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Abstract

X-ray screening significantly impacts security applications such as baggage handling to
help detect objects, especially threats such as explosives or weapons, within closed luggage
otherwise not visible to the naked eye. However, the generated X-ray images are challenging
to interpret due to the targets’ weak visual signals in high background noise levels and
the compact assembly of rotated and superimposed objects in bags. The complexity of
X-ray scans and the high intra-class variability of threats make appearance-based threat
detection difficult for both human operators and automated systems. Consequently, generic
appearance-based threat detection systems are hardly available in practice, and baggage
screening still depends highly on human operators. Nevertheless, further developments of
automatic baggage inspection are desirable to support the visual search task of screeners.
This work proposes utilizing automatic benign object detection as a diagnostic aid, for
instance, to remove distractors from the images through image inpainting. By reducing
the number of distractive benign objects in the data, regions of interest could gain faster
attention. The applied distractor removal methods successfully reduced visual saliency in
regions of distractors and decreased the overall visual clutter of the X-ray scans.



1 Introduction

After 9/11 and various other incidents, security measures at airports and other public places
have increased. Since then, more and more security research has been conducted to produce
supporting technologies. X-ray screening and inspection systems were further developed to
ensure that objects and defects can be detected non-destructively. Breakthroughs have been
made, particularly in baggage screening, allowing to check every piece of luggage for prohib-
ited items before a flight takes place. Nowadays, industrial X-ray screeners are widely used
at security checkpoints [I0]. Threat detection became one of their primary tasks alongside
industrial quality controls, analysis of products, inspections of cargos, and archaeological
discoveries [39].

The baggage screening process is increasingly automated, especially liquid and explosive de-
tection systems for cabin baggage screening have evolved [59]. However, generic appearance-
based threat detection systems are hardly available in airports [3, 4], assumingly due to the
multiple challenges that come with the nature of baggage scans, the high intra-class variabil-
ity and consequently the deficient detection accuracy. Therefore, current baggage scanners
with automated subsystems still depend on human operators to perform various vigilance
tasks that require sustained attention across extended periods [59) 67, [57]. These are visual
search and decision-making tasks that demand human operators to remain attentive to pre-
vent costly errors [21], 28]. Examples include inspecting X-ray images, alarm resolution, and
monitoring the performance of automated systems. However, the desired ability of human
operators to maintain the focus of cognitive activity on the given stimuli over prolonged
periods is negatively affected by several factors. Human screeners often work under stressful
environments due to factors like time pressure and high noise levels [37, BI]. At the same
time, they have to detect weak and infrequent visual signals in a high background noise level.
Visual search and object detection is additionally impaired by the unpredictable content and
arrangement of objects in the bags and the nature of baggage scans, which can be difficult to
interpret correctly [13]. These conditions can have a straining effect on the human operator’s
perceptual and cognitive abilities, leading to an increased error rate or a decrease in reaction
rate over time [211, 37, 50].

To reduce the workload of the human operators, further developments of automatic baggage
inspection, including appearance-based threat detection, are desirable as supportive systems
for screeners [3]. However, as many different threat classes and schemes to conceal prohibited
items exist, automatic and generic threat detection alone is not yet feasible. Consequently,
designing more advanced algorithms and the automation of X-ray signal detection in baggage
screening alone is insufficient to ensure performance at present [20, BI]. As the human
element plays an important role, it is essential to improve human screener’s capabilities [31].

One possible way to improve the accuracy and reliability of human performance in detect-
ing threats could be to enhance X-ray scans by utilizing automatic object detection as a
diagnostic aid. Like computer-aided detection systems (CAD) used in the medical field [27],
detected regions of interest could be processed to focus the viewer’s attention on critical
content that requires further investigation. In medical radiography, CAD systems search
for conspicuous areas (potential diseases) by applying pattern recognition and visually high-



lighting them to increase their saliency for human operators [27]. Similar techniques could
be adapted for baggage screening to facilitate the visual search task of screeners. The visual
salience of automatically detected threats, limited to easily identifiable shaped ones, could be
enhanced by soft highlighting, described by Kneusel and Mozer [27]. Another potential ap-
plication proposed in this work is to remove distractors from the X-ray images by inpainting
detected benign objects that negatively contribute to visual clutter. By reducing the number
of distractive objects (distractors) in the data, regions of interest could gain faster attention.
Furthermore, the image augmentation could help draw the human operator’s attention to
areas that include low-salient and potential unnoticed threat items. Distractive information
could be filtered out by detecting a limited number of benign objects with distinctive fea-
tures allowing a reliable detection. The proposed method aims to reduce the overall visual
clutter of the X-ray scans and reduce the visual saliency in regions of detractors while ideally
increasing it in the rest of the image.

1.1 Overview

The structure of the remainder of this bachelor thesis is as follows: Section 2 gives a short
overview of the background of 2D baggage scans and the challenges they present for object
detection due to their complex nature. Moreover, terms such as visual saliency are covered.
Section 3 presents the aim of the work and explains the proposed methods in more detail.
The design of carried out experiments and the structure of the database are discussed in
Section 4. The quantitative evaluation can be found in Section 5, while the last section
contains the conclusion and future research considerations.



2 Background and Related Work

2.1 Industrial 2D X-Ray Scans

In industrial radiography, 2D images are obtained by measuring the degree of absorption of
the X-ray beam by the objects [26]. An X-ray source generates the beam, while an opposite
receptor intercepts the rays that pass through the object, as illustrated in Figure (1] [68].
Since different materials absorb and scatter X-rays differently due to their different density
and atomic properties, the internal structures of objects or luggage can be made visible [58].
Steel, for example, has a very high density. Therefore, only high-energy X-rays can pass
through while lower-energy X-rays are absorbed. On the other hand, high- and low-energy
X-rays can pass organic materials like bread because of their low density [58]. Unlike in
medical radiography, the lower the density and thickness of a material, the brighter it is
displayed on the industrial X-ray image [20, 63]. Higher density materials or deep objects
are displayed dark, very high-density materials like lead crystal, cement, and different metals
are visualized black. An example X-ray scan is given in Figure 2] The scanned case is of
organic material and accordingly visualized very light. The alkaline batteries contained in
the lower-right corner, on the other hand, have a high density and, therefore, colored black.
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Figure 1: Simplified illustration of an Single-View baggage scanner.

2.2 Challenges for Object Detection in X-ray Scans

Due to the nature of 2D baggage scans, they cause several challenges for appearance-based
object detection, both for human operators and for automatic threat detection [55, [65] 3,
33, [B1].

X-ray images differ from conventional photographic images fundamentally in the informa-
tion they provide [3]. Information in photographs — like color, depth, texture, and the
influence of light on volumes such as reflections and refractions — is missing in X-ray



Figure 2: Example grayscale baggage scan.

images. This loss of familiar information leads to object representations that look very
different from what people are used to. Consequently, human operators require extensive
training and support to recognize various objects in baggage scans [45, 28]. On the other
hand, X-ray images provide insights conventional photography is not able to produce. Since
X-rays can pass through low densities, it is possible to see through otherwise opaque surfaces
such as suitcases, enabling automatic threat detection at airports or medical examination
of our skeleton [3]. The X-rays can pass through several objects before they are detected,
introducing transparency to X-ray images where a single pixel can contain information
about several overlapping objects [I3]. A challenge introduced by the transparent overlaps
is the segmentation of different object-information from one another [I3]. The transparency
property can be seen in Figure [2, where both the folds of the scanned case and the objects
behind it are visible. High-density objects absorb the vast majority of X-rays. Therefore,
they are opaque on X-ray images and obscure overlapping or enclosed objects, while
low-density objects are almost invisible [3], [42].

Another challenging factor is that objects within luggage occur at any orientation in- and
out-of-plane rotations [14] 3]. Especially out-of-plane rotations as visualized in Figure lead
to difficulties in recognizing objects correctly.

Tightly packed luggage can lead to a high degree of clutter and overlaps, severely increasing
the complexity of the baggage scans [65]. Furthermore, in the appearance of objects,
both in shape and density, a broad intra-class variability exists [51]. A single category,
such as knives, is made up of various items manufactured by multiple brands with different
characteristics, such as the materials used to make them. In addition, the different categories
that are considered threats or prohibited at airports are vast.

Finally, a challenge that primarily affects categories of prohibited items are schemes to
conceal objects [33].



Figure 3: Shuriken scanned from two different view points with out-of-plane rotation.

2.3 Visual Search and Salience

Visual search is a perceptual task where a target object has to be found amid other objects,
usually referred to as distractors [6]. In baggage screening, human operators have to perform
visual search tasks excessively.

Target salience is a factor that is known to influence the accuracy and speed of the con-
ducted visual search [0]. Saliency describes how prominent an item or image region is when
surrounded by neighboring objects [6]. Items referred to as high-salient immediately catch
the eye, while those that do not stand out are low-salient. An object’s saliency depends on
visual features such as color, size, orientation, luminance, motion, and its neighborhood.

2.4 Related Work

Extensive research is being conducted in appearance-based threat detection, using both
machine learning and deep learning methods [I], 24]. Some work also addresses the problem
of material discrimination in X-ray images using material classification [4]. However, at the
time of writing, no relevant work could be found where benign object detection in baggage
scans is the main objective.

Image processing is a broad field utilized in baggage screening to improve readability for
human operators and automatic detection systems [1, 44]. Edge enhancement, pseudo col-
oring, or noise reduction are some examples that are investigated for baggage scanning. The
image processing techniques that are probably most similar to the distractor removal method
used in this work are material filters, where parts consisting of certain materials or densi-
ties are filtered. One example is the organic-only filter mentioned by Michel et al. [44] and
Schwaninger et al. [53], in which only organic materials are displayed. Saliency-driven image
manipulation techniques such as distractor removal or attention retargeting are especially
explored for photography and are less common in baggage screening [34), [3§].



3 Methodology

Current systems for scanning carry-on luggage require human operators to visually search for
threat items in X-ray scans and perform alarm resolution [31], 21]. However, baggage scans
are very complex by nature and contain high background noise levels [65]. One possible way
to improve the accuracy and reliability of threat detection in such scans could be to utilize
automatic object detection as a diagnostic aid. Thereby, the scans could be enhanced to
focus the viewer’s attention on critical content that requires further investigation.

This thesis’s main objective is to use the results of automatic object detection to enhance
regions of 2D baggage scans in a way that reduces visual clutter and focuses attention on
regions that potentially contain threats. To achieve this goal, two different image enhance-
ments are performed based on object detection, where each of the methods modifies the
visual salience in the corresponding region. The first method highlights detected threats
by a unique visual feature to allow faster alarm resolution. The second method applies
distractor removal to the 2D baggage scans to mask out detected benign objects that neg-
atively contribute to visual clutter. Therefore, this thesis’s main aspects are selecting and
training an appropriate object detection model to detect both threat and benign objects in
2D baggage scans and to study the effects of the applied image enhancement methods on
human visual attention. The image enhancement methods will be evaluated by utilizing the
Itti-Koch-Niebur Saliency Model (IKN) [23] and Quad-tree-clutter [25].

A secondary objective is to evaluate the effect of distractor removal on the object detection
model by feeding the enhanced images back as input to the Convolutional Neural Network
(CNN), creating a feedback loop. CNNs, salience models, and the human primary visual
cortex consider basic features, such as edges, for their computations [I7, 29, 23]. Since
distractor removal reduces such basic features to decrease salience in the target region, it is
interesting to investigate how this processing affects the overall object classification through
the trained CNN. At least, it is expected that the removed object will no longer be detected.
If the image enhancement also positively affects the overall salience of the image, it could
positively impact object classification.

The content of this thesis is summarized as follows:

1. Discussing the composition of the database used in this work

2. Applying transfer learning on a pre-trained model to obtain the object detection model

3. Approximating the foreground regions of the detected objects

4. Performing two different image enhancements on the calculated foreground regions:
(a) highlighting detected threats by a color overlay
(b) removing detected benign objects from the image by inpainting

5. Evaluating the image enhancements

(a) effects on human visual attention



(b) effects on the object detection model

3.1 Dataset

The primary dataset used in this thesis is obtained from the public mono-energy X-ray
database GDXray created by Mery et al. [40]. This database can be used free of charge, but
for research and educational purposes only. It contains scans of various hand luggage such as
backpacks, wallets, pencil cases, and single images of threat items such as knives, handguns,
razor blades, and shuriken [20]. Example baggage scans for this database are given in Figure
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Figure 4: Example images obtained from the GDXray database (Baggage)

An additional, smaller dataset was generated to extend the database with baggage scans
that contain a high degree of visual clutter and additional object categories. This dataset
was created through cooperation with the CT Research Group at Campus Wels in upper
Austria using the dual-source computed tomography scanner RayScan 250EE|. Example scans
are given in Figure [5

All twelve objects of interest (shuriken, handgun, knife, razor blade, zip, nail, staple, key, bat-
tery, paperclip, spring, and screw) are labeled with oriented rectangles. The exact structure
of the dataset and the annotation process is described in Section [4.1]

Without cooperating institutions, it is difficult to access data for a security domain like
baggage screening. Most of the inspection systems and training software are proprietary.
Moreover, public databases are very limited [4I]. From the literature used in this thesis, only
three image databases are publicly available without additional restrictions such as a Non-
Disclosure Agreement (NDA) or payment: GDXray, SIXray, and COMPASS-XP Dataset
[40, 43|, 18]. The only reasonably large volumetric baggage dataset found at the time of
writing is the ALERT CT dataset from Northeastern University?l However, this dataset

!Research Group Computed Tomography: http://www.3dct.at/cms2/index.php/en/ I am very grateful
to Dr. Christoph Heinzl and Johanna Herr who made the cooperation possible.
2http://www.northeastern.edu/alert /transitioning-technology /alert-datasets/
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Figure 5: Example images from the dataset generated in cooperation with the CT Research
Group at Wels Campus in upper Austria.

could not be used in this thesis because it is only available under an NDA where all generated
publications must be reviewed and approved by Northeastern University/ ALERT Research
Evaluation Advisory Panel (REAP). The absent variety of public databases is a limiting
factor for research in security domains and has also influenced this work. Due to the missing
public volumetric datasets at the time of writing, the primary approach to remove volumes
of benign objects from baggage scans by applying an opacity transfer function to reduce
the number of distracting items in 3D baggage scans was approximated and investigated
solely with 2D data. Furthermore, the focus on the existing 2D databases lies on prohibited
items and not on everyday objects. Therefore, only a handful of benign object categories
are selected as objects of interest in this work.

3.2 Object Detection Model

For applying the two image enhancement methods, in which particular objects are either
removed or highlighted, the objects of interest must be located and classified in advance by
a suitable object detection model. The final object detector should detect twelve different
objects, of which four can be classified as threat items while the remaining eight objects
are benign. The results are then given as input to the image enhancement methods. It is
important to note that regions of interest are required for the image enhancement methods.
Therefore, once the objects are detected, semantic segmentation is performed in MATLAB
to identify the masks of the classified objects. The given bounding boxes from the object
detector simplify this segmentation. Instead of doing the object detection and segmentation

separately, another option would be to use an instance segmentation model such as Mask
R-CNN.

The object detection model used in this thesis is received by applying transfer learning to
a pre-trained EfficientDet model (D1) [§]. The model is pre-trained on the COCO 2017
dataset [30] and is provided by the TensorFlow Object Detection API, which is "an open-



source framework built on top of TensorFlow that makes it easy to construct, train, and
deploy object detection models" [8]. The training process itself is done with TensorFlow 2
on a local GPU.

3.2.1 Model Selection

Traditional machine learning approaches for object detection are built on handcrafted fea-
tures, which are manually designed by experts instead of learned from data [70]. Therefore,
it is necessary to transform the raw data (such as pixel values) into a suitable representation
or feature vector before using it as input to a classifier such as a Support Vector Machine
(SVM) [70]. Well-known feature detectors are, for example, Scale-Invariant Feature Trans-
form (SIFT) [32] and Histogram of Oriented Gradients (HOG) [12]. Due to the various
properties and appearance of different objects, backgrounds, and illumination conditions in
scenes, it is not easy to design a well-performing feature descriptor that can be applied to
multiclass object detection |70, 62].

Deep learning approaches such as Convolutional Neural Network (CNN), on the other hand,
utilize representation learning, which means that they can work with the raw data and auto-
matically learn the features needed for the following prediction task |19, 29]. Convolutional
Neural Networks are state-of-the-art approaches for object classification tasks on images [46].
However, CNNs alone do not perform the additional localization task needed to retrieve the
object position [62], which is necessary to identify and enhance the local region of the de-
tected objects. Widely applied architectures that utilize both classification and regression
for object detection are two-stage detectors such as Region-based CNN (R-CNN) and its
variants [70], which combine region proposals with a CNN as a feature detector [16]. Since
the proposal of R-CNNs, many other object detection models based on CNNs have been
suggested [70]. A recently introduced object detector, which mostly follows the one-stage
detector paradigm, is EfficientDet [61].

For this work, an object detector based on a CNN is chosen because they can achieve
remarkable accuracy on object detection while often requiring less expert analysis and fine-
tuning for the feature detection than traditional approaches [48]. Moreover, CNN-based
object detection models can be re-trained using a custom dataset [48]. Therefore, a single
framework can be applied to multiple domains.

A common reason for choosing traditional methods is, for example, when the required quan-
tity of data for training is unavailable [48]. Even though the GDXray database contains
only 8150 baggage scans, deep learning is already successfully applied to it multiple times
[41], 24, 2]. Therefore, the size of the used dataset should not be an issue.

In this work, EfficientDet (D1) is chosen as a model. Compared to other models such as
RetinaNet, YOLOv3 or Faster R-CNN [61], it achieves similar or even higher accuracy on
Microsofts Common Objects in Context (COCO) dataset [6I]. At the same time, it is
much smaller and more efficient compared to other state-of-the-art detection models [61].
Furthermore, it is available as pre-trained model in the “TensorFlow 2 Detection Model Zoo”

[8]-



3.2.2 Training of the Model

As training a deep neural network requires a large dataset, the training process is often costly
in time and other resources [48]. A common technique to reduce training time is transfer
learning, where information from previously learned tasks is reused for the learning of new
related tasks [56].

In this work, transfer learning is applied to the EfficientDet model (D1) provided by the
TensorFlow Object Detection APT [§]. The provided model is pre-trained on the COCO 2017
dataset [30]. The COCO dataset provides images of 1.5 million common object instances;
all non-Xray images [30]. Therefore, transfer learning from non-X-ray to X-ray images is
applied. A similar application for transfer learning is already tested, for example by Hoo-
Chang Shin et al. [56], where they applied transfer learning on ImageNet [52] for medical
image recognition tasks.

3.2.3 Evaluation of the Model

The final object detector should be able to detect four threat- and eight benign-items. The
performance for each object is evaluated by comparing the False Negative Rate or Miss Rate
(FNR), False Positive Rate or Fall Out (FPR), True Positive Rate or Recall (TPR), Precision
(P), and Accuracy (A). The performance of the object detection model is visualized in the
form of a confusion matrix. Additionally, the performance of the two main categories (threat
and benign items) is discussed. This work’s main focus lies in detecting benign objects, as
they are later removed in the image enhancement step to reduce the background noise level.
Therefore, it is desirable to correctly detect as many benign objects as possible. Furthermore,
it is desired that no threat item is misclassified as benign by the neural network, as it would
then be removed by the image enhancement. Falsely removing a threat item would fail to
focus the viewer’s attention on critical content and hide essential information.

Unfortunately, a fair comparison to other works using the GDXray is hardly possible: Train-
ing and testing sets are different between publications, and the results are presented using
several metrics [41]. Furthermore, a custom dataset is used in combination with the GDXray
database making comparisons even harder.

3.3 Image Enhancement

Image enhancement techniques improve the information content and quality of an image [49].
One of their desired results is to magnify important details in images that might otherwise
not be immediately visible in order to create image features that are more apparent to detect
for both human and automatic image analysis [60], 49].

As described in Section [2], human operators and automatic object detection algorithms must
locate and classify rare and weak visual signals in baggage scans that contain high back-
ground noise levels [37], B1]. Image enhancement methods could be one way to improve the
accuracy and reliability of both human and algorithmic threat detection performance on
this challenging data. By amplifying specific visual signals, the viewer’s attention could be
directed to critical content that requires further investigation.
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To draw attention to already detected objects, highlighting techniques can be used. This
approach is, for example, utilized in Computer-Aided Detection (CAD) where potential
diseases in medical images are marked [27]. CAD apply automatic pattern recognition and
classifiers to find the regions of interest (ROI) and highlight them visually to increase their
saliency for human operators [27]. Similar techniques could be adapted for baggage screening
to facilitate screeners’ visual search tasks and automatic detection systems. However, critical
regions in baggage scans are not only areas where threat items are easily recognizable, but
those where many objects are clustered together or where objects are not easily recognizable.
Inconspicuous regions may as well contain threat items. A possible enhancement of such
regions is to reduce the overall visual background noise, for example, by removing distractors
from the image. Distractors are visually distracting items, i.e., regions that divert attention
from the main subjects and thus diminishing the overall image quality [I5]. Distractor
removal is, for example, applicable in photography by using inpainting methods such as
Photoshop’s Content-Aware Fill, which tries to reconstruct and fill in the background of a
removed object, to improve the composition of an image [I5]. A similar automated approach
can remove distractors, such as everyday objects, from baggage scans. By removing the
distractors, the overall visual clutter can be reduced and may focus the viewer’s attention
on critical objects.

In this paper, two different types of image enhancement methods are implemented and eval-
uated on 2D baggage scans: The first method highlights potential threat items detected by
the object detection model with a particular confidence score. The second method inpaintd
regions of everyday objects to remove distractors from the baggage scan and to further re-
duce the visual clutter. For both enhancements, the detection model results are used to
calculate a more specific region of interest. The implementation of the image enhancement
methods is done in Matlab R2020a combined with the Image Processing Toolkit.

3.3.1 Automatic Distractor Removal

Distractor removal removes distracting or irrelevant information from the data to improve
the signal to noise ratio [I5]. What information is considered irrelevant depends on the
context and often is selected by hand. In the context of this work, automatically detected
benign objects are treated as distractors and therefore accounted as irrelevant. This type
of information filtering aims to reduce the image’s visual clutter and draws attention to the
main subjects [15].

In this thesis, automatic distractor removal is evaluated on 2D baggage scans. The goal is
to reduce the amount of distracting benign objects in the baggage scans to diminish clutter
and shift the saliency to other image regions to gain potentially faster visual attention on
regions of interest. Thereby, the method aims to decrease salience in the filtered regions
while maintaining or even increasing salience in the rest of the image, especially in threat
item regions. When applying the method, the salience of unprocessed regions should not
be influenced negatively, i.e., the salience of unfiltered image regions should not decrease in
relation to the overall image salience. Whether an image region stands out or not usually
depends on local properties such as contrast, brightness, color, size, and other image features
such as if edges are present or not [31]. Filtered regions should therefore reduce such salient
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features and be as uniformly looking as possible.

The best result for distractor removal in baggage scans is likely to be achieved with 3D data,
as they contain more information about the baggage contents than projected 2D data. In 3D
scans, distractors could be removed from the volume without affecting neighboring objects
in front, behind, or inside the target, for example, by applying customized opacity transfer
functions. Transfer functions used in direct volume rendering assign optical properties such
as color and opacity to data values [36]. Voxels of segmented distractors could be set to
an opacity of 100%, making them invisible in the volume rendering. On the other hand,
distractor removal in 2D baggage scans is very limited. As luggage itself is three-dimensional,
the projected 2D scans contain less information than the original baggage content, especially
concerning objects that lie behind denser items. However, since hardly any suitable databases
of 3D baggage scans are publicly available, only 2D data is used in this work [41]. One of the
main drawbacks of applying distractor removal to 2D data is that overlapping objects are
not preserved in projections. Therefore, the distractor removal techniques cannot recover or
use the information of overlapping objects, and the implementation must take into account
regions where threat and benign items overlap. In addition, the information used to replace
the filtered regions must be carefully selected to avoid adding further distractions or noise
to the image, for example, by selecting only background regions.

A potential solution for distractor removal on 2D baggage scans is to inpaint the region of
interest with low-salient background regions, e.g., areas containing no object except the bag
itself. A possible result of a distractor removal method using inpainting is given in Figure
[0l Inpainting methods modify local areas of an image by filling them with image-specific
information such as neighboring pixel values and therefore replacing the regions information
[5, 15]. They are ordinarily used to restore paintings or remove objects from photographs
[5]. It is important to note that inpainting techniques cannot fully restore the processed
region’s information. Instead, they try to approximate it by using the limited information
of the remaining image.

Figure 6: Image enhancement by inpainting. Left: original image; Middle: bounding boxes
detected by trained object detector; Right: detected benign items (e.g. springs) are removed
with inpainting based on MATLAB’s regionfill method.

Inpainting methods for distractor removal are evaluated in two ways: First, the enhanced
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baggage scan’s overall visual clutter is measured and compared to the original image’s
visual clutter to determine if clutter is successfully reduced. For this global evaluation,
the quad-tree-clutter measure for visual clutter proposed by Jégou and Deblonde [25], 64]
is applied. The required Quadtree Decomposition is done through MATLAB’S function
qtdecomp (I, threshold) [35]. Secondly, local saliency changes are measured using the Itti-
Koch-Niebur Saliency Model (IKN) [23] provided by the Saliency Model Implementation
Library for Ezperimental Research (SMILER) [69]. A saliency map is calculated for both
the original and enhanced image to assess whether salience is reduced in filtered regions and
increased in others. The salience within the local regions of interest is then compared.

3.3.2 Highlighting

Highlighting, in the context of images, means drawing attention to an image region by
making it visually prominent, similar to marking a text section with a highlighter. A target
can be made visually prominent by artificially emphasizing it with a unique, salient visual
cue such as color, orientation, or size [9]. Highlighting can effectively draw attention to
the target and produce efficient search performance regardless of the number of objects
displayed [9]. Current explosive detection systems for carry-on baggage screening (EDSCB)
can already provide diagnostic aid by marking areas that may contain explosive material
[54, 22]. A similar image enhancement technique could be applied to systems that perform
threat detection to provide a faster focus on regions that might contain threat items so that
alarm resolution can be performed faster.

In this work, a simple highlighting technique for threat detection is implemented. As the
dataset used in this work contains only grayscale images, highly saturated colors can be used
as a unique visual feature. An example of the highlighting is given in Figure [7]

Figure 7: Image enhancement by highlighting. Left: original image; Middle: bounding boxes
detected by trained object detector; Right: threat item is highlighted by color overlay.

3.3.3 Image Enhancement in a Feedback Loop

CNNSs learn, among others, basic features such as edges, which are also used by the human
primary visual cortex and saliency maps like IKN [I7, 29, 23]. Since distractor removal
discards basic features from the processed image region, this image enhancement method
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could, to some extent, affect both human salience and CNNs object classification perfor-
mance. Whether and how distractor removal influences object classification performance is
evaluated by feeding the enhanced images back into the neural network as input, creating a
feedback loop visualized in Figure [§] The results are then compared to the performance on
the original test set. The main metrics used for the comparison are the confidence score and
the number of correct and incorrect detected objects.

The evaluation process by creating a feedback loop consists of the following steps:

1. The unprocessed test set is used to evaluate the performance of the trained EfficientDet
and forms the basis against which other results can be compared.

2. The resulting bounding boxes and object detection confidence scores are then used for
distractor removal.

3. The enhanced images are routed back as inputs to the EfficientDet, and its results are
compared to the performance on the original test set.

The last two steps could be repeated several times, but are only performed once in this work.

¥ O\

— —

Figure 8: After enhancing the images based on the detected bounding boxes and confidence
scores the processed images are fed back to the EfficientDet.
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4 Experiments

4.1 Database

The database used in this thesis consists of 640 x 640 grayscale images obtained from the
public mono-energy X-ray database GDXray and of baggage scans created in cooperation
with the CT Research Group at Wels Campus in upper Austria.

This work focuses on detecting twelve different categories of objects of which silhouettes are
given in Figure[land[I0] The selected twelve objects can be further grouped into threat items
and benign items. In this work, an object is categorized as threat if it is typically prohibited in
hand luggage at airports, otherwise it is categorized as benign. The threat items of interest
are shuriken, handguns, knives, and razor blades, while the benign items of interest are
keys, nails, zips, staples, batteries, paperclips, springs, and screws. All twelve objects named
above have in common that they mainly consist of inorganic materials, particularly metals.
Therefore they are displayed very dark on X-ray images and have very little ‘transparency’.
As double edge razor blades are very thin, usually with a thickness of under 0.25 mm, they
are displayed way brighter than the other, thicker objects of interest. This property had to
be considered, especially in calculating the regions of interest in both the labeling and image
enhancement process.

The database is parted into three primary datasets (Train, Validation and Test), which are
used for the training and evaluation of the object detection. A more precise breakdown of
the datasets can be viewed in Table [I]

l'ﬁ%‘\ TR N

Key Battery Zip Paperclip Screw Nail Spring  Staple

Figure 9: Silhouettes from the eight different types of everyday objects.

4.1.1 Data Acquisition

In cooperation with the CT Research Group at Wels Campus in upper Austria, 56 X-
ray images of objects and cluttered bags were generated. The images were scanned with
the dual-source computed tomography system RayScan 250F, which produces 2048 x 2048
resolution scansﬂ At least two views of each object/bag were recorded, and the resulting 2D

3https://3dct.at/cms2/index.php/de/ausstattung /23-rayscan
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Figure 10: Silhouettes from the four different types of threat items.

scans contain both benign- and threat- objects such as lighters, spray cans, pepper spray,
razor blades, batteries, zips, knives, and bottles. The images were edited by adjusting the
brightness and contrast to enlarge the dataset by additional 83 images. Additional images
were created by extracting objects of interest, such as batteries and screws, from the X-ray
scans, creating single object images and combined images.

The remaining part of the dataset is obtained from the public GDXray database for X-ray
testing and Computer Vision created by Mery et al. [40]. The subgroup "Baggage" used in
this work contains a total of 8150 X-ray scans, of which only a subset of images is used. The
scans are of various hand luggage such as backpacks, wallets, pencil cases, and single images
of threat objects such as knives, handguns, razor blades, and shuriken.

Most of the images were already annotated with oriented rectangles [40]. However, some of
the twelve objects of interest for this work were not. Therefore, all X-ray images used in this
work were labeled from scratch with horizontal rectangles for consistency.

Overall, 3721 X-ray images were edited, labeled, and used in this work. A more precise
breakdown of the total dataset can be viewed in Table [l

4.1.2 Labeling

The labeling of the twelve objects of interest mainly was done by hand with the open-source,
graphical image annotation tool LabelImg [66].

However, since a large portion of the dataset consists of single object recordings where the
single object of interest is located in the center of the image, most of these images were
labeled using a short MATLAB script that identifies the ROI as the area closest to the center
of the image. The part of the script that segments the ROI is given in Listening

In Figure the script’s steps are visualized: First, by calling the function multithresh,
five threshold levels of the input image are calculated by utilizing MATLAB’s implementation
of Otsu’s method [47, 35]. The thresholds are illustrated in the first column of Figure |11| by
using the functions imquantize and label2rgb. The calculated thresholds are then used to
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Table 1: Occurrence of objects of interest in the datasets

Train Validate Test
Object Occurrence Images Occurrence Images Occurrence Images
Knife 1599 1561 352 344 37 24
Handgun 433 416 84 82 66 65
Shuriken 528 504 116 110 38 31
Razor Blade 463 434 99 91 86 72
Zip 1285 332 254 73 310 78
Key 195 141 57 36 49 32
Nail 258 158 73 44 53 33
Screw 651 325 129 63 126 63
Spring 842 481 215 117 167 97
Staple 509 113 98 24 64 13
Battery 624 231 140 54 183 55
Paperclip 317 136 68 29 69 28
Total Images 2918 632 151

binarize the input image, as given in line 12 of Listening [I] For most of the input images,
the fourth threshold value is selected. This selection is based on the assumption that the
objects of interest are darker than the background since they consist of metal. Exceptions
to this assumption are some images of razor blades. Although razor blades are also made of
metal, their thinness makes them display brighter on X-ray images than the other objects
of interest. The resulting binary image is further edited by applying morphological opening
(erosion followed by dilation) and area opening to remove small connected components.
The resulting binary image and the centroids of all remaining connected components are
visualized in the second column of Figure[T1] The image center is plotted as well. Next, the
ROI is selected by the shortest distance between the image center and the region centroids.
The final ROI is shown in the third column of Figure [I1 Finally, the bounding box is
calculated with the help of the function regionprops, which is from the Image Processing
Toolbox and measures properties of image regions [35].

Listing 1: Matlab code sample: find ROI nearest image center

I_original = imread(path);

I = im2double(I_original);

[rows, columns, channels] = size(I);
center = [columns, rows] * 0.5;

if channels > 1

I = rgb2gray(I);
end
I = imadjust(I);
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threshold = multithresh(I, 5);

BW = imcomplement(imbinarize(I, threshold(4)));
BW = bwmorph(BW, 'open');
BW = bwareaopen(BW, 20, 4);

stats = regionprops(BW, I, {'Centroid', 'PixelIdxList'});
centroids = cat(l, stats.Centroid);

distances = vecnorm((center — centroids)');

index = find(distances ~= min(distances));

if ~isempty(index)

BW(extractfield(stats(index), 'PixelIdxList"')) 0;

end

BW = imdilate(BW, strel('disk',4));
stats = regionprops(BW, I, {'BoundingBox'});

(&N

Figure 11: Visualizations for Listening[ll First column: quantized image using multithresh;

Second column: binarized image, image center and centroids of regions; Third column:
calculated ROI; Fourth column: bounding box.

III

4.2 Overview of Distractor Removal Methods

The chosen distractor removal method should meet the following requirements:
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e Reduce the overall visual clutter of the image.
e Decrease salience in the inpainted benign regions.

e Maintain or even increase salience in the rest of the image, especially in regions con-
taining threats.

To find a suitable inpainting method, several approaches are experimented with. This Section
gives a short overview of the different approaches. All methods are implemented in MAT-
LAB and are mostly based on provided algorithms from version R2019b [35]. The resulting
distractor removal methods are evaluated and compared in Section [5.2]

4.2.1 Inpaint with Uniform Color

A potential simple approach to remove distractors from 2D baggage scans is to colorize
the region of interest with a uniform color that blends in with the rest of the image. We
experimented with the following three ways to extract the color from the given input image:

Inpaint with Max-Background-Color: The brightest grey value from the background
of the image is selected and used to overwrite the pixel values of the ROI. For this
purpose, the background region of the image must be identified. An image and its
extracted background region displayed as binary mask are given in Figure [I2]

Inpaint with Mean-Image-Color: The average grey value of the image is selected and
used to overwrite the pixel values of the ROI.

Inpaint with ROI-Background-Color: A bright grey value within the region of interest
is selected and used to overwrite the pixel values of the ROI. The following MATLAB
code is used to select the color value:

thresh = multithresh (I (ROI dilated), 5);
background color = (thresh(5) + thresh(4)) % 0.5;

Example inpainted images with the extracted colors are given in Figure[I3] Additional filter
methods can be applied after inpainting to reduce edges or artifacts on the border of the
colored area (e.g., Gaussian Filter or circular averaging filter), for an example see Figure .

4.2.2 Inpaint Coherent

Inpaint Coherent is a function provided by MATLAB that was introduced in R2019b [35]. Tt
provides coherence transport based image inpainting as described by Bornemann and Marz
I7l.

Inpaint Coherent is called in the following way:

I enhanced = inpaintCoherent (I grayscale, ROI);

Example images inpainted with this method are given in Figure [15]
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Figure 12: Image and its Binary mask for background region.

4.2.3 Inpaint Exampler

Inpaint Exampler is a function provided by MATLAB that was introduced in R2019b [35].
It provides exemplar-based image inpainting as described by Criminisi et. al [IT].

Inpaint Exampler is called in the following way:

I enhanced = inpaintExemplar (I grayscale, ROI, ’'FillOrder ’,
"tensor ’, ’PatchSize’, 14);

Example images inpainted with this method are given in Figure [16]

4.2.4 Regionfill

Regionfill is a function provided by MATLAB that was introduced in R2015a [35]. It
inpaints a given image region using inward interpolation from the pixel values at the outer
boundary of the area [35].

Regionfill is called in the following way:

I enhanced = regionfill (I grayscale, ROI);

Example images inpainted with this method are given in Figure [17]
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Figure 13: Inpaint with uniform color. First row: original images; Second row: images
Inpaint with Maz-Background-Color; Third row: images Inpaint with Mean-Image-Color;
Fourth row: images Inpaint with ROI-Background-Color.
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Figure 14: Left image shows benign items inpainted with Mean-Image-Color. The right
image shows the same method with an additional filter applied to the benign regions.
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Figure 15: Coherent approaches - First row: original images; Second row: predicted be-
nign object inpainted with Inpaint Coherent; Third row: additional filters applied to the
inpainted images.
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Figure 16: Exampler approaches - First row: original images; Second row: predicted be-
nign object inpainted with Inpaint Exampler; Third row: additional filters applied to the
inpainted images.
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Figure 17: Regionfill approaches - First row: original images; Second row: predicted benign
object inpainted with Regionfill; Third row: additional filters applied to the inpainted
images.
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5 Quantitative Evaluation

5.1 Results and Evaluation of the Object Detection Model

The trained object detection model is evaluated solely on the Test-set, a separate dataset to
those used during the training and validation process. Example predictions on the Test-set
are given in Figure
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Figure 18: Example predictions by the model on the Test-set.

The Confusion Matrix given in Table [2 visualizes the model’s performance on the Test-set
for all twelve categories. Noticeable in the Confusion Matrix are the many false-positive
detections in background regions as well as multiple misses. The false-positive detections
can be partly justified by multiple predictions for the same objects, for example, seen for
the batteries in the two rightmost images in Figure [I8 Too many predictions are especially
the case for batteries and zips. Greedy nonmaximal suppression (NMS) could be used to
eliminate overlapping bounding boxes for the same class labels. However, some objects in
the data are very close together, and using NMS may result in an incorrect representation of
correct predictions. The false-negative results for small objects (nail, screw, spring, staple,
and paperclip) are likely due to a high scaling factor during training. Other misses could
be due to many occlusions and severe clutter in the images. Some classes, such as the knife
and screw, also contain objects of highly varying appearances, which could also contribute
to wrong predictions. What emerges positively, however, is that classes are barely confused
by the model. There are only a small number of objects that are mislabeled. The most
problematic misclassification is the confusion of one knife as a battery. In this case, a threat
object is classified as benign, leading to an incorrect removal of a threat item in the image
enhancement process. Other derivations from the confusion matrix, such as the balanced
accuracy (BA), are given in Table [3|

5.2 Quantitative Evaluation and Comparison of Distractor Removal
Methods

Quantitative evaluation is applied to the enhanced images to determine, on the one hand,
whether the distractor removal methods successfully reduced the overall visual clutter. On
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Table 2: Confusion Matrix for the Multi-Class Detection on the Test-set; IoU threshold:
0.35; Score threshold: 0.45

Predicted
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Knife 22 0 0 0 0 o 0 0 0 0 1 0
Handgun 0 66 0 0 0 0O 0 0 0 O 0 0
Shuriken 0 0 37 O 0 o 0 0 0 0 0 0
= RazorBlade 0 0 0 80 0 o 0 0 0 0 0 0
E Zp 0 O O 0 239 0 0O O 0 O 0 0
= Key 0 0 0 1 0 3 0 0 0 0 0 0
g Nail 0 0 0 O 0 0 27 0 0 0 0 1
o Screw 0 0 0 O 0 0 0 49 0 O 2 0
O Spring 0 0 0 0O 0 o 0 0 77 0 1 0
Staple 0 0 0 O 0 o 0 o0 0 8 0 0
Battery 2 0 0 O 0 o 0 o0 0 0 137 O
Paperclip 0 0 0 0O 0 o 0 0 0 O 0 22

the other hand, it should determine if the saliency decreased in the filtered regions while
maintaining or even increasing salience in the areas containing threats.

5.2.1 Change in Visual Clutter

The overall visual clutter of the enhanced baggage scan is measured and compared to the
visual clutter of the original image to determine whether the distractor removal methods
successfully reduce visual clutter. To find out how the different distractor removal methods
influence the visual clutter of the images, Quad-tree-clutter proposed by Jégou and Deblonde
is applied [25,64]. Quad-tree-clutter performs Quadtree Decomposition on a grayscale image.
The image is subdivided into a quadtree based on the homogeneity of pixel values [35]. An
example for such a decomposition is given in Figure The global clutter value is then given
by the number of cells in the resulting quadtree [64]. Quadtree Decomposition is performed
by MATLAB’S function qtdecomp(I,threshold) [35]. The chosen threshold influences how
often a block is subdivided into four. The smaller the threshold, the deeper the tree becomes,
and thus the higher the resulting clutter value [64].

Table {4] shows how the different distractor removal methods affect visual clutter, where
AClutter denotes the change in clutter in reference to the original image (AClutter =
Clutter(Ienhanced) — Clutter(Loriginar)). The first column indicates the efficiency of the dis-
tractor removal methods in terms of visual clutter. It gives the ratio of images where clutter
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Table 3: Derivations from the confusion matrix in Table 2.
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is reduced to the total number of images.

All methods except the Maz-Background-Color method reduce the clutter for at least 70% of
the given images. The method Filtered Regionfill even achieves an efficiency of 98.5%, which
means that this method reduces the visual clutter for 128 of the 130 total inputted images
(only 130 images in total as images containing only threats were removed for this evalua-
tion). Filtered Regionfill performs best in both efficiency and average clutter reduction. This
method is closely followed by Filtered Inpaint Coherent, Filtered Inpaint Mean-Image-Color
and Filtered Inpaint Exampler. Noticeable is that filtering over the ROI after inpainting
leads to a higher reduction in clutter within this experiment.

Figure 19: Quadtree Decomposition with threshold = 0.27.
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Table 4: Clutter evaluated on Test-Set using predictions. 130 images in total (images con-
taining only threats were removed for this evaluation).
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Inpaint Max-Background-Color = 20.8% 1555.9 -1602 360 9387
Inpaint ROI-Background-Color 70.8%  -318.3  909.0 -3060  -153 2244
Inpaint Mean-Image-Color 73.1%  -345.3  768.3 -3036  -147 1239
Filtered Inpaint Mean-Image-Color 96.9%  -957.0  905.3 -3831 -669 273
Inpaint Coherent 90.8%  -756.1 824.4 -3342 -514.5 612

Filtered Inpaint Coherent 96.9%  -986.1 967.1 -3834 -676.5 468

Inpaint Exampler 71.5%  -372.4  747.2 -3072 -159 1413

Filtered Inpaint Exampler 96.2%  -942.8  940.9 -3816 -621 795
Regionfill 954% -831.8 836.2 -3342  -570 336

Filtered Regionfill 98.5% -1036.6 976.9 -3846  -732 252

5.2.2 Change in Salience

The local changes in salience are determined by measuring the salience in the original image
regions and comparing the values with the salience in the same regions of the enhanced im-
ages. The local salience is measured by applying the Itti-Koch-Niebur Saliency Model (IKN)
to generate a saliency map for the whole image [23]. The middle column in Figure [20| shows
two different saliency maps produced by IKN. The used MATLAB implementation is pro-
vided by the Saliency Model Implementation Library for Experimental Research (SMILER)

[69].

Figures and show, for each method, the average decrease in saliency in regions of
former distractors and the increase in saliency in threat regions, each as a percentage of the
original saliency. Filtered Regionfill achieves the highest reduction of benign-saliency with

an average of 31.9%. All methods achieve an average increase of threat-saliency of at least
1%. It is important to note, however, that the weighted average is susceptible to outliers.

Table [l shows further results that indicate how the different Distractor Removal methods
affect visual salience in regions containing benign objects (first three columns) and regions
containing threats (last three columns).

ASaliencyM ap denotes the salience change in an enhanced image in reference to the original
one where ASaliencyMap = SaliencyM apenhancea — SaliencyM aporiginai-

The last column of Figure [20] visualizes the ASaliencyMap between the SaliencyM aporigina
and SaliencyM apenhanceda Shown in the middle column.
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ABgaliencyMmap denotes the changes in salience within the benign region of an enhanced image.
The smaller the values, the better as salience should be reduced in benign regions.
ABsaliencymap = SaliencyM apennanced(BenignROI) — SaliencyM aporigina (Benign ROI)

ATSsqtiencymap denotes the changes in salience within the threat region of an enhanced im-
age. The greater the values, the better as salience should be increased in threat regions.
AT gtiencymap = SaliencyM apennanced(Threat ROI) — SaliencyM aporigina (T hreat ROT)

weighted Avg(ARegionsaiiencymap) denotes the average change in salience over the given
image region. The average change in salience within a single image is calculated in MATLAB
by mean2 (A RegionsaiiencyMap) - mean2(A) computes the mean of the given array A [35]. To
summarize the mean values overall images, the weighted average must be used because the
region of interest changes between images. Therefore, the area of the region may change.
Each mean value is weighted by the region’s area (size of array A). The summarized value
is desired to be negative for benign regions, while it should be positive for threat regions.

image-wise efficiency(ARegionsatiencymap) gives the ratio of images where salience in
benign /threat regions is successfully reduced/increased to the total input images (130).
Whether an image is classified as successful is decided based on the mean2(A RegionsaiiencyMap)-
Mean < 0 denotes that the salience in the region is reduced, while mean >= 0 denotes that
the salience is increased.

pixel-wise efficiency(ARegiongaiiencymap) gives the percent of pixels where salience in
benign/threat regions is successfully reduced /increased. As the number of considered pixels
changes for each image, the weighted average has to be used to summarize the values of
overall images. The weights are the area of the considered ROTI’s.

The chosen distractor removal methods aim to decrease salience in the enhanced regions
while maintaining or even increasing salience regions containing threats. The only method
that failed to fulfill this requirement on the Test-set using predictions is the Inpaint Max-
Background-Color method. Instead of decreasing salience in the enhanced regions, it in-
creased it on average. The methods that worked best on the evaluated set are Regionfill and
Filtered Regionfill. These results are consistent with the clutter measurements.

5.3 Results of the Feedback Loop

Since distractor removal discards basic features such as edges and contrast from the processed
regions, it could influence CNNs. Whether the detection model is affected can be determined
by feeding the enhanced images as input to the model. The results then can be compared
to the performance obtained with the original images. This evaluation is done on a subset
of the test set. All images containing only a single item were removed, resulting in a subset
containing 101 images.

As the primary goal of the distractor removal methods is to filter out distractive items,
inpainted benign items should not be detectable anymore. Therefore, one crucial question is
whether the detection model correctly rejects the removed benign items. The percentage of
correctly rejected benign items is measured by first identifying and counting all benign items
removed in the distractor removal process that the model still detects. The percentage is
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Figure 20: Visualization of Saliency Maps and ASaliencyM ap.

The original image and its enhanced version are displayed on the left, containing both a
marked threat object. The images in the middle show the salience maps, and the right
image visualizes Agaliencymap Of the two maps. Red denotes a reduction in salience, and
green an increase.

Max-Background-Color -120.6%
Inpaint Exampler -58.8%
Filtered Inpaint Exampler -31.8%
ROI-Background-Color -18.7%
Inpaint Coherent 5.6%
Mean-Image-Color 8.8%
Filtered Inpaint Coherent 10.7%
Filtered Mean-Image-Color 15.7%
Regionfill 30.1%

Filtered Regionfill 31.9%

Figure 21: Decrease of saliency in regions of former distractors as a percentage of the original
saliency. For each image, the percentage is calculated pixel-wise and then averaged. The
final value is the weighted average overall images based on the number of pixels in the regions
of interest.
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Inpaint Coherent ' 1.0%

Filtered Inpaint Coherent | 1.5%
Mean-Image-Color ' 1.5%
Regionfill | 1.7%

Filtered Regionfill |1.7%
Filtered Mean-Image-Color | 1.8%
Filtered Inpaint Exampler ' 2.2%
Inpaint Exampler ' 2.5%
ROI-Background-Color | 5.2%

Max-Background-Color ' 9.5%

Figure 22: Increase of saliency in threat regions as a percentage of the original saliency. For
each image, the percentage is calculated pixel-wise and then averaged. The final value is the
weighted average overall images based on the number of pixels in the regions of interest.

then given by 1 - (detected_ distractors / total_ distractors). The total number of distractors
removed from the dataset is 583. As shown in Figure [24] Filtered Regionfill performs best
with 88.87% correct rejections. This result, however, also means that at least 11.13% of
the removed benign items are still detectable by the model. This can be partly explained
by benign objects overlapping threats. Such overlaps cannot be processed, otherwise, there
is a risk that the threat will become unrecognizable. Furthermore, semantic segmentation
may fail when benign and threats are close together. Regarding the correct-rejection-rate,
the Max-Background-Color, Mean-Image-Color, and ROI-Background-Color methods do not
perform as well as the others, presumably because the shapes of the filtered objects are still
very prominent even after removing the distractors.

All distractor removal methods lead to an increase in true-positive detections of benign items
as plotted in Figure 23] On the original images, 583 of 1015 benign items could be detected
successfully. After applying the methods to the images, the model detected further 1.4%-
3.2% benign items, raising the true-positive rate for benign items from 58.4% to 59.8% -
61.6%. Examples of additional benign item detections are given in Figure [25]
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Table 5: Saliency evaluated on Test-Set using predictions. 130 images in total (images
containing only threats were removed for this evaluation). Value in the saliency map ranges

from 0 to 255.

image-wise efficiency (A BsaiencyMap)
pixel-wise efliciency (A BsatiencyMap)
image-wise efficiency (AT satiencynap)
pixel-wise efficiency (AT suiencyMap)

weighted Avg(A BsatiencyMap)
lI\D WeightedAVg(ATSaliencyMap)

Inpaint Max-Background-Color =~ +16.1 31.5% 41.4% 51.5% 39.9%
Inpaint ROI-Background-Color ~ -20.8 83.1% 69.4% +1.4 56.9% 51.7%
Inpaint Mean-Image-Color ~ -24.8 83.8% 74.6% +0.57 56.2% 55.5%
Filtered Inpaint Mean-Image-Color -28.7  91.5% 77.8% +0.63 54.6% 53.6%
Inpaint Coherent  -24.4  89.2% 65.2%  +0.3 54.6% 49.5%

Filtered Inpaint Coherent  -26.6 90.8% 68.3%  +0.5 54.6% 50.5%

Inpaint Exampler — -14.0 73.1% 54.9% +1.1 60.8% 54.2%

Filtered Inpaint Exampler ~ -20.9 82.3% 62.9% +0.9 59.2% 53.8%
Regionfill -32.8  96.9% 82.3% +0.8 61.5% 53.0%

Filtered Regionfill -34.0 96.2% 83.8% +0.9 53.8% 52.0%
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[ Additional True Positive Rate (Benign)
Mean-Image-Color
Max-Background-Color
Inpaint Exampler
ROI-Background-Color
Filtered Inpaint Exampler
Filtered Inpaint Coherent
Filtered Regionfill

Inpaint Coherent

Filtered Mean-Image-Color

Regionfill

Figure 23: Percentage of additional benign items relative to the total number (1015) detected
after applying distractor removal methods.
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[ Benign-Saliency Image-wise Efficiency [Jll Threat-Saliency Image-wise Efficiency [l Clutter Reduction Efficiency [l Percentage Decrease of False Positive [/ Correct Rejection of former Distractors

Max-Background-Color

Mean-Ilmage-Color

-105.63%

ROI-Background-Color

-88.03%

Inpaint Exampler

Inpaint Coherent

89.20%
54.60%

90.80%
13.38%

Filtered Inpaint Exampler

Regionfill
96.90%
61.50%
95.40%
16.20%

Filtered Mean-Image-Color
91.50%
54.60%
96.90%
26.06%

Filtered Inpaint Coherent

90.80%
54.60%
96.90%
28.87%

Filtered Regionfill

96.20%
53.80%
98.50%
28.87%

Figure 24: Final ranking of the distractor removal methods from worst at the top to best at
the bottom.
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Figure 25: First column: predictions on original images; Second column: prediction on
enhanced images where new correct predictions are done; Third column: prediction on
enhanced images where Inpaint Maz-Background-Color was used (only method that failed
to reduce saliency and clutter).
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6 Conclusion and Future Work

In this work, the concept of detecting and removing benign items from baggage scans is
presented and experimentally evaluated. Supplemental detection of benign objects provides
additional information that can be used to assist baggage screening and offers several ad-
vantages over sole threat detection. Eliminating distractions during baggage screening is
potentially valuable for focusing attention on regions containing threats or shortening the
visual search task by reducing visual clutter and altering the saliency of specific image re-
gions.

A strong argument for benign detection is that it is more feasible without human operators
than threat detection in a security context. In baggage screening, prohibited items must not
be overlooked. As far as possible, all threats have to be detected by automatic threat de-
tection or by human operators without misses. However, the same does not apply to benign
items. Not all types of benign objects need to be identified, but the detected ones have to be
accurate. Furthermore, contrary to threats, benign items are not usually deliberately con-
cealed, making them easier to detect correctly. In addition to the proposed application, the
information gained from benign detection could be used in various ways. One possibility is
to apply benign detection as a diagnostic aid, for instance, by highlighting benign items that
often need to be checked manually by human operators, such as laptops or other electronic
devices.

The experiments demonstrate that removing distracting items positively influences the scans’
saliency. In up to 96.9% of the tested images, the saliency in regions of former distractors is
reduced by up to 31.94%. On the other hand, the saliency in threat regions is increased by
about 2% in up to 61.5% of the images. Furthermore, all distractor removal methods except
Max-Background-Color successfully reduced the clutter for at least 70% of the given images.
The best method achieves an efficiency of 98.5% on the test set. These results suggest that
detecting benign items in combination with distractor removal methods facilitates the visual
search task, as clutter and salience are influential factors. This assumption is supported
by another experiment showing that removing distractors positively impacts our detection
model. After applying distractor removal methods, the rate of true-positive items increases
from 58.42% to a maximum of 61.58%, indicating that the model can identify additional
items after distractor removal. Additionally, false-positive detections were decreased, at
most by 28.87%. Moreover, the model correctly rejects removed distractors in up to 88.87%
of the cases. Some of the distractors are still detectable, as they overlay threat items and
therefore are not possible to exclude entirely. From this result arises further possible research
directions for future work. For example, whether benign detection and distractor removal
could be used to support other automated systems by providing refined inputs.

An essential disadvantage of distractor removal in 2D is that image information is artificially
altered or removed without revealing new information to the viewer. Therefore, removing
objects could be misleading, as this gives the impression that the enhanced regions are empty.
This disadvantage is omitted as soon as more information about the bag is available, such as
when working with computer tomographs that provide volumetric data of the bag. Distractor
removal techniques still have to be applied with caution. For example, removing objects that
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are part of more complex constructions can cause an undesirable effect. Specifically, removing
nails from a nail bomb may make it harder to recognize the bomb.

Finally, the experiments suggest a potential for benign item detection and distractor removal.
However, further studies about the practical application of benign detection are required.
Additionally, future research into distractor removal and, in particular, its potential in 3D
would be interesting.
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