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Canonical parameterizations of 2D-shapes

Alice Barbara TUMPACH∗

Abstract

This paper is devoted to the study of unparameterized simple curves in the plane. We propose
diverse canonical parameterization of a 2D-curve. For instance, the arc-length parameterization is
canonical, but we consider other natural parameterizations like the parameterization proportionnal to
the curvature of the curve. Both aforementionned parameterizations are very natural and correspond to
a natural physical movement : the arc-length parameterization corresponds to travelling along the curve
at constant speed, whereas parameterization proportionnal to curvature corresponds to a constant-speed
moving frame. Since the curvature function of a curve is a geometric invariant of the unparameterized
curve, a parameterization using the curvature function is a canonical parameterization. The main idea is
that to any physically meaningful stricktly increasing function is associated a natural parameterization
of 2D-curves, which gives an optimal sampling, and which can be used to compare unparameterized
curves in a efficient and pertinent way. An application to point correspondance in medical imaging is
given.

1 Introduction

1.1 Motivation

Curves in R2 appear in many applications: in shape recognition as outline of an object, in radar detection
as the signature of a signal, as trajectories of cars etc... There are two main features of the curve : the
route and the speed profil. In this paper, we are only interested in the route drawn by the curve and we
will called it the unparameterized curve. An unparameterized curve can be parameterized in multiple
ways, and the choosen parameterization selects the speed at which the curve is traversed. Hence a
curve can be travelled with many different speed profils, like a car can travel with different speeds (not
necessarily constant) along a given road. The choice of a speed profil is called a parameterization of
the curve. It may be physically meaningful or not. For instance, depending on applications, there
may not be any relevant parameterization of the contour of the statue of Liberty depicted in Figure 2.
In this paper, we propose diveres very natural parameterization of 2D-curves. They are based on the
curvature, which together with the arc-length measure form a complete set of geometric invariants or
descriptors of the unparameterized curves.

1.2 Past work

In this section, we look at the geometry of the space of 2D-curves in the plane, and give an overview of
past work on the analysis of contours, comprising comparison and interpolation tasks.

When we want to interpolate between two 2D-contours like the two red contours of a ballerina
depicted in Figure 1, there are a couple of things to keep in mind.

First, one should not take two parameterizations of the contours at random and interpolate linearly
between them. This gives usually very bad results, even when one starts the parameterization at points
that should correspond. In Figure 1, we start the parameterization at the top of the head of the
ballerina, travel the contour counterclockwise with a speed profil that is illustrated by the sampling of
the curves : on portions of the curve where points accumulate the speed is small, whereas on portions of
the curve where points are very far apart, the curve is travelled at high speed (in order to travel between
two successive points, the same amount of time is needed). The resulting interpolation is depicted on
the first line of Fig. 1. One sees that this interpolation procedure does not give good results.

∗alice-barbora.tumpach@univ-lille.fr is with Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000
Lille, France and with Pauli Institut, Vienna, Austria.
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Figure 1 – First line : linear interpolation between some parameterized ballerinas, second line : linear interpolation between arc-
length parameterized ballerinas, third line : linear interpolation between two registered ballerinas using [1], and [2], fourth line: linear
interpolation between two registered ballerinas using a function of arc-length and curvature, fifth line : reference movement taken from
[3].

Second, picking up a preferred parameterization of the curves, for instance the arc-length param-
eterization, and interpolating linearly between the parameterized curves may also lead to bad results.
In the second row of Figure 1, the two ballerinas are parameterized proportionally to arc-length hence
the resulting samplings are uniform. The linear interpolation between the two contours parameterized
proportional to arc-length is depicted at the second row in Figure 1. One can see that the deformation
shrinks the moving leg and therefor appears unnatural. However, in some applications, where the routes
to compare are very similar, the result may be satisfactory and no fancy shape analysis is needed.

One can distinguish two tasks in the comparison of curves :

1. the registration or correspondance, which consists in choosing parameterizations of two curves
so that features of the curves that should correspond are associated to the same value of the
parameter,

2. the measurement of the discrepancy between the two curves and the generation of a deformation
of one curve into the other.

The recent use of differential geometry in shape analysis has allowed to take on these two tasks in
the same framework. A traditional strategy to generate deformations between unparameterized curves
is the following : the space of parameterized curves is endowed with a parameterization-equivariant
Riemannian metric which allows to compute preferred deformations between curves, called geodesics,
which are minimal for the corresponding variational problem. Then, given two unparameterized curves,
one chooses the parameterization of one curve and, to each parameterization of the second curve, one
compute the geodesic (if it exists!) between the two parameterized curves. At last, one has to solve
an optimization problem consisting in singeling out the parameterization of the second curve (if it
exists!) that achieve the infimum of the cost function among all possible parameterizations of the
second curve. The geodesic between the two unparameterized curves is then given by the geodesic
between the first curve (with its arbitrarily choosen parameterization) and the second curve with the
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parameterization minimizing the cost function. The discrepancy between the two curves is measured
as the length of this geodesic. This procedure endow the shape space with a Riemannian structure
called the quotient Riemannian metric. One can mention the following problems encountered when one
pursue this strategy :

• The choice of a Riemannian metric on the space of parameterized curves is usually not easy.
As was first highlighted in [4], a badly chosen Riemannian metric can lead to vanishing geodesic
distance, ruling out any effort to use geodesic distance to measure discrepancy between curves. For
this reason, a large mathematical literature developped in order to propose Riemannian metrics
with good mathematical properties: mention Sobolev metrics in [5], curvature weighted metrics
in [6], almost local metrics in [7], metrics mesuring the deformations of the interiors of shapes in
[8].

• The geodesic between two parameterized curves with respect to a given Riemannian metric are
usually hard to compute, and one has to use algorithms like the path-straightening method or the
shooting method to approximate them ([9]). These algorithms are time-consuming. To overcome
this difficulty and speed up the comparison of curves, some metrics have been proposed where the
geodesic on the space of parameterized curves are explicit, like in [10], [11], or [1] and [2]. The
framework of [2] has recently been adapted to general manifolds in [12] and homogeneous spaces
in [13].

• The optimization problem over all parameterizations of a given curve raise mathematical as well
as practical difficulties : first the set of all parameterizations of a given curve is an orbit of an
infinite-dimensional Fréchet Lie group, the group of diffeomorphisms, with a lot of pathological
properties. There is in general no guarantee that this mathematical problem can be solved.
Second, the algorithms used to approximate the solution of this optimization problem are based
on dynamical programming (see for instance [14]) with the drawback that in practise only a finite
number of reparameterizations distributed mainly around the identity map are considered. For
this reason, a gauge invariant framework has been proposed in [15] (see also [16]) in the context
of shape analysis of surfaces, where this optimization step is avoided by the use of a Riemannian
metric which degenerates along the orbit of the reparameterization group. Another idea to avoid
this minimization problem was proposed in [17], where the quotient elastic metric introduced in
[2] is expressed as a metric on the section of arc-length parameterized curves. Nevertheless, since
the geodesics on shape space are not explicit in any of the previously mentionned works, shape
comparison is not really efficient.

• In [18], the optimization step is solved for piecewise linear curves (polygons) under the elastic
metric of [19]: the precise matching minimizing the geodesic distance is given between two piece-
wise linear curves. The only lack in this work is that it relies on the Euclidean geometry of Rn
and may not be adapted to general manifolds or homogeneous spaces.

2 Different parameterizations of 2D-shapes

2.1 Arc-length parameterization and Signed curvature

By 2D-shape, we mean the shape drawn by a parameterized curve in the plane. It is the ordered set of
points visited by the curve. The shapes of two curves are identical if one can reparameterize one curve
into the other (using a continuous increasing function). Any rectifiable planar curve admits a canoni-
cal parameterization, its arc-length parameterization, which draws the same shape, but with constant
unit speed. The set of 2D-shapes can be therefore identified with the set of arc-length parameterized
curves, which is not a vector subspace, but rather an infinite-dimensional submanifold of the space of
parameterized curves (see [17]).

It may be difficult to compute an explicit formula of the arc-length parameterization of a given
rectifiable curve. Fortunately, when working with a computer, one do not need it. One neither need a
concrete parameterization of the curve to depict it, a sample of points on the curve suffises. To draw
the statue of Liberty as in Figure 2, left, one just need a finite ordered set of points (the red stars). The
discrete version of an arc-length parameterized curve is a uniformly sampled curve, i.e. an ordered set
of equally distant points (for the euclidean metric). Resampling a curve uniformly is immediate using
some appropriate interpolation function like the matlab function spline (the second picture in Figure 2
shows a uniform resampling of the statue of liberty).

Consider the set of 2D simple closed curves, such as the contour of Elie Cartan’s head in Figure 3.
After the choice of a starting point and a direction, there is a unique way to travel the curve at unit
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Figure 2 – The statue of Liberty (left), a uniform resampling using Matlab function spline (middle), a reconstruction of the statue
using its discrete curvature (right).

speed. In Figure 3, we have drawn the velocity vector near the glasses of Elie Cartan, as well as the
unit normal vector which is obtained from the unit tangent vector by a rotation of +π

2 . These two
vectors form an orthonornal basis, i.e. an element (modulo the choice of a basis of R2) of the Lie group
SO(2), which is characterized by a rotation angle. The rate of variation of this rotation angle is called
the signed curvature of the curve. For instance, when moving along the external outline of the glasses,
this curvature equals the inverse of the radius of the glasses.

Figure 3 – Elie Cartan and the moving frame associated to the contour of his head.

There is a little difference in the construction of the moving frame for 2D curves in comparison to
the moving frame for 3D curves. Indeed in the 2D case, we don’t need the second and third derivative of
the curve to construct the frame. Just the first derivative is enough. In fact we are using the knowledge
that the curve stays in the plane to construct the normal at each point of the curve. In other words,
we are using additional geometric properties of the ambient space (in this case the complex structure
of the plane). The consequence of this is that the moving frame can be defined even for 2D curves with
flat pieces (zero curvature sections) like the statue of Liberty which has a long flat piece at its base
(see Figure 2). The corresponding curvature is therefore signed, with positive sign when the moving
frame is turning clockwise, negative sign when the moving frame is turning counterclockwise, and zero
along flat pieces. We have depicted the curvature function κ of Elie Cartan’s head in Figure 4, first
line, when the parameter s ∈ [0; 1] on the horizontal axis is proportional to arc-length, and such that
the entire contour of Elie Cartan’s head is travelled when the parameter reaches 1. Its corresponds to
a uniform sampling of the contour.

A discrete version of an arc-length parameterized curve is an equilateral polygon. To draw an
equilateral polygon, one just need to know the length of the edges, the position of the first edge, and
the angles between two successive edges. The sequence of turning-angles is the discrete version of the
curvature and defines a equilateral polygon modulo scaling, rotation and translation. In Figure 2 ,
right, we have reconstructed the statue of Liberty using the discrete curvature function.

In order to interpolate between two parameterized curves, it is easier when the domains of the
parameter coincide. For this reason we will always consider curves parameterized with a parameter in
[0; 1]. A natural parameterization is then the parameterization proportional to arc-length. It is obtain
from the parameterization by arc-length by dividing the arc-length parameter by the length of the curve
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Figure 4 – Signed curvature of Elie Cartan’s head for the parameterization proportional to arc-length (first line), proportional to the
curvature-length (second line), and proportional to the curvarc length (third line).

L. The corresponding curvature function is also defined on [0; 1] and is obtained from the curvature
function parameterized by arc-length by compressing the x-axis by a factor L. To recover the initial
curve from the curvature function associated to the parameter s ∈ [0; 1] proportional to arc-length, one
only need to know the length of the curve.

2.2 Parameterization proportional to curvature-length

In the same spirit as the scale space of T. Lindeberg ([20]), and the curvature scale space of Mackworth
and Farcin Mokhtarian ([21]), we now define another very natural parameterization space of 2D curves.
Its relies on the fact that the integral of the absolute value of the curvature κ is an increasing function
on the interval [0; 1], stricktly increasing when there are no flat pieces. In that case the function

r(s) =

∫ s
0
|κ(s)|ds

∫ 1

0
|κ(s)|ds

(1)

(where κ denotes the curvature of the curve) belongs to the group of orientation preserving diffeo-
morphisms of the parameter space [0; 1], denoted by Diff+([0; 1]). Note that its inverse s(r) can be
computed graphically using the fact that its graph is the symmetric of the graph of r(s) with respect to
y = x. The contour of Elie Cartan’s head can be reparameterized using the parameter r ∈ [0; 1] instead
of the parameter s ∈ [0; 1]. In Figure 5 upper left, we have depicted the graph of the function s 7→ r(s).
A uniform sampling with respect to the parameter r is obtain by uniformly sampling the vertical-axis
(this is materialized by the green equidistributed horizontal lines) and resampling Elie Cartan’s head
at the sequence of values of the s-parameter given by the abscissa of the corresponding points on the
graph of r (where a green line hits the graph of r a red vertical line materializes the corresponding
abscissa). One sees that this reparameterization naturally increases the number of points where the 2D
contour is the most curved, and decreases the number of points on nearly flat pieces of the contour. For
a given number of points, it gives an optimal way to store the information contained in the contour.
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The quantity

C = L

∫ 1

0

|κ(s)|ds, (2)

where s ∈ [0; 1] is proportional to arc-length, is called the total curvature-length of the curve. It is the
length of the curve drawn in SO(2) by the moving frame associated with the arc-length parameterized
curve.For this reason we call this parameterization the parameterization proportional to curvature-
length. In the right picture of Figure 5, we show the corresponding resampling of the contour of Elie
Cartan’s head.
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Figure 5 – First line : Integral of the (renormalized) absolute value of the curvature (left), and corresponding resampling of Elie’s
Cartan head (right). Second line : Integral of the (renormalized) curvarc length (left), and corresponding resampling of Elie’s Cartan
head (right).

This resampling can naturally be adapted in the case of flat pieces resulting in a sampling where
there is no points between two points on the curve joint by a straight line. In the left picture of Figure 6,
we have depicted a sampling of the statue of Liberty proportional to curvature-length. Note that there
are no points on the base of the statue. The corresponding parameterization has the advantage of
concentrating on the pieces of the contour that are very complex, i.e. where there is a lot of curvature,
and not distributing points on the flat pieces which are easy to reconstruct (connecting two points by a
straight line is easy, but drawing the moustache of Elie Cartan is harder and needs more information).

As in section 2, it is possible to reconstruct a curve from its curvature function parameterized
proportionally to curvature-length, provided that we know the length of the curve L and its total
curvature-length C, and provided that there is no flat piece. Indeed, derivating equation (1), one

obtains dr = |κ(s)|
C Lds, where Lds is the arc-length measure of the curve.

The drawback of using the parameterization proportional to curvature-length is that one can not re-
construct the flat pieces of a shape without knowing their lengths (remember that the parameterization

6



proportional to curvature-length put no point at all on flat pieces). For this reason we propose a param-
eterization intermediate between arc-length parameterization and curvature-length parameterization.
We call it curvarc-length parameterization.

2.3 Curvarc-length parameterization

In order to define the curvarc-length parameterization, we consider the triple (P (s), ~v(s), ~n(s)), where
P (s) is the point of the shape parameterized proportionally to arc-length with s ∈ [0; 1], ~v(s) and ~n(s)
the corresponding unit tangent vector and unit normal vector respectively. It defines an element of the
group of rigid motions of R2, called the special Euclidean group and denoted by SE(2) := R2 o SO(2).
The point P (s) corresponds to the translation part of the rigid motion, it is the vector of translation
needed to move the origin to the point of the curve corresponding to the parameter value s. The moving
frame O(s) defined by ~v(s) and ~n(s) is the rotation part of the rigid motion. One has the following
equations :

dP

ds
= L~v(s) and O(s)−1

d

ds
O(s) =

(
0 −κ(s)

κ(s) 0

)
, (3)

where L is the length of the curve. Endow SE(2) := R2 o SO(2) with the structure of a Riemannian
manifold, product of the plane and the Lie group SO(2) ' S1. Than the norm of the tangent vector
to the curve s 7→ (P (s), ~v(s), ~n(s)) is L + |κ(s)|. Therefore the length of the SE(2)-valued curve is

L+
∫ 1

0
|κ(s)|ds = L+ C

L . We call it the total curvarc-length. It follows that the following function

u(s) =

∫ s
0

(L+ |κ(s)|)ds
∫ 1

0
(L+ |κ(s)|)ds

defines a reparameterization of [0; 1]. The arc-length parameter of the initial shape is related to the
parameter u by

Lds =
L2 + C

L+ |κ(u)|du.
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Figure 6 – Resampling of the statue of Liberty proportional to the intergral of λ + curvature, for (from left to right) λ = 0;λ =
0.3;λ = 1;λ = 2;λ = 100.

3 Application to medical imaging : parameterization of bones

In the analysis of diseases like Rheumatoid Arthritis, one uses X-ray scans to evaluate how the disease
affectes the bones. One effect of Rheumatoid Arthritis is erosion of bones, another is joint shrinking.
In order to measure joint space, one has to solve a point correspondance problem. For this, one uses
landmarks along the contours of bones. These landmarks have to be placed at the same anatomical
positions for every patient. Below they are placed using a method by Hans Henrik Thodberg ([22]),
based on minimum description length which minimizes the description of a PCA model capturing the
variability of the landmark positions. For instance in Figure 7 left, the landmark number 56 should
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Figure 7 – Point correspondance on 3 different bones using the method of [22]

always be in the middle of the head of the bone because it is used to measure the width between two
adjacent bones in order to detect rheumatoid arthritis.

Although the method by Hans Henrik Thodberg gives good results, it is computationally expensive.
In this paper we propose to recover similar results with an quicker algorithm. It is based on the fact
that any geometrically meaningful parameterization of a contour can be expressed using the arc-length
measure and the curvature of the contour, which are the only geometric invariants of a 2D-curve (modulo
translation and rotation). It follows that the parameterization calculated by Thodberg’s algorithm
should be recovered as a parameterization expressed using arc-length and curvature. We investigate a
2 parameter family of parameterizations defined by

u(s) =

∫ s
0

(c ∗ L+ |κ(s)|λ)ds
∫ 1

0
(c ∗ L+ |κ(s)|λ)ds

(4)

where c and λ are positive parameters and where L is the length of the curve and κ its curvature
function. We recover an analoguous parameterization to the one given by Thodberg’s algorithm with
c = 1 and λ = 7. The algorithm computes the parameterization of 14 bones in 2.23s on a Mac M1.

Figure 8 – 14 bones parameterized by Thodberg’s algorithm on one hand and the parameterization defined
by (4) with c = 1 and λ = 7 on the other hand (the two parameterizations are superposed). The colored
points corresponds to points labelled 1, 48, 56, 66. They overlap for the two methods.

4 Conclusion

We proposed diverse canonical parameterization of 2D-contours, which are expressed using arc-length
and curvature of curves. The curvature-length parameterization and the curvarc-length parameteri-
zation are very natural examples, since they corresponds to a constant-speed moving frame in SO(2)
and SE(2). We present an application to the problem of point correspondance in medical imaging
consisting of labelling automatically keypoints along the contour of bones. We recover an analoguous
parameterization to the one proposed by Thodberg at real-time speed. Having a two-parameter family
of parameterizations at our disposal, a fine-tuning can be applied on top of our results in order to
improve the point correspondance further.
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About the Evolution of Soft Robots
186.837: Seminar in Computer Vision and Pattern Recognition
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Andreas Wiesinger

Abstract

The evolution of artificial neural networks has inspired a plethora of methods and en-
codings for the evolution of artificial lifeforms like soft voxel-based robots over the past
20 years. Such encodings aim to reach complexity of phenotypes in natural scale or
even higher, possibly opening pandora’s box and unleashing creatures like shown in the
Terminator movies. We review major milestones in the field of artificial evolution and
their successors, including Neuroevolution of Augmenting Topologies (NEAT), Compo-
sitional pattern producing networks (CPPNs), HyperNEAT and newer encodings. Soft
robots are particularly interesting in the context of those encodings as they increase the
search space and complexity for the possible outcome and pose a tremendous challenge
for many of the surveyed techniques. Novel encodings aim to solve perennial problems
in this field, even though major scalability di�culties have been addressed in the past.
We investigate whether a novel combination of two innovations can provide a solution
to remaining problems.

1 Introduction

We intend to provide a short review for some novel approaches to evolve and encode
artificial lifeforms and their controllers. It turns out that Neural Networks (NNs) provide
elegant means to evolve complex creatures with an e�cient, indirect encoding with high
abstraction of natural (chemical) evolution processes. Such encodings can be used to
automate the design-process of robots for various tasks like explained in the following
subsections.
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1.1 Motivation

There are many occasions where autonomous robots would be useful in unstructured
environments1. However, robots are usually designed and pre-programmed by humans
for specific structured environments, e.g. factories [2].

Not only the automatic design and autonomous behaviour are important in the robotics
field, but also softness for gripping and human-robot interaction, e.g. medical use, en-
doscopic surgery and search and rescue [8, 16, 22, 31, 32]. Hod Lipson [22] and Tomoya
Kimura [19] state in their papers that compatibility2 is a critical aspect for the safety
and comfort which users perceive during the interaction with robots. Softness3 o↵ers
a great opportunity to do that. Lipson also mentions another purpose of robotics in
general: To study the behavior and performance of humans and animals. To emulate
natural systems, since many materials in nature are soft, is hence easier with soft robots
than conventional ones. The latter is also the focus of Francesco Corucci et al. [10] in
their study of intelligence and adaptive behavior in animals and plants.

These studies show that it is of interest to find methods for automating the design-
process of (soft) robots. There are di↵erent approaches, most of which are based on
Evolutionary Computation (EC) [8, 36, 39] (and for interested readers we want to refer
to additional literature: [2, 7, 9, 10, 17,19,22,23,27,28,30,31,38,40,42]).

The motivation of this state-of-the-art review is to summarize commonly used methods
like NEAT-based Genetic Algorithms (GAs) [28, 39] as well as some alternative and
older approaches like Cellular Encodings (or Cell Chemistry Encodings) (CEs) [14, 40],
Cell Chemistry (CC) [40, 41] or Artificial Embryogeny (AE) [6, 11, 18, 20, 40], as well as
grammatical approaches [18,21,40], Genetic Regulatory Networks (GRNs) [2,4–6,13,17]
and meta-graphs [2, 35]. The main focus of this paper, however, will be on the latest
NEAT-based encodings and a possible novel combination of two of them to address some
of the main issues which are discussed in section 1.2.

1.2 Problem Specification

Several di↵erent issues arise when we try to evolve morphologies and controller configu-
rations for specimen of robots for complex tasks in unstructured environments:

Auerbach and Bongard [2] as well as Rie↵el [31] point out, that the brain, the body
and the environment are the three main components which define the search space4 and

1Unstructured environments: The term was used by Auerbach [2] and means in this context: The envi-
ronments in which the robots will perform their tasks. In this case, unstructured means environments
like nature, o�ces or homes, where neither the premises nor its furnishing can be foreseen by the
developers of the robot: Places which vary for every task. In comparison to structured environments
like factories, where the robot likely works in a specific, dedicated, planned location.

2Compatibility between users and robots, both, in terms of mental perception by users as well as
physical interaction.

3Robots with soft parts in contrast to conventional robots do not only have sti↵ parts. Softness does
not necessarily mean that a robot is completely soft, but rather consists of both, soft, elastic parts
like inflatable rubber and sti↵ parts.

4The search space is the space in which the weights and the connections and (new) nodes (i.e. the
topology) of a network is evolved by ”searching” for weights and connections which result in the
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evolution of a phenotype5. This for once brings up the requirement that the controller
(the brain) and the morphology (the body) must usually be co-evolved, i.e. let them
evolve simultaneously, because they are interdependent. Furthermore, for the special
case of soft robots, which we mainly focus on in this paper, the material is a third
component in addition to the body and the brain which needs to be co-evolved with the
latter two [31]. Consequently, the parameter-space increases and leads to di�culties in
the scalability of many if not most available encodings concerning the amount of voxels
for a phenotype as well as the complexity of its behavior [8, 19]. Last but not least,
Lipson [22], Cheney [8] and Medvet [24] as well as Rie↵el [31] agree on the fact that
the evolved robots are di�cult to simulate realistically due to the issue that elastic,
soft materials can and will always behave di↵erent in the real world than in a virtual,
mathematical, approximated environment.

We want to focus solely on the scalability issue in this paper, therefore the rest of
the problems shall be mentioned for the sake of completeness. However, the scalability
issue has been investigated by many authors previously and can be found especially in
NEAT- and CPPN-based methods [36, 38–40] (and for interested readers we want to
refer to additional literature: [8,12,15,19,27,28,37,43]). Because CPPN and NEAT are
simply NNs, the issue from above translates to scalable evolution of NNs.

2 Background

In artificial evolution, for systems such as soft robots, the goal is to reach the level
of complexity found in natural biological lifeforms, or even outperform nature in this
regard [40]. For this sake, di↵erent types of encodings have been proposed in the past
[28, 39,40]. The major terms and concepts in this field are summarized below:

2.1 Encoding Types: Direct vs. Indirect Encodings

The two major classes of Topology and Weight Evolving Artificial Neural Networks
(TWEANNs) are direct encodings and indirect encodings. The di↵erence is that direct
encodings are easier to implement but are always equally as complex as the evolved phe-
notype because the genotype is a one to one mapping and contains the exact information
about every connection and every node in the phenotype.

Indirect encodings on the other hand aim to drastically lower the complexity of the
genotype but still be able to produce very complex phenotypes. The genotype in indirect
encodings does not map every part of the phenotype, but utilizes rules which implicitly
lead to the final phenotype. Hence, sometimes also the terms implicit vs. explicit
encodings are used [39,40].

desired network outputs. The specimen we want to evolve, which should be able to fulfill specific
tasks, is hence represented by the network outputs.

5Phenotype: The set of observable characteristics of a living organism, which is influenced by its
genotype6and the environment. In the context of EC, the evolved weights and connections of a NN
are also often referred to as phenotype [15,40].

6Genotype: The genetic code which encodes (describes) the phenotype.
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Some examples for direct encodings are Structured Genetic Algorithms (SGAs) which
belong to Binary Encodings (BEs), Parallel Distributed Genetic Programming (PDGP),
which uses Graph Encoding and GeNeralized Acquisition of Recurrent Links (GNARL),
which also uses Graph Encoding, but does not implement crossover mechanics, which
is discussed in Section 2.2. An example for direct encodings is NEAT by Stanley and
Miikkulainen [39].

Figure 1: Grammatical approach example, taken from Stanley and Miikkulainen [40].
This illustration shows how one of the first indirect encodings works. The L-
rewrite-system by Lindenmayer [21] models a tree-like morphology by simply
defining a rule (in this case the two rewrite rules in the box) and a starting
symbol. In this case, the symbol A is replaced with an expression defined by
the rules in the box until there is no further replacement possible or a defined
amount of generations is reached. � and + define relative angles for the next
generation for a specific branch.

Almost 20 years later, many indirect encodings have been published, CPPNs being one
of them, also by Stanley [36]. L-Systems by Lindenmayer [21], from which an example
can be seen in Figure 1, were one of the first indirect encodings and are amongst the
grammatical approaches. Also within the class of grammatical approaches are grammar
trees [14]. Because the rules are e↵ective on single cells, this system by Gruau is called
Cellular Encoding (or Cell Chemistry Encoding).

2.2 Competing Conventions

The Permutations Problem [29, 39] or Competing Conventions Problem [25, 33, 39] has
been a main problem in Neuroevolution (NE) until Stanley [39] proposed historical
markings in NEAT. It is about the possible loss of critical information in a genome
which can happen when two permutations of genomes are crossed over with each other:
Crossover will likely lead to damaged o↵spring if a weight optimization problem in an
NN has multiple possible solutions. Figure 2 shows an example for a possible resulting
genome after crossover if the problem is not circumvented properly.

4



Figure 2: Competing conventions example, taken from Stanley [39]. Even though the
order of the hidden nodes di↵ers between the two networks, the final output
of them is the same. A crossover would lead to either one solution which
would miss a crucial component. Therefore Stanley defines them as being
incompatible for crossover.

The problem is even more di�cult when di↵erent topologies and lengths of genomes
shall be crossed because TWEANNs can still produce the same (or similar) solutions in
this case. In nature, during a process called gene amplification, new genes can also not
just insert themselves at random positions in the genome [39]. A system where genes
can only be crossed with alleles7 of the same trait, called homology, is utilized by nature
where homologous genes are lined up before they can be crossed. Stanley discovered
that homology is given when the historical origin is shared across genes [39].

2.3 Niches: Protecting Innovation within Species

Adding new nodes and connections to TWEANNs brings both, innovation and prob-
lems: On the one hand this is the way how new features in a specimen are found in the
search space, on the other hand every new node and connection adds a new nonlinearity
or redundancy which decreases the fitness of the network. Therefore it is not su�cient
to just evolve a phenotype by randomly varying the nodes and connections in the hope
of new interesting features, because most of them will rather destroy already evolved
features. A successful Evolutionary Algorithm (EA) needs to protect new features in
order to be able to optimize the weights to get the best out of it. Stanley explains

7One of several possible variants of a gene is called an allele.
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that such innovations could be protected by isolating di↵erent network structures into
di↵erent species, therefore allowing them to optimize their structures within the same
species, which is called speciation or niching. Having a compatibility function which tells
the compatibility between networks of di↵erent topologies is needed to solve the speci-
ation problem. NEAT implements speciation by explicit fitness sharing which groups
individuals by their genetic similarity. The historical markings in NEAT do not only
provide a solution to the competing conventions problem, but as a consequence also for
the speciation problem [39].

2.4 Minimizing the Search Space

Another problem is the initial population and the complexity of the search during evo-
lution. The initial topology was often chosen randomly, where minimal solutions are
not targeted specifically. NEAT targets minimal solutions by starting out minimally
and by intentionally letting the network grow only if the emerged structure benefits the
outcome. NEAT therefore focuses on keeping the dimensionality8 of the search space as
low as possible throughout all generations and not just at the end of the final network.
This dramatically increases the performance as well [39].

2.5 Developmental vs. Non-Developmental Encodings

In nature, development can be seen through the growth of a phenotype over time: Dif-
ferent genes can be activated (or deactivated) at di↵erent times (and locations), which
controls the development of a phenotype and facilitates the reuse of genes. This is not
about evolving phenotypes, but about the change of evolved phenotypes during their
individual lifetimes. Developmental encodings [1, 3, 36, 40] aim to discover phenotypes
with a complexity found in nature, by finding the right abstraction of the developmental
process found in nature [36]. The reuse of genes allows e�cient artificial development
because the genotype does not need to be as complex as the phenotype.

Non-Developmental encodings on the other hand skip the process of development and
only simulate the final artificial lifeforms such as if there is no temporal dimension.
NEAT [39,40] is one example for non-developmental encodings.

3 State of the Art

Papavasileiou et al. [28] already published a comprehensive, systematic state-of-the-art
survey of NEAT-based methods. Our paper di↵ers from theirs that their latest observed
NEAT-based methods were published not later than in 2017, but within the last four

8The dimensionality of the search space is increased by adding more di↵erent possible components to it:
Adding di↵erent materials of which a robot can consist increases the search space by the amount of
materials being added. Adding the goal that a robot should also evolve a controller for its morphology
increases the search space. Adding a node or connection at the network-level increases the search
space as more weights need to be optimized. Last but not least, adding complexity to the task a
robot should fulfill, increases the search space.
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years, new techniques have emerged. Therefore, we will shortly summarize NEAT, CPPN
and HyperNEAT and then some newer NEAT-based methods in contrast to the ones
already covered by Papavasileiou et al. Furthermore, in contrast to their paper, we
will also discuss a possible combination of some key features of the reviewed methods
to hypothesize possible beneficial outcomes. The papers which are already covered by
Papavasileiou et al. are not discussed here again, except for those on which our discussion
will be based upon.

3.1 NEAT (2002)

Figure 3: Ambrosio et al. [12] illustrate the process of incrementally complexifying the
topology9of NNs which are evolved with NEAT after starting out minimally.
Additional note: This image illustrates many connected graph-based networks
at once, because NEAT evolves many networks independently to have di↵erent
species and later allow to cross them to get new interesting features through
cross-over.

NEAT is a direct encoding made to evolve NNs which aims to solve controlling and
decision tasks [39]. The di↵erences between NEAT and other NN-evolving methods are
pointed out as follows: NEAT uses historical markings [39], where the generation-number
is assigned to each gene of a generation, to keep track of the individually evolved genes
(as described in Sections 2.2 and 2.3) which are used to

• determine how to combine which genes to produce o↵spring [39],

• allow crossover of di↵erent topologies without expensive analysis for the compati-
bility [39],

• classify individuals into di↵erent species [39] (Section 2.2), and therefore

9Topology was the term used by Ambrosio et al. [12] to describe the connectivity of a single graph-
based neural network.
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• protect structural innovations by speciating the population into niches in which
individuals compete during weight-optimization instead of the whole population
at once, because adding innovation (by adding new nodes to the topology) often
introduces disadvantages at first (see Section 2.3) [39],

• start out with small and simple networks and increase their complexity incremen-
tally as can be seen in Figure 3, without a size-limit for the topology, rather than
evolving fixed-topology or random-topology networks (see Section 2.4) [12]

NEAT is a direct encoding on purpose, because Stanley and Miikkulainen wanted to
avoid unpredictable biases in their search process, which was likely to happen in indirect
encodings at the time of writing their paper due to insu�cient knowledge about genetic
and neural mechanisms.

3.2 CPPN (2007)

CPPN is an indirect encoding by Stanley [36] which is ultimately just an NN. The name
compositional pattern producing network (CPPN) was chosen in order to avoid possible
misconceptions about CPPNs, as they are invented for the sake of evolving structures
and should not imply that genetic encodings or developing embryos are in e↵ect the
same as thinking brains [12, 36]. CPPNs utilize functions with specific characteristics
as activation functions in the individual nodes, hence the name ”compositional pattern
producing”. The final output pattern is produced by composing these individual func-
tions in a network together, which is also illustrated in the Figures 4 and 5b. Figure 5
shows how CPPN overcomes the complexity of natural genetic encodings through ab-
straction of local interaction and temporal (ontogenetic) development (see also Section
2.5): Only the final morphology is represented by the solution of an evolved CPPN.
Including development in such a final morphology means that there is just an additional
input parameter, namely time, in order to evolve patterns which are changing over time,
therefore simulating development.

One can choose the activation functions freely, depending on the desired outcome,
however, some core functions for a CPPN proved suitable for a range of goals [12]:

• Sigmoid for irregularities and non-linearities.

• Gaussian or absolute value for symmetry.

• Sine or cosine for repetition.

NEAT is commonly used to evolve CPPNs: NEAT uses a direct encoding, meaning
its genotype will have the same size and complexity as the phenotype, but as it is used
to evolve an indirect encoding, it will just need the size and complexity of the evolved
CPPN and not of the pattern produced by this CPPN. The CPPN is also again the
genotype for the phenotype it encodes, which should be taken care of to avoid possible
misunderstanding which genotype and phenotype we are talking about.

Finally, some evolved patterns, structures and even soft robots, using CPPNs are
shown in the Figures 6 and 7, to provide an overview of its possibilities.
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Figure 4: Stanley [36] illustrates the composition of gradient functions with this image:
Composing an asymmetric gradient x with two functions F1 and F2, one being
symmetric and the other periodic, results in a new pattern which contains the
characteristics from each of them: The gradient from x alone, the symmetry
from F1 and the periodicity from F2.

3.3 HyperNEAT (2009)

HyperNEAT (from ”hypercube-based NeuroEvolution of Augmenting Topologies” [12,38])
maps geometric regularities onto a previously defined substrate10: That is, the CPPN
outputs the weights for the connections in that substrate, while that same substrate
provides its spatial node placements and connection locations as input to the CPPN.
The CPPN is hence called weight-generator. A threshold for a minimum weight value
determines whether a connection between two nodes in the NN (the substrate) exists at

10The substrate is the NN for which the connectivity pattern is evolved by the CPPN. This name is
chosen to be able to verbally distinguish between the NN of the CPPN and the NN of the final
phenotype [12].
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Figure 5: This illustration, taken from Ambrosio and Stanley [12], depicts the individual
functions in the CPPN (b) which are composed and produce the final output
pattern (a). The function f in a is the network in b.
a: The main concept of CPPNs can be seen in this illustration: To provide
an abstraction for local interaction and temporal development by making the
output of the CPPN solely dependent on the input parameters x and y (and
any desired additional dimensions). The evolved pattern is simply a function
f(x, y, ...), hence, no interaction between a chosen point and its neighbours is
needed to compute the pattern. The key characteristics described in Section
3.2 are the reason why this high abstraction still leads to structures looking
similar to those found in nature.
b: The NN-nature of CPPN can be seen in this illustration clearly: The
individual nodes have di↵erent activation functions which are of either kind of
the few main characteristics for the abstraction which Stanley defined.

all. Consequently, the substrate starts out with a complete graph11.
The main advantage of HyperNEAT is, that it is able to express NNs with millions

of connections through CPPNs with only dozens [12]. Two more advantages are the
scalability and the benefits from the link between geometry and connectivity patterns:

HyperNEAT is able to train the network in a low resolution, then up-scale the sub-
strate to raise the resolution (i.e. add more nodes and connections), without destroying
the connectivity-pattern and its already trained weights, because this pattern has a ge-
ometric, mathematical nature in a higher-dimensional cube, and the actual connections
and nodes can be seen as a kind of ”sampling” this pattern in a continuous, spatial space
into a discrete and topological space [12, 38].

The latter advantage is that HyperNEAT can exploit the fact that sensor location and
e↵ector location correlate in the geometry of the problem domain and can create neural
structures which reflect that (geometric) information [12,38].

11A complete graph is a graph where every node is connected to all other nodes.
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Figure 6: Cheney [8] illustrates 2D (left) and 3D (right) examples of evolved patterns
using CPPN-NEAT.

Figure 7: Corucci [9] evolved aquatic creatures (soft voxel-based robots) which look and
behave like jellyfish with CPPN-NEAT.

3.4 NEAT-based derivatives

According to the categorization of Papavasileiou et al. [28], x-NEAT methods may be
mapped to the following properties. We did not include all of them, as we do only
consider the following as relevant for our aims:
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• Support multiple objectives: The evolved robot should be able to fulfill mul-
tiple di↵erent tasks. Some of such tasks might be independent from each other
(e.g. simply walking towards a static target vs. grabbing objects which are in
physical range of the robot) while others might interleave or blend, e.g. keeping
track of a moving target via sensory input and adapt the movements accordingly,
or grabbing objects while walking. In technical terms, this results in a multiobjec-
tive optimization problem, where the evolution algorithm is given a domain where
multiple (conflicting) objectives should be optimized simultaneously.

• Support di↵erent node types: The evolved network should support di↵erent
activation functions per node in order to allow for a composition of familiar func-
tions to allow complex shapes and patterns as a result as explained previously.
CPPNs already support di↵erent node types by intention. Not all NEAT-based
methods make use of this feature.

• Modularity: A modular network contains separately optimizable, independent
functional structures which can perform sub-tasks. Our hypothesis is, that new,
additional tasks can be added more easily to existing controllers which are already
trained and optimized for one or more tasks, if the controller supports modularity.
This would enable sequential training instead of (or in addition to) simultaneous
training.

• Support large topologies: High dimensional input/output space as well as a
high-dimensional search space are supported by methods with this property. The
evolved networks might also consist of a large amount of nodes and connections.
As we aim to evolve robots which support multiple objectives, the search space
naturally becomes large. Soft voxel-based robots consist of many parts with di↵er-
ent properties (soft parts, sti↵ parts, etc.), which further increase the search space.
Therefore, this property is considered necessary for our goal.

Method Multiple objectives Di↵erent node types Modularity Large topologies

SUPG-HyperNEAT (2013) [26]

MM-NEAT (2016) [34]

Our method

Table 1: The selected categorization-properties from Papavasileiou et al. [28], which are
important for our proposed method and which property is possessed by which
method.

Most of the methods covered by Papavasileiou et al. [28] support large topologies,
which is an important property. However, most of the same methods do not possess
each of the above properties, which would be desirable. We want to propose a possi-
ble combination of Modular Multiobjective (MM) NEAT [34] with Single-Unit Pattern
Generator (SUPG) HyperNEAT [26] to get all of these properties in one method, as can
be seen in Table 1.
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3.4.1 SUPG-HyperNEAT (2013) [26]

Figure 8: A single SUPG neuron. Each trigger resets the timer. The output of the
SUPG depends on x, y and the internal time value. The o↵set is applied to
the initial trigger to allow di↵erent SUPGs in the same network to start at
di↵erent times [26].

Even though Single-Unit Pattern Generator (SUPG)-HyperNEAT [26] is intended for
legged, quadruped robots, we hypothesize that the concept can be applied to voxel-
based soft robots as well. The SUPG extends HyperNEAT with a new type of neuron
which contains a timer to allow for time-dependent activation patterns. Even though
the SUPG itself represents just a node in the final network, it is encoded by a CPPN.
Figure 8 shows, how a single SUPG node consumes input coordinates and a temporal
trigger. The internal timer’s output (the time since the last trigger) is the time input
of the internal CPPN. This allows to generate patterns which are not just across space,
but also across time and therefore oscillatory systems can be evolved and encoded with
this approach.

The CPPN inside a SUPG is not directly the SUPG itself, but it is describing the
actual network’s weights and connections depending on the input coordinates. Hence,
HyperNEAT, because Morse et al. make use of this indirect encoding to e�ciently
describe a large SUPG with a small CPPN. They also add, that the depicted input
coordinates x and y are for simplicity reasons compacting the usually used connection-
coordinates for HyperNEAT, namely x1, y1, x2 and y2.

3.4.2 MM-NEAT (2016) [34]

Modular Multiobjective (MM)-NEAT [34] proposes preference neurons and the use of
modules within a network. The preference neurons are used to decide which module is
used for the actual behaviour of the agent at a time. The preference neuron with the
highest output specifies the network’s output. The other output neurons in each module
are called policy neurons. They define the behaviour of the corresponding module.
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Figure 9: Modular networks. Policy neurons define the behaviour of an agent (empty
circles inside the red rectangles). Inputs are at the bottom and outputs are
in the red boxes. The grey circles are the preference neurons. (a) Neural net-
work with one module. (b) Multitask network which needs human interaction
to choose the active module. (c) Fixed network with preference neurons to
select the active module. (d) Module mutation is enabled. The network has
not yet mutated in order to evolve more modules, therefore only one module
with an irrelevant preference neuron exists. (e) A second module is added
through module mutation. Its policy neurons are linked to the same neurons
as the module-duplication source. The preference neuron is linked to a random
neuron with random weight. All preference neurons are now relevant. Each
behavioural mode is represented by a di↵erent module, therefore multiple ob-
jectives are more easily learned by these networks [34].

Module mutation is used to add more modules during the evolution process. Each new
module is initially created by duplicating an existing module. This concept is shown in
Figure 9.

4 Proposal of novel Method: MM-SUPG-HyperNEAT

We propose a novel combination of previous NEAT-based methods [26, 34], and call
it Modular Multiobjective Single-Unit Pattern Generator HyperNEAT (MM-SUPG-
HyperNEAT), to obtain a method with all of the four benefits listed in Table 1. The
purposes of the four properties are explained in Section 3.4. Our method is intended
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Figure 10: A rough overview of the composition of MM-NEAT and SUPGs in our
method. The SUPGs are not directly visible in this graphic because they
are contained in each module. The MM uses the sensory input to output a
module preference proximity, which is used in the second-top layer to let the
output of the correct module through to the robot’s actuators. Each sensory
input (or any other node) can also be used as input for the individual trig-
gers of the SUPGs, hence the connection between the sensory inputs and the
modules.

for the evolution of soft voxel-based robots, even though SUPG-HyperNEAT is intended
for quadruped legged robots. Our method combines the two state-of-the-art methods
as follows: Each output module of the MM-network consists of another evolved network
which also contains SUPGs which are mapped to the actuators of the robot. The output
of a module is the input to the actuators. Each module defines the behaviour of the
robot, namely the individual movements of the individual voxels which can be actuated.
In order to allow those actuators to produce stable movements across a relatively long
duration (Morse et al. [26] tested their method with 5 minute time-frames, however,
they claimed that their robots walked stably for up to three hours), it makes sense to
have a SUPG for every actuator. Figures 10 and 11 show how this setup is composed.
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Figure 11: A more detailed sketch of the MM-SUPG-HyperNEAT method: Each of the
colored boxes refer to the same boxes as in Figure 10. Here, we can also see
the internal nodes of these networks and modules. As described in Section
3.4.2, the MM network will evolve new modules and each module will consist
of policy neurons and one preference neuron. The preference neurons can be
seen at the top of the modules (p1 and p2) in grey and are connected to our
preference switch, which is just a possible implementation to automatically se-
lect the active module. That switch compares each preference neuron’s value
and passes only the output of the preferred module forward to the actuators.
The actuators are in our case voxels which can be contracted depending on
a signal. The SUPGs can be seen inside the modules: For simplicity reasons,
the trigger inputs are not connected visually to other nodes, but they are
in a real implementation. Each actuator is mapped (through the switch) to
exactly one SUPG, however, as SUPGs are designed by intention with an
internal o↵set, one and the same SUPG can be used for every actuator in a
module, but with a di↵erent o↵set value.

The stability of movements means, that the robot should be able to perform a task
over a long duration before it tips over or fails to continue. This stability is also largely
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a↵ected by the environment. The SUPGs have the advantage that they can be reset by
a trigger-signal and therefore possibly resolve any state of error which can occur during
the tasks. The input for those trigger signals can come from sensors directly or from
other nodes inside the network to possibly interpret the sensor-values before resetting
the SUPGs.

The morphology of the robot has to be co-evolved separately, which is not included in
the Figures 10 and 11, except for the evolved actuators which can be seen in those figures.
This can be done with a simple CPPN or even with HyperNEAT. The two extensions
MM-NEAT and SUPGs are not necessary for the evolution of the morphology alone.
They are only proposed by us for the evolution of the controller of the robot.

5 Conclusion

We proposed a novel method as a combination of SUPG-HyperNEAT [26] and MM-
NEAT [34] to allow a more e�cient evolution process of soft voxel-based robots than
previous methods, especially with the goal that such robots should support multiple
objectives. This novel approach is called Modular Multiobjective Single-Unit Pattern
Generator HyperNEAT (MM-SUPG-HyperNEAT). As the evaluation results of Schrum
and Miikkulainen [34] proofed, the MM aspect solves the issue of supporting multiple
objectives. The evaluation results of Morse et al. [26] proofed that the SUPG allows to
evolve robots which can better adapt their locomotion to unknown and unpredictable en-
vironments and utilize the benefits of CPPNs and HyperNEAT to support di↵erent node
types and large topologies. Whether such a combination of MM and SUPG performs as
we hope is subject to future work with evaluation of our hypothesis.
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