshing algorithms for the given domain. By their nature
the algorithms discretize our domain and co-domain in such
a fashion, that certain points on the boundary as well as
inside the domain are picked to represent vertices in the
corresponding meshes.

For the mapping itself we explore different strategies. We
can find a parametrization that transforms our domain in our
co-domain or we can find an inverse parametrization that does
the opposite.

In either case we will need to do an interpolation of points
that are not in the set of selected domain or co-domain points.

For the first strategy we take a look at meshings out of self
organizing maps [Koh98], for the latter we will explore the
stretch-minimization parametrization [YBS04].

A. Co-domain reconstruction with Self-Organizing Maps

Figure 9. The ordering stage of SOM learning and final mesh in 2D case
[Nec10].

This forward-mapping is based on the idea that the grid that
covers our domain can be directly transformed in such a way
that it covers our co-domain. Figure 9 illustrates this.

According to Nechaeva et al. [Nec10] we define the co-
domain as G in Euclidean space RnG with coordinates x =
(x1, . . . xn) and the domain as Q, also known as compu-
tational domain, in Euclidean space RkQ with coordinates
q = (q1, . . . , gk), where in general k ≤ n is required, but
in our case it is identical, i.e. k = n.

The domain is represented by our fixed rectangular shape
and the mesh QN = {q1, . . . , qN} is fixed over Q, defining a
four-connected grid. So the mesh Q is fixed and uniform with
an equal distance dQ between all pairs of nodes in Q.

The adaptive mesh GN = {x1, . . . , xN} is constructed over
G, which will be our desired mapping.

Let Bγ(q) define the neighborhood around point q with
radius γ. Then the goal is to find a mapping from Q onto
G that transforms QN into GN .

The SOM model < M,H,Alg > consists of a map of
neurons M = {e1, . . . , eN}, a training set H and a learning
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algorithm Alg. The single neuron ei = (qi, xi) consists of the
vertices in the domain and co-domain respectively.

Figure 10. Corresponding weight distribution to fulfill the equidistribution
principle, i.e. ∀a, b : waAa = wbAb where a, b ∈ [1, . . . , N ] and a 6= b.

The desired density of the adaptive mesh G is defined by
a mesh density function w : G → R+, which is based on the
equidistribution principle, which states that all the products of
each cell area Ai and its corresponding weight wi should be
equal, see Figure 10 for illustration.

To obtain the desired distribution of xi over G that is
based on an equidistribution principle, we have to generate a
training set H = {y1, . . . , yT } that is generated by sampling
a probability distribution p(x) equal to the normalized mesh
density function w(x). Here T is the size of the set and yi ∈ G:

p(x) =
w(x)∫

G
w(x)dx

(22)

The process of ’stretching out’ the mesh in the co-domain
is as follows:

1) Set arbitrary initial locations of mesh nodes xi(0) for
all i = 1, . . . , N .

2) Repeat the following operations at each iteration
t = tst, . . . , tfin:

3) a) Take the next vector yt from the training set H .

b) Calculate the Euclidean distances d(, ) between yt
and all nodes xi(t) and choose the winner node
xm(t) which is closest to yt

m = m(yt) = arg min
i=1,...,N

d(yt, xi(t)) (23)

c) Adjust locations of mesh nodes using the following
rule:

xi(t+ 1) = xi(t) + θqm(t, qi)(yt − xi(t)) (24)

4) adjust weights wi according to the new cell areas fol-
lowing the equidistribution principle

Figure 11. Illustration of learning step function δ(t) (top) and local neigh-
borhood function ηqm (t, qi) (bottom).

The term θqm(t, qi) is the so called learning rate. It lies
between [0, 1) and is the product of the learning step function
δ(t) and local neighborhood function ηqm(t, qi).

θqm(t, qi) = δ(t)ηqm(t, qi) (25)

where δ(t) of equation (29) is a time-depended decreasing
function and ηqm(t, qi) of equation (31) defines the strength
of lateral connections between neuron qm and qi, see Figure
11 for illustration.

t = 1, . . . , T (26)
χ(t) = 1− e5(t−T )/T (27)
δ(t) = t−0.2χ(t) (28)

(29)

r(t) = r(T ) + χ(t)(r(1)0.05t/T − r(T ))t−0.25 (30)

ηqm(t, qi) = s(
d(qm,qi)

r(t)
)2 (31)

The winner neuron will take the maximum displacement
∆x ∈ G at each iteration. The greater the distance between a
neuron and the winner in the computational domain Q, the less
the displacement of this neuron within the physical domain
G. When s is small, only neurons in range of r(t) need to be
concerned.

The values of r(1) and r(T ) are selected in such a fashion
that at the first iteration all neurons in the neighborhood qi
will be affected, whereas at the last iteration T only the closest
neighbors of qi are affected.

As we transform a quad-mesh in our co-domain, we have
to define how we transform points that are not correspond-
ing to grid nodes. Possibilities ranges from normal bilinear
interpolation to more smooth bicubic interpolation [Key81].
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Figure 12. From left to right: 2D mapping domain and model (a), initial
barycentric parametrization (b), single step optimization result (c), optimal
low-stretch parametrization (d). [YBS04].

Figure 13. Parameter cracks on textured Mannequin Head model without
regularization term [YBS04].

B. Domain reconstruction with Stretch-Minimization
Parametrization

Another possibility to represent our warp is with a
parametrization. In peculiar we want a parametrization that
preserves length in a mapping. Yoshizawa et al. [YBS04]
does this via an iterative approach. Starting from a barycen-
tric parametrization on a convex boundary (i.e. [Flo97])
the parametrization is improved gradually. The barycentric
parametrization is defined by minimizing the energy between
neighbor vertices ui and uj

E(ui) =
∑

j

wij(uj − ui)2 (32)

with fixed vertices on the convex outer boundary by solving
for

∑

j

wij(uj − ui) = 0 (33)

The stretch σ(U) of a single triangle T in mesh space
transformed to triangle U in parameter space is defined by
the minimal and maximal Eigenvalues of the transformation

σ(U) =
√

(Γ2 + γ2)/2 (34)

and the stretch of vertex ui in parameter space depends on
the stretch and area A(Tj) of its neighbor triangles

σi =
√∑

A(Tj)σ(Uj)2/
∑

A(Tj) (35)

The parametrization is optimized iteratively by minimizing
the weighted quadratic energy function of equation (32), where
the weights wij are chosen in order to minimize the parametric
stretch. This is done by redistributing the local stretches with
new weights

wnewij = woldij /σj (36)

and solving for new positions of vertices {ui} at each itera-
tion. We can see the vertices {ui} and corresponding energies
in terms of a mass-spring system. For area preservation, if a
high (low) stretch is observed at ui, that is σi > 1(σi < 1),
we relax (strengthen) the springs connected with ui by solving
for new weights.

Given the boundary is convex the parametrization guaran-
tees that no triangle flips occur in the mapping. This provides a
continuous mapping domain, see Figure 12. To avoid so called
parameter cracks in the parametrization, as shown in Figure
13, an additional regularization term is added to the stretch
energy.

As our goal is to map from a rectangular domain to a
topologically equivalent co-domain the stretch minimization
parametrization supplies a good choice. Again we have to
think about the interpolation between the vertices in the case
that a transformed point does not match a vertex. Here we
could use barycentric interpolation as well as higher order or
generalized barycentric interpolation to reach a more soft tran-
sition between neighboring triangles, see for instance Langer
et al. [LS08] and Floater et al. [Flo15].

VI. CONTOUR-BASED WARPING

The idea here is to warp objects with arbitrary shapes
seeking contours of correspondence. Figure 14 illustrates this.

The advantage of this idea is that in principle this can be
done in continuous space, which solves interpolation issues
of discretized mappings and gives a precise transformation
of arbitrary points in the domain according to the underlying
transformation concept.
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Figure 14. Illustration of contour mapping to warp 2D objects [CL98].

We want to establish a mathematical model that map each
point of the source to a corresponding point in the target
domain. In the continuous domain we want to transfer a point
on a specific contour curve Ci to the corresponding point on
the corresponding curve C ′i in the target domain. The curves
themselves are continuous parametric functions that map their
parameter value within range [0, 1) to a corresponding point
on the curve in <2.

So we have a (possibly infinite) set of curve pairs that are
bound together, with a designated starting point in each closed
curve

{(C1, C
′
1), (C2, C

′
2), . . . , (Cn, C

′
n)} (37)

The level set method [OF01] can be used in continuous
space to define a function that generates these curves with
arbitrary distance from the border. To generate the set of curves
in discrete space we can for instance utilize mathematical
morphology [Ser83].

In either case we want a function (u′, v′) = warp(u, v)
such that (u′, v′) ∈ C ′i → (u, v) ∈ Ci, where i ∈ [1, n].

With a given morphological operation we define a relation
between the image object I and a structuring element S. The
structuring element is applied to each spatial point of the object
with the specified relation.

Here we want to use the two specified operations erosion
and dilation, which we will define next.

We consider an image as a function F : E → T , where E
is the set of image points and T the set of possible values of F
and denote the set of functions from E to T by TE . To align
binary images and graylevel images we define a threshold of
F at level t with:

Xt(F ) = {p ∈ E|F (p) ≤ t} (38)

to decouple the direct value of the corresponding image
point from further processing. Then we define structuring
elements B as special sets known a priori. Their shape can
for instance be a cross, like in the middle of Figure 15. Other
popular shapes are stars, squares and lines assembled out of
useful cell values like 0 or 1 in the binary case. Erosion is
defined in equation (39) and dilation is defined in equation

(41), in the case of binary images we can relate to the lower
simpler definition, see [NT13][CL98].

εB(X) = X 	B =
⋂

b∈B
X−b

= {p ∈ E|Bp ⊆ X}

(39)

εB(E) = {x|(x+ b) ∈ E,∀b ∈ B} (40)

δB(X) = X ⊕B =
⋃

b∈B
Xb =

⋃

x∈X
Bx

= {x+ b|x ∈ X, b ∈ B}

(41)

δB(E) = x|x = i+ b,∀i ∈ E,∀b ∈ B (42)

Figure 15. Applied dilation on binary image with given structuring element.
From left to right: binary source image, structuring element and destination
image [BMT94].

Illustrated with a binary image we can imagine that the
structuring element hovers over the original image. Every-
where where the defined origin of the structuring element
overlaps with the corresponding pixel in the image, we will
apply the desired operation on the neighborhood defined by
the structuring element and update the value of the pixel in
our destination image at the current location of the origin of
the structuring element.

In the simple case of a binary image for dilation we just
search if any active pixel in the structuring element overlaps
with any active pixel the defined neighborhood of the source
image. If this is the case we set the pixel at the current position
of the hovering structure element in the destination image
active.

For erosion the procedure is approximately the reverse.
Here all active pixels of the structuring element must overlap
with active pixels of the source image. For situations like the
discrete binary example in Figure 15 the binary erosion can
be seen as the dual to binary dilation, while this is not true in
the general case.

We will stick now to the discrete interpretation and define
the Peel-and-Resample method of Chan et al. [CL98].

The idea is simple, namely to adapt the steps of a skele-
tonization process to produce the searched corresponding
contours in source and target domain. The image is partitioned
in layers derived from the steps of skeletal thinning similar
to peeling an object. It is a three pass process where the
found layer, i.e contour, is transformed to a rectangular, i.e.
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normalized, form. Then this rectangular shape is transformed
back in the output space and finally to the output image.

We can relate here the continuous case again with the
discrete one.

p′ = Erode(p) =E−1d (R−1d (Rs(Es(p))));

discrete case
(43)

p′ =C ′i(C
−1
i (p));

continuous case
(44)

Figure 16. Peel and Resample Method [CL98].

where p = (u, v) = Ci(t) defines a parametric curve in
source domain and p = (u, v) = C ′i(t) a curve in target
domain respectively. Figure 16 illustrates this for the discrete
case.

The process of skeletonization can be done in various ways.
For instance we can use the medial axis transform [Blu67].

The distance transform measures the distance of each point
from the nearest boundary. There are several ways of cal-
culating approximations including thinning, Voronoi diagram,
distance field and hybrid methods [XT09].

A very basic approach is the so called grassfire transform
[Blu67] that is a morphological approach, which is described
in subsection VI-A. The shape of the structuring element
determines the distance metric that is applied, see Bailey et
al. [Bai04] for details on different metrics like L1, L2 or L∞.
A hybrid metric can be approximated by altering different
structuring elements in successive iterations. Better however is
to use grayscale morphology and bigger structuring elements.
The downside is the higher runtime complexity when the
size of the structuring element increases and the fact that
structures smaller than the size of the structuring element
will be overseen. To reduce the computational cost we can
exploit the fact that a structuring element can be decomposed

in several smaller structuring elements. When successively
applied these chain of structuring elements has the same effect
as the original one, but computation time can be reduced
significantly.

Figure 17. Propagation of distances for a single center pixel. Arrows indicate
where the minimum value come from. If the true minimal value path cannot
be covered by those chained arrows the determined minimum will deviate
from the real minimum.

The chamfer distance transform [Bor86] replaces the iter-
ations of successively applied morphological filters with two
passes through the image. This is based on the observation
that distances are calculated only by propagation of distances
of the neighbor pixels. According to Bailey et al. [Bai04]
the first pass is from top-left to bottom-right corner and uses
only values that are correctly initialized or calculated from the
upper left part of the transition window to propagate values.
The second pass is from bottom-right to top-left and use only
the lower right part of the transition window. It has to be
mentioned that we can get an incorrect minimum distance in
certain situations. Image the propagation fronts caused by a
single pixel in the center of an image like shown in figure 17.
As we can see in the bottom left octant there is less redundancy
for passing information from neighbor pixels than in other
octants. Bailey et al. [Bai04] notes that this lack of redundancy
means that every pixel on the propagation path must be closer
to the original background point than any other background
pixel. If not, we will retrieve an incorrect minimum distance.
Situations like this can arise easily in figures of certain shape
like for instance spirals. The interested reader is referred to
Bailey et al. [Bai04] or Borgefors et al. [Bor86] for more
details.

Figure 18. Violation of locality between pairs of points in vicinity of skeleton
S and S′. The points p1 and p2 in the source domain are locally close but
the mapped points p′1 and p′2 in the target domain are far from each other.

But this kind of skeletonization method suffers from the
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fact, that it can easily violate the property of locality, namely
that close points in the domain stay close in the co-domain.
Imagine two skeletons S and S′, where the one can be reduced
to a point s1, whereas the other forms a long line (or another
structure) made out of a set of s′i. A point p1 mapped close
to the point s1 has a good chance to be mapped to a point
p′1 close to the point s′1 at the one end of the line whereas
another point p2 close to s1 could be easily mapped to a point
p′2 close to the point s′2 at the other end of the line, see Figure
18 for explanation.

So it is maybe more desirable either to have skeletons of
similar structure and extent or to use another object to which
the contours should converge. As mentioned earlier we could
just use a single point inside of each object and let the curves
in both domains evolve to that single point. In such a case we
can expect that local points stay more local and that undesired
artifacts around both skeletons disappear. Because of that we
will refer to the level set method [OS88] that can be used for
such a purpose.

A. Morphological Contour Interpolation

A discrete method that follows a similar idea but generalizes
the process of finding intermediate contour lines can be found
for instance in Barrett et al. [BMT94]. It interpolates between
an outer and a definable inner contour. As the innermost
contour can be defined freely, we can rely on contours that
are surrounding skeletons as well as on innermost contours
that are constituted by just a single point, see again figure
18 for explanation. Finding interpolated contours is based on
medial axis transform. For our purpose, we imagine that our
outline forms a three dimensional surface that is subject to
reconstruction.

This discrete image space algorithm depends on the previ-
ously defined morphological transforms named erosion and
dilation and interimage operations XOR and union. Upon
initial registration it is possible to interpolate between nested,
overlapping, non overlapping or branching contours. The
contour values can be generated simultaneously due to the
nature of the morphological operators and result in a generated
elevation map.

Definition VI.1. Isocontour. In 3D, an isocontour here is a 2D
contour embedded into an intersection plane in 3D space. The
plane itself intersects a 3D surface which yields the contour.
Normally this plane is perpendicular to the z-axis and the
surface is closed or has openings aligned with the slicing
plane. This yields closed contours in the regular case. While
isocontours can rely on more general definitions we relate here
to the one given.

The process describes a search of isocontours in the pro-
vided dataset. The isocontours are extracted on a given height
in the 3D elevation map and are used as contours in our
2D domain without their height component. The problem of
finding a set of contour points, i.e. contours, at the same level
of height and the problem of contour interpolation due to
topological changes and/or overlap will be addressed by the

medial line generation, which is closely related to the medial
axis.

Definition VI.2. Medial Line. We define the medial line
or midline C ′ to be the medial axis C without any spines
[BMT94].

The key idea is to find the midline between two contours
and use it to split the intercontour space into two halves. This
is repeated recursively till the intercontour space is exhausted.

The algorithm
• can handle any number of contours of any shape includ-

ing branching or overlapping geometries
• respect local shape by erosion and dilation as well as

global shape through midlines
• can be performed in parallel in image space.
We use binary dilation rb and erosion sb with X as binary

object and B as structuring element. Similar to convolution
kernel we describe Bx as the translation of B by x.

The binary dilation of X by B is done by passing B over
X and ORing B to the output image whenever the origin of
B is over a pixel x ∈ X

XrbB = {x|Bx ∩X 6= �} (45)

The complementary binary erosion is the dual of the binary
dilation

XsbB = {x|Bx ⊂ X} (46)

But as we want to establish a height map that can capture
interpolation values we need a grayscale erosion and dilation
which are defined by minima and maxima over grayscale
image pixels I covered by a grayscale structuring element Gx.

The grayscale dilation is defined as

IrgG = {x|x = max
z∈GX∩I

(I(z) +GX(z))} (47)

and the grayscale erosion as

IsgG = {x|x = min
z∈GX∩I

(I(z)−GX(z))} (48)

In the trivial case the values of G are zero and add no bias.
We want to generate a medial line here, which is a mod-

ification of a medial axis without the spine, see Figure 19.
According to Blum et al. [Blu73] the medial axis of a space-
filling region R in 2D is the locus of all points x ∈ R that have
two or more points on the boundary of R which are equidistant
from x. In our case, the medial line or midline C ′ will always
be a connected line as it stems from an interpolation between
two closed curves.

The goal of contour interpolation is to find the height values
of points in between initially labeled height contours and
producing a continuous interpolated grid of contour values
that represent a discrete height surface between the two
contours. The basic idea is to expand the contours into the
intercontour space until they collide [BMT94]. The collision
front defines the medial line of the intercontour space. Finally
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Figure 19. Illustration of medial line as the medial axis between two contours
without spine [BMT94].

the intercontour line is labeled with a height value in between
the two contour labels.

The steps are repeated till all the intercontour pixels are
labeled accordingly. The process is visualized in Figure 20
and an example result of a generated height map is seen in
Figure 21. It has to be noted that the procedure produces a
staircase effect along ridges that can have negative impact on
successive processing, see figure 22 for that.

To extract a corresponding contour we can filter for a certain
height value in the final image and let the touching pixels
evolve to the closed contour polygon through all points as
illustrated in Figure 23. The more robust alternative is just
to save the generated contours while they are produced. This
solves situations where successive contours may override parts
of already generated contours. The other problem shown in
figure 23 are regions where several points form a cluster. We
have to estimate a proper path there without the knowledge of
the real situation.

B. Level Set Method for Contour Generation

To represent the evolution of our contours in a more general
and a more continuous fashion we can utilize the level set
method. In that case our contours are represented as closed
2D curves that are planar cuts of a 3D function Φ. It has to
be noted that in the continuous case the function Φ has to be
continuous as well as smooth, whereas in the discrete case we
can deal with corners in a more natural way.

According to Persson et al. [Per05] the evolution of those
boundaries or interfaces are represented implicitly and their
propagation is modeled using partial differential equations.
The boundary itself is given by the level sets of a function
Φ(x).

Definition VI.3. Interface. The interface is implicitly defined
by the zero level set of a function Φ(x) = 0 [Per05].
In 3D, the interface can represent a set of 3D isocontours,
each with its own 3rd coordinate, while propagating. The 3D
isocontours are converted into 2D contours by dropping the
third component. Propagation is provided by an additional
parameter for Φ, typically Φ(t, x), where t represent the time

Figure 20. Steps of generating the medial line between two contours
[BMT94].

passed. So interfaces can be seen to have a velocity v and
move in time.

Suppose we have a boundary and a velocity field v, which
depends on space and time properties of the boundary, such
as normal direction and curvature, as well as on indirect or
external dependencies, as shown in Figure 24.

The objective is to model the evolution of the boundary
with the given velocities v. The interface is implicitly defined
by the zero level set of a function Φ(x) = 0. For numerical
approximation Φ can be discretized over a grid, as shown in
Figure 25. Nevertheless the interface should only be accessed
implicitly by operating on Φ. We want to have Φ represented
as signed distance function with the property of | 5 Φ| = 1
with different signs at the two sides of the interface. Because
approximations get inaccurate if Φ has big variations in the
gradient it will be frequently reinitialized to stay close to a
signed distance function.

Geometric attributes of our curve are directly computed
from Φ without representing the interface explicitly. So we
get the normal vector and the curvature with
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Figure 21. Height grid of two interpolated contours [BMT94].

n =
5Φ

| 5 Φ| (49)

κ = 5 5Φ

| 5 Φ| (50)

respectively.
The propagation of the zero level set of the implicit repre-

sentation Φ is done by the convection equation

Φt + v5 Φ = 0 (51)

If the motion is along the normal direction we can use a
speed function F and define v = Fn = F 5 Φ/| 5 Φ| and
5Φ5 Φ = | 5 Φ|2 to obtain the level set equation

Φt + F | 5 Φ| = 0 (52)

To solve the convection equation (51) numerically we use
for instance first order upwinding [REM], which depends on
the first order finite difference approximation

Φn+1
ijk = Φnijk+∆t1(max(F, 0)5+

ijk+min(F, 0)5−ijk) (53)

where

Figure 22. Visualized artifacts like staircase effect along ridges in the height
map [BMT94].

Figure 23. Maximal connected height curve out of extracted pixel set.

5+
ijk = [max(D−xΦnijk, 0)2 +min(D+xΦnijk, 0)2+

max(D−yΦnijk, 0)2 +min(D+yΦnijk, 0)2+

max(D−zΦnijk, 0)2 +min(D+zΦnijk, 0)2]1/2

(54)

5−ijk = [min(D−xΦnijk, 0)2 +max(D+xΦnijk, 0)2+

min(D−yΦnijk, 0)2 +max(D+yΦnijk, 0)2+

min(D−zΦnijk, 0)2 +max(D+zΦnijk, 0)2]1/2

(55)

and D−x is the backward difference operator in dimension
x, and D+x the forward difference operator.

After evolving Φ by F it doesn’t remain a signed distance
function. We have to reinitialize Φ by finding a new Φ with
the same zero level set, but with | 5 Φ| = 1. One possibility
is to integrate the reinitialization equation

Φt + sign(Φ)(| 5 Φ| − 1) = 0 (56)
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Figure 24. Evolving interface according to given speed function F [Per05].

Figure 25. Discretization of signed distance function Φ on a grid [Per05].

over a short period of time, the other is to explicitly update
the nodes close to the boundary by extracting curve segments
and computing the distance to the grid nodes and use the fast
marching method for the remaining nodes.

Figure 26. Boundary value formulation where T (x, y) gives the arrival time
of the interface at point (x, y) [Per05].

The level set equation is an initial value problem, where we
track the zero level set Φ = 0 in time. If the speed F > 0
we can see the evolution as an arrival function T , see Figure
26, where T (x) is the time of the interface to reach x from

its initial location Γ. As speed times time equals distance we
can derive the boundary value problem (Eikonal equation)

| 5 T |F = 1, T = 0 on Γ (57)

If F = 1 equation (57) can be used to compute the distance
functions for boundary Γ.

As the convection equation (51) before we can discretize
the Eikonal equation (57) with



max(D−xijkT,−D+x

ijkT, 0)2

max(D−yijkT,−D
+y
ijkT, 0)2

max(D−zijkT,−D+z
ijkT, 0)2



1/2

=
1

Fijk
(58)

As the front propagates outward from Γ nodes with higher
value of T will never affect nodes with lower values. So
the fast marching method considers only neighbor nodes of
already ’known’ initial boundary value nodes, update them
with equation (58) and put them in a priority queue where the
node with the smallest unknown value is removed and marked
as ’known’ as well. Its neighbors are then updated and inserted
into the queue until all nodes are marked as ’known’.

With this framework we have the possibility to deal with
contours in a more continuous fashion. For more details we
refer to [Per05], [LK05], [OF01] or [Par02].

VII. DEFORMATION-BASED WARPING

Deformation-based Warping relates the source domain to
the target domain based on deformation energy E. First we
have to define the deformation energy between the source and
target constellation, which can include points, lines, contours,
patches or whatever we like to compare. Given that energy
function we want to minimize the energy under certain con-
straints. Typical constraints are the exact mapping of control-
structures, like control points, control lines and the like.

Closely related to parametrization, deformation-based meth-
ods can also be used in a similar fashion. Here however we
will focus on 2D warps of contour outlines and try to find
solutions that are discretized as less as possible to provide
an analytic correct matching at an arbitrary resolution to
transform sampled curve points from a space-filling curve to
the warped domain as exact as possible.

The defined deformation function f will map points from
the undeformed domain in the deformed co-domain.

A. Deformation using Moving Least Squares

Schaeffer et al. [SMW06] let the user select some handles,
i.e. points or linesegments, to control the deformation. There
are source handles pi and corresponding target handles qi to
define the deformation. The deformation function f should
show certain properties:
• Interpolation: handle p should map to handle q,
f(pi) = qi

• Smoothness: f should produce smooth deformations
• Identity: if p is identical to q, i.e. p = q, then f should

be the identity transform, i.e. f(v) = v
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Undesired local non-uniform scaling and shearing are min-
imized by an as ’rigid-as-possible’ deformation. No triangu-
lation of the domain is required and deformations are created
by solving small linear systems (2x2) at each point in closed
form. As such no general linear solver is required. Further the
method extends to line segments.

Given a point v, moving least squares solves for the best
affine transformation lv(x) that minimizes

∑

i

wi|lv(pi)− qi|2 (59)

with the weights wi

wi =
1

|pi − v|2α
(60)

Because the weights wi depend on v, lv(x) is different for
each v. Since lv(x) is an affine transformation it consists of
two parts, a transformation M and a translation T .

lv(x) = xM + T (61)

If we insert equation (61) into equation (59) it is possible to
replace T by the fact that the minimum is where the derivatives
of the free variables are zero. If we rearrange for T we get

T = q∗ − p∗M (62)

where q∗ and p∗ are weighted centroids

p∗ =

∑
i wipi∑
i wi

(63)

q∗ =

∑
i wiqi∑
i wi

(64)

(65)

We can express lv(x) then by substituting T into equation
(61)

lv(x) = (x− p∗)M + q∗ (66)

and rewrite the energy minimization in equation (59) as
∑

i

wi|p̂iM − q̂i|2 (67)

with p̂i and q̂i as

p̂i = pi − p∗ (68)
q̂i = qi − q∗ (69)

The matrix M can be further constraint to be an affine
transformation, a similarity transformation or a rigid-body
transformation. Each restriction will remove undesired arti-
facts. Since affine transformations can contain non-uniform
scale and shear, we can remove the shear by restricting M
to similarity transformations that only contains translation,
rotation and uniform scaling. Further restriction of M towards

Figure 27. Moving least squares deformation on image (a) with affine
transformations (b), similarity transformations (c) and rigid transformations
(d), local deformation is illustrated with yellow patches [SMW06].

rigid-body transformations removes unwanted scaling as well.
Additional details can be looked up at [SMW06].

For a precise control over curves, points may be insufficient
to specify the deformation. While the naive approach of
representing curves with dense sets of points will work it
will be computationally inefficient. A better approach is to
generalize the moving least squares deformations to arbitrary
curves. We define pi(t) as the i-th control curve and qi(t)
as the corresponding deformed curve. A generalization of
equation (59) is done by integrating over each control curve
pi(t) with t ∈ [0, 1]

∑

i

∫ 1

0

wi(t)|pi(t)M + T − qi(t)|2 (70)

with weights

wi(t) =
|p′i(t)|

|pi(t)− v|2α
(71)

where the factor |p′i(t)| makes the integral independent of
the parametrization used. Translation T can still be expressed
as

T = q∗ − p∗M (72)

with p∗ and q∗ as

p∗ =

∑
i

∫ 1

0
wi(t)pi(t)dt∑
i

∫ 1

0
widt

(73)

q∗ =

∑
i

∫ 1

0
wi(t)qi(t)dt∑
i

∫ 1

0
widt

(74)

(75)

Rewriting equation (70) in terms of M provides us

∑

i

∫ 1

0

wi(t)|p̂i(t)M − q̂i(t)|2 (76)

with p̂i and q̂i as

p̂i(t) = pi(t)− p∗ (77)
q̂i(t) = qi(t)− q∗ (78)

(79)
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for arbitrary curves. Restricted to line segments the curves
p̂i(t) and q̂i(t) can be represented in matrix form

p̂i(t) = (1− tt)( âi
b̂i

) (80)

q̂i(t) = (1− tt)( ĉi
d̂i

) (81)

(82)

where âi(t) and b̂i(t) are the endpoints of p̂i(t) and ĉi(t)
and d̂i(t) are the endpoints of q̂i(t). Here we again can derive
a closed form for equation (70) with a replacement of T and
a minimizer that finds the optimal M , for details see Schaefer
et al. [SMW06].

A result of the corresponding transformations based on
affine transformation, similarity transformation and rigid-body
transformation can be seen in Figure 27.

If we could manage to integrate cubic bsplines or bezier
curves pi(t), qi(t) into equation (70) we would provide a
smooth analytic shape that defines the outline more accurately
and therefore provide a better warp in the vicinity of the
border.

B. Locally injective Mappings

Schüller et al. [SKPSH13] defines an algorithm that modi-
fies any deformation energy to guarantee local injective map-
pings. This is done by a barrier term in combination with
a solver strategy that provides interactive manipulation and
robustly handles extreme deformations.

As local injectivity requires that the Jacobian of a mapping
is always positive we can guarantee that all elements will
have positive area. the mapping f between arbitrary shapes
is again defined by an energy functional E(f) that measures
the desired properties. The mapping is then computed as the
minimizer of this energy E under certain constraints.

The approach works by augmenting an arbitrary deforma-
tion energy with a barrier term, that grows to infinity as the
area of the deformed elements approach zero. Since such
nonlinear energies are hard to minimize as the gradient and
Hessian become ill-conditioned when elements degenerate,
solutions in the vicinity of the near infinity energy areas has
to be treated differently.

The minimization of a deformation energy is only of interest
if a term competes with it, for instance as soft constraint. The
energy depending on the position v can then be minimized by

arg min
v

E(v) + α|Cv − d|2 (83)

This energy can be modified by adding a barrier term
which grows to infinity as the elements approach zero area.
To prevent an ill-conditioned Hessian because of near infinity
values in the barrier term a smooth series of intermediate
optimization results is generated.

First we have to measure the area of the j-th element, i.e.
the triangle in configuration v, by a fraction of the determinant.
We define our constraint function as

cj(v) = λj(v)− ε; ε = 10−5 (84)

and forcing that elements cannot invert by requiring cj(v) >
0. The energy function is then augmented with the soft
constraint as well as with the barrier term and we minimize
then

arg min
v

E(v) + α|Cv − d|2 + β
∑

j∈E
Φj(cj(v)) (85)

which guarantees that no element will invert. But the barrier
function should affect the energy only when elements are close
to degenerate. So we want a barrier function that smoothly
approaches zero when the area of the deformed element reach
a certain fraction sj = sλj(v0) of the area in the initial rest-
pose. Using a spline with the desired properties as barrier
function Φj we got

Φj(x) =





∞, x ≤ 0
1

gj(x)
− 1, 0 < x < sj

0, sj

(86)

Figure 28. Increase of barrier function while degeneration of triangle
[SKPSH13].

where the parameter s determines when the barrier starts to
interfere to prevent flips, see Figure 28 for that. An improved
barrier function will be a log-barrier function, augmented with
a linear term to alter the energy when elements increase their
area.

The minimization is done by a Levenberg-Marquardt algo-
rithm. The barrier term offers a closed form of the gradient
and Hessian 52Ebar(v) where the Hessian is used to quadrat-
ically approximate the energy by determing the direction of
decreasing energy to a local minimum.

The iterative vertex update is done by

pi = (52Ebar(vi) + µiI)−1 5 Ebar(vi) (87)
vi+1 = vi − σipi (88)

and the stepsize σ is adaptively computed by a backtracking
line search, where σi is halved until a decrease in energy
is found. Identically the value of σi−1 is doubled for the
i-th iteration, if the energy is still decreased. The Hessian in
equation (88) is regularized by µiI where µi is chosen as
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small as possible to make the Hessian invertible. The value of
µi is chosen with the same strategy as σi.

Figure 29. Improvement of ARAP-deformation energy such that inversions
are infinitely penalized [SKPSH13].

As this strategy cause small step sizes and doesn’t always
work for extreme deformations the strategy is altered when
the Hessian is close to singular. The key idea is to relax the
positional constraints to allow the deformation energy and the
barrier term to improve the shape of the degenerate elements.
So we replace d in the positional constraint with intermediate
targets ti that are updated iteratively.

arg min
v

E(v) + α|Cv − ti|2 + β
∑

j∈E
Φj(cj(v)) (89)

If the Hessian is invertible ti = d, else depending on the
amount of regularization needed, ti is moved further from d
according to

ti = Cvi−1 +
1

1 + µ2
i

(d− Cvi−1) (90)

This adaptive substepping allows the barrier to improve the
shape of the elements. Finally, as the positional constraint
should always dominate the energy in a certain radius r, α
is defined as

γ =
r

|Cv − d|2 (E(v) + β
∑

j∈E
Φj(cj(v))) (91)

αi+1 = min(max(αi, γ), t) (92)

Some results can be seen in Figure 29.
The system of locally injective mappings can be used to

facilitate a lot of possible energies for deformation purpose
while guaranteeing local injectifity of the resulting mapping.

VIII. CONCLUSION

We saw that there are many possibilities to warp two
different 2D domains from one into the other. We saw that
discretizations of the problem can be done at various places,
starting from the problem definition, the intermediate data
representation, the calculations executed to the final represen-
tation of the mapping of defined data.

As we define our model in terms of outer boundaries of a
certain domain in a analytic fashion we favor solutions that
could represent this outer boundary exactly while transform a
point determined on a space-filling curve in a form as close as

possible to the actual mapping equations. Interpolations and
discretizations of the domain are not such a good choice with
respect to the nature of a space-filling curve, which does not
align to any discrete structure in the domain that could be
mapped straight forward to another discrete structure in the
co-domain.

That’s why we rate mappings based on the level set method
higher than mappings based on its discrete ’counterpart’, the
discrete morphological contour interpolation. As the level set
method has the potential to define a contour in a more analytic
fashion we could derive a precise description of our outline.

The same is true for deformation methods like moving least
squares because of their beautiful mapping of an arbitrary
precise point from the domain into the co-domain. If this
mapping would also handle analytic outlines, for instance
defined by cubical curves, it may be our favorite choice.

Point-based warpings are not rated well as by their nature
they could only approximate an outline by sampling it with
many points. Moreover the RBF-warps can have degenerated
parts in presence of high distortions.

The SOM-principle is nice in the way that it is easy to
implement but we think that is suffers from a reliable flat
convergence of the mesh and only will get robust results if a
lot of effort is done by tuning the parameters.

Triangulation based approaches like the stretch-
minimization are fine in combination with advanced
interpolation algorithms, but again the proper definition of the
outline is distracting. If selected, we would prefer the locally
injective mappings, as they handle the cases of fold-overs in
the parametrization as well but can utilize parametrizations
superior to stretch-minimization.
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1 Warping of Space Filling Curves
Discussion Protocol

1.1 Can we construct an injective space filling curve?

No, not if it should be continuous. The connection elements between the fun-
damental patterns cause it to have overlaps in the limit.

1.2 Can interpolation cause self intersections of the space
filling curve?

No, not with a valid interpolation scheme. However we cannot provide any
quaranteed distances between iterations any more.

1.3 May discretisation cause self intersections of the space
filling curve?

If we come below the sampling frequence of the Nyquist-Theorem, yes.

1.4 Red segments part of the curve? If no still continuous?
If yes how can we assure parameterisation?

Theoretically we have the problem that with the connection elements between
the fundamental patterns we either have a coninous but surjective curve. With-
out these elements the curve is bijective but not continous anymore. Practially
this is not a problem, as we only iterate to a certain level and are not interested
in the true space filling curve at the limit.

Radial Basis Function: Why the constraint that sum(ki) = 0 and sum(ki ∗
xi) = 0 ? (i = 1..N)

This provides necessary constraints to represent affine transformations by
the polynomial part.

1.5 Self Organising Maps: Why neurons? Related to Neu-
ral Network or just similar terminology?

Historically Kohonen defined this term as the concept comes from the artificial
intelligence community. With this he does dimensionality reduction of high
dimensional data into a two dimensional net-structure. Somehow the 2D net
folds itself the best way into the high dimensional data field.

1.6 Stretch Minimization: What can go wrong on non-
convex (concave) boundaries?

With concave boundaries we can get foldovers of triangles in the mapping. So
the triangle invert their orientation or even can fold over each other.
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1.7 All warping methods: If warping method is inexact,
can we still ensure that curve is space filling and non
self intersecting?

We can assure that the curve fills the specified domain but there may be uncap-
tured areas at the border. The curve will still be without self intersections but as
stated before we cannot guarantee a precise distance between non-overlapping
curve-segments.

1.8 How is deformation based warping with point handles
different to point based warping?

It is related in the sence that deformation based warping can utilize points for
defining the warp. But it can also use other elements of correspondence, like
linesegments, patches or other geometrical elements that should establish the
relation.

1.9 DBW: Include translation part T into matrix M by
using homogeneous coordinates?

No, the Transformation T is encoded in a clever way in Matrix M by exploiting
constraints we want to have fulfilled.
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Hyperbolic Medial Axis
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Abstract

The Medial Axis Transform (MAT ) defines a skeleton as a simple
shape representation of a binary image region. With the hyperbolic medial
axis we present an alternative to the classic medial axis on polygonal
regions. The hyperbolic medial axis uses an alternative distance measure
called the Confocal Elliptic Distance (CED) to define a distance between
an image point and a line segment of the region’s boundary. This extension
allows to define an exoskeleton for convex regions. Additionally we present
some geometric properties of the hyperbolic medial axis and take a look
at the underlying algorithm and its parallelisation.
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1 Medial Axis Transform

The classic medial axis is a simplified representation of a binary image region.
Most notably based on the works of Harry Blum who laid the foundation of the
medial axis as a shape descriptor [6].

The classic definition of the medial axis using Euclidean distances for a
given binary image region R is the set of points that are centers of maximal
inscribable circles or medial discs Ci that touch the region boundary in at least
two points without intersecting it. This concept can be applied to 3 dimensions
by exchanging the medial discs with maximal inscribable spheres [6].

An alternative definition of the medial axis that can be incorporated into an
algorithm are the local maxima in at least one direction (lmod) of the minimal
Euclidean distances between each point of the region to the closest point on the
boundary [6]:

MAT (R) = lmod(min(XB)), B ∈ boundary(R)), X ∈ R (1)

Figure 1 shows an example of the classic medial axis including a few exem-
plary maximal inscribable circles.

Figure 1: Example of the medial axis transform as seen in Gupta2006 [3].
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1.1 Medial Axis of Polygonal Region Shapes

Given a convex region of polygonal shape (i.e. bound by line segments) without
any holes, the classic medial axis itself consists only of line segments too. Each
line segment of the medial axis is then part of the angular bisector of two (usually
consecutive) line segments of the image region boundary.

The medial axis is only defined on the inside of convex regions, since medial
disks touching the region boundary from the outside can grow to infinite size.
The alternative definition of the lmod on the other hand works in theory but
fails due to the fact that points within an area around the joint of two line
segments have an equal minimal distance to both line segments, therefore the
lmod does not exist in that region.

Figure 2 shows an example where the points in the blue region have equal
distance to two different line segments.

Figure 2: Example of a region around the line segment joint, where every point
within the region has identical minimal distance to both line segments and a
local maximum of minimal distances cannot be found.

This problem however is related to the fact that we use Euclidean distances
where the isolines of two separate line segments may partially overlap. This can
be overcome if we use a different distance measure. In the next section we will
present an alternative distance on which we can define a medial axis outside of
the region.
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2 Confocal Elliptic Distance

For a given line segment s and point P , we consider the distance d(s, P ) between
them. So far we assigned the distance between P and its closest point on s
(XP |X ∈ s). This definition is closely related to the Hausdorff distance defined
on arbitrary sets [4].

However there are multiple ways to define a distance between a line segment
and a point, one of which is the Confocal Elliptic Distance or CED(s, P ). The
Confocal Elliptic Distance takes the endpoints F1 and F2 of a line segment s to
compute a distance value that is zero if P lies on the line segment s and has a
positive value otherwise. The formula is given by:

CED(s, P ) =
1

2
·
(
PF1 + PF2 − F1F2

)
(2)

The definition is very closely related to the implicit formula of the ellipse
given by two focal points F1 and F2, where the ellipse is defined as the union of
points X with XF1 +XF2 = 2 · a. The subtraction of the constant factor F1F2

ensures CED(s, P ) = 0|P ∈ s and the factor 1
2 ensures that CED(Q,P ) =

d(Q,P ) for two points P and Q where Q is interpreted as a line segment of zero
length. These adjustments however do not change the geometric structure of
the isolines, which means that all points P for a given CED(s, P ) value and
given line segment s all lie on an ellipse with F1 and F1 as its focal points.

Different isolines for a fixed line segment s form a set of confocal ellipses,
since they all share the same line segment endpoints as their focal points. These
confocal ellipses are all intersection-free, because if such an intersection point X
on two different isolines would exist, it would have two different confocal elliptic
distances to the line segment s which is not possible since the CED is a function
that returns only a single value.

3 Hyperbolic Medial Axis

By applying the Confocal Elliptical Distance on every point of the plane for
a given line segment s, we get its Confocal Elliptical Field CEF (s). Given
a polygonal region R with line segment si forming its boundary, every border
segment si creates its own Confocal Elliptical Field CEF (si). We can now create
a Confocal Elliptical Field Distance Transform CEF -DT of the polygon by
combining all the individual Confocal Elliptical Fields of the polygon segments
by assigning each point its minimal Confocal Elliptical Distance to each of the
line segments si:

CEF -DT (s1, ..., sn, X) = min
i=1,..,n

CEF (si, X), X ∈ R2 (3)

Similar to the alternative definition of the classic medial axis as the lmod
of minimal Euclidean distances to the pixels on the boundary, we define the
Hyperbolic Medial Axis as the lmod of the minimal confocal elliptical distances
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to the boundary segments. The CEF -DT already assigns each point the min-
imal distance to each border segment of the image region R, and therefore the
Hyperbolic Medial Axis consists of the lmod of the combined Confocal Elliptical
Field.

HMAT = lmod(min(CEF (si, P ))), P ∈ R2, si ∈ boundary(R) (4)

= lmod(CEF -DT (s1, ..., sn, P )) (5)

Figure 3 shows an example of the Hyperbolic Medial Axis and the corre-
sponding combined distance field.

(a) The combined CEF-DT formed as
the minimum of multiple Confocal Ellip-
tic Distance Fields

(b) Segments illustrating each contribut-
ing Distance Field, the cell boundaries
form the Hyperbolic Medial Axis

Figure 3: Example of a Hyperbolic Medial Axis for a given polygonal region.

4 Geometric Properties of the Hyperbolic Me-
dial Axis

4.1 Branches of the Hyperbolic Medial Axis defined by
Consecutive Line Segments

Along the boundary polygon of the image region, each pair of consecutive line
segments shares one of their endpoints with each other. Let’s consider the
two distance fields CEF12 and CEF23 defined by each line segment F1F2 and
F2F3 respectively. If we take the pixel-wise minimum of each distance field, the
branch of the Hyperbolic Medial Axis is the separation curve of the regions of
the contributing distance fields CEF12 and CEF23 as previously shown in figure

5
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3b, thus having equal Confocal Elliptic Distance to each line segment F1F2 and
F2F3.

CED(F1F2, P ) = CED(F2F3, P )

F1P + F2P − F1F2 = F2P + F3P − F2F3

F1P − F3P = F1F2 − F2F3 (6)

Now we consider the hyperbola which is defined by all points X of the im-
plicit formula

∣∣F1X − F2X
∣∣ = 2a. The hyperbola can be split into two separate

branches F1X − F2X = +2a and F1X − F2X = −2a. Now we can see that
the branch of the Hyperbolic Medial Axis defined by two consecutive line seg-
ments is a single hyperbola branch with focal points F1 and F3. Furthermore
the branch goes through F2 where CED(F1F2, P ) = CED(F2F3, P ) = 0.

Figure 4 shows an example of two consecutive line segments and the hyper-
bolic branch of the medial axis created by them.

Figure 4: Two consecutive line segments F1F2 and F2F3 of the image region
boundary polygon. The Hyperbolic Medial Axis of the Polygon creates a hy-
perbolic branch through F2 with focal points F1 and F3.

4.2 Effects of Polygon Sampling at Different Levels

Since the Confocal Elliptic Distance incorporates the complete line segment,
changes in length influences the distance value. This may cause some unwanted
effects if the polygon boundary line segments are modified. One example to
illustrate the issue are the effects of different sampling resolutions of the bound-
ary (e.g. if derived from a non polygonal source). Figure 5 illustrates this for
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a simple triangle. In the first case 5a the triangle segment on the left creates a
unified distance field, the colors only show the regions of influence but not the
value, the separation curves form the Hyperbolic Medial Axis. In the second
case 5b the left triangle side is divided into two separate line segments, each
spawning its own distance field. Not only is an additional branch introduced to
the Hyperbolic Medial Axis, but also the original branches are effected either
by simple changes in curvature (bottom left branch) or even by changes in con-
tinuity. Even denser sampling as shown in figures 5c and 5d introduces further
artifacts, since the dark region on the left has a lower Confocal Elliptic Distance
to the right triangle segment caused by the relative length difference of the line
segments.

(a) One segment (b) Two segments

(c) Three segments (d) Four segments

Figure 5: Hyperbolic Medial Axis for different sampling resolution
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5 Algorithms and Parallelisation

(a) DT(F1) (b) DT(F2)

(c) DT(F1)+DT(F2) (d) CEF(F1F2)=DT(F1)+DT(F2)-F1F2

Figure 6: Construction of the Confocal Elliptic Field of a line segment F1F2 as
a combination of two distinct Euclidean distance fields DT(F1) and DT(F2).

In the previous chapters we talked about Confocal Elliptic Distance and the
Hyperbolic Medial Axis from a rather analytical perspective set in continuous
space. However if we apply these concepts to image regions, we will have to
operate in discrete image space.

The classic Medial Axis Transform (MAT ) can be implemented by several
different algorithms. One possible approach to approximate the medial axis in
linear time is the chamfer algorithm. It is based on a 2-pass image sweep that
propagates distances, usually in the first step from upper left to lower right
forward and in the second step in the opposite direction backwards [1] [2].
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For the algorithm that creates the hyperbolic medial axis we will take a
different approach. Contrary to the Euclidean MAT on arbitrarily shaped image
regions where the distance field uses every pixel on the boundary of the image
regions, the Hyperbolic MAT on polygonal image regions only requires the line
segment endpoints. Therefore we can create a Confocal Elliptic Distance Field
(CEDF ) for every line segment of the regions boundary and use them to create
the overall distance field as the minimum of each CEDF for each individual
pixel as presented previously.

Let’s take a look again on the formula of the Confocal Elliptic Distance:
1
2

(
XF1 + XF2 − F1F2

)
. Apart from the scalar factor 1

2 and the subtracted

constant factor F1F2, the Confocal Elliptic Field is a simple combination of two
separate Euclidean distance fields DT (F1) and DT (F2).

Since no distance propagation is used in this algorithm, we can compute
the distance field for each pixel independently. Actually we can compute the
distance field for a single pixel and apply the result to pixels at different locations
by shifting, since the distance transform is location invariant. This means that
the algorithm can be subject to efficient parallelisation.

Algorithms based on distance propagation cannot be applied in a straight
forward way without adaptations, since the isolines of the CED are not neces-
sarily equidistant.

6 Related and Future Work

6.1 Excentricity Transform on Confocal Elliptic Distance

The concepts shown in this report can easily be applied to the eccentricity trans-
form [5] of regions of polygonal shape without any holes. However if we want
to apply it to regions containing holes, future work would involve a definition
of the shortest path between two points also known as the geodesic distance.
One possible solution might be to take the thread construction of an ellipse into
account and wind the threads around the hole, in other words the two Euclidean
distances F1X and F2X are exchanged with two geodesic distances.

6.2 Arbitrarily Shaped Image Region Boundary

So far, we have only defined the Hyperbolic Medial Axis for image regions of
polygonal shape. Arbitrarily shaped region boundaries might be approximated
by polygons, but variations in sampling resolution highly influence the result.

However we can turn the concept upside down, by creating a medial axis
only consisting of line segments that approximate the regions piecewise with
regards to the Confocal Elliptic Distance from the line segments of the linear
medial axis to pixels on the boundary. This shape representation could be seen
as an arrangement of best fitting ellipses.
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6.3 Extend CED to Full Metric

The Confocal Elliptic Distance CED(s, P ) as presented defines a distance be-
tween a line segment s and a point P . It is compatible with the Euclidean
distance between two points if one point is interpreted as a line segment of zero
length such that CED(s = (FF ), P ) = d(F, P ). The next step would be to
define a distance CED∗(s1, s2) between two separate line segments s1 and s2
that is compatible with our presented Confocal Elliptical Distance such that
CED∗(s1, s2 = (FF )) = CED(s1, F ).

Furthermore I would suggest to construct a full metric fulfilling the identity
and subadditivity condition.

6.4 Parallel Framework

As shown the algorithm to construct the hyperbolic medial axis is highly paral-
lelisable and thus one of the next steps would be to create a complete framework
using a parallel environment such as CUDA or OpenCL.

7 Conclusion

We created an alternative to the classic medial axis on regions of polygonal
shape called the Hyperbolic Medial Axis (HMA) that allows us to define an
exoskeleton for regions of convex shape. The HMA incorporates the Confocal
Elliptic Distance (CED), a distance measure between a line segment of the
polygon and a point in the plane.

We presented some geometric properties of the HMA and effects of sampling
a line segment at different resolutions by splitting the line segments into multiple
subsegments of varying length.

We showed the algorithmic advantage of the HMA in terms of parallelisation
and gave an examplary approach how to compute the Confocal Elliptic Distance
Field (CEDF) as a combination of Euclidean distance fields of their endpoints.

Finally we gave a short overview of related topics and future work on the
Hyperbolic Medial Axis and the concept of the Confocal Elliptic Distance in
general.
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1 Why restriction on line segments (p.6)? Can
we have a more general shape?

The Confocal Elliptic Distance for now is only defined on line segments and
therefore I restrict the region boundaries to polygonial shape only consisting of
line segments. However the CED can be extended in future work to work on
arbitrary curvature segments. One idea would work as follows: If we consider a
line segment s and its elliptic isoline e for a given CED value d, we will find that
the classic medial axis of e happens to be the original line segment s. Using this
property we can map the medial disks of e by their centers on s to any curve
segment c and derive a distance value CED*(c,P).

2 Why no holes, is it possible to adapt the scheme
to holes? Or to cut the domain like I do with
the warping?

The holes aren’t actually a restiction for the classical medial axis, but only
a requirement for the medial axis to consist only of line segemnts. Also the
Hyperbolic medial axis can be applied to regions with holes, as long as these
holes are also of polygonial shape.

3 Explanation of undefined region (p.15)

The requirement for the medial axis is that points on it are a local maximum in
at least one direction. The undefined regions however do not constist of these
directional local maxima although the first derivation in at least one direction is
zero. This stems from the fact that isolines of euclidean minimal distance for two
consecutive line segments overlap partially. The elliptic isolines of the confocal
elliptic distance on the other hand always intersect in four countable points
(real or complex) unless they are identical. However it is possible to extend the
definition and for example take the intersection point in the direction of the
biggest curvature.
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4 How does the properties relate to a good or
desireable transform or how they can be used
related to that (p.20ff)?

Some properties of the transform can be derived from these geometric prop-
erties such as for example the location the intersection point of the hyperbola
branches (Equal Detour Point) always in the trangle formed by the incenter
and the shortest line segment of ABC. From my perspective the geometrical
aspects of the transform are primarily of use/interest for the future research
and the general topic of the Confocal Elliptic Distance rather than the special
application of the Hyperbolic Medial Axis.

5 Resampling of boundary: it this not a bad
property that the transform depends on the
sampling of the boundary? Can this fact may
be used in a positive way?

It is something to be aware of to prevent unwanted effects. One aspect we can
observe for sampling of the higher resolution is that the medial axis moves closer
to the subsampled line segment and in fact we can move as close to it as we
need by sampling in a sufficiently high resolution.

6 CED-DT using EDT components: What does
this transformation actually show/say now?
What is the source image that cause this trans-
form picture?

The source of the two EDT components are a single point each corresponding
to the two line segment endpoints and they are created with a simple euclidean
distance transform. The advantage of this is that we can compute the distance
field for a single point in the plane and use the result for any point of the plane
simply by shifting the result image with a vector corresponding to the point
position.

7 Can we use others seeds instead of line seg-
ment to define another type of voronoi dia-
gram or distance transform (F1)?

Yes, we can apply the concept of the confocal elliptic distance to any geometric
simplex. Since an n-simplex contains n vertices Vn we can use the vertex/point
distances d(Vn, P ) for our computation.
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8 Can you explain the Hausdorf distance in more
detail? With a figure/picture (slide 2)?

See explanation picture at https://en.wikipedia.org/wiki/File:Hausdorff_
distance_sample.svg.

9 Is a reconstruction of an original domain pos-
sible by an Confocal Elliptic Distance Trans-
form like with the Medial Axis Distance Trans-
form (slide 3)?

From geometrical point of view we can analytically (maybe even with a con-
struction) derive the focal points for a given hyperbola from a given branch
segment, but I fear that this approach is very sensible to the input and at this
points its hard to give an upper bound of the reconstruction error, therefore it
should be treated as a theoretical possibility rather than a practical one.

10 Colinear line segments: Voronoi cell of si is
completely swallowed by sj. Can this feature
be useful? In what for a situation (slide 6)?

For the Voronoi Diagram seed line segments may coincide with parts of bigger
line seeds, in this case it can be a useful property that the shorter line segments
do not spawn additional Voronoi Cells. For the hyperbolic medial axis this case
will not occur though. However errors in the discretization stage may lead to
the case that line segments that should be sharing one endpoint end up creating
a very short additional line segments (only a few pixels long, maybe one or two),
in this case the artifacts created by this additional line segments are attenuated
by this property.
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Abstract

The Voronoi Diagram is a partitioning of the Euclidean plane into
Voronoi Cells defined by a seed set conisting of points only. We present an
extension of the Voronoi Diagram on a seed set of line segments for which
we present an alternative distance measure called the Confocal Elliptic
Distance to define a distance between a line segment seed and a point of
the Euclidean plane. The extended Voronoi Diagram will also work on a
seed set including point seeds and will return the classic Voronoi Diagram
if applied to a seed set consisting of points only. Furthermore we take a
look at various geometric properties and in detail the case where three
line segment form a triangle.
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1 Classic Voronoi Diagram

The Classic Voronoi Diagram on a point set P is a partitioning of the Euclidean
Space into Voronoi Cells. For each point Pi ∈ P the corresponding Voronoi Cell
V Ci contains all points Q ∈ V Ci that are closer to Pi than to any other point
in P (with regards to the Euclidean Distance). The points in P are also called
seeds for the Voronoi Cells. Points in the plane that have the same distance to
two or more points in P are part of the separation lines of the Voronoi Cells and
therefore lie on the cell borders. [1]

Figure 1 shows an example of the Classic Voronoi Diagram.

Figure 1: Voronoi Diagram for a point set using Euclidean distances

2 Voronoi Diagram on Line Sets

Now we consider a more general seed set S for which we extend the point set to
line segments of finite length. To create a Voronoi Diagram for line segments,
we have to define some kind of non-negative distance measure d(s, P ) for a given
line segment s and a point P . Furthermore we want this distance measure to be
compatible with the Euclidean distance for points interpreted as line segments
of length zero and for points lying on the line segment we want the distance to
be zero.

d(s, P ) ≥ 0

d(s, P ) = 0, P ∈ s
d(s = (QQ), P ) = PQ
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3 Hausdorff Distance and its Application on Line
Voronoi Diagrams

One simple way to define a distance between a line segment s and a point P
is to use an assymmetric variation dH̃ of the Hausdorff Distance dH [2]. The
definition of the Hausdorff Distance between two sets X and Y is given by:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
(1)

To apply this distance function to our line segments, we consider only a part of
dH and define our variation for a given line segment seed s and a given point P
as:

dH̃(s, P ) = sup
P∈{P}

inf
Q∈s

d(P,Q) = inf
Q∈s

d(P,Q) (2)

In other words this distance function returns the shortest Euclidean distance
between P and its clostest point Q on the line segment s. Its isolines are
equidistant ovals around the line segment.

Figure 2a shows an example of an isoline for a given distance including an
example point on the isoline.

However if we use this distance measure to create a distance field on a seed
set containing two separate line segments that share a common endpoint, the
isolines of both line segments overlap partially. Points in this region around
the shared endpoint have the same minimal Euclidean distance to both incident
line segments and therefore are not assignable to a Voronoi Cell and can be
interpreted as separation areas.

Figure 2b shows an example of such an unassignable area.
In the next section we will discuss a different approach, that will always

create separation curves of zero width.

(a) Isoline of dH̃ on line segment (b) Undefined separation area of dH̃ on
two line segments.

Figure 2: Examples for the distance metric dH̃ derived from Hausdorff Distance.
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4 Confocal Elliptic Coordinates

Another possible way to define such a distance measure would be to consider
the line endpoints F1 and F2 of a given line segment s. The Confocal Elliptic
Coordinates (or Confocal Ellipsoidal Coordinates) identify a point in the plane
using two conic sections [3]. For a given line segment s and its endpoints we
consider all ellipses Es with the line endpoints of s as their focal points F1 and
F2. Different ellipses with the same focal points are called confocal. For every
point P in R2 we can find an ellipse that goes through P , thus Es covers the
whole plane. Furthermore, not more than one ellipse from Es can go through
P , in other words the ellipses in Es are intersection-free.

For the second coordinate we consider the set of intersection-free hyperbolas
Hs with the same focal points. Every intersection of a hyperbola and an ellipse
from these sets has the property that their tangents in the intersection points
are orthogonal [3].

Figure 3 shows the Confocal Elliptic Coordinates for a given line segment.

Figure 3: Confocal Elliptic Coordinates for the line segment s.

4
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5 Confocal Elliptic Distance

The Confocal Elliptic Distance (CED) for a line segment s and a point P takes
the distances between F1, F2 and P into consideration: Based on the formula
of an ellipse F1X + F2X = 2a with a constant factor a we define

CED(s, P ) =
1

2
·
(
F1P + F2P − F1F2

)
(3)

The subtraction of the constant factor F1F2 ensures, that points on the line
segment have distance zero. The factor 1

2 is multiplied for the compatibility
with the Euclidean distance such that CED(P,Q) = d(P,Q) for points P , Q.

Figure 4: Isoline Ellipse for fixed Confocal Elliptic Distance on line segment s.

6 Confocal Elliptic Voronoi Diagram

In the following we will refer to the Voronoi Diagram on Confocal Elliptic
Distances as the Confocal Elliptic Voronoi Diagram (CEVD). To create the
CEVD on a seed set S of points and line segments, we define the Voronoi Cells
V Ci for a given seed si as the set of points P in the plane with the confocal
elliptic distance to si smaller than to any other seed

V Ci =
{
P ∈ R2 : CED(si, P ) < CED(sj , P ), sj ∈ S

}
(4)

similar to the definition of the Voronoi Cells in the classic Voronoi Diagram.
The union of points with CED(si, P ) = CED(sj , P ) for two different seeds
si, sj are the separation curves of the CEVD.

5
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7 Properties of the Separation Curves

7.1 Two symmetric line segments

We consider two symmetric line segments si (i = {1, 2}) with endpoints Fi1, Fi2,
where one can be transformed into the other by reflection on an axis α. The
points P on the axis have the property that the Euclidean distance to two sep-
arate endpoints is identical. d(F11, P ) = d(F21, P ) and d(F11, P ) = d(F21, P ).
Therefore CED(s1, P ) = CED(s2, P ) and the reflection axis α becomes the
separation line. Figure 5a shows an example of two symmetric line segments
and their separation line.

However as shown in figure 9a, in some cases of two intersecting line segments
two distinct reflections using two different axes can be used to transform one line
segment into the other and thus both axes are separation lines of the CEVD.

7.2 Two Line Segments Sharing One Endpoint

In the next case two line segments s1 = (F1F2) and s2 = (F2F3) share one
identical endpoint. The points on the separation curve can be described as

CED(s1, P ) = CED(s2, P )

1

2
·
(
F1P + F2P − F1F2

)
=

1

2
·
(
F2P + F3P − F2F3

)

F1P − F3P = F1F2 − F2F3 (5)

As the right side of the equation is constant, using the hyperbola equation∣∣XF1 −XF2

∣∣ = 2a, we can see that the separation curve is a single branch of a
hyperbola with focal points F1 and F3.

Figure 5b shows an example of the hyperbolic separation curve.

(a) Two symmetric line segments and
their separation line.

(b) Two line segment sharing an end-
point in the CEV D.

Figure 5: Examples of the separation curves between line segments.

6
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7.3 Triangle

Let ABC be a triangle formed by three line segments. The separation curves of
such a triangle hold multiple interesting properties. As shown in section 7.2 the
separation curve of two consecutive line segments is a hyperbola branch, thus
the triangle is separated by three different hyperbola branches through each
corner A,B,C intersecting the opposite line segments in K,L,M .

The hyperbola branches meet in a common point, known in the literature as
the Equal Detour Point (EDP) [4]. If we consider the complementary branches
of the hyperbolas, they too meet in a common point, known as the Isoperimetric
Point (IP) [4], shown in figure 6a.

The hyperbola tangents in A,B,C are the angular bisectors of their incident
line segments and all meet in the incenter I of the triangle [4]. The hyperbola
tangents in K,L,M intersect the respective line segment in a right angle and
also meet in the incenter I, shown in figure 6b [4].

The hyperbola chords AK,BL and CM meet in a common point know as
the Gergonne Point (G) shown in figure 6c [4].

The four point EDP ,IP ,I and G are harmonically collinear, see figure 6d [4].

(a) Equal Detour Point EDP and
Isoperimetric Point IP

(b) Tangents on the hyperbola branches
meeting in the incenter I

(c) Gergonne Point G
(d) Harmonic Collinear Points
H(EDP, IP ; I,G)

Figure 6: Geometric properties of CEVD on a triangle of three line segments.
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8 Other Properties of the CEVD

8.1 Two Line Segments of Considerable Difference in
Length

If we take the distance field of two line segments in close proximity where one
line segment is significantly longer than the other, the Voronoi Cell of the shorter
line segment will be a closed area. This means that points that are in front of the
short line segment and are perceived closer to it than to the long line segment
in terms of the minimal Euclidean distance, might still have a smaller confocal
elliptic distance to the long segment. This property might for example be useful
for collision detection of robots, where larger obstacles in the background are a
bigger threat than smaller obstacles right in front of the robot.

Figure 7: Voronoi Cells of two line segments of considerable length difference.

8.2 Collinear Line Segments

Considering two line segments si = Fi1Fi2 and sj = Fj1Fj2 where si lies com-
pletely within the line segment sj , every point P /∈ si has a smaller confocal el-
liptical distance to the enclosing line segment sj , or CED(sj , P ) < CED(si, P ).
The Voronoi Cell of si is completely swallowed by the cell of sj . The same hap-
pens for multiple consecutive collinear line segments. This property has an
effect on the Confocal Elliptic Fields for different segmentations of a line seg-
ment. The same effect can occur on non-collinear line-segments, if polygons are
created by sampling arbitrary curves at different resolutions.

Figure 8 shows an example of a line segment arrangement and their isolines
of equal distance value as well as the isoline for the complete combined line
segment. The isoline ellipses of the inner segments always lie within the iso-
line ellipse of the complete segment, thus points in the plane will always have
smaller confocal elliptic distance to the complete segment than to any of the
subsegments.

8
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Figure 8: Isolines for specific distance of consecutive line segments inside of
isoline of combined segment.

8.3 Intersecting Line Segments

If two line segments si and sj intersect each other, the resulting separation
curve(s) will go through the intersection point. Depending on the length dif-
ference of the line segments, the separation curve(s) will either resemble an
x-shape, ∞-shape or α-shape.

(a) x-shaped
(b) ∞-shaped

(c) α-shaped

Figure 9: Shape examples of separation curves of intersecting line segments.
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9 Conclusion

Using the Confocal Elliptic Distance, we created an extension of the Voronoi
Diagram for seed sets S consisting of points and/or line segments called the
Confocal Elliptic Voronoi Diagram (CEVD). The resulting CEVD is compatible
with the classic Voronoi Diagram such that if applied to a seed set P of points
only, the CEVD(P) is identical to the classic Voronoi Diagram V D(P) on the
same seed set using Euclidean distances.

We gave an overview of the concept of the Confocal Elliptic Coordinates as
a theoretical basis for the CED and an overview of the Hausdorff Distance and
its derivations as an alternative distance measure to the CED and showed the
advantage of the CED if applied to line segments sharing an endpoint.

Finally we showed several geometric properties of the CEVD and its sep-
aration curves in particular and we gave an in depth view on the geometric
properties of the CEVD created by a seed set containing three line segments
forming a triangle.
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Artificial Video Dataset for Articulated Joint-Movement
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Abstract

There exist numerous datasets for pose estimation for human action, but general joint datasets
are in short supply. The proposed dataset contains different layers of abstraction for temporal,
articulated joint-movement: simple binary abstract objects, abstract objects and realistic 3D
objects. The different layers allow for evaluation of methods on different stages of generalization.

Additionally the dataset was used to train a deep neural network and evaluate whether it is
possible to learn the joint position in a video context.

1 Introduction

Deep Neural Networks getting a lot of attention in recent years and show promising results in various
areas of pattern recognition and artificial intelligence. For those algorithms to give good results vast
amounts of training data is needed and not readily available for a lot of tasks. There exists a lot of
data for human joint annotation that was already successfully applied using deep learning [4, 5, 8, 12]
but all these methods take only single images into account and are fine tuned to work on humans only.
For many tasks it would be beneficial to be able to use a more general joint articulation that is not
fixed on a single skeleton or shape. A lot of other pose estimation problems (animals, robots) could
be based on such generalized data.

This work introduces a new dataset that exists to train computer vision algorithms to find articu-
lated joint movement in different degrees of abstraction.

1.1 Articulated Joint Movement

Articulated joint movement occurs when two rigid bodies are connected at a common point that allows
for angular change between those bodies. The connection point (joint) does not move relative to all
points on the two bodies, it is in the rigid system of both.

The term articulated is used to empathize on the rigidity of the attached bodies, the movement of
the bodies is constrained by the connecting point. These bodies cannot be infinitely small compared
to a soft body joint (e.g. a worm).

There exists methods taking articulated joint movement into account to solve pose estimation [1,13]
but those methods rely on a model of the shape the pose estimation is given for or are tailored to
human pose estimation.

2 Dataset

The dataset is divided into three levels of generalization and can be used with human pose video
datasets.
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2.1 Human Pose Video Datasets

There exist two public datasets that may be used with the introduced dataset to add additional data.
The datasets only consist of human actions and not only articulated joints are marked (e.g. hands).

Penn Action The Penn Action dataset [15] consists of around 2300 image sequences in 15 different
actions. They are mainly sport shots and contain one or more persons.

JHMDB The JHMDB dataset [9] consists of around 1000 video sequences in 21 different actions.
Some categories are not useful for articulated joint detection (e.g. chew action).

2.2 Layered dataset

The proposed dataset consists of three layers: simple, artificial and animal.

2.2.1 Simple

The simple part of the dataset is a compilation of white stick figures on black background. Points are
connected into a tree and some points are defined as joints. One joint is the tree root and all branches
are rotated smoothly. This rotation is also done on all other joint-marked points further down the
tree. Additionally, the whole structure may be moved and rotated globally. See Figure 1 for a sample
sequence.

By including connections that look like joints given only one image, the video data is needed to
derive a valid result. The data is very basic, no texture or other information is given to confuse a
learning algorithm. The additional global rotation and movement avoids to only look for static points
in the image. To learn the correct joint labeling, an algorithm has to look to its local neighborhood to
learn which parts are rigid components.

This part consists of 1000 black and white image sequences (800x800x1) with 80 frames each.
Thickness of the lines and number of points and joints vary.

2.2.2 Artificial

The artificial part of the dataset consists of 3D rendered simple forms that sometimes have texture,
complex non-articulated backgrounds or objects in the foreground or a combination of these attributes.
The objects were produced using the 3D-Software Blender 1 and all articulated joints were derived
from 3D-armature joints. See Figure 2 for an example sequence.

1http://blender.org

Figure 1: Example for a sequence of images in the simple part of the dataset. Images are spaced five
time steps apart. Note how only two corners have articulated joint movement.
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Figure 2: Example for a sequence of images in the artificial part of the dataset. Images are spaced
five time steps apart.

Figure 3: Example for a sequence of images in the animal part of the dataset. Images are spaced five
time steps apart.

Articulated joints are easily recognized by humans in this part of the dataset. Some sequences
include multiple objects. Backgrounds have been downloaded from the Internet 2 licensed under CC0
3.

This part consists of 36 color image sequences (1280x720x3) with 140 frames each where 3 image
sequences are multiple shots from different views on the same object and 15 image sequences have
complex video backgrounds.

2.2.3 Animal

The animal part of the dataset shows different 3D-rendered animals performing a walk cycle. In
contrast to the artificial part the animal part has no complex backgrounds and occlusion happens
solely by the object itself. On the other hand are joints harder to see, because they happen on a bone
level and might be off-centered (flesh/muscles). See Figure 3 for an example sequence.

This layer of generalization is used to learn more realistic occurrences of articulated joint movement
in nature. Models have been downloaded from the Internet 4 an licensed under CC0 and CC-BY5.

This part consists of 15 color image sequences (1280x720x3) with 120-240 frames each where 3
image sequences are multiple shots from different views on the same object.

3 Experiments

The experiments were performed using two different neural networks: U-Net and a simple convolutional
neural network (CNN). Both methods use a heatmap to train the joint location as likeliness at a
given pixel and are trained on Keras [6] using Mean Squared Error as loss function and Adam as
optimizer [10]. The dataset was split into 80% for training and 20% for validation and testing.

2https://videos.pexels.com
3https://creativecommons.org/publicdomain/zero/1.0/
4https://www.blendswap.com
5https://creativecommons.org/licenses/by/3.0/
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Figure 4: U-Net architecture. Image taken from [14].

3.1 U-Net

As a first architecture a U-Net implementation was used [14]. U-Nets are a special CNN that upscales
lower levels and combining them with upper levels again to obtain a same-sized output from an input
image (see Figure 4). The model was modified slightly to be able to work with image sequences
through two different methods: 3D convolution and 2D convolution with time distributed overlay (i.e.
2D convolution for each frame). The input is temporal centered around a frame ft, taking after a
pyramid fashion frames ft−10, ft−5, ft−3, ft−1, ft, ft+3, ft+5 and ft+10. The number of frames (8) has
to be even for proper upscaling in the U-Net framework. In the and a convolution over the time axis
is performed to get a final heatmap for the centered frame. Images were resized to 128x128 pixels
beforehand.

3.2 CNN

As second architecture a simple CNN was used, that uses 3D convolution and up-sampling to obtain a
one-image-sized output image from an input image sequence. The same input sequence and resolution
as with the U-Net was used. See Figure 5 for an architecture overview.

3.3 Results

The following experiments where undertaken:
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Figure 5: CNN architecture used for experiments.

1. U-Net 3D Conv, 3D parts of dataset and Penn Action

2. U-Net 3D Conv, 3D parts of dataset

3. U-Net 3D Conv, Artificial part of dataset

4. U-Net 3D Conv, Subset of artificial part of dataset

5. U-Net 3D Conv, Simple part of dataset 256x256

6. U-Net Time Distributed, Artificial part of dataset

7. U-Net Time Distributed, Artificial part of dataset 512x512

8. CNN, 3D parts of dataset and Penn Action

9. CNN, Artificial part of dataset

Results for most experiments are similar: The network was not able to learn joints of the image
sequences. In experiment 4 only 15 out of the 36 image sequences were used for training. The result
did not improve with all image sequences.

Training only with the artificial part of the dataset improves the result compared to adding Penn
Action, concentrating the heatmap on the object and not outside although peaks are not on the joint
positions in any case.

Experiment 5 returns in all cases corner points as highest value on the heatmap.
See Figure 6 for example results of the test set.

4 Future Research

Although the results are not promising, the work raises the question which - if any - neural network
can solve the dataset. Especially the simple part of the dataset poses an interesting challenge because
it cannot be solved with single frames (as opposed to the rest of the dataset). The network would have
to consider the local neighborhood in a temporal sequence of images and relate the structure of the
object.
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For solving the other parts of the dataset (more application relevant) other approaches including
neural networks (Transfer learning [11], LSTM [7]) and other methods (random forest [3], triangulation
[2]) can be utilized. Also the use of still images instead of videos can be considered, as current state-
of-the art methods use still images only [4, 5, 8, 12].
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(a) Experiment 1 (b) Experiment 3

(c) Experiment 5 (d) Experiment 6

(e) Experiment 7 (f) Experiment 9

Figure 6: Example results for some of theexperiments. Yellow points correspond to predicted joints
(local maxima in heatmap) and red rings to ground truth. In Experiment 5 all cyan pixel and yellow
pixel have the same value (=0) in the center.
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Improved Features for Hypocotyl/Root Transition Detection
in Arabidopsis Thaliana

Julian Strohmayer

Abstract

This work proposes two new features for the detection of the hypocotyl/root transition point
in Arabidopsis Thaliana seedlings for phenotyping applications. The proposed features
exploit color and intensity variations along the plant body to capture the gradual transition
from hypocotyl to root. The performance of both features is evaluated using data, produced
by an automatic phenotyping pipeline.
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1 Introduction

In order to analyze the process of plant growth under controlled environmental condi-
tions and to monitor the response of a plant to certain compounds in the soil, large scale
plant phenotyping experiments are conducted. These endeavors are common practice in
the field of agricultural plant breeding, where crop plants are engineered to be more ef-
ficient. Growth under challenging conditions, robustness against pests or increased yield
are common goals. A typical plant phenotyping experiment is conducted by growing a
large number of seedlings on agar plates, which are photographed by an image acquisition
setup to acquire a high resolution image of the plates. Plate images are then processed by
a software stage that measures/computes characteristics of individual seedlings, which are
the basis of further analysis. Because of the large amount of data that has to be processed
in these experiments nowadays, automatic phenotyping pipelines [4][3][2] have been devel-
oped that require little to no human intervention. These automatic phenotyping pipelines
offer significantly higher throughput than manual methods, since the human bottle neck
is eliminated. However, the benefits of these automatic phenotyping pipelines only show
when the produced measurements are correct, which is not always possible. There is
still a need for robust detection/segmentation methods for certain problems in the field
of phenotyping. One of these problems is the detection of the hypocotyl/root transition
point, discussed in this work. The hypocotyl/root transition point is the interface between
the stem and the root of the plant embryo. This measurement has to be as precise as
possible, because it is the basis for subsequent length measurements along the plant axis.
The detection of this point is not a trivial task due to many confounding factors, such as
bad segmentation, abnormal plant growth or the presence of foreign objects on the plate.
This work presents two new features, capable of improving the hypocotyl/root transition
detection performance of the approach described in [5].

2 Previous Work

This is a continuation of previous work [5], in which a novel method for the detection
of the hypocotyl/root transition point in Arabidopsis Thaliana seedlings was presented.
The described approach uses features, derived along the plant axis of a seedling, strongly
correlated with the transition from hypocotyl to root to detect the transition point. It
is based on the assumption that the hypocotyl/root transition point is the point on the
plant axis where these correlated features diverge the most. A more detailed description
of the approach is given in Section 4, as well as in the original work.

1
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3 Data

The performance of the proposed features is evaluated using data from the GMI pheno-
typing pipeline, presented by Slovak et al. [4]. The data set consists of individual agar
plate scans with a corresponding measurement file that contains all BRAT-measurements
for the image. The entries of this file are 5-dimensional row vectors of the form (objectId,
x, y, width, pixelType), where objectId is a sequence number for the detected object, x
and y are the plant axis coordinates on the image, width is the diameter at position (x,y)
and pixelType defines the type of segmentation. The data is comprised of two separate
sets of plate scans, which will be referred to as data set A and B. Data set A is a time
series of a single agar plate with 24 Arabidopsis Thaliana seedlings, scanned once a day,
over a period of five days. The resulting .tiff-images have a resolution of 5612x6088 pixels
(1200 dpi) and a file size of about 100MB. The plate scans of data set A are given by
Figure 1 (a)-(e). Data set B consists of two different plates with 24 Arabidopsis Thaliana
seedlings, both scanned at day 1. The resulting .tiff-images have a resolution of 6608x6614
pixels (400 dpi) and a file size of about 125MB. The plate scans of data set B are given
by Figure 1 (f)-(g). The combination of both data sets amounts to 167 seedlings in total,
which are used for the evaluation (one seedling was not detected by the BRAT-software).
For each of these seedlings, ground truth annotation for the hypocotyl/root transition
point from 8 independent experts is available.

(a) day 1 (b) day 2 (c) day 3 (d) day 4 (e) day 5

(f) plate 1 day 1 (g) plate 2 day 1

Figure 1: (a)-(e) Data set A - Scanned agar plate with 24 Arabidopsis Thaliana seedlings
over a series of 5 days. (f)-(g) Data set B - Two different agar plates with 24 Arabidopsis
Thaliana seedlings at day 1. Slovak et al. [4].

2
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4 Methodology

The detection method for the hypocotyl/root transition point, described in [5], is based
on one key assumption. Namely, that there exist some features, derivable along the plant
axis of a seedling, which are strongly correlated with the transition from hypocotyl to root.
This means that the feature values along the plant axis of such features change abruptly
within the transition zone. This abrupt change in value effectively encodes the position of
the hypocotyl/root transition point and can therefore be used for detection purposes. An
example of such a correlated feature is given by Figure 2 (c), which shows the CIELAB a*
component (red/green-difference). This feature effectively shows the change in greenness
along the plant axis. It is easy to see that the hypocotyl is on average much greener than
the root, which is both visible directly on the seedling, as well as on the graph. The abrupt
drop in greenness coincides exactly with the hypocotyl/root transition point, which was
the assumption. This example shows the desirable characteristics of a feature, usable for
the detection of the hypocotyl/transition point. In order to find the actual location of
the hypocotyl/root transition point on the plant axis, atleast two features that satisfy the
before mentioned requirements are needed. When using n features for the detection, a
seedling with a plant axis of length m can be seen as n-dimensional multivariate data set
of size m. According to the assumption is the hypocotyl/root transition point the point
on the plant axis where feature divergence is maximal. Therefore, finding the break point
in the covariance structure of this multivariate data set, that is the seedling, should reveal
the location of the hypocotyl/root transition point. For the break point detection, the
method proposed by Aue et al. [1] is used. The result of the break point detection for a
seedling from data set A is given by Figure 2 (c), which shows that the global maximum
(green line) coincides with the hypocotyl/root transition point.

Figure 2: (a) Arabidopsis Thaliana seedling from data set A at day 3. (b) Result of the
break point detection and (c) feature (CIELAB a*), correlated with the hypocotyl/root
transition.
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5 Features

5.1 Mean ”Greenness”

The greenness as feature, given by the CIELAB a* component performed well in previous
experiments [5]. For this reason, a modified version of this feature is presented in this
work, which is less noisy and is easier to interpret. This feature can also be interpreted as
greenness along the plant axis, however, it is not simply die CIELAB a* component. The
feature value at a given position on the plate scan is computed by negating the CIELAB
a* compontent and adding the CIELAB b* compontent at the position. Negating the
CIELAB a* component simply makes interpretation easier. It is more intuitive to have
positive values describing the greenness, because the graph is reflecting what a human
observer sees on the image of the seedling. The CIELAB b* component is added to
reward yellow and penalize blue hues along the plant axis. This is based on the observa-
tion that the hypocotyl contains large amounts of yellow, whereas the root contains large
amounts of blue. Since the negative CIELAB b* component corresponds to blue, adding
it to the negated CIELAB a* component will increase feature values along the hypocotyl
and decrease feature values along the root, effectively making the drop in value at the
hypocotyl/root transition point more extreme. The resulting value of this computation
is referred to as greenness from now on.

Three different variants of the mean greenness feature were tested, each computing the
arithmetic mean of greenness across differently shaped sampling regions to reduce noise.
The first variant, given by Figure 3 (b), computes the mean greenness along a horizontal
sampling line. The mean greenness value for a point p on the plant axis with image
coordinates (px, py) and width pw is the arithmetic mean of greenness of all pixels with
image coordinates ([px − bpw2 c, px + bpw

2
c], py). The second variant, given by Figure 3 (c),

computes the mean greenness within a sampling window. The mean greenness value for
a point p on the plant axis with image coordinates (px, py) and width pw is the arithmetic
mean of greenness of all pixels in ([px − bpw2 c, px + bpw

2
c], [py − bpw2 c, py + bpw

2
c]). Finally,

the third version, given by Figure 3 (d) samples greenness values within a certain interval
along the plant axis and computes the arithmetic mean. The mean greenness value for a
point p on the plant axis with plant axis index pi and width pw is the arithmetic mean of
greenness of all plant axis points with index [pi−bpw2 c, pi+b

pw
2
c]. As given by Figure 3, all

variants perform very similar in this example, with the window and axis based versions
being less noisy by an insignificant amount. As expected, the drop in mean greenness
coincides with the hypocotyl/root transition point.

4
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Considering that all variants perform equally well, computing the window based ver-
sion only wastes computational resources, since this variant has to sample p2w pixels,
instead of pw. Another drawback of the horizontal and window based variants is the lack
of robustness against foreign objects in the image. This problem is given by Figure 4.
Horizontal and window based variants both sample pixels outside of the plant axis, which
can lead to dips/spikes in greenness in the presence of foreign objects with strongly di-
verging color. The axis based variant is not affected by this problem, because pixels are
only sampled along the plant axis. Therefore, the axis based variant is superior.

Figure 3: (a) Arabidopsis Thaliana seedling from data set A at day 3 (b) mean greenness
(horizontal) (c) mean greenness (window) (d) mean greenness (axis)

(a) axis (b) horizontal (c) window

Figure 4: Example, showing the superiority of (a) the axis based variant of the mean
greenness feature in the presence of foreign objects, over the (b) horizontal and (c) window
based variants.
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5.2 Smoothed Standard Deviation of Intensity (SSDI)

The standard deviation of intensity (CIELAB L*) within the hypocotyl is lower than it
is within the root. Therefore, this phenomenon can be exploited for detection purposes.
However, previous experiments have shown that the standard deviation of intensity along
a horizontal line is not a suitable feature for the detection of the hypocotyl/root transition
point due to heavy value fluctuations, caused by large intensity variations along the root
[5]. These fluctuations effectively create unwanted breaks in the multivariate data set,
which if large enough, could result in a global maximum that does not coincide with
the hypocotyl/root transition point. This problem can be avoided by simply convolving
the raw standard deviation values with a one-dimensional Gaussian kernel. The kernel
size is dynamically chosen with respect to the length of the plant axis. A plant axis of
length n is convolved with a kernel of size s = b n

10
c. Again, three different variants of

the SSDI, with the same sampling regions (axis, horizontal and window) as used by the
already mentioned mean greenness feature were tested. Typical SSDI responses for all
three variants are given by Figure 5. Comparison of all three graphs reveals that the axis
based SSDI variant produces a flatter response than the other variants. This is due to
the fact that the root has a characteristic drop in intensity at the center of its horizontal
intensity profile, which the hypocotyl does not have. By sampling only along the plant
axis, this characteristic cannot be captured which leads to a feature less correlated with
the transition from hypocotyl to root. The horizontal SSDI is for this reason and the
already mentioned performance argument against the window based variant superior.

Figure 5: (a) Arabidopsis Thaliana seedling from data set A at day 3 (b) SSDI (horizontal)
(c) SSDI (window) (d) SSDI (axis)
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6 Evaluation Results

The axis based variant of the mean greenness and the horizontal variant of the SSDI
were chosen for the final evaluation, due to the already mentioned drawbacks of the
other variants. The evaluation was carried out using the visual analytics framework
PlateViewer [5], which implements the detection method described in Section 4. The
detection capability of the used method, combined with the proposed features, is compared
to BRAT, the software stage of the automatic phenotyping pipeline, presented by Slovak
et al. [4]. BRAT supports automatic detection of the hypocotyl/root transition point as
well and can therefore be used as benchmark. The performance metric in this evaluation is
the minimal absolute distance along the plant axis, between the detected hypocotyl/root
transition point and the ground truth label. The method, being closest to the ground
truth label (i.e. having a smaller error), is considered superior for a given case. To
get a performance baseline for the evaluation, all features from [5] were used. These
are plant width, CIELAB a*, CIELAB b* and shape. The evaluation results for these
features, given by Table 1, shows that the used method outperformed BRAT in 55.1% of
all cases. In order to rule out harmful interference between the proposed features, both
were evaluated separately by adding them to the baseline feature set. The results for
the axis based mean greenness are given by Table 2. Adding this feature to the feature
set improved the detection performance by 4.8%. The horizontal SSDI performed even
better. As given by Table 3, the used feature set could outperform BRAT in 64.1% of all
cases, which amounts to an increase in detection performance by 9%.

Table 1: Baseline evaluation results for the features width, CIELAB a*, CIELAB b* and
shape described in [5].

Number of Seedlings PlateViewer BRAT
data set A, day 1 24 12 12
data set A, day 2 24 11 13
data set A, day 3 24 13 11
data set A, day 4 24 12 12
data set A, day 5 24 17 7
data set B, plate 1 23 13 10
data set B, plate 2 24 14 10

sum 167 92 75
55.1% 44.9%
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Table 2: Evaluation results for the proposed mean greenness (axis), combined with the
features width, CIELAB a*, CIELAB b* and shape described in [5].

Number of Seedlings PlateViewer BRAT
data set A, day 1 24 13 11
data set A, day 2 24 12 12
data set A, day 3 24 18 6
data set A, day 4 24 16 8
data set A, day 5 24 11 13
data set B, plate 1 23 15 8
data set B, plate 2 24 15 9

sum 167 100 67
59.9% 40.1%

Table 3: Evaluation results for the proposed SSDI (horizontal), combined with the features
width, CIELAB a*, CIELAB b* and shape described in [5].

Number of Seedlings PlateViewer BRAT
data set A, day 1 24 13 11
data set A, day 2 24 14 10
data set A, day 3 24 20 4
data set A, day 4 24 15 9
data set A, day 5 24 15 9
data set B, plate 1 23 16 7
data set B, plate 2 24 14 10

sum 167 107 60
64.1% 35.9%

7 Discussion

The evaluation results in Section 6 clearly show that the proposed features increased de-
tection performance by a significant amount. Both the mean greenness, as well as the
SSDI are well suited features for the detection of the hypocotyl/root transition point in
Arabidopsis Thaliana seedlings. However, further testing is necessary to confirm these re-
sults. The data set used for the evaluation is limited in terms of size and variety of nutrient
solutions. It already contains two different types of nutrient solutions, distinguishable by
the blue/brownish background color. Nevertheless, a wider variety of nutrient solutions
need to be tested, in order to determine the robustness of the mean greenness against
smaller color variations, caused by differently colored backgrounds. The root of a seedling
is slightly transparent, which means the color of the nutrient solution in the background
will affect the color composition slightly. This could lead to detection problems, because
the drop in greenness within thee hypocotyl/root transition zone will be smaller and the
feature less descriptive. The SSDI also requires some optimization. Currently, the chosen
kernel size of the smoothing kernel is set to 10% of the plant axis length. This approach is
somehow dynamic, but still a choice based on observations, which is obviously not ideal.
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A solution for finding the optimal kernel size for a given plant axis length could possibly
further improve the performance of the SSDI as a feature.

8 Conclusions

In this work, the mean greennes and the smoothed standard deviation of intensity (SSDI)
were presented as new features for the detection of the hypocotyl/root transition point in
Arabidopsis Thaliana seedlings. The detection capabilities of both features were evaluated
using a set of plate scans with ground truth labeling for the hypocotyl/root transition
point for each seedling on the plate. Evaluation results showed that the mean greennes
improved detection performance by 4.8% and the SSDI improved detection performance
by 9%, when compared to the previously used feature set.
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I. Introduction

The golden-collared manakin (Manacus vitellinus) is
a small tropical bird, which lives in the Panama forest.
The males perform elaborate, acrobatic displays to
court mates [1]. During its courtship dance the male
demonstrates its physical strength by jumping between
saplings, producing loud wing snaps mid-flight. Mating
success seems to be related to superior motor skills [2],
which allow the male to execute its dance faster and
more precisely. However, it is not fully clear yet how
exactly the courtship dance has to be performed to
impress a female. To gain more knowledge about their
dance, biologists recorded the birds in the wild with
high-speed cameras at 60 fps. One of the videos can be
found at 1. Manually annotating the male bird in every
frame of the videos to enable analyzing their behavior
is a tedious process. We propose a novel approach for
automatic visual tracking of the male golden-collared
manakin, combining a convolutional neural network,
background subtraction and a Kalman filter.

The following properties of the videos make tracking
the birds challenging:
Speed: While jumping, the bird moves very quickly
(avg. 28 px per frame; avg. bounding box size: 113x95
px; frame size: 1928x1208 px).
Motion blur: Strong motion blur can make the bird
hard to recognize as it loses most of its local features.
Size and shape change: The bird’s bounding box
changes in size and shape, e.g. when the bird opens its
wings, turns, or moves away from the camera.
Occlusion: The bird can be partly or fully occluded
by saplings and leaves.
Out of frame: The bird frequently leaves the camera’s
field of view (18 times in 78 videos).
Trajectory: The bird starts and stops abruptly and
typically changes direction when starting a new jump.
On average, the bird makes 3.7 (max. 10) jumps per
video.
Background color: The forest is colored mostly
green, yellow and brown – similar to the male bird,
which has a green body, black head and a yellow neck.
Background motion: Leaves and branches move in
the background. Saplings often move when the bird
lands on them.

1https://github.com/anna-gostler/ManakinTracker

Tracking is made easier, however, by the static
camera setup, i.e. absence of camera motion.

Figure 1: Close-ups of male (top row) and female
(bottom row) golden-collared manakins

II. Related work
Most computer vision methods to analyze the be-

havior of birds worked on videos that were recorded
inside custom-built arenas [3]–[7] or on videos of birds
flying against the sky or distant landscapes [8], [9].
Therefore, background segmentation and tracking was
not a particular concern for these studies. A method to
get more precise information about the bird’s position
is to equip them with body markers [6]. This could
potentially modify the bird’s behavior during courtship,
which the biologists wanted to avoid with the manakins.
In 2017, Oliva et al. [10] developed a visual tracker

for golden-collared manakin males for videos that were
recorded in 2016 by the same team of biologists with
a different setup than the videos in this paper. Oliva’s
tracker detects foreground blobs using Mixture of Gaus-
sians (MOG) [11] and finds the male manakins among
these blobs based on the yellow color and saturation
of their neck or, if it cannot find the bird this way,
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predicts its location with a linear Kalman filter. This
method relies on a distinct color difference between the
background and the bird, which is not present in most
of the current videos.
As we aim to track birds that strongly and abruptly

change their appearance in videos recorded against a
highly cluttered background, we have evaluated the
top performing trackers of the VOT2016 challenge [12],
which deal with visual tracking under similarly challeng-
ing conditions: TCNN [13] and C-COT [14].
Nam et al. [13] developed TCNN, a tracker that uses

Convolutional Neural Networks (CNNs) arranged in a
tree structure, where a CNN in a child node is a fine-
tuned version of the CNN in its parent node. By keeping
multiple models of the target object the tracker can
handle appearance changes. The CNNs are based on
a CNN pre-trained on ImageNet, but are adapted to
output only two scores: a target and a background score.
Danelljan et al.’s tracker C-COT [14] is also based

on a CNN pre-trained on ImageNet. C-COT extracts
feature maps, which consist of the input image patch
and convolutional layers, from the CNN and learns
continuous convolution filters. The feature maps are
convolved with the filters to obtain a continuous con-
fidence score for every location in an area centered on
the previous location of the target. This approach uses
the CNN as a feature extractor. However, there are
not many consistent local features (such as points and
edges) in our target, mainly due to motion blur.
Both TCNN and C-COT do not model target move-

ment, but instead search the target around its previous
location, so they might not be able to follow a fast
moving target such as the manakin.

III. ManakinTracker
In this paper, we propose the ManakinTracker, which
• detects moving objects with a Mixture Of Gaus-

sians model (MOG) [11],
• decides if a candidate location visually resembles

the male bird with a fine-tuned CNN,
• and estimates the location of the target using a

Kalman filter [15] for frames without reliable visual
cues (see Fig. 2).

A. Blob Detection
As the videos were recorded with stationary cameras,

we can use a method based on background subtraction
to segment the foreground. We chose Mixture Of Gaus-
sians (MOG) because it can handle small movements
in the background. For every frame, MOG generates a
foreground mask from which we extract a set of moving
objects, called blobs (Fig. 3). Out of these candidate
blobs, we aim to select the ones that contain the target.

B. CNN architecture
To decide which candidate blobs contain the target,

we use a CNN, as CNNs have shown top performance in
object classification in images. Our CNN is based on the
CNN AlexNet [16], which is pre-trained on ImageNet.

We transfer the pre-trained layers of AlexNet to our
CNN, except for the last 3 layers, which we replace
with a new fully connected layer, a new softmax-layer
and a new output layer to match our two classes: target
(i.e. male golden-collared manakin) and background (i.e.
Panama forest). The output of our CNN is a background
score and a target score in [0, 1]. We fine-tune this
new CNN with image patches of male golden-collared
manakins and of background cropped from a set of
videos in our dataset.

C. Kalman Filter
We use a linear Kalman Filter to predict the location

of the bird if we could not obtain a reliable estimation
of the location from III-A and III-B. In addition, the
Kalman Filter’s location estimation is used if we find
more than one blob. In such cases, we select the blob
that is closest to the Kalman Filter’s location estima-
tion.

D. Bird Tracking
The male golden-collared manakin’s location is ini-

tialized in the first frame with the ground truth bound-
ing box. For each following frame, moving foreground
blobs are detected in the scene. To find the blobs that
contain the male bird, the blobs are classified with the
fine-tuned CNN. We keep the blobs that receive a high
target score, and discard the others. If there is only one
such blob, its position is selected as the current target
location.
In case there is more than one blob, the one that is

closest to the location predicted by the Kalman filter is
selected as the main blob. Since the bird can be partly
occluded (e.g. by the sapling it sits on) it can consist
of more than one blob. Thus, we add blobs to the main
blob that received a high target score by our CNN and
that are close to the main blob. If we find a blob or
combination of blobs, that fit these criteria, it becomes
the current target location (Fig. 4).
If we find no blobs in a frame or none that fulfill

the conditions described above we search the bird in
the region around its previous location. This usually
happens when the bird is sitting and thus not recognized
as a foreground blob. We shift the bounding box from
the previous position to its left, right, top, bottom and
diagonal neighborhood, crop image patches at these
candidate locations and classify them with the CNN.
All candidate locations that receive a high target score
are averaged, and selected as the current target location
(Fig. 5).
In frames where the bird is not recognized by the

CNN the Kalman filter is used if the bird is predicted to
be flying. Otherwise, we use the bird’s previous location
as the current target location.
If the bird leaves the scene, candidate locations are

placed along the edges of the frame to detect the bird
when it re-enters the scene. To avoid false positive
detections while the bird is outside the frame, only blobs
are considered for detecting re-entering birds.
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Figure 2: Flowchart of ManakinTracker.

Figure 3: Foreground mask (right) generated by MOG
model of frame (left). Blue box: extracted blob.

The ManakinTracker uses a Kalman Filter and MOG,
and thus does not rely only on the visual information
in a single frame but detects motion based on multiple
frames.
It uses a CNN, that is fine-tuned specifically to rec-

ognize male golden-collared manakins (including highly
blurry and partly occluded) with high accuracy.
In most cases (particularly during jumps) blobs lead

to very accurate bounding boxes and no further cor-
rection of the bounding boxes’ dimensions is necessary.
We can track the bird efficiently in most frames by
classifying only a limited number of image patches
extracted from blobs (usually 1-4 per frame).
In some cases the tracker recognizes the female bird

as the target, even though the CNN was only trained on

male birds. This suggests that the CNN does not rely
only on the male bird’s yellow neck for classification.
The downside of this is, that if the male and female
bird are both present in a frame the two have to be
distinguished by the tracker. One solution would be to
train a CNN on images of female birds also, which would
require ground truth bounding boxes for the female
birds. Currently, we handle this issue by choosing the
blob that is closest to the location predicted by the
Kalman filter if there are multiple blobs that get a high
target score.

IV. Evaluation
To evaluate the performance of the ManakinTracker,

we compared it to two of the trackers presented in
Section II: TCNN and C-COT. A fair comparison with
Oliva’s tracker was not possible, because this tracker can
neither be initialized nor re-started with a ground truth
bounding box. Additionally, this tracker relies strongly
on thresholds that were determined based on the dataset
it was trained on, and outputs only bounding boxes for
the male bird’s neck, which keeps accuracy low even in
case of successful tracking.
We assess the trackers’ performance based on accu-

racy and number of re-starts. Accuracy is measured with
the Jaccard index. A tracker is re-started at the next
frame that has a ground truth annotation if the pre-
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Figure 4: Two small blobs (small blue bounding boxes)
are combined into a bigger blob (big blue bounding
box). The white text indicates the blobs’ target scores.

Figure 5: Bird is sitting and no blob was found (candi-
date locations with high target score (red boxes), final
bounding box (white box))

dicted bounding box has zero overlap with the ground
truth bounding box.
Our test dataset consists of 78 video sequences that

show male golden-collared manakins performing their
courtship dance. All videos were recorded with station-
ary high-speed cameras at 60 fps in the Panama forest.
Every frame has a ground truth annotation (bounding
box enclosing the male bird) provided by biologists. For
testing, we split the dataset in half and train the CNN
on one halve and run the tracker on the other halve.

Tracker Avg. accuracy Avg. # re-starts
ManakinTracker 58.3093% 1.2051
C-COT 49.0720% 4.6795
TCNN 53.3405% 7.1154

Table I: Trackers’ performance on test dataset.

V. Results
Table I shows that the ManakinTracker performed the

best out of the three trackers, both in terms of accuracy
(58.31% average overlap) and robustness (1.21 re-starts
per sequence on average). TCNN achieves higher accu-
racy (53.34%) than C-COT (49.07%), but needs about
1.5 times more re-starts on average.
TCNN and C-COT both use CNNs pre-trained on

ImageNet. The performance of networks trained on
the ImageNet dataset, which consists of still images,
decreases strongly if images are blurry [17]. In contrast,
the ManakinTracker’s CNN was trained also on blurry
images, extracted from videos similar to the ones it was
tested on. For a more detailed evaluation see [18].

VI. Conclusion
The ManakinTracker achieved better accuracy and

needed less re-starts than two state-of-the-art trackers.
Keeping the number of re-starts low was our main goal
as we aim to minimize user input during tracking. Using
a CNN trained on similar videos as the test set led to a
high accuracy in detecting and tracking the male golden-
collared manakin.
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Vascular Structure Skeletonization: A Survey

Timon Höbert

Abstract

Spatial and geometric features of vessel structures are important criteria to
identify anomalies. The detection of the center-lines of these structures, the
skeleton, is a necessary preprocessing step. This paper highlights the main
properties of skeletons and gives an overview of different skeletonization tech-
niques and their applications. Seven techniques are identified and compared
according to centeredness, robustness, performance and parallelization.
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1 Introduction

The structure of tree-like topologies, such as nerves, vascular, and bronchial
trees is significant in diagnosis and therapy. Even slightly deviating shapes or
branching patterns in these structures cause the need for different therapies.
Thus, an exact analysis and visualization of different geometric features are
important in the decision-making process for different treatments.

The detection of various anomalies such as narrowings (stenosis) or di-
lated parts (aneurysms) as well as plaque and thrombus formation is one
typical field of application [10]. Via virtual colonoscopy, an examination of
a patient’s colon is simulated via rendering of CT/MR data through vessels.
This technique is used for early detection of colonic polyps which are the
major cause of colon cancer, the second leading cause of cancer deaths in the
USA [7].

These analysis and visualization methods highly depend on geometric
features such as the diameter and center-line of the vessel. The estimation
process of these vessel center-lines is called ”skeletonization”.

Figure 1: Continuous and discrete skeleton: The dark line represents the
continuous skeleton of the gray vessel. The dark gray pixels represent the
discrete skeleton. (From: [10]).
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2 Properties

The skeletonization of an object reduces its dimensionality to a medial axis
while preserving topologic and geometric properties [5]. It is common to
differentiate between discrete skeletons in discrete space and continuous ones
in the continuous domain. A continuous skeleton is a set of space curves or
surfaces representing the centers of maximum enclosing circles in 2D or the
maximum enclosing spheres in 3D. A discrete skeleton is a one or two voxel
wide line in the center of the corresponding volumetric object [10]. Figure 1
visualizes both types of skeletons.

Beside the definition of the maximum enclosing balls, a skeleton can be
defined in two other ways as well. The usage of maximal inscribed balls
(MIB) leads to a related definition, but different results since the maximum
enclosing ball touches the boundary only on two or more disjoint locations.
One benefit of this method is the possibility of an exact reconstruction of the
shape by using the location and radius of the MIBs. The firefront-definition
[2] uses a grassfire-transformation, where the object shape can be imagined
as a field of dry grass with a fire lit up synchronously along the boundary.
The skeleton represents the set of quench points, where two independent
firefronts meet based on a uniform propagation velocity.

In discrete space, a binary/grayscale 2D-shape is reduced to a curve of 1D
structures. In 3D, a volume is either reduced to a surface of 2D-structures or
to curves of 1D-structures. Figure 2 visualizes the difference of curve (a,b)
and surface-skeletons (c,d). This paper focuses on 3D-data because of the
generally used procedure, which produces 3D-data, but most of the figures
are in 2D for a simpler visualization.

Figure 2 also shows the difference between symmetric (a,c) and asym-
metric skeletons (b,d). The ideal line width of one voxel of an (asymmetric)
skeleton lacks rotational invariance if the related continuous skeleton lies be-
tween two voxels. This rotational invariance is achieved via the definition of
symmetric skeletons, where a width of two voxels is allowed for these cases.
An analogous definition can be generalized to surface skeletons as well, as
shown in figure 2(d).

As mentioned in [12, 10], the quality of a skeletonization method is de-
pendent on the following properties:

Centeredness The skeleton stays away from the walls of the vessel as much
as possible.
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(a) symmetric curve skeleton (b) asymmetric curve skeleton

(c) symmetric surface skeleton (d) asymmetric surface skeleton

Figure 2: Different discrete skeleton definitions. Symmetric/asymmetric
skeletons in the columns and curve/surface skeletons in the rows (From:
[10]).

Robustness Structural changes of a vessel do not change the skeleton: A
separated segment with branches and loops should yield equivalent re-
sults as a perfectly prepared tubular segment.

Invariant against affine transformation The skeleton stays consistent
in case of translated, rotated and scaled structures.

Performance The skeletonization method must be efficient enough, to com-
pute and visualize the skeleton in real time.

Parallelization The computation of the skeletonization should be possible
in multiple parallel subcomputations.

Connectivity The parts of the skeleton should be connected. In discrete
space, this is achieved via a defined 6-, 18- or 26-connected neighbor-
hood.
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3 Different techniques of skeletonization

Seven different main techniques of skeletonization are identified and com-
pared in the following chapters.

3.1 Thinning

The simplest skeletonization method is a thinning of previously segmented
vessel structures. It is accomplished via continuous morphological erosion in
3D-space of the initial structure until one-voxel wide lines result. Thereby, all
voxels are removed, which are not terminal voxels (with only one neighbor)
and not branching voxels (with more than two voxels) [7].

The morphological pealing operation is simple, and a topological correct-
ness is ensured. However, the thinning of large objects results in numer-
ous iterations of the process, even with accelerations [7]. Additionally, this
method heavily depends on the quality of the segmented input vessels.

3.2 Wave-front propagation

Wave-front propagation operates analogously to iterative thinning. The
boundary-voxels are used as an initial wave, which is iteratively expanded
to the inside of the given shape. Collisions of opposite wave-fronts indicate
the skeleton-voxels. This approach leads to disconnected skeleton-parts in
any narrowing of the shape [6]. In some cases, disconnected skeletons are
sufficient, for example for the vessel registration of multiple volumes. But
for most cases, an additional merging step is needed. This merging can be
done by linking the collision points computed in wave iteration i with their
nearest point at distance i [3]. Similarly to iterative thinning this method
needs as many iterations as the number of voxels at the thickest point of the
object, but a parallel computation is possible.

3.3 Distance Transform

Via distance transforms a representation is calculated where every voxel in-
dicates the distance to the closest boundary voxel. Figure 3 visualizes the
calculated distance transform of a 2D-Image in 3D where the height encodes
the distance. Based on these distances, the path along the maximally valued
voxels is generated, which represents the center-lines. It is also possible to
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Figure 3: Distance Transform: The computed distance transform of the
segmented vessel tree from figure 1 illustrated as a 3-D visualization where
the height encodes the calculated distances (From: [11]).

approximate the distance transform, to minimize the computational costs.
To avoid the square root of the exact Euclidean distance approximated met-
rics with integer values are preferred. Instead of distances of 1,

√
2 and

√
3

for face-, edge- or vertex-connected voxels, the values 1, 2 and 3 [15], 3, 4
and 5 [7] and 10, 14 and 17 [12] are approximated. The computational costs
increase with more precise metrics, but the precision of the final results do
as well. In general, the precision of skeletons using distance transforms is
accurate enough to stay within the object; still it is not perfectly centralized,
especially in corner areas.

3.4 Voronoi diagram

Voronoi diagrams can be used for skeleton extraction as well. Hereby, the
voxels along the boundary are used as seed-points to calculate the diagram.
The resulting cell-boundaries which are not associated with two neighbor-
ing seed points represent the final skeleton, as shown in figure 4(a,b). This
skeleton generation matches the previously mentioned definition of skele-
tonization via maximum inscribed balls [1]. The union of all inscribed balls
along the skeleton leads to a reconstruction of the original shape, as shown
in figure 4(c).

There are efficient algorithms to compute 3D-Voronoi diagrams with an
experimental time complexity of O(n log n) [8]. Additionally, parallelization
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(a) shape with skeleton (b) Voronoi diagram (c) inscribed balls

Figure 4: Example of a two-dimensional shape and its skeletonization via
a Voronoi diagram. The original shape with its generated skeleton and one
inscribed ball (a). (From: [1]).

is possible by separate cell-based computing 1. However, the computation
of the Voronoi diagram becomes very complex if the object is noisy, which
leads to discontinuities and parasitic branches.

3.5 Direct Skeletonization

The skeletonization method directly applied to the scanned data - with-
out any pre-segmentation of the vessels - is called ”direct skeletonization”.
Thereby a starting point in the center of the vessel and a direction is se-
lected by the user, and the procedure follows the vessel skeleton. Here the
algorithm is continuously computing following vessel centers as circle centers
on the perpendicular planes. This is accomplished via radial ray-casting to
measure the distance to the wall of the vessel [13].

This method is fast and efficient because of its local operation, which
includes a minimum of computational steps. Additionally, the skipped seg-
mentation process also improves overall computational costs. The drawback
of this method is the precision, especially in highly bent segments or near
branchings [10], where some vessels are ignored or imprecise centers com-
puted. Therefore, an additional manual correction or adjustment of param-
eters are required.

1http://math.lbl.gov/voro++
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(a) force on seed point (b) critical points (c) neighborhood

Figure 5: Repulsive field of force visualization. Example seed point with
the resulting force towards the center (a). The critical points represent the
local force minimum of the boundary voxels (b). Linear connection of critical
points where the original boundary points are adjacent (c). (From: [14])

3.6 Repulsive Field of force

The repulsive field of force skeletonization uses the idea of a force field inside
of the object via ”charging” the object boundary. This force field pushes any
seed point placed away from the charged boundary towards the center of the
shape, as visualized in figure6.

The repulsive field for every point x can be calculated as

RF (x) =
∑

f(‖vi − x‖2) ·
−−−−−→
(vi − x) (1)

where vi represents the boundary voxels, and f(r) = r−2 the force func-
tion with an order of 2 for the Newtonian force.

After the computation of the force field, each boundary voxel is put into
the force function resulting in a set of local minimum points, the critical
points. Since the neighborhood of the original boundary voxels is known, the
neighborhood of the resulting critical points can be derived. The neighboring
critical points can be connected either with simple lines [14] or with curves
via integration along the force field [4].

The computational complexity of the force field algorithm is dependent
on the number of object voxels to calculate the force field and the boundary
voxels to calculate the critical points. It can be further optimized via only
using the visible voxels in the force field computation [14]. The total com-
plexity is O(no ∗ nb), where no is the number of object voxels and nb the
number of boundary voxels [4].
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(a) radial basis function (b) critical points (c) active contour

Figure 6: Radial Basis function skeletonization. Resulting force field of the
shape via radial basis function (a). The critical points represent the local
force minimum of the boundary voxels (b). Active contour model of critical
points where the original boundary points are adjacent (c). (From: [9])

3.7 Radial Basis Functions

Similar to the repulsive field of force is the skeletonization method based on
the radial basis function (RBF). The RBF level set, as shown in figure 6(a),
is locally derived to result in a gradient vector field, as shown in figure 6(b).
Again, the critical points are the centers of the resulting level set, which
are the local maxima of the gradient vector field. The same neighborhood
criterion as of the repulsive field of force is used to connect adjacent critical
points. Here a curved connection between two critical points is calculated
via an active contour model. This model minimizes an energy function which
is dependent on the distance field and intrinsic properties of the curve, such
as its length and curvature. The radial basis function can be efficiently
computed sequentially and in parallel, but the optimization of the active-
contour model is responsible for a reduced performance [9].

4 Comparison

A comparative overview of the previously discussed methods is shown in
figure 4 for the criteria centeredness, robustness, performance and paral-
lelization. There is no ideal method fulfilling all listed criteria. Each method
strikes a compromise between performance (centeredness and robustness)
and efficiency (sequential performance and parallelization).
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Method Centeredness Robustness Performance Parallelization

Thinning + + - +

Wave Front Propagation + + - +

Distance Transform + - + +

Voronoi Diagram + - + +

Direct Skeletonization - - + -

Visible Repulsive Force + + - +

Radial Basis Function + + - +

Figure 7: Comparison of the discussed skeletonization methods based on
centeredness, robustness, (sequential) performance, and parallelization.

5 Conclusion

To sum up, the discussed methods differ in performance and efficiency. De-
pending on the use case, different trade-offs have to be considered. In ad-
dition to the issue that the definition of skeletonization in general is rather
ambiguous, which makes a comparison of different skeletonization methods
difficult, currently, no practical evaluation of the discussed methods is avail-
able. This evaluation conducted on one data set represents a topic for further
research.
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