
Technical Report Pattern Recognition and Image Processing Group
Institute of Visual Computing and Human-Centered Technology
TU Wien
Favoritenstrasse 9-11/193-03
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801 - 18661
Fax: +43 (1) 58801 - 18697
E-mail: stefan.fiedler@alumni.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-149 April 8, 2021

Parallel Combinatorial Pyramid Generation
with Maximal Independent Directed Edge Sets

Stefan Fiedler

Abstract

The combinatorial pyramid is a conceptually simple and efficient representation of plane
graphs that is well suited to model irregular graph pyramids. In this report, we show,
through theoretical considerations and practical experiments, that maximal independent
directed edge sets can be extended to select contraction and removal kernels consisting of
independent darts in a combinatorial pyramid.
In this way, the adaptation facilitates the parallel processing of combinatorial pyramid
generation. Additionally, with the use of the edge preselection mechanism inherent to this
method, it is possible to steer the generation process towards any desired set of survivors.
While this report only uses a basic preselection to demonstrate its general effectiveness, the
approach can be easily adapted by computing different survivor selection criteria.

1 Introduction

Image pyramids are widely used in different image processing tasks, such as
image segmentation and connected-component labelling. Over the last four
decades, various representations of image pyramids and generation methods
have been devised. Of these, combinatorial pyramids are a particularly simple
yet versatile representation.

In this report, we present an efficient method for the parallel construc-
tion of combinatorial pyramids, based on the maximal independent directed
edge set (MIDES) algorithm. While the development of the method in this
report has been motivated by the generation of region adjacency graphs from
labelled images, it can be easily extended to generate other types of image
pyramids.

The main contribution of this paper includes the adaptation of the MIDES
algorithm for parallel contraction and removal operations in combinatorial
pyramids. An evaluation of the image pyramid generation and a discussion
of the results are also provided.

Section 2 gives a short overview of the theoretical background of image
pyramids, representations, and reduction methods. Section 3 describes in
detail the considerations and adaptations for the presented method. The
implementation, its experimental evaluation and a discussion of the results
are covered in section 4. The last section provides a conclusion and consid-
erations for future research.

2 Theoretical Background

2.1 Region Adjacency Graphs

Regions are maximally connected components in an image, i.e. adjacent pix-
els that belong to the same group, according to a selected similarity metric.
In the case of labelled images, adjacent pixels are in the same region if their
labels are equal.

Region adjacency graphs (RAGs) represent topological relations between
regions. In the simplest case they encode common boundaries between re-
gions. More refined relations can be devised, for example if a region is
contained in or encloses another region, or if multiple disjoint boundaries
between any two regions exist. It can also be helpful to model the region

1

outside of the image explicitly, so that every region on the image border is
adjacent to it.

The type of relations that a RAG can represent depends on its graph
model (Brun and Kropatsch [3]). In general, the graph model should be easy
to update and provide detailed information about relations between regions.
RAGs can be computed in a bottom-up fashion with image pyramids, as
described in the following sections.

2.2 Image Pyramids

Image pyramids consist of a series of increasingly smaller images produced
from a base image. As such, they are a multi-resolution representation of the
base image, and useful in a variety of tasks, for example in image segmenta-
tion and object recognition. The motivation for image pyramids is founded
in computational efficiency as well as biological plausibility (Kropatsch [5]).

Useful properties include noise reduction, processing of local and global
features in the same frame, the detection of global features with local pro-
cesses, and efficient computation [3].

Each level in a pyramid consist of cells, and an adjacency relation defining
their neighbourhood, with the base image at the lowest level. Each higher
level is built from the level below using a reduction function. This function
takes several cells from the lower level and reduces them into a single cell at
the next level.

In this way, the size of each level decreases until only one cell is left at
the top, or the process is stopped. The ratio of consecutive level sizes is also
called the reduction or decimation factor. With a constant reduction factor,
it follows that the number of levels, or height h of the pyramid, is bounded
by O(log(|I|)), with |I| being the image size in pixels.

At the base level, adjacency is defined by the connectedness of pixels. For
the purpose of graph representations of images, a 4-neighbourhood, consist-
ing of neighbours in horizontal and vertical directions, is advantageous. As
opposed to 8-neighbourhood, it allows for a planar embedding of the resulting
graph. Other options include triangular and hexagonal neighbourhoods.

Types of image pyramids mostly differ in their reduction functions. For
regular image pyramids, the reduction function is the same for all cells in
each level. Irregular pyramids use a reduction function that depends on the
image data.

2

2.2.1 Regular Pyramids

Regular pyramids have a fixed reduction function, or window, and thus a
constant decimation factor.

The classification of regular pyramids is usually given as N×M/q with
N×M being the reduction window, and q the decimation parameter. In
general, the reduction windows may be non-overlapping with holes, non-
overlapping without holes, or overlapping, depending on the parameter values
[3].

While regular pyramids are simple and efficient, they suffer from shift-
variance and a limited number of encoded regions at each level (Brun and
Kropatsch [2], [3]). Due to the regular pattern of the reduction window, it is
not possible to adapt the reduction process to the image data.

2.2.2 Irregular Pyramids

In irregular pyramids, the reduction window is not fixed but depends on
image data or other criteria. On each level, a set of surviving cells is selected
and each non-surviving cell is assigned to one survivor. The non-surviving
cells must be connected directly or indirectly to their designated survivors.
The neighbourhood of survivors is defined by the adjacency relationships of
cells in their reduction window.

The partitioning of cells, including the selection of survivors, is also called
a contraction kernel. The receptive field of a cell at a given level is the set
of all cells at the base level that have been reduced to this cell.

With this process the regularity of the neighbourhood structure in the
base image cannot be maintained at higher levels [5]. For this reason, irreg-
ular pyramids are based on graphs rather than arrays. Graphs can adapt to
image properties and retain most useful properties of regular pyramids. The
decimation factor is not constant however, and is usually defined as the mean
ratio of consecutive level sizes Vl/Vl+1, with Vl being the number of vertices
in the graph at pyramid level l.

In particular, irregular pyramids should keep two properties that regular
pyramids have [3]:

(i) the computation of each vertex should be independent from others,
allowing for parallel computation;

(ii) the logarithmic height of the pyramid, so that parallel computation is
still O(log(|I|)).

3

The main questions for building irregular pyramids therefore are [3]:
(i) how to reduce each level to the next higher level efficiently (construction

scheme)?
(ii) which properties can each level represent (graph encoding)?

The construction scheme affects the size of each level, i.e. the vertical
property of the pyramid; the graph encoding influences the properties that
a pyramid can represent. Both define an irregular pyramid.

Irregular pyramids allow to adapt the reduction window to the image
data. Since each vertex can have an arbitrary number of neighbours they
can retain the adjacency relationships between regions [3].

2.3 Graph Representations

Graphs are a common representation of irregular pyramids; the choice of
graph model determines the topological and geometrical image properties, i.e.
the horizontal pyramid resolution. The model choice is usually independent
of the construction scheme: different models can be combined with various
construction methods [3]. Besides higher horizontal resolution and adapt-
ability, graphs have the advantage of shift-invariance and rotation-invariance
(Macho and Kropatsch [8]).

The construction of graphs from pixel images follows a simple process:
each vertex represents one pixel, and neighbours are connected by edges.
This graph is called the neighbourhood graph. A problem occurs with 8-
neighbourhood, as the graph becomes non-planar. This is especially impor-
tant for the dual graph and combinatorial map representations, as described
below.

Graphs can also be used to represent the result of a segmentation process:
each vertex represents a set of connected pixels (a region) and edges describe
neighbourhood relationships of vertices. In this manner, irregular pyramids
based on graphs can be used to generate and represent region adjacency
graphs for images.

Models differ in the representation of relations between regions. In the
simplest case only adjacency itself is stored. More refined models can store
each segment of a disjoint border separately, and also represent the inclu-
sion of regions within others. This information can be useful to guide the
segmentation process at a higher level.

4

2.3.1 Simple Graphs

A simple graph G(V,E) consists of sets of vertices V and edges E, such that
there are no self-loops, i.e. edges eu,v where u = v, and no multiple edges
between pairs of vertices, i.e. edges eu1,v1 6= eu2,v2 where u1 = u2 and v1 = v2.

A graph is planar if an embedding in the plane without edge-crossings ex-
ists. Planar simple graphs are a common model for region adjacency graphs.
Simple graphs cannot distinguish between different topological configurations
[8], in particular between inclusion and multiple adjacency relationships of
regions [2].

2.3.2 Dual Graphs

Extending simple graphs to represent disjoint borders can lead to multiple
edges between any two vertices. However, following the contraction of edges
as described below, this non-simple graph alone cannot distinguish between
disjoint borders and ones that are now connected.

The dual graph model uses a graph G and its dual G to uniquely represent
multiple borders between regions. In the dual graph, or face graph, each
vertex represents one face in the primal (or neighbourhood) graph. Edges in
the dual graph directly correspond to edges in the primal graph, i.e. faces
separated by a common edge in G are vertices connected by an edge in G.

Important properties of the dual graph include [3]:

(i) The original graph can be reconstructed from its dual graph: G = G.
(ii) For each subset of edges N ⊆ E in G, there is a corresponding set N

in G.
(iii) The contraction of a forest N ⊂ E in G is equivalent to the removal of

N in G. Since N is a forest (containing no cycles), N is not a cut-set:
both G and G remain connected.

(iv) Likewise, a contraction of N in G is equal to the removal of N in G.
In other words, the basic operations on graphs are dual: the contraction

of an edge in G results in the removal of an edge in G and vice versa. The
contraction of edges can produce redundant faces in a graph, i.e. self-loops
and redundant edges. These faces are characterized as vertices of degree one
or two in the dual graph. They need to be removed in an additional step
referred to as dual graph contraction (Willersin and Kropatsch [10]).

It should be noted that multiple edges may belong to faces with a higher
degree than two, i.e. faces containing other edges. These edges are not

5

redundant, as they represent topological information, and should therefore
not be removed.

The RAG resulting from dual graph contraction can contain more edges
than a simple graph: regions contained within another region are enclosed
by an additional self-loop, and disjoint borders are represented by multiple
edges [8]. Its main disadvantage is the requirement to maintain and update
two graphs in parallel.

The dual graph model cannot unambiguously represent a region enclosed
in another one on a local level [3]. To determine the contains/inside relation
between regions presumably requires global calculations. However to the best
of our knowledge this has not been confirmed or disproved so far.

2.3.3 Combinatorial Maps

Combinatorial maps are a generalized framework that can encode any sub-
division of multidimensional, orientable topological spaces, with or without
boundaries. In the context of this report, combinatorial maps refer only to
their 2D instances.

A combinatorial map is similar to a graph but explicitly stores the orienta-
tion of edges around each vertex. It can be defined as a model G = (D, σ, α),
consisting of a set of darts D, and two functions σ and α. Each edge is repre-
sented by two opposing darts. The involution α relates opposing darts to each
other; since α is an involution, α2(d) = d for all d ∈ D. The darts originating
from each vertex are accessible with the permutation σ in a counter-clockwise
fashion. The local orientation of edges is therefore encoded in σ.

Given a dart d, an orbit of a permutation π, denoted π∗, is the series πi

defined by successive application of π to d. In particular, the series α∗(d)
defines the edge that d is a part of. The series σ∗(d) is called the orbit of d,
and corresponds to the vertex that d belongs to.

The dual of a combinatorial map is defined by D = (D,φ, α), with φ =
σ ◦ α. As such, φ returns the darts around the face to the right of d, in
counter-clockwise fashion. Alternatively it can be seen as the permutation of
darts originating from the dual vertex, in clockwise order. The dual operation
on combinatorial maps is idempotent (Brun and Kropatsch [1]).

In the basic definition, orbits or vertices are not modelled explicitly. In
practical implementations however, additional data structures can be added
for efficiency: when dealing with operations on combinatorial maps, the in-
verse permutation σ−1, a mapping of darts to their respective orbits, and a

6

mapping of orbits to the set of connected darts are especially helpful.
Combinatorial maps can encode the relation between a region enclosed in

another region. In combinatorial pyramids, this information can be retrieved
with local calculus. In this regard, they are equivalent to dual graphs [1]. As
a consequence, their structures cannot differentiate locally between contains
and inside relationships either [3].

Their main advantages are the explicit encoding of the orientation of the
plane, which is not directly available in dual graph representations, and the
implicit encoding of the dual graph. Combinatorial maps can also be easily
extended to higher dimensions [2].

When using combinatorial maps to generate image pyramids, the result
can be interpreted as a planar embedding of a RAG. As such, it has a par-
ticular orientation and may contain multiple edges and self-loops.

2.4 Operations on Graphs and Combinatorial Maps

For the generation of irregular pyramids, two basic operations on graphs are
needed: edge contraction and edge removal. The former contracts an edge
connecting two vertices, and the two vertices are joined into one. All edges
that were incident to the joined vertices will be incident to the resulting vertex
after the operation. The latter removes an edge from the graph, without
changing the number of vertices or affecting the incidence relationships of
other edges.

Contractions do not disconnect the graph, and thus preserve connectivity.
They are not defined for self-loops. However they can introduce self-loops
and redundant edges. Empty self-loops and redundant edges can be removed
before another contraction is performed.

Both operations are commutative: multiple operations can be applied in
any order to obtain the same result [1]. If a graph model includes the outside
vertex, contractions must not include edges incident to it [2].

The vertex degree is unbounded under edge contractions. However, the
degree of faces does not increase (see [5] for a proof). This implies that for
dual graph representations, the vertex degree in one graph is bounded for
each operation.

In the dual graph representation, contraction and removal operations are
dual: a contraction in the primal graph corresponds to a removal in the dual
graph, and vice versa. This also applies to combinatorial maps, as they have
an implicit dual representation [2].

7

2.4.1 Parallel Operations

Parallel contraction on graphs is defined by decimation parameters (VS, ESN),
consisting of a set of vertices (survivors) VS ⊂ V , and a set of edges (con-
tractions) ESN ⊆ E. The set ESN must connect each non-surviving vertex
to exactly one survivor. Thus, the decimation parameter is a forest, with one
component for each survivor.

This operation preserves the structure of the survivors, and produces a
minimal and unique result (see [5] for a formal definition and proof). The
same considerations apply to combinatorial maps [1].

Dual edge contraction and dual face contraction (of faces with a degree
less than 3) are also structure preserving [5]. Removal operations can there-
fore be performed in parallel similar to contractions. The decimation pa-
rameters for each operation are also called contraction and removal kernels,
respectively.

On a combinatorial map, each contraction and removal operation involves
a set of dependent darts, which cannot be modified in parallel due to the way
the model is represented. For each dart d, the dependent darts are α(d), σ(d),
σ−1(d), σ(α(d)), and σ−1(α(d)). In order to implement parallel operations
on combinatorial maps, these dependencies have to be taken into account for
kernel selection.

2.5 Generation of Irregular Pyramids

With the notion of parallel edge contraction and removal, it is possible to
define the generation of irregular pyramids as follows:

1. select a contraction kernel and contract all edges,
2. select a removal kernel and simplify the graph,
3. repeat 2. until there are no more edges to remove,
4. repeat 1. to 3. until there are no more edges to contract, or the process

is stopped.
Kernel selection methods define how to select edges and surviving vertices,
as described in the following section.

2.6 Kernel Selection Methods

Methods for kernel selection differ in how they select edges and survivors. In
particular, the ability to adapt survivor selection to image data depends on

8

the chosen method. The number of contractions at each level, and thus the
decimation factor, is also influenced by the kernel selection. The notion of
maximal independent sets ensures an almost constant factor and is used by
several construction methods.

2.6.1 Maximal Independent Sets

For irregular pyramids, the survivors for reduction can be described as a
maximal independent set [3]: Consider a set X with a neighbourhood func-
tion N : X → P (X), where P (X) is the power set of X. An independent
set I is a subset of X, such that no two elements of I are neighbours. The
set I is maximal if no element can be added from X without violating the
neighbourhood condition. It follows that if I is maximal, each vertex in X is
either in I or has a neighbour in I. I is not uniquely defined. It is maximum
if it has the largest possible size over all independent sets of X.

2.6.2 Maximal Independent Vertex Sets

Using the idea of a maximal independent set on the vertices of a graph gives
a maximal independent vertex set (MIVS). Meer [9] implements an iterative
stochastic process to determine such a set on a graph based on local properties
only. Each vertex is assigned a positive random number and each vertex with
the highest value in its neighbourhood belongs to the independent set.

Initially, this set may however not be maximal. The iterative process
therefore uses two additional boolean variables per vertex, pi and qi, to de-
termine if a vertex should be a surviving vertex. If pi is true, vertex vi is in
the independent set, and qi is true if it is a candidate. The set and pi, qi are
then updated until the set is maximal [3].

Jolion [4] adapts the process using an interest operator. Surviving vertices
are defined at local maxima (or minima) of the operator, thus providing their
location in homogeneous regions. For greyscale images, the vertex with the
smallest variance in its receptive field is selected as a survivor. At the base
level the 3×3 neighbourhood is used instead of the receptive field of a vertex.
Three variables p, q, and v are used for the decimation process. Each vertex
where pi,j,l is true is a surviving vertex at level l. Initially pi,j,l are false for
all (i, j, l). The value pi,j,l is true only if the respective cell has the lowest
value vi,j,h of all its neighbours.

9

Experiments showed that with a variable v that is not random but de-
pends on image data, the number of iterations is higher than with the stochas-
tic pyramid, especially at the first level. The decimation ratio was also higher
for the first level, but the values were similar and both resulted in the same
height.

2.6.3 Data Driven Decimation Process

The Data Driven Decimation Process (D3P) works similar to the stochastic
pyramid of Meer [9] but keeps pi and qi as global variables for all levels.
Instead of creating an MIVS on each level, the D3P carries survivor candi-
dates to the next level. In combination with the interest operator [4], where
survivors are located at local maxima, this has the advantage that vertices
around local maxima are reduced early and more complex configurations can
be resolved at higher levels.

2.6.4 Maximal Independent Edge Sets

Maximal independent edge sets (MIES) and maximal independent directed
edge sets (MIDES) were introduced by Kropatsch et al. [6]. With MIVS, the
probability that a vertex is in the independent set depends on its neighbours,
and thus the size of its neighbourhood [3]. During the decimation process,
the vertex degrees tend to increase with each level. This in turn affects the
height of the pyramid and the number of iterations required to build each
level. To correct this phenomenon, MIES selects a forest F in G, where:

(i) the forest F partitions the graph;
(ii) each tree in F has two or more vertices.

The latter condition ensures a decimation factor of two or more. From
each tree in F one survivor is selected. The first step of constructing F uses
a maximal independent edge set (MIES), which is defined as a MIVS on the
edge graph of G. The edge graph contains a vertex for each edge of G, and
vertices in the edge graph are connected if the corresponding edges in G are
incident to the same vertex.

In this way, the MIES induces a maximal matching on the initial graph
vertices. A matching on a graph is a subset of its edges so that no two edges
are incident to the same vertex. It is maximal if no edge can be added without
violating the matching condition. A maximum matching contains the largest
possible number of edges for a graph. Finding a maximum matching is an

10

NP-hard problem. The matching is perfect (and also maximum) if it is
incident to all vertices. Vertices that are part of the matching are called
saturated, and all others are unsaturated.

A maximal matching is also a forest in G, but may contain isolated ver-
tices. In that case the isolated vertices can be connected to one of their
neighbours. This additional step creates trees of diameter at least two, which
can be reduced to two trees of diameter one by removing all edges between
vertices of degree two or more. The resulting forest may no longer be a
matching but covers all vertices.

2.6.5 Maximal Independent Directed Edge Sets

MIES cannot easily include constraints for surviving vertices, which might be
useful for certain applications, e.g. line drawings [3]. Maximal independent
directed edge sets (MIDES) extend the MIES construction by using directed
edges. The survivor in each tree of the forest F must then be the target of
all directed edges in its tree.

Directed edges in the graph thus encode which vertices in a neighbour-
hood should be surviving vertices. For an undirected graph it is possible
to create a pair of directed edges for each original edge and select the ones
intended for the construction. These edges are called preselected edges.

The construction builds a MIES on the preselection using the definition
of a directed edge neighbourhood. Since no two neighbouring edges can be
in the independent set, the neighbourhood controls which configurations are
allowed in the set.

When an edge eu,v from u to v is selected, only edges pointing to v should
be added to the tree consisting of u and v. The directed neighbourhood for
eu,v is therefore defined as all edges emanating from v, and all edges to or
from u. There may be some isolated vertices after constructing the MIDES,
which are added as survivors as well.

3 Parallel Combinatorial Pyramid Generation

Based on the considerations in the previous sections, it is possible to devise
an adapted MIDES algorithm suitable for the parallel generation of combi-
natorial pyramids. The crucial observation from the theoretical background
is the fact that dependent darts in a combinatorial map cannot be modified

11

in parallel under edge contraction and removal operations. Indirectly, this
also determines the choice of the kernel selection method.

All kernel selection methods presented in section 2.6 only depend on lo-
cal properties and can therefore be computed in parallel. With MIVS first
introduced in stochastic pyramids, the survivor selection and the assignment
of non-survivors solely depend on a stochastic process. Hence there is no
guarantee that the edges in all trees of a kernel are independent under con-
traction or removal. For MIES, the maximal matching on vertices induces a
set of independent edges. However, adding non-saturated vertices to random
survivors can also create a kernel whose edges are not independent.

The MIDES method restricts the selection of edges for the contraction
kernel using the notion of a directed edge neighbourhood. By adapting the
definition of the neighbourhood, it is possible to only select independent sets
of edges for contraction and removal operations in a combinatorial map.

In addition, MIDES has the advantage of easy survivor selection through
edge preselection. Preselection also allows to adapt kernels for task-specific
goals, for example to exclude edges between vertices of different regions from
contraction in RAG generation. It is therefore a simple yet powerful mech-
anism to control the reduction process in the construction of irregular pyra-
mids.

The general rule for combinatorial image pyramid construction then con-
sists of the following steps:

1. generate the base level of the combinatorial pyramid from an image,
2. preselect edges and select a contraction kernel with MIDES,
3. apply the contraction kernel to generate the next level,
4. preselect edges for removal and select a removal kernel with MIDES,
5. apply the removal kernel to simplify the current level,
6. repeat 4. to 5. until there are no more edges to remove,
7. repeat 2. to 6. until there are no more edges to contract, or the process

is stopped.
Generating a combinatorial map from an image is a straightforward pro-

cess, where a pair of darts is inserted for each neighbourhood relation between
pixels. The calculation of permutations and other mappings can be simpli-
fied by using a numbering scheme for darts and vertices, e.g. by assigning
consecutive numbers from top to bottom, and left to right.

For kernel selection, each dart is considered a directed edge, and a subset
of directed edges is preselected as a set of candidates for inclusion in the
maximal independent set. As contractions and removals operate on different

12

types of edges, the preselection rules also differ between both operations.

3.1 Edge Preselection

In general, a contraction kernel should not contain any self-loops. Self-loops
should thus not be considered for contraction. Non-empty self-loops contain
topological information and should not be removed.

Contracting one of a set of multiple edges between a pair of vertices turns
all other edges in the set into self-loops. The parallel contraction of two
or more edges between the same pair of vertices is therefore undefined and
should not be considered either.

Redundant edges should be removed after contraction. Multiple edges
can be parts of faces with a higher degree than two (i.e. enclosing other
vertices), in which case they are part of the topology and must be retained.

The edge preselection for contraction thus excludes all self-loops from
the kernel selection. It is not necessary to remove multiple edges from the
preselection, as the directed edge neighbourhood prevents the selection of
more than one edge between each pair of vertices.

If the outside region of an image is modelled as its own vertex, all edges
from this vertex must be removed from the preselection. In the case of RAG
generation, all edges between vertices with different labels are also excluded
from contraction, to prevent merging pixels from different regions.

During simplification, all empty self-loops and faces of degree two should
be removed. Thus all edges of these types are preselected for removal kernel
selection. For RAG generation, edges are removed regardless of the labels of
their vertices.

Multiple edges between the same pair of vertices can be removed in par-
allel, as long as they are not dependent on each other. This is handled by
using a different definition of the directed edge neighbourhood for the kernel
selection, which is described in the following section.

3.2 Directed Edge Neighbourhood

As in the original MIDES method, survivors are at the root of trees of di-
ameter two. The directed edge neighbourhood determines which edges can
be selected. A directed edge can only be included in the kernel if none of its
neighbouring edges is selected.

13

For contraction kernels, all edges must point from a non-survivor to a
surviving vertex. Therefore, a directed edge eu,v from a non-survivor u to a
survivor v may only be included in the independent set if the set does not
already contain any incoming edges to u, or outgoing edges from u or v.
The former would imply that u is a survivor, and the latter that u or v is a
non-survivor of another vertex. The neighbourhood of eu,v thus contains all
edges pointing towards u, or emanating from u or v.

In addition, the neighbourhood must contain all directed edges corre-
sponding to dependent darts. It is necessary to not only include dependent
darts but also their involutions, as selecting an edge corresponding to α(d)
would affect d as well, and thus violate the condition for parallel operations.
Since edges emanating from u and v are already included in the neighbour-
hood, it is sufficient to only add edges corresponding to the involutions of
dependent darts.

For removal kernels, there are no survivors, and edges can be selected
as long as they are not dependent. The neighbourhood for each edge thus
contains only the directed edges corresponding to the dependent darts and
their involutions.

3.3 Survivor Selection

With MIDES, vertices can be easily designated as survivors by removing all
their outgoing edges from the preselection. This decision can be different for
each level of the pyramid. The preselection can also be based on pairs of
adjacent vertices, in which case it is not necessarily transitive. If no decision
is made, the selection is purely random. Thus the question remains how to
decide if a vertex should be a survivor candidate.

A simple solution would be to assign a value to each vertex, and for each
pair of vertices select the one with the higher value as a designated survivor.
This is akin to the adaptive pyramid [4], which defines surviving vertices
at local maxima of an interest operator, based on the grey level variance of
receptive fields.

In the case of RAG generation, contractions only occur between pixels
with the same label. Therefore a different measurement, also called a tie-
break value, is needed. Regular distance transforms on individual regions
are an option, but they tend to produce the same values for many adjacent
pixels.

Instead of using a single distance transform it is possible to combine an

14

elliptical and a hyperbolic distance transform. Since these transforms are
orthogonal to each other, no pair of vertices will have identical values in
both transforms. For each two vertices it is therefore possible to use one
transform to select a survivor, and if the respective values are equal use the
other transform. Survivors in the pyramid hierarchy simply inherit their
distance values from the previous level.

Both transforms need to be computed only once, and can then be shifted
to the centre of each region. The centre of a region can be defined as its
centroid, but for concave shapes or shapes with holes it may lie outside the
region. As another option to define a centre point, the eccentricity transform
(Kropatsch et al. [7]) could be used, which results in a single maximum that
always lies inside a region.

3.4 Contraction and Removal Operations

With the neighbourhood defined as above, the MIDES algorithm can be
applied to the preselected edges. The result is a kernel consisting of a set of
independent edges. For contraction kernels, survivors and non-survivors are
easily identified as vertices with outgoing and incoming edges in the kernel,
respectively. As in the original method, vertices not covered by a kernel are
isolated survivors.

The contraction and removal kernels can be applied in the usual manner.
During contraction, it is necessary to make a distinction between pending
and regular darts, as the contraction operation is defined differently for both
types. Likewise, the removal operations for empty self-loops and redundant
edges are different. As already mentioned, the simplification may have to be
repeated several times for each level of the pyramid, until all faces of degree
one or two are removed.

4 Implementation

The implementation of the proposed solution is based on an existing frame-
work for combinatorial pyramids and written in Matlab M-script. The data
structure storing the combinatorial pyramid contains the following elements
relevant to this task:

permutation is a vector representing the permutation σ.

15

inv_permutation gives the inverse permutation σ−1.
dart_diff for each dart, stores the difference between the attribute values

(labels) of its vertex and the vertex of its involution. If zero, both
vertices belong to the same region.

orbitMat is a sparse matrix storing the indices of all darts belonging to each
vertex (σ-orbit).

represent_ver stores the receptive field of each active vertex.
attribLUT maps darts to their respective orbits.
tie_break_value_1 and tie_break_value_2 store the tie-break values for

survivor selection.

In the data structure, all darts, edges, and vertices are represented by
positive integers. By convention, darts belonging to the same edge have
consecutive numbers, i.e. edge ei consists of darts d2i−1 and d2i. The vector
of involutions α is not stored in the data structure but generated as needed
using this relation.

Contraction and removal kernels are represented as vectors containing
indices of directed edges. Surviving vertices are not computed or stored
explicitly, as the direction of edges in the contraction kernels is sufficient to
determine which vertices are merged with others. Isolated survivors do not
require any updates during contraction and hence are not computed either.
To control the preselection of darts for the adapted MIDES algorithm, two
vectors containing tie-break values for each vertex are added, as explained in
section 3.3.

In theory, the mapping from darts to vertices can be accomplished by
searching the orbit matrix. This proved to be a major performance bottle-
neck. For this reason, an additional attribLUT element is used. The orbit
matrix is still needed to map orbits to the set of incident darts, in particular
for defining edge neighbourhoods.

4.1 Experiments

To ensure the correctness of the implementation, several function tests were
performed on each part of the program, including the MIVS and MIDES
algorithms, selection of the contraction and removal kernels, updates to per-
mutations and the orbit matrix, and contraction and removal operations.
Kernel selection was also tested with different tie-break values to ensure the
preselection of edges is working as expected.

16

(a) “80” (b) “II”

(c) snake (d) spiral

Figure 1: Labeled images for basic function tests and performance measure-
ments. Original images are on the left, and reconstructed images on the
right. Note that in image (c) the white background is a single connected
region.

Higher-level tests were performed with several test images consisting of
two or more labelled regions. The test images are 55×55 pixels in size. In
each case, the implementation is able to produce the correct region adjacency
graph, and the original image can be reconstructed using the receptive fields
associated with each vertex in the result. Fig. 1 shows the original image
and the reconstruction for each test case.

Basic performance measurements using the four test images in Fig. 1 are
summarized in Table 1. All tests were performed on an AMD Athlon II X2
250 processor with 3.00 GHz and 4 GB RAM, and Matlab 2020b on Windows
10 64-bit.

The RAG generation was repeated 20 times for each image. For each
measurement, the mean value µ and standard deviation σ over all samples
are given. The statistics include the height of the combinatorial pyramid, the
decimation ratio, the time to generate each pyramid, and the number of it-
erations during each simplification phase. During simplification, an iteration
only counts if the selected removal kernel is not empty.

The decimation ratio tends to be higher in lower levels of the pyramid.
To capture this phenomenon, two values are recorded. The first value gives

17

“80” “II” snake spiral
Pyramid Height, µ 12.150 12.250 12.350 12.100
Pyramid Height, σ 0.745 0.786 0.745 0.447
Decimation Ratio, µ 1.789 1.874 1.925 1.947
Decimation Ratio, σ 0.361 0.288 0.258 0.214
Decimation Ratio LH, µ 2.059 2.081 2.041 2.033
Decimation Ratio LH, σ 0.078 0.080 0.059 0.063
Generation Time in s, µ 0.716 0.716 0.640 0.607
Generation Time in s, σ 0.185 0.053 0.090 0.037
Removal Iterations, µ 2.283 2.373 2.489 2.523
Removal Iterations, σ 0.878 0.825 0.737 0.671
Removal Iterations, max. 5 4 4 4

Table 1: Performance measurements of region adjacency graph generation
for the test images from Fig. 1. The measurements were performed with zero
tie-break values.

the mean decimation ratio over all levels, while the second value gives the
mean value over the lower half (LH) of the pyramid levels (i.e. levels 1 to
bhc). No timings for parts of the RAG generation were gathered for these
test images as Matlab cannot accurately measure times less than 1/10 of a
second with the method used.

The effect of the preselection mechanism on RAG generation was mea-
sured using random and directional tie-break values. Tables 2 and 3 show
the respective results. With random tie-break values, each value is taken
from a uniform distribution in the range of [0; 1]. For directional values, ver-
tices that are to the right or below another vertex in the original image take
precedence during survivor selection.

For additional performance measurements, three pictures were used at
different scales to generate a combinatorial pyramid. Each image was ini-
tially converted to greyscale, processed with a median filter of size one, and
posterized to eight different greyscale levels. The images, shown in Fig. 2,
were tested at the original size, at one half, and at one quarter of the size
in pixels. For each image, 20 iterations of RAG generation were performed,
with zero tie-break values. The results are summarized in Table 4.

Measurements provide the same values as in the tests above, with the
addition of the pixel size, the number of orbits and darts in the result, and

18

“80” “II” snake spiral
Pyramid Height, µ 12.500 12.350 12.550 12.450
Pyramid Height, σ 0.513 0.587 0.686 0.605
Decimation Ratio, µ 1.750 1.856 1.899 1.908
Decimation Ratio, σ 0.315 0.236 0.223 0.217
Decimation Ratio LH, µ 1.989 2.017 1.969 1.958
Decimation Ratio LH, σ 0.075 0.070 0.045 0.054
Generation Time in s, µ 0.436 0.447 0.429 0.424
Generation Time in s, σ 0.015 0.024 0.022 0.021
Removal Iterations, µ 2.335 2.471 2.558 2.498
Removal Iterations, σ 0.834 0.766 0.695 0.653
Removal Iterations, max. 4 5 4 4

Table 2: The same performance measurements as in Table 1, with random
tie-break values.

“80” “II” snake spiral
Pyramid Height, µ 12.900 12.750 13.050 13.100
Pyramid Height, σ 0.718 0.444 0.224 0.447
Decimation Ratio, µ 1.715 1.817 1.845 1.838
Decimation Ratio, σ 0.292 0.224 0.189 0.156
Decimation Ratio LH, µ 1.890 1.917 1.873 1.841
Decimation Ratio LH, σ 0.054 0.063 0.045 0.041
Generation Time in s, µ 0.472 0.471 0.453 0.453
Generation Time in s, σ 0.030 0.023 0.025 0.020
Removal Iterations, µ 2.244 2.400 2.407 2.384
Removal Iterations, σ 0.927 0.838 0.759 0.755
Removal Iterations, max. 5 4 4 4

Table 3: The same performance measurements as in Table 1, with directional
tie-break values.

19

timings for specific parts of the generation process. These include the se-
lection of the contraction and removal kernels, and the application of these
kernels in the contraction and removal operations.

(a) 189080 (b) 241048

(c) zebra

Figure 2: Posterized greyscale images for the performance measurements in
Table 4.

4.2 Discussion

The results for the small test images show the average pyramid height is
close to the theoretical optimum bounded by log2(55 · 55) ≈ 11.56, with a
small standard deviation of less than one level. Without preselection, the
decimation ratio is highest, and slightly above two for the lower half of the
pyramid, while it tends to decrease towards the top. The variance of the

20

(a
)

1
:1

(a
)

1
:2

(a
)

1
:4

(b
)

1
:1

(b
)

1
:2

(b
)

1
:4

(c
)

1
:1

(c
)

1
:2

(c
)

1
:4

P
ix

e
ls

15
44

01
77

18
0

38
40

0
15

44
01

77
18

0
38

40
0

22
91

26
11

42
64

57
13

5
σ
-O

rb
it

s
in

R
A

G
11

78
96

0
80

3
26

55
24

19
20

18
97

69
69

79
49

34
D

a
rt

s
in

R
A

G
61

28
49

60
40

70
13

78
4

12
45

0
10

23
6

46
83

0
34

48
4

24
44

0
P

y
ra

m
id

H
e
ig

h
t,
µ

15
.3

50
14

.4
50

13
.8

00
15

.4
00

14
.7

50
13

.3
50

15
.0

50
14

.1
50

13
.2

00
P

y
ra

m
id

H
e
ig

h
t,
σ

0.
74

5
0.

82
6

0.
83

4
0.

88
3

0.
91

0
0.

81
3

0.
75

9
0.

58
7

0.
61

6
D

e
ci

m
a
ti

o
n

R
a
ti

o
,
µ

1.
47

1
1.

44
7

1.
40

9
1.

38
4

1.
33

8
1.

31
5

1.
29

7
1.

27
8

1.
25

9
D

e
ci

m
a
ti

o
n

R
a
ti

o
,
σ

0.
44

8
0.

43
2

0.
41

0
0.

41
8

0.
39

0
0.

36
3

0.
36

4
0.

34
4

0.
32

3
D

e
ci

m
a
ti

o
n

R
a
ti

o
L

H
,
µ

1.
89

3
1.

86
2

1.
78

0
1.

75
3

1.
67

4
1.

61
5

1.
59

4
1.

56
7

1.
52

0
D

e
ci

m
a
ti

o
n

R
a
ti

o
L

H
,
σ

0.
23

8
0.

23
9

0.
26

4
0.

29
6

0.
30

8
0.

29
7

0.
31

6
0.

29
8

0.
28

8
G

e
n

e
ra

ti
o
n

T
im

e
in

s,
µ

49
.8

36
23

.5
78

10
.7

14
45

.6
78

20
.6

86
9.

04
9

66
.2

96
28

.9
31

12
.8

18
G

e
n

e
ra

ti
o
n

T
im

e
in

s,
σ

2.
37

6
0.

91
7

0.
36

7
1.

51
8

0.
74

9
0.

30
9

2.
05

9
0.

85
2

0.
42

1
C

o
n
tr

a
ct

io
n

K
e
rn

e
l

in
s,
µ

1.
79

2
0.

88
7

0.
41

2
1.

47
4

0.
66

7
0.

31
1

2.
14

9
0.

93
8

0.
41

8
C

o
n
tr

a
ct

io
n

K
e
rn

e
l

in
s,
σ

3.
38

0
1.

59
9

0.
73

2
2.

80
4

1.
25

0
0.

54
8

4.
07

9
1.

72
6

0.
74

0
C

o
n
tr

a
ct

io
n

in
s,
µ

1.
11

8
0.

57
4

0.
28

6
1.

17
1

0.
58

1
0.

29
1

1.
74

2
0.

86
2

0.
43

5
C

o
n
tr

a
ct

io
n

in
s,
σ

0.
12

0
0.

04
9

0.
02

3
0.

09
8

0.
05

0
0.

02
2

0.
14

2
0.

07
1

0.
03

4
R

e
m

o
v
a
l

K
e
rn

e
l

in
s,
µ

0.
07

4
0.

04
1

0.
02

1
0.

07
9

0.
04

2
0.

02
2

0.
12

3
0.

06
4

0.
03

4
R

e
m

o
v
a
l

K
e
rn

e
l

in
s,
σ

0.
10

9
0.

05
6

0.
02

7
0.

11
2

0.
05

4
0.

02
5

0.
16

5
0.

07
7

0.
03

7
S
im

p
li
fi
ca

ti
o
n

in
s,
µ

0.
43

6
0.

22
6

0.
10

7
0.

42
5

0.
20

8
0.

10
6

0.
67

4
0.

32
8

0.
16

3
S
im

p
li
fi
ca

ti
o
n

in
s,
σ

0.
32

9
0.

16
4

0.
07

9
0.

33
9

0.
16

2
0.

07
5

0.
50

3
0.

23
5

0.
10

9
R

e
m

o
v
a
l

It
e
ra

ti
o
n
s,
µ

3.
06

6
2.

90
0

2.
69

1
2.

77
4

2.
52

7
2.

41
3

2.
81

9
2.

58
9

2.
42

2
R

e
m

o
v
a
l

It
e
ra

ti
o
n
s,
σ

1.
18

5
1.

10
0

1.
09

7
1.

19
6

1.
13

4
0.

95
4

1.
07

2
0.

98
4

0.
89

2
R

e
m

o
v
a
l

It
e
ra

ti
o
n
s,

m
a
x
.

6
5

5
5

5
4

5
4

5

T
ab

le
4:

P
er

fo
rm

an
ce

m
ea

su
re

m
en

ts
of

re
gi

on
ad

ja
ce

n
cy

gr
ap

h
ge

n
er

at
io

n
fo

r
th

e
te

st
im

ag
es

(a
),

(b
),

an
d

(c
)

fr
om

F
ig

.
2.

M
ea

su
re

m
en

ts
w

er
e

ta
ke

n
fo

r
ea

ch
im

ag
e

at
fu

ll
si

ze
an

d
sc

al
ed

-d
ow

n
to

ap
p
ro

x
im

at
el

y
on

e
h
al

f
an

d
on

e
fo

u
rt

h
it

s
si

ze
in

p
ix

el
s,

as
in

d
ic

at
ed

b
y

1:
1,

1:
2,

an
d

1:
4,

re
sp

ec
ti

ve
ly

.

21

decimation ratio is also higher in the upper half. The generation time is
less than a second, with a small variance. The average number of removal
operations during the simplification steps lies between two and three, with
the maximum number encountered during tests being six.

Comparison of Tables 1, 2, and 3 shows the influence of the preselection
mechanism on the combinatorial pyramid generation. In general, with edge
preselection the average decimation ratio is lower, and in consequence the
pyramid height is larger. Directional tie-break values have a larger effect
than random values, although it is small overall. The time to construct the
pyramid is considerably smaller with preselection, presumably because the
kernel selection has to operate on a smaller set of darts.

For the sample pictures from Fig. 2, the RAG generation resulted in pyra-
mids with a larger number of orbits. The decimation ratios were considerably
lower, due to the images containing a multitude of small regions. At higher
levels, many small regions are already contracted, thus there are fewer edges
to contract. The generation time, depending on image size, is roughly pro-
portional to the logarithm of the number of pixels and the pyramid height.

5 Conclusion and Future Work

Experiments with different inputs confirm the correctness and efficiency of
the proposed method. Furthermore, results indicate the pyramid genera-
tion is a stable stochastic process with low variability. The generated image
pyramids are close to the theoretical optimum for simple inputs, and show
good results even for challenging pictures. Edge preselection showed a slight
negative impact on the decimation rate, but a positive effect on runtime.

There are three apparent avenues for future work following this report.
While the current implementation only considers labelled images, it can be
easily modified to process greyscale and color images. By defining a metric
for the difference of vertex attributes and preselecting edges accordingly, the
same approach could be used for image segmentation, in addition to RAG
generation.

The second is the adaptation of the approach to include different preselec-
tion mechanisms. In particular, this could allow pyramid generation to adapt
to the characteristics of images, for example using local interest operators.

Lastly, this new method for image pyramid generation could allow for
higher parallelization through the use of GPU-based computations. A GPU-

22

based implementation of the combinatorial pyramid is already in the works,
and it would be interesting to see this approach ported to the new framework
as well.

6 Acknowledgments

I would like to express my deep gratitude to Professor Walter Kropatsch for
providing me the opportunity to work on this topic, and for the valuable
feedback on this report. I would like to offer my special thanks to Darshan
Batavia for our insightful discussions about the parallel generation of combi-
natorial pyramids, and for introducing me to the Matlab framework on which
the software for this report is built. In addition, I would like to thank Dr.
Jǐŕı Hlad̊uvka for presenting the topic together with Professor Kropatsch at
our initial meeting.

References

[1] L. Brun and W. Kropatsch. Dual Contraction of Combinatorial Maps.
Technical Report PRIP-TR-054, PRIP, TU Wien, 1999.

[2] L. Brun and W. Kropatsch. Introduction to combinatorial pyramids. In
Digital and image geometry, pages 108–128. Springer, 2001.

[3] L. Brun and W. Kropatsch. Image processing and analysis with graphs:
theory and practice, chapter 1, pages 1–62. CRC Press, 2012.

[4] J.-M. Jolion and A. Montanvert. The adaptive pyramid: a framework
for 2d image analysis. CVGIP: Image Understanding, 55(3):339–348,
1992.

[5] W. G. Kropatsch. Building Irregular Pyramids by Dual Graph Contrac-
tion. Technical Report PRIP-TR-035, PRIP, TU Wien, 1994.

[6] W. G. Kropatsch, Y. Haxhimusa, Z. Pizlo, and G. Langs. Vision pyra-
mids that do not grow too high. Pattern Recognition Letters, 26(3):319–
337, 2005.

[7] W. G. Kropatsch, A. Ion, Y. Haxhimusa, and T. Flanitzer. The ec-
centricity transform (of a digital shape). In International Conference

23

on Discrete Geometry for Computer Imagery, pages 437–448. Springer,
2006.

[8] H. Macho and W. G. Kropatsch. Finding connected components with
dual irregular pyramids. In Visual Modules, Proc. of 19th ÖAGM and
1st SDVR Workshop, pages 313–321. R. Oldenburg, 1995.

[9] P. Meer. Stochastic image pyramids. Computer Vision, Graphics, and
Image Processing, 45(3):269–294, 1989.

[10] D. Willersinn and V. Kropatsch. Dual graph contraction for irregular
pyramids. In Proceedings of the 12th IAPR International Conference on
Pattern Recognition, Vol. 2-Conference B: Computer Vision & Image
Processing.(Cat. No. 94CH3440-5), pages 251–256. IEEE, 1994.

24

