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Abstract

Color Fundus and Fluorescein Angiography are medical procedures
used for eye diagnosis. In Fluorescein Angiography a series of pho-
tographs is taken to analyze the blood flow in the back of the eyes.
Color Fundus records color images of the interior surface of the eye to
monitor and document disorders. As with every photograph, certain
image distortions occur, making analysis difficult. The aim of these
theses is to find a way to measure these distortions and ideally, flag
bad photographs so that the analysis process can be accelerated.
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1 Introduction

Two common eye diagnostic methods are Color Fundus (CF) and Fluorescein
Angiography (FA), which are used to monitor and document eye disorders.
Since the first successful fundus camera in 1926 which was commercially
available, CF photography is an important part of recognizing different dis-
eases of the eye [8].

In FA Fluorescent dye is injected into the bloodstream, which highlights
blood vessels in the back of the eyes. The blood flow is then analyzed through
a series of photographs, which can show blood leakages, circulation problems
and other abnormalities. Because of the special filter they are shot through,
these images are gray-scale.

After analyzing the comments of 2,621 labeled tickets with a total of 86,997
images, it was possible to extract four quality factors: contrast, illumination,
acutance (sharpness) and noise. Often, at least one of these factors is neg-
atively impacted through human error or equipment failure. This leads to
hardly readable or even completely useless images, which significantly slow
the analysis process down. If there was a way to assess the quality of CF
and FA images while evaluating each factor separately, the reading process
could be accelerated by avoiding time consuming bad quality images.

Image quality assessment (IQA) can be split into three types: Full-Reference-
IQA (FR-IQA), Reduced-Reference-IQA (RR-IQA) and No-Reference-IQA
(NR-IQA) [13]. Because every eye is unique, it is not possible to define any
type of reference to compare against; A “blind” (no-reference) image quality
assessment is needed.

In this report, a NR-IQA framework for CF and FA images is proposed.
The objective of this framework is to formalize the four factors and evaluate
their impact on the image in real-time while maintaining a high generalizabil-
ity. The chosen algorithms have to be efficient to ensure real-time application
on weaker hardware. That way, images of insufficient quality can be detected
while the patient is still present to make new, better images.



The framework extracts quality vectors from CF and FA images, which can
either have a circular mask or no mask at all. Any other type of mask or
image information like time stamps on top of the retinal scan will negatively
impact the accuracy of the calculations.

The vectors from each of the quality features are passed to a trained clas-
sification module, which then returns a classification and its corresponding
scoring. The score indicates the certainty of the classification. If the cer-
tainty (and thus the score) is low, readers can determine themselves if an
image is of sufficient quality and thus mitigate the risk of misclassification.

This paper is structured as follows: Section 2 describes the various methods
used to extract the quality features for each modality (written in parenthe-
ses), Section 3 focuses the training and the evaluation of the used classifica-
tion modules, Section 4 lists the runtime for the two modalities, and Section 5
concludes the work done.

2 Feature Extraction

(a) (b)
Figure 1: Examples of a good FA-image (a) and a good CF-image (b).

In FA| three features (Acutance, Contrast/Illumination, and Noise) are ex-



tracted and a quality vector for each feature is calculated, while CF calculates
four features(Acutance, Contrast, [llumination, and Noise). The resulting
values are then evaluated using trained classification modules, which carry
out the final evaluation of the feature. An overview of the framework is given

in Figure 2.
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Figure 2: Overview of the proposed framework.



Because it is possible for images to be readable despite suboptimal acutance,
color, contrast, illumination or noise, each feature is evaluated separately.
This important for certain pathologies, where a good contrast value is not
possible due to impeded blood flow.

Sometimes, CF and FA images do not fill the entire image (as seen in Fig-
ure 1b). While the background pixels can give information about the noise
ratio of an image, they falsify the results of acutance and contrast calcula-
tions by adding a sharp edge and contrast to the image. To avoid this, such
images need to be masked before evaluation. Another benefit of masking is
the removal of timestamps in FA images, which also influence contrast and
acutance calculations, as seen in Section 2.1, Figure 4.

2.1 Acutance (CF & FA)

Figure 3: Example for an FA-Image with low acutance.

The acutance (or sharpness) of an image is determined by the edge contrast
of an image.

In CF and FA, low acutance makes it difficult or impossible to discern thin-
ner blood vessels, which can be critical.

There are numerous ways to measure the acutance of an image, like fre-



quency analysis via Fourier Transformation or examination of the maximum
value after applying a Laplace of Gaussian filter.

The framework implements a slightly modified version of the method pro-
posed by Dias et al. [3] for our framework. It is a combination of two explicit
focus measures and is already used in NR-IQA of color fundus images, which
is another eye diagnostic method.

Because it promises reliable and quick calculations, it is used in this frame-
work, too.

To get the first gradient map O, a normalized Sobel operator is applied
to the image, which consists of two convolution kernels:

1 -1 0 +1 +1 42 +1
My=7-| =20 42| and My=--| 0 0 0 (1)
-1 0 +1 -1 -2 -1

O =/ (M, * D)2+ (M, « 1) (2)

With it, F'M, is calculated as the average value of the gradient map:
M, = Zn: 0 (3)
1 = n - 7

where O; is the ith pixel of the gradient map. Then, a 3x3 median filter is
applied to the image and again a gradient map is calculated, L1. F M, is
computed as the average value of the new gradient map:

1 n
i=1

Additionally, D; is calculated as the difference between the two averages
FM1 and FMgi
Dy =FM, - FM, (5)

Finally, another median filter is applied to the original image, this time with
a kernel size of 5x5, and the same procedure is applied for L2:

1 n
FM;s=—- > L2 (6)
=1



This time, D5 is the difference between F'My and FMs:
Dy = FMy — FM;, (7)
While this may look similar to a Laplacian Pyramid [2], it differs in two ways:
1. The image is never resized, only a low pass filter is applied.

2. Instead of subtracting two images from each other (resulting in an edge
image), two (scalar) values are subtracted, resulting in another scalar.

The idea behind these values is that sharp/focused images are more affected
by low pass filtering, resulting in greater differences between the three gra-
dient maps.

Masking is critical when measuring focus, as the high frequencies at the
border of the image influence the focus rating, especially if there are time-
stamps or any other type of information in the corners. An example for this
is shown in Figure 4 and Table 1.

Figure 4: Edge image of Figure 3 with (a) and without masking (b).
Resolution: 200x160 px



Table 1: Calculation results of images shown in Figures 4a and 4b.

(5a) (5b)

FM, 0.0778 0.0961
FM, 0.0518 0.0677
Dy 0.0260 0.0284
FMs; 0.0267 0.0435
D, 0.0250 0.0242

The resulting quality vector contains F'M;, Dy and Ds. Calculation of this
feature is rather fast and returns acceptable results (see Sections 3 and 4).

2.2 Color (CF)

Many retinal scans of the dataset provided by the VRC show images with
maximum intensity values of 0.08 or less, on a scale from 0 to 1. These im-
ages appear to be absolutely black, which makes any diagnosis for medical
doctors impossible. In contrast, some images are too bright - as the left im-
age of Figure 5 with an maximum intensity of 0.97 and a mean intensity of
0.66 - to recognize any features of the eye.

There are only few approaches including the color scheme of the retinal scan
in the quality assessment. [10] measure the darkness and brightness together
with the evenness of the illumination. Therefore, the luminance channel of
the input image is processed with simple thresholding and the result is ana-
lyzed. With this method however, no use is made of the color information so
that images with diverse colors, but similar lighting cannot be differentiated.

The approach of this work to assess the color scheme is mostly similar to
the method proposed by [3]. The goal is to classify the input image into one
of the three categories bright, dark or normal, as shown in Figure 5. There-
fore, in preparation of the assessment, a predefined color map is created,
using 10 representative images for each category. For each of these color
maps, the algorithm then creates a so-called indexed image. This is achieved
by finding the correspondent color value for every pixel of the original input
image in the color map and taking this as the pixel value in the new image.
If a value does not exactly appear in the used color map, the most similar



color value is chosen. Afterwards, the percentage of different occupied bins
for each of these three color maps is calculated.

i

Figure 5: Examples for bright (left), dark (mid) and normal (right) color
scheme for CF images.

As an additional parameter, the approach proposed in this work creates an
indexed image for a fourth color map, which is displayed in Figure 6. As
explained in [3], this color map naturally arranges colors, which are occurring
more often in good quality images, at the right end of the map. By creating
an indexed image using this color map and calculating the image mean, this
method utilizes the fact that better colors are scoring significantly higher
results than unusual colors.

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 6: Color map that clusters natural colours of retinal scans.

2.3 Contrast (CF)

Contrast has as much impact on the quality of a retinal scan as the other
categories. If the contrast is very low, the vessels cannot be differentiated
from the background as in Figure 7(c) and so one of the most important
features is lost.



(a) colour (b) focus

(c) contrast (d) illumination

Figure 7: Bad quality examples for all four categories.

Dias et Al. [3] again use a method including histogram back projection for the
assessment of the contrast. Therefore, an indexed image is created for a color
map, which was obtained through the analysis of 170 high contrast images.
Afterwards, two different measurements are performed: As shown in the work
of [3], the first measurement CtM1 (8) calculates the sum of the absolute
difference between the pixel percentage within each bin (pl). As a second
measurement, the number of empty bins is counted. The same calculations
are then made for a version of the image which was low-pass filtered. This
approach however is not very flexible, if an image consists of not many, but
only a few colors. If, for example, an image with black background and white
vessels is evaluated, the two measurements would (assuming a distribution
of 80% black and 20% white pixels) lead to the results of (9) and 14 empty



bins.
16 1

CtM1 g0 = > (Ip) - ) (8)
=1
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These results are the same for every image where only two bins are occupied,
whether the colours are easy to differentiate or almost impossible to distin-
guish. Therefore, this method can lead to imprecise contrast assessment.

The approach followed in this work was proposed by Matkovic et al. [6],
which is shown in Section 2.5.

2.4 Illumination (CF)

As the last category for image quality measurement of CF images, [3] propose
the evaluation of a homogeneous illumination. Many images of the provided
data show ungradable areas (mainly on the edge of the ROI as in Figure 8)
due to uneven luminance.

In the last years there have been several different approaches to solve this
problem, as mentioned by [3]. Some of them are based on the intensity level
of gray-scale images, like [4] propose. For this task however, this approach
would not make use of all the information a Color Fundus photograph has
to offer and therefore was dismissed. [14] and [12] apply a different model
based on smoothing the image.

Figure 8: Example for inhomogeneous illumination.



Dias et al. [3] perform the illumination assessment by again using the modified
color map in Figure 6. For the assessment, an indexed image I using this
color map is created for the original input image. Afterwards, the mean M
for all n pixels of this indexed image (10) is calculated. As stated by [3], this
achieves a much higher value for colors which are usually occurring in better
quality retinal scans.

1 n
M== I; 10
nX_j (10)

In addition to calculating the mean, three other values are calculated for
the indexed image: First, the variance of the occurring colors as in (11) is
measured. Furthermore, for the assessment of a homogeneous illumination,
the variance above and below the mean are calculated, as shown in (12) and

(13).

V =wvar{l} (11)
Va = var{L;|I; > M} (12)
Ve = var{l;|I; < M} (13)

In this approach, the three calculated variances (V, V4, V) for bad quality
images are expected to show high values. The best and therefore lowest
results are given by a perfectly homogeneous illuminated image, thus a single
colored image. However, to prevent a completely black retinal scan from
getting significantly higher scores than good quality images, the mean of
the indexed image from (10) is included as a parameter in the illumination
evaluation.

2.5 Contrast and Illumination (FA)

The most important factor in FA-images is the contrast. Without contrast,
blood vessels cannot be distinguished from the background, making analysis
impossible.

While contrast and illumination are separate factors in color images, they
are interrelated in gray-scale images; It is not possible to have an FA-image



Figure 9: Example for an FA-Image with low contrast.

with good contrast but bad illumination and vice-versa, which is why this
framework combines both factors into one feature.

The common definition of contrast in images is the difference in luminance
and/or color. Contrast is what makes it possible for the human visual system
to differentiate between objects and background or foreground.

To calculate the overall contrast of an image, the most common methods are
the Michelson contrast [7], the Weber contrast and the Root-Mean-Square
(RMS) contrast [9]. However, because FA-Images neither have equivalent
dark and light features nor a uniform background, neither the Michelson nor
the Weber methods can be used. While RMS offered usable results, it is not
accurate enough, which is why another method is needed to calculate image
contrast.

The proposed framework uses the Global Contrast Factor (GCF) by Matkovic
et al. [6], as it promises a metric that not only measures the overall contrast
of an image, but also the richness of detail as perceived by a human observer.

For medical images that are analyzed by human readers, GCF appears to be
ideal.

Because color information is not needed for this algorithm, and to accu-
rately calculate the contrast quality, the image is converted from RGB (with



a pixel range of [0-255]) to double precision (with a pixel range of [0-1]).
Using the original RGB intensity pixel value & (which ranges between 0 and
255) and a gammal! of 4y = 2.2 | the linear luminance

| (%) (14)

L=100-V1 (15)

and the perceptual luminance

are calculated. Once the perceptual luminance of every pixel is calculated,
the local contrast lc; of each pixel 7 is computed by calculating the average
difference of perceptual luminance (L) between the pixel itself (L;) and its
left, right, top and bottom neighbors:

_ |Lz - Lleft| + ’Lz - Lright| + |Lz - Ltopl + |Lz - Lbottom|
4

Only existing pixels are taken into account, which means that masked pixels
and pixels outside the image are ignored. For example, in calculating the
local contrast of the upper left corner pixel, both the left and top pixels are

. . . Li—Lysgnil+Li—L
ignored, leading to a calculation of l¢; = L= Lrign] 2‘ i—Loortom|

le; (16)

With the local contrasts calculated, the average local contrast C; for the
resolution level ¢ is computed via

w-h
1
= . le: 1
C, w_h;cz (17)

To achieve more accurate results, the average contrast of multiple resolutions
has to be calculated. The paper [6] suggests nine resolutions, as more reso-
lutions do not yield enough information to justify the computational costs.
The proposed framework downsamples the image eight times by halving the
width and height via bilinear interpolation and calculates the average local
contrast for each resolution level. Finally, the GCF is calculated by summing
up the weighted average local contrasts:

9
=1

Las specified in IEC 61966-2-1



Matkovic et al. [6] conducted experiments, where users were asked to compare
contrast between images to find the optimal (approximated) weights w; that
correlate with the user ratings. Since FA-images are still analyzed by human
readers, the proposed framework uses the same weights for its calculation:

w; = (—0.406385 - % +0.334573) - é +0.0877526 (19)

The resulting quality vector contains every weighted average local contrast
and thus nine values.

Because FA-images are recorded over time to document the flow of the fluo-
rescent dye, there will be images (mainly at the beginning and the end of a
patients medical examination) where the dye is not circulating through the
eye. These images will have a negative classification, even if they were taken
under perfect conditions (i.e. no human error and no hardware defects). This
is not a false classification, as there cannot be any contrast without the flu-
orescent dye. Using the time-stamp provided with every image, readers will
be able to ascertain whether the contrast classification is relevant or not.

The biggest disadvantage of this method is the amount of time-consuming
calculations, making it the slowest feature of the proposed framework. To
accelerate the calculations and make it possible to use this algorithm in real-
time application, a 3x3/4 Pyramid? is employed, as it is more efficient than
equivalent weighting functions [5][2]. That way, the filter kernel does not
change in size, limiting the amount of calculations per pixel. Additionally,
the images are resized to a width of 1,600 pixels, if they are larger. However,
downscaling leads to the loss of higher frequencies and thus a less accurate
result. If the hardware of the computing device is powerful enough, this
algorithm can be used in real-time without resizing.

2An image pyramid with a 3x3 reduction window, of which the image size is quartered
every level.



2.6 Noise (FA)

Figure 10: Example for a noisy FA-Image.

Noise is an image artifact that occurs due to hardware limitations of a cam-
era. Because of it, random pixels change in color and brightness, making it
harder to discern important image features, especially edges. This is vital in
FA-images, as readers need to be able to recognize blood vessels to analyze
an eye.

The most common type of noise distortion in the provided dataset is salt-
and-pepper noise, as the histogram of every noisy image exhibited a fat-tailed
distribution® (see Figure 11 for an example), which is an indicator for salt-
and-pepper noise [1].

Not many reference-less methods exist to calculate the noise ratio of an
image. Due to their simplicity, the Signal-To-Noise-Ratio (SNR) and its
variation Peak-Signal-To-Noise-Ratio (PSNR) are tried and tested methods.
However, PSNR cannot be used in this case, as it requires a reference; Every
retina has a unique pattern of blood vessels [11], making it impossible to
reliably define a reference image.

While each eye is photographed repeatedly in FA, it cannot be guaranteed
that at least one of the pictures is good enough to use as reference for other

3a distribution with large skewness or kurtosis relative to a normal distirbution
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Figure 11: Histogram of example image shown in Figure 10.

pictures of the same eye; The "best” picture of a series might still not be
good enough.

One of the latest algorithms is the no-reference noise metric from Yang et
al. [15], which promises great accuracy and stability of the assessments. How-
ever, while this method is precise, it proved to be too computationally taxing
for real-time usage together with the other quality features. The average run-
time was over one minute per image on a device with the hardware specifica-
tions listed in Table 16. While this might seem like an acceptable runtime,
it has to be considered that devices used in medical institutions could be
significantly weaker.

Via process of elimination it was decided to use the simple Signal-To-Noise-
Ratio (SNR), which is calculated as the ratio of the average signal value to
its standard deviation by:

SNR = sio (20)

Osig

Due to its simplicity, noise is the fastest feature to calculate while returning
acceptable results (see Sections 3 and 4). If the computing hardware is pow-
erful enough, it is possible to use a more accurate method like the previously



mentioned no-reference metric by Yang et al. [15] in real-time.

3 Classification Module Training and
Feature Evaluation

After calculating each quality vector, another problem emerges: since each
feature is calculated differently, the resulting values have different scales and
ranges.

One idea was to manually find reasonable min/max values and use them
to convert the range of every feature to a 0-10 or 0-100 scoring system. The
problem with this approach however, is the probable limitation of the values
to the provided dataset, which would significantly impact the generalizability
of the framework.

To solve this problem, classification modules are used. This has two ben-
efits, the first one being the efficiency of machine learning in finding a good
threshold. The second advantage is the possibility to train the framework
with another, larger dataset, further enhancing classification.

There are various classification methods, such as Support Vector Machines,
Boosting, Decision Trees, or a simple Naive Bayes classification.



3.1 Classification Evaluation

One way to evaluate the performance of classification models is the Receiver
Operating Characteristic (ROC) curve and its corresponding Area Under the
Curve (AUC). To calculate them, two statistics are needed: the sensitivity
(or true positive rate)

GQc

GQe+ GUp

where GQ)¢ is the amount of good quality images that are classified ”good
quality” and GQp is the amount of good quality images that are classified
"bad quality”,

and the false negative rate (or 1 — speci ficity)

_ BQg
BQp + BQq

where B@p is the amount of bad quality images that are classified ”bad
quality” and BQ¢ is the amount of bad quality images that are classifed
"good quality”.

A ROC curve plots sensitivity against the false negative rate. The AUC is
the area under the ROC Curve and describes how good a model can distin-
guish between classes. An AUC of 0.5 means that it cannot distinguish at
all, while an AUC of 1.0 describes perfect separability; Analogically, a value
of 0.0 describes perfect separability with inverted classification. However,
an AUC of 1.0 (or 0.0) does not necessarily mean that the perfect classifier
has been found, but merely that the tested dataset is perfectly separable.
The bigger the dataset is, the more likely it is to contain outliers that lower
separability.

(21)

1 (22)

The proposed framework compares the AUC of each of those methods and
saves the best method as the classification module.

For FA, training was done using a training set of 300 "bad quality” images
for each feature and 300 ”good quality” images, resulting in a total of 1,200
images. The calculated ROC curves and AUCs for each quality feature are
shown in Figures 12-14 and Tables 2-6; The confusion matrices of the best
classification module for each feature are shown in Tables 3-7.

For CF, about 600 images per category have been selected as the dataset:
150 images with good quality in general (which were used for all categories),



150 images with good quality regarding the evaluated features of that cate-
gory and 300 images with bad quality for this specific category. These 2,087
images have been manually labeled and were used to train the classification
modules. The calculated ROC curves and AUCs for each quality feature are
shown in Figures 15-18 and Tables 8-14; The confusion matrices of the best
classification module for each feature are shown in Tables 9-15. The best
AUCs and classification losses have been marked bold.

After training, feature evaluation is done by calculating the quality vectors
for every feature of the input image(s) and then passing them to their re-
spective classification module.

To offer a more precise scoring than the binary ”good” and "bad” of the
classification modules, the proposed framework also returns the certainties
of the classifications. The higher the value, the more likely it is for the image
to be of sufficient quality.
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Figure 12: ROC curves of the FA contrast classification modules.

Table 2: AUCs and Classification Losses of the FA contrast classification.

Classification Method AUC Class Loss
Adaptive Boosting 0.9385 0.1350
Classification Trees 0.8789 0.1583
Naive Bayes 0.8513 0.2500

Support Vector Machines 0.9444 0.1167

Table 3: Confusion Matrix of Support Vector Machines for FA contrast clas-

sification

Predicted Class

Actual Class Bad Quality Good Quality

Bad Quality 279
Good Quality 49

21
251
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Figure 13: ROC curves of the FA acutance classification modules.

Table 4: AUCs and Classification Losses of the FA acutance classification.

Classification Method AUC Class Loss
Adaptive Boosting 0.9423 0.1117
Classification Trees 0.9256 0.1150
Naive Bayes 0.8753 0.2367
Support Vector Machines 0.9631 0.1150

Table 5: Confusion Matrix of Support Vector Machines for FA acutance
classification

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 282 18
Good Quality 51 249




ROC curves

1

0.9

08

07 r Support Vector Machine
Naive Bayes
Classification Tree

AdaBoost

0.6

0.5

0.4 r

True positive rate

0.3 r

0.2

0.1

D 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

Figure 14: ROC curves of the FA noise classification modules.

Table 6: AUCs and Classification Losses of the FA noise classification.

Classification Method AUC Class Loss
Adaptive Boosting 0.8570 0.2267
Classification Trees 0.8076 0.2433
Naive Bayes 0.8883 0.2033

Support Vector Machines 0.8920 0.1767

Table 7: Confusion Matrix of Support Vector Machines for FA noise classifi-
cation

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 267 33
Good Quality 71 229
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Figure 15: ROC curves for all four CF color classification modules.

Table 8: AUCs and Classification Losses for CF color classification.

AUC Class Loss

Adaptive Boosting 0.9948 0.0137
Classification Tree 0.9780 0.0360
Naive Bayes 0.9936 0.0240
Support Vector Machine  0.9942 0.0223

Table 9: Confusion Matrix of Adaptive Boosting for CF color classification

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 262 4
Good Quality 4 314
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Figure 16: ROC curves for all four CF acutance classification modules.

Table 10: AUCs and Classification Losses for CF acutance classification.

AUC Class Loss

Adaptive Boosting 0.9901 0.0251
Classification Tree 0.9797 0.0292
Naive Bayes 0.9892 0.0501

Support Vector Machine 0.9947 0.0209

Table 11: Confusion Matrix of Support Vector Machines for CF acutance
classification

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 418 6
Good Quality 9 285
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Figure 17: ROC curves for all four CF contrast classification modules.

Table 12: AUCs and Classification Losses for CF contrast classification.

AUC Class Loss

Adaptive Boosting 0.9810 0.0503
Classification Tree 0.9385 0.0732
Naive Bayes 0.9448 0.1128

Support Vector Machine 0.9912 0.0412

Table 13: Confusion Matrix of Support Vector Machines for CF contrast
classification

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 347 16
Good Quality 11 282
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Figure 18: ROC curves for all four CF illumination classification modules.

Table 14: Classloss and AUC for CF illumination classification.

AUC Class Loss

Adaptive Boosting 0.9486 0.1025
Classification Tree 0.9160 0.1289
Naive Bayes 0.8920 0.2083

Support Vector Machine  0.9340 0.0992

Table 15: Confusion Matrix of Adaptive Boosting for CF illumination clas-
sification

Predicted Class
Actual Class Bad Quality Good Quality

Bad Quality 265 37
Good Quality 25 278




4 Runtime Evaluation

For FA, the average runtime of the framework has been calculated by timing
the computation of 600 images and is shown in Table 17. The hardware
specifications of the computing device that was used is listed in Table ?7.

Table 16: Hardware specifications of the device used to time FA method
runtimes

Component Type Component Installed

Processor Intel Core i7-4790K
Memory 16GB DDR3 RAM
Graphics Card NVIDIA GTX 970
Operating System Windows 10 64bit

Table 17: Average Runtime per image (600 FA images)

Feature Average Runtime (in seconds)
Contrast/Illumination 4.375
Acutance 0.381
Noise 0.360
Total: 5.116

Because Contrast/Illumination is of highest priority, the extent of accuracy
reduction is limited, making it the slowest feature calculation by far. How-
ever, thanks to the efficiency of Acutance and Noise calculations, the pro-
posed framework still manages to deliver an adequate runtime for real-time
application.



For CF, the framework has been tested on a device with the specifications
listed in Table 18.

Table 18: Hardware specifications of the device used to time CF method
runtimes

Component Type Component Installed

Processor Intel Core i7-7700HQ
Memory 8GB DDR3 RAM
Graphics Card NVIDIA GTX 1050
Operating System Windows 10 64bit

The needed amount of time to calculate the features of every category are
shown in Table 19.

Table 19: Average Runtime per CF image

Feature Average Runtime (in seconds)
Color 1.53
Focus 0.61
Contrast 8.68
[lumination 9.11
Total 19.93

5 Conclusion

This report proposes an efficient way to classify and grade CF/FA-images,
while discussing some of the difficulties and problems present in image quality
assessment of retinal scans. With the proposed framework, medical institu-
tions can assess the quality of CF/FA-images in real-time, provided that the
classification modules are properly trained beforehand.

Furthermore, the modular structure of the framework makes it future-proof
by making it possible to update the components as soon as there are break-
throughs in IQA for any of the previously mentioned quality factors.

With proper training, this framework could be used as part of retinal image
segmentation, further accelerating the process of eye diagnosis.



5.1 Future research

By using multiple threads, a parallel calculation of the different categories
would be possible, which would reduce the required amount of time.

Furthermore, adapting the training sets for the used classification modules
would bring further improvement in accuracy. By increasing the number of
used images for each category, the machine can learn to differentiate more
accurately and predict border cases more precisely. Aside from the size of the
training set, the suitability of each image is of high importance. Therefore,
the images used to train the classification modules should be reviewed by
professionals.
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