
Technical Report Pattern Recognition and Image Processing Group
Institute of Visual Computing and Human-Centered Technology
TU Wien
Favoritenstrasse 9-11/193-03
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801 - 18661
Fax: +43 (1) 58801 - 18697
E-mail: l.boccia@pm.me
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-152 May 4, 2022

Efficient Contraction Kernel Selection with a Knight’s Move1

Luca Boccia and Walter G. Kropatsch

Abstract

Irregular image pyramids built with combinatorial map representations of graphs (Combinatorial
Pyramids) enable the usage of topological information for both down-sampling and up-sampling,
used for compactness and for surface reconstruction respectively. The hierarchy and the complexity
of the image pyramid are mainly controlled by the choice of a contraction kernel. In this work
we propose a formal grammar for selecting contraction kernels for plateau regions in binary and
multi-label images. Our method enables parallel computing through selection of independent edges
to contract, and efficiency is achieved by finding a good balance between the number of contraction
and simplification operations, needed after the application of the kernel. We show that our method
achieves regularity and produces pyramids of height similar to regular pyramid schemes on plateau
regions. Finally, we present possible solutions to generalize our approach to design a Connected
Component Labeling algorithm that is both efficient and correct.

1Part of the work is related to the WWTF project LS19-013 “Water’s Gateway

to Heaven”. The support is gratefully acknowledged.

Acknowledgements

I would like to extend my deepest gratitude to prof. Walter Kropatsch without
whom it would have not been possible for me and my colleagues to be working
at PRIP in the first place. His mentoring shaped this work and my views
of the future. I would like to recognize the invaluable assistance of Darshan,
for proposing the idea behind this work, for his tireless explanations on
the subject, for our fiery discussions, and for our friendship. I would like
to thank Jiří and Majid, for the questions they asked during the multiple
presentations of this work, to which they already had an answer, but I did
not at the time. I am very grateful to Carmine C. and Carmine N. for all
the (non-) productive confrontations in our shared kitchen. Finally, I should
thank prof. Mario Vento for believing in this experience and for his support
from its beginning until the end.

1

Contents

Acknowledgements 1

Introduction 5

1 Images, Graphs and Formal Grammars 7
1.1 Graph Representation of Images 7
1.2 Combinatorial Maps . 8
1.3 Image Pyramids . 10

1.3.1 Regular Pyramid Schemes 11
1.3.2 Irregular Pyramids . 12

1.4 Combinatorial Pyramids . 14
1.5 Formal Grammars . 16

2 Knight’s Move Grammar 18
2.1 Adapting the Scheme . 19
2.2 Properties of the Scheme . 20
2.3 Vertex Selection on Combinatorial Maps 22

3 Implementation 26
3.1 Combinatorial Pyramid Data Structure 26
3.2 Connected Component Labeling Algorithm 27
3.3 Contraction Kernel Generation 29

3.3.1 Dealing with Boundary 29
3.3.2 Selecting Independent Edges 30

4 Results 32
4.1 Execution on Plateau Region 32
4.2 Problems with Objects . 33
4.3 Possible Solutions . 34

4.3.1 Geometrical Vertex Selection 34

2

Conclusions 49

Bibliography 51

List of Figures

1.1 Example of RAG Built on an Image 8
1.2 Example of a Planar Graph Encoded as a Combinatorial Map 9
1.3 Examples of Image Pyramids 11
1.4 Regular Pyramid Schemes . 13
1.5 Removal Operation on a Combinatorial Map 14
1.6 Contraction Operation on a Combinatorial Map 15
1.7 Example of the Topological Preservation Properties of Combi-

natorial Pyramids . 15

2.1 Knight’s Piece Possible Moves in the Game of Chess 19
2.2 Knight’s Move Contraction Kernel and Result 20
2.3 Example of Application of a Contraction Kernel on a Grid

Graph . 21
2.4 Example of Application of a Contraction Kernel on the Boundary 22
2.5 Knight’s Move on a Combinatorial Map 23
2.6 Illustration of The Application of The Grammar 25

3.1 Example of Vertex and Dart Numbering 27
3.2 Boundary Contraction in a 5× 5 Image 27
3.3 Self-loop Configurations Indistinguishable without Dual Graph

Representation . 29

4.1 Geometrical Vertex Selection 35
4.2 Execution of the Algorithm on a 50× 50 Black Image 38
4.2 Execution of the Algorithm on a 50× 50 Black Image 39
4.2 Execution of the Algorithm on a 50× 50 Black Image 40
4.2 Execution of the Algorithm on a 50× 50 Black Image 41
4.3 Knight’s Move Rotation Around the Boundary of Objects . . 45
4.3 Knight’s Move Rotation Around the Boundary of Objects . . 46

3

4.4 Knight’s Move Excessive Vertex Selection 47
4.5 Knight’s Move Excessive Vertex Selection 48

List of Tables

4.1 Execution of the Algorithm on a 50× 50 Black Image 42
4.2 Execution of the Algorithm on a 100× 100 Black Image . . . 42
4.3 Execution of the Algorithm on a 150× 150 Black Image . . . 43
4.4 Execution of the Algorithm on a 200× 200 Black Image . . . 43
4.5 Execution of the Algorithm on a 250× 250 Black Image . . . 44

List of Algorithms

1 Connected Component Labeling 28
2 Knight’s Move Grammar with Jump Flooding 30

4

Introduction

This work is an extension of [5], master thesis of Boccia.
Binary and multi-label images are largely used for tasks like image pro-

cessing and image segmentation. These images are composed of large areas
of the same color value, called plateau regions, which carry the information
necessary to the task at hand.

Because of these large plateaus, binary and multi-label images lack in-
formation about structure, which is instead usually found in textures or in
critical points and their connections [3]. This kind of information communi-
cates topological information efficiently, and its absence makes algorithms for
contraction kernel selection use random strategies to choose the set of edges
to contract and their surviving vertices [3]. In [2], an objective function has
been proposed to optimize contraction kernel selection, but, on plateaus, all
edges have the same contrast, and thus the same priority. In this case, the
choice of a contraction kernel is arbitrary. The definition of a strategy for
the selection of contraction kernels on plateau regions will make such choices
non-arbitrary and optimal.

The goal of this work is to adapt the pyramid scheme proposed in [2]
to combinatorial pyramids. We show that, under certain assumptions, the
scheme makes it possible to generate contraction kernels that are applicable
in parallel in two steps. To allow parallel computing, a contraction operation
on an edge must not be dependent on other operations that will be carried
out at the same time, taking into account the properties of the data structure
that is being used [2]. We show that this scheme ensures the absence of
dependencies between selected edges, and we propose a fallback strategy for
the cases in which the necessary assumptions do not hold.

Application of a contraction kernel to a graph will also result in redundant
information, namely in double edges and empty self-loops. Removal of these
redundant edges adds complexity, and, like with contraction operations,
dependencies have to be taken into account when using a parallel strategy
for it.

5

We show that this scheme produces new levels on which it is possible to
apply the same scheme with the same assumptions. This adds predictability
to the output of a contraction kernel application, which makes it possible to
approximate levels of the pyramid with information gathered from adjacent
levels. This could lead the way to combinatorial pyramid compression, where
the state of the art for combinatorial pyramids storage has linear space
complexity with respect to the base level [18].

Using a precise scheme means reaching regularity in the number of levels
of the pyramid, similarly to regular image pyramids where a fixed reduction
factor in regular image pyramids generates pyramids of height of logarithmic
complexity with respect to the dimensions of the image. In irregular image
pyramids, the height of the pyramid is governed by the choice of the con-
traction kernels. With our method, plateau regions are contracted with an
approximately regular reduction factor, and the irregular pyramid achieves
properties of complexity and height comparable to regular image pyramids.

Structure of the Work

In Chapter 1 we introduce the most important concepts that are needed to
grasp the novelties introduced in this work. We introduce graph representation
of images, combinatorial maps, irregular pyramids and formal grammars, all
of which are instruments at the heart of this work.

In Chapter 2 we define the knight’s move scheme, and we prove some of
its properties. We also propose a grammar to traverse the graph, which will
be used as a model for the implementation.

In Chapter 3 we describe the implementation of a Connected Component
Labeling algorithm based on the knight’s move scheme. We present the
assumptions and the decisions that have been made to solve practical problems
that arise when these assumptions do not hold. We also describe the most
relevant techniques that have been used for parallel computing.

In Chapter 4 we show the effectiveness of our approach through execution
of the forementioned algorithm on benchmarks, and we also show some of
its faults and drawbacks. Finally, we analyze different possible solutions to
these problems for further developments.

6

Chapter 1

Images, Graphs and Formal
Grammars

In order to understand the goals of this work and the instruments that
we use to achieve these goals, in this chapter we are presenting the main
concepts, definitions and notations that we use throughout the whole work.
In Section 1.1 we introduce the definition of graphs built on images and
other related concepts. In Section 1.2 we define combinatorial maps as a
representation of graphs, which will be used extensively in this work. In
Section 1.3 we explore the literature about image pyramids, schemes to build
them and how irregular pyramids become the natural successor to these. In
Section 1.4 we put all together to define irregular image pyramids that are
based on combinatorial map representations of graphs, called combinatorial
pyramids. Finally, in Section 1.5 we deal with formal grammars to the extent
that is required in this work.

1.1 Graph Representation of Images

A discrete m× n image P , where each pixel p ∈ P is associated to a color
encoding vector, can be represented as a planar 4-neighborhood graphG(V,E),
where a vertex v ∈ V represents a pixel, and its edges e ∈ E represent the
relationship of the pixels with their 4 adjacent neighbors. If we consider a
pixel as the smallest region of the graph, this can be interpreted as a Region
Adjacency Graph (RAG) [3]. The resulting graph is an m× n grid graph.

Definition 1. A two-dimensional grid graph is an m× n lattice graph that
is the graph Cartesian product Pm�Pn, where Pm and Pn are path graphs
of m and n vertices, respectively.

7

Figure 1.1: Example of RAG Built on an Image.

Each vertex will be associated to a weight derived from each pixel’s color
encoding vector. Without loss of generality, for the rest of this work we
will refer to the gray value of the pixels, denoted as g(p), as the one to be
associated to each vertex, such that g(v) = g(p). Thus, we assume that such
weights respect the same order properties of the set of real numbers R.

The weight of an edge e = (v, w) ∈ E will be the contrast between its
endpoints c(e) = |g(v)− g(w)|. The orientation of an edge is directed from
vertex v to vertex w if g(v) > g(w). The edge is not oriented if g(v) = g(w).

Definition 2. A vertex v ∈ V is a boundary vertex if its associated pixel
p ∈ P is on the border of the image. Otherwise, it is called inner vertex (or
inside vertex).

Definition 3. An edge e ∈ E is a boundary edge if its endpoints are boundary
vertices. Otherwise, it is called inner edge (or inside edge).

Remark. Let Eb be the set of boundary edges, Ei the set of inner edges. It
holds that Eb ∪Ei = E and Eb ∩Ei = ∅. Analogously, the same properties
hold for the set of inner and boundary vertices.

Definition 4. A plateau region is a connected subgraph G′ of G having the
same gray value for all the vertices, that is ∀v, w ∈ VG′ , g(v) = g(w).

1.2 Combinatorial Maps

Combinatorial maps were first introduced in 1960 by Edmonds [12].

Definition 5. A combinatorial map is a triplet C = (D, α, σ), where:

• D is a finite set of darts,

• α is an involution on the set D, and

• σ is a permutation on the set D.

8

1

2

3

4

5 6

9 10

7

8

Figure 1.2: Example of a Planar Graph (left) Encoded as a Combinatorial
Map (right). The numbered segments represent darts; darts linked by the
involution α (in red) are separated by a small bar; blue arrows represent the
permutation σ.

A planar graph can be represented with a combinatorial map (see Fig. 1.2).
Each edge is represented as two darts d1, d2 ∈ D connected by the involution α,
such that α(d1) = d2 and α(d2) = d1. Trivially, the relationship α(α(d)) = d
holds for each dart, from which we derive the definition of (alpha)-orbit of d
as the sequence of d and α(d), written as α∗(d), with which we may refer to
an edge of the graph.

Each dart implicitly represents the vertex to which it is incident. The
permutation σ connects a dart d1 to the following dart d2 incident to the
same vertex in clockwise or counter-clockwise direction. Analogously to the
(alpha)-orbit , the sequence of all darts incident to the same vertex starting
from dart d in (counter-) clockwise direction is called (sigma)-orbit of d, and
it is written as σ∗(d). The direction is arbitrary and fixed, and for the rest
of this work it will be assumed as counter-clockwise.

A combinatorial map implicitly encodes a dual graph, which can be
constructed using a combination of α and σ. The encoding of the edges for
the dual graph is the same as the primal, namely using the α involution, and
the permutation ϕ of the dual graph has the opposite direction of σ, and it
is defined as ϕ = α ◦ σ or ϕ = σ ◦ α. Thus, it holds that

C = (D, α, σ) ⇐⇒ C = (D, α, ϕ),

where C is the dual of C. In the primal graph, ϕ∗(d) returns all the darts
turning around a face.

Property 1. If the primal combinatorial map is connected, its dual is
connected too. [6]

Special types of edges are described by Brun and Kropatsch in [6] as
follows:

9

Definition 6. An edge α∗(d) is called an empty self-loop if and only if
σ(d) = α(d).

Definition 7. An edge α∗(d) is called a (non-empty) self-loop if and only if
α(d) = σ∗(d).

Definition 8. A dart d is called a pendant dart if and only if σ(d) = d. The
vertex σ∗(d) = (d) is called a pendant vertex.

Definition 9. An edge α∗(d) is called pendant edge if and only if d or α(d)
are pendant darts.

Definition 10. An edge α∗(d) is called a bridge iff α(d) ∈ ϕ∗(d).

These special edges are also related between the primal and dual graph
[7]:

Primal C = (D, α, σ) Dual C = (D, α, ϕ)

self-loop bridge
bridge self-loop

empty self-loop pendant dart
pendant dart empty self-loop

1.3 Image Pyramids

An image pyramid is a multi-level representation of an image, in which a
hierarchy of levels is defined, and each level is related to the previous and the
next. Regular image pyramids have been introduced in 1981 by the authors
in [10] as a stack of images of decreasing resolution, where each image is a
level of the pyramid; the lowest level is the original image and the highest
corresponds to the weighted average of the original [7].

Since their introduction in 1981, image pyramids have been used in many
applications, such as data compression, multiscale texture analysis, shape
analysis, motion analysis, image blending, or multiscale object detection. [1]
and [17] are examples of surveys which describe these and other applications
of image pyramids.

Classic examples of regular image pyramids are Gaussian and Laplacian
pyramids (see Fig. 1.3a). Gaussian pyramids are defined by down-sampling the
input image on each level by picking even rows and columns, thus reducing
its resolution of a factor of 4 per level. The down-sampling operation is
preceded by a Gaussian blur filter application. Each level needs to be stored

10

(a) (b)

Figure 1.3: Examples of Image Pyramids. (a) represents a regular image
pyramid, and (b) represents an irregular image pyramid.

to not lose information. By contrast, Laplacian pyramids only store the
last level and the residual images of every other level, namely, the difference
between the level itself and the same after the blur filter is applied. Laplacian
pyramids have been successfully used as a compact representation of images,
as described in [9], given that residual images contain less information than
their counterparts in a Gaussian pyramid.

1.3.1 Regular Pyramid Schemes

In regular pyramids, the reduction window relates each pixel of a level to a set
of pixels of the level below; this set is called receptive field. This relationship
can be described as a parent-child relationship [7]. The shape of the reduction
window is fixed. The ratio between the size of a level and its successor is also
fixed, and it is called reduction factor of the pyramid.

We can denote pyramid schemes by considering the shape of the reduction
window in number of pixels that merge into one, and the consequent reduction
factor. A pyramid scheme that merges four pixels into one equivalent in the
center, called quad-tree pyramid, has a 2× 2 mask and reduction factor of 4,
and will be denoted as 2× 2/4-Pyramid (see Fig. 1.4a). An example of this
scheme are Gaussian and Laplacian pyramids.

The formula 2× 2/4 has quotient 1, which expresses the non-overlapping
nature of the mask. Pyramid schemes where not all pixels are used during re-
duction have a quotient < 1, and quotients > 1 indicate the use of overlapping
masks, where pixels are used in more than one reduction operations.

11

In order to represent non-rectangular masks, we may add or subtract a
number of pixels from a rectangular mask, mostly in a center symmetric way.
Examples of all kinds of pyramid scheme can be found in Fig. 1.4.

We require that the representative pixels (xn+1, yn+1) of the next level of
the pyramid are either on a pixel location of the level below (with integer
coordinates) or at dual inter-pixel locations:

(xn+1, yn+1) = (xn, yn) + δ, with δ ∈
{

0, 1
2

}2

the Cartesian product of the set by itself

.

In addition, the new unit vectors (dx1, dy1) , (dx2, dy2) must be orthogonal,
that is

dx1dx2 + dy1dy2 = 0,

and have the same (real valued) length

dx2
1 + dy2

1 = dx2
2 + dy2

2.

1.3.2 Irregular Pyramids

Regular image pyramids have a rigid and fixed structure, which introduces
several drawbacks like the shift-dependence problem and a limited number
of regions encoded at any given level [4]. Irregular pyramids have been
introduced by the authors in [15] to overcome these negative properties, while
keeping the main advantages. These are defined as a stack of successively
reduced graphs, where a vertex in a given level of the pyramid, called surviving
vertex, is mapped to a set of vertices in the level below, called non-surviving
vertices [15], similarly to pixel relationships in regular pyramids (see Fig. 1.3b).

If we refer to graph representations of images defined in Section 1.1, we
can define irregular image pyramids with analogous purpose and properties of
regular image pyramids. Thus, we may call these irregular image pyramids.

The process of reduction of said graphs is described by Kropatsch in [13]
as a scheme for dual graphs. In this scheme, given a graph, we can define a
contraction kernel.

Definition 11. Let G = (V,E) be a graph, then a contraction kernel K
of G is defined as a set S ⊂ V of surviving vertices and a set N ⊆ E of
non-surviving edges such that:

• (V,N) is a spanning forest of G,

12

• •
• •

•••
•
•

(a) 2× 2/4

•
•
•
•

(b) 1× 2/2

•
•
•

•

(c) (3× 3− 4)/5

•

•
•

•

(d) (5× 5− 12)/13

•
•

•

•

•

(e) (3× 3 + 1)/10

•
•

•

•
•

•

•
•

•

(f) 4× 4/10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(g) (4× 4− 8)/8

Figure 1.4: Regular Pyramid Schemes. The receptive field is denoted by the
thicker line; the representative pixel position is denoted by the bullet (•).

13

Figure 1.5: Removal Operation on a Combinatorial Map.

• Each tree of (V,N) is rooted in a surviving vertex v ∈ S.

Application of a contraction kernel consists in (1) a contraction operation
in the primal graph, called dual edge contraction, which contracts non-survivor
edges towards their surviving vertex, and (2) a contraction operation in
the dual graph, called dual face contraction, which simplifies the graph by
removing multiple edges and empty self-loops.

1.4 Combinatorial Pyramids

If we encode an image graph using a combinatorial map representation as in
Section 1.2, an irregular pyramid can be constructed from a base combinatorial
map by repeatedly applying the reduction scheme seen in Section 1.3.2 by
means of edge contraction and removal operations. Such irregular pyramids
we call combinatorial pyramids. We will show that these operations, applied
on a combinatorial map, consist just of changes in the permutation σ of said
map.

The removal operation can be seen as the skipping of a dart in the
(sigma)-orbit of the endpoints of the removed edge (see Fig. 1.5).

Definition 12. Let C = (D, α, σ) be a combinatorial map and let d ∈ D be
a dart of C such that d is neither a bridge nor a self-loop. The removal of
the edge α∗(d) from C produces the combinatorial map

C ′ = (D \ α∗(d), α, σ′)

where

σ′(d′) =


σ(d′) if d′ ∈ D \ σ−1 (α∗(d))
σ(d) if d′ = σ−1 (d)
σ(α(d)) if d′ = σ−1 (α(d))

.

Similarly, the contraction operation consists of merging the (sigma)-orbit
of the endpoints of the contracted edge (see Fig. 1.6).

14

Figure 1.6: Contraction Operation on a Combinatorial Map.

(a) (b)

Figure 1.7: Example of the Topological Preservation Properties of Combina-
torial Pyramids.

Definition 13. Let C = (D, α, σ) be a combinatorial map and let d ∈ D
be a dart of C such that d is neither a pendant dart nor a self-loop. The
contraction of the edge α∗(d) from C produces the combinatorial map

C ′ = (D \ α∗(d), α, σ′)

where

σ′(d′) =


σ(d′) if d′ ∈ D \ σ−1 (α∗(d))
σ(α(d)) if d′ = σ−1 (d)
σ(d) if d′ = σ−1 (α(d))

.

Some types of special edges are excluded from the contraction because we
want to preserve the connectivity of the image itself. For example, removing
a bridge in the primal graph would destroy connectivity by definition, which
translates to the contraction of a self-loop in the dual graph.

A combinatorial pyramid has a few advantages over dual graph pyra-
mids. First, it is trivial to see that there is a more concise representation of
both the primal and dual graph, given that the latter is implicitly encoded.
Second, combinatorial pyramids preserve topological information thanks to
combinatorial map properties [6]. In combinatorial maps it is possible to
distinguish between empty and non-empty self-loops, otherwise indistinguish-
able in simple graphs, which leads to the differentiation of adjacency and

15

inclusion relationships between regions at higher levels of the pyramid (see
Fig. 1.7).

It is also worth noting that Torres and Kropatsch in [18] propose a
canonical representation with which combinatorial pyramids can be stored
with exactly the same space as the base level.

1.5 Formal Grammars

The following section is derived from [14].
Given a set of symbols Σ, called an alphabet, we can construct finite

sequences of symbols called strings, e.g., w = aabbbaa with a, b ∈ Σ is a
string.

We can define the concatenation operation of two strings

v = a0 . . . an,

w = b0 . . . bm

as
vw = a0 . . . anb0 . . . bm.

The empty string is denoted with ε, and ∀w it holds

εw = wε = w.

With wn we denote the string obtained by concatenating w n times, and
we define w0 = ε. If Σ is an alphabet, the Kleene star (or Kleene closure) of
Σ, denoted as Σ∗, is the set of all finite strings obtained by concatenating
zero or more symbols from Σ. If a is a symbol,

a∗ = {ε, a, aa, aaa, . . . },

a special case we will use frequently.

Definition 14. A grammar is a quadruple

G = (VT , VN , S, P)

where VT is the set of terminal symbols, VN is the set of non-terminal symbols,
S ∈ VN is the start symbol and P is a set of production rules. We assume
VT ∩ VN = ∅.

16

Production rules in P are in the form

x→ y

where x ∈ (VT ∪ VN)∗ VN (VT ∪ VN)∗, i.e. x is a string containing at least a
symbol from the non-terminal set, and y ∈ (VT ∪ VN)∗. A production rule
x → y is applicable to a string w = uxv by substituting x in w with y,
obtaining z = uyv. We say that w derives z, or that z is derived from w,
and it is written as

w ⇒ z.

If
w0 ⇒ w1 ⇒ · · · ⇒ wn

we say that w0 derives wn, and we write

w0
∗⇒ wn.

Let us also introduce a shorthand notation for a set of production rules in
the form

A→ w0

A→ w1
...

A→ wn,

which we write as
A→ w0|w1| · · · |wn.

Definition 15. Let G = (VT , VN , S, P) be a grammar. The set

L(G) =
{
w ∈ VT

∗ : S ∗⇒ w
}

is the language generated by G.

17

Chapter 2

Knight’s Move Grammar

Cerman in [11] describes a method to build a combinatorial pyramid by
choosing contraction kernels based on minimum contrast of the edges. This
method creates a structure aware pyramid, where higher levels keep infor-
mation about the critical points (maxima, minima and saddle points) by
letting the associated vertices survive contraction. Contraction kernels in
[11] are defined by singletons for both the set of surviving vertices and the
set of non-surviving edges, thus the approach is sequential and the height of
the pyramid is linear with respect to the number of edges in the base graph.
Batavia, Gonzalez-Diaz, and Kropatsch in [3] solve these issues by proposing
a parallel approach for the application of contraction kernels, which in turn
enables the definition of larger contraction kernels made of independent ver-
tices and edges. These contraction kernels are still based on edge contrast,
with random sapling of independent edges. In [2], the authors propose an
objective function to choose optimal contraction kernels.

These approaches shine in the generic case of color images, which is
where most other pyramid schemes have been historically applied. However,
in binary and multi-label images, the choice of edges to contract based on
contrast is purely arbitrary. In plateau regions, all edges have the same zero-
valued contrast, and these have the same priority in any search algorithm
[2]. To solve these issues, the authors in [2] propose to adapt the 3× 3− 4/5
pyramid scheme (see Fig. 1.4c) to irregular pyramids. This scheme resembles
the L-shape move of a knight’s piece in Chess shown in Fig. 2.1, thus we will
call it knight’s move scheme in the rest of this work.

In Section 2.1, we propose how to adapt the knight’s move scheme to
an irregular pyramid scheme. In Section 2.2, we prove some of the scheme’s
properties and present other motivations to its usage. Finally, in Section 2.3

18

(a) (b)

Figure 2.1: Knight’s Piece Possible Moves in the Game of Chess. (a) All
possible moves. (b) Moves that represent the pyramid scheme.

we propose formal grammars aimed at designing a possible algorithm to
traverse the graph and select surviving vertices to generate a knight’s move
contraction kernel.

2.1 Adapting the Scheme

To apply the knight’s move scheme to a grid graph G = (V,E), or to the
equivalent combinatorial map, we need to generate a contraction kernel K
that resembles such scheme. Let us assume that we can select vertices of the
graph with the same pattern of the scheme, we will denote this as the set
of surviving vertices S. The set of non-surviving edges will be the set of all
edges incident to v ∈ S that are not self-loops, that is

N = {e = (v, u)|v 6= u ∧ I(e) ∈ S} ,

where the operator I denotes the incident vertex of the edge. An example of
the application of this contraction kernel to a plateau region can be found in
Fig. 2.2.

For the intents and purposes of this work, we are going to exclude all
edges that have contrast c(e) greater than zero, therefore

N = {e = (v, u)|v 6= u ∧ I(e) ∈ S ∧ c(e) = 0} .

This is done to preserve topological information about the labels of each
plateau region.

19

t t t t t t tttttttt t t t t t t ttttttt tt t t t t t ttttttttt tt t
t t t tt

ttt t t tt
ttt ttt t

tt
tt

t tt t
t t

t t
t

t tt

(a)

HHH

�
�
�
HHH

�
�
�

�
�
��

�
�
H
HH�

�
�
HH

H�
�
�HH

H
�
�
�
HHH��

@@

�
�
�
HHH

�
�
�HH

H

HHH�
�
�@@

HHH�
�
�
HHH

�
�
�HH

H��

t t t
tttt

tt
t t

t t t t
t t

t

tt

t

(b)

Figure 2.2: Knight’s Move Contraction Kernel and Result. (a) Red vertices
are the set of surviving vertices S; blue edges are the set of non-surviving
edges N . (b) The result of the contraction, which resembles the structure of
a grid graph.

2.2 Properties of the Scheme

This scheme has been chosen because of a few outstanding properties with
respect to other pyramid schemes. One property is that it makes for efficient
contraction kernels that can be applied in two steps in parallel. To prove such
a property, we will first show that contracting edges around one surviving
vertex is an independent operation with respect to other surviving vertices.
Then we will show that contraction around one of these vertices can be done
in two steps.

Proposition 1. Let G = (V,E) be a grid graph represented with a com-
binatorial map, and let K = (S,N) be a knight’s move contraction kernel.
∀e ∈ N incident to v ∈ S, contraction of edge e is dependent only on edges
in N that are incident to v.

Proof. ∀v ∈ S corresponding to σ∗(d), where d is incident to v, the edge e
corresponding to α∗(d) is dependent to the following set of edges{

α∗(σ(d)), α∗(σ−1(d)), α∗(σ(α(d))), α∗(σ−1(α(d)))
}
.

Given that α∗(σ(α(d))), α∗(σ−1(α(d))) 6∈ N , the only remaining dependencies
are in σ∗(d), i.e. they are incident to v.

20

(a) (b) (c) (d)

Figure 2.3: Example of Application of a Contraction Kernel on a Grid Graph.
The center vertex is the surviving one; in red, selected edges for contraction;
in blue, edges dependent on the selected ones. (a) Subgraph of a grid graph.
(b) Selection of two independent edges. (c) Selection of remaining two edges.
(d) Result.

Proposition 2. Let G = (V,E) be a grid graph encoded by a combinatorial
map, and let K = (S,N) be a knight’s move contraction kernel. Contraction
of edges e ∈ N incident to an inside vertex v ∈ S takes two steps.

Proof. Given the assumptions, Proposition 1 is valid. We can contract two
non-consecutive edges in the orbit in one step, e.g. the two vertical ones,
because they are independent between each other (see Fig. 2.3b). This
operation results in the vertex gaining, as incident edges, its non-survivors’
incident edges (see Fig. 2.3c), which makes the remaining two edges in N
independent, and thus they can be contracted in a second step.

The assumption that the vertex is an inside vertex is important. On the
boundary, only vertices in the corners can have their incident edges trivially
contracted in two steps because they have degree deg(v) = 2. The remaining
boundary vertices have degree deg(v) = 3, and, in this case, contraction in
two steps is not possible.

Example 1. We want to contract every edge around a vertex v of degree
deg(v) = 3. Contraction of any one of these edges is dependent on the next
edge in the orbit, thus we can choose one of the three as a first step (see
Fig. 2.4b). In a second step, it is still not possible to contract the other two
in parallel given that contraction of one of the two is dependent on the other.
We have to resort in contracting edges sequentially (see Figs. 2.4c to 2.4e),
three steps in total given the degree.

Equally important is the grid graph assumption. If any of the edges
around the surviving vertex is pendant, the non-surviving vertex at the other
endpoint of such an edge will not have any incident vertices by definition.

21

(a) (b) (c) (d) (e)

Figure 2.4: Example of Application of a Contraction Kernel on the Boundary.
The center vertex is the surviving one; in red, selected edges for contraction;
in blue, edges dependent on the selected ones. (a) Generic boundary configu-
ration. (b) First selected edge. (c) Second selected edge. (d) Third selected
edge. (e) Result.

Consequently, the surviving vertex will not gain any incident edge after
contraction, making the second step of the proof of Proposition 2 impossible.
All vertices v of degree deg(v) = 4 in a grid graph will not have any pendant
edges incident to it, therefore the importance of the assumption.

Another important property is that this scheme produces another slightly
rotated grid graph, on which a new knight’s move kernel can be defined (see
Fig. 2.2). Also, the fact that we are choosing surviving vertices using a precise
scheme makes vertex selection non-arbitrary on plateau regions.

Note. Every assumption of a grid graph also applies when we are operating
in a subgraph G′ of G, where G′ is a grid graph, but G is not. This is the
case of the rotated grid, which is not a grid graph per se.

2.3 Vertex Selection on Combinatorial Maps

Until now, we have assumed that we could select vertices in the pattern of a
knight’s move. Now, we want to describe how this could be achieved on a grid
graph and on the consequent graphs that are produced after contraction. On
the first level, we might be able to select vertices using geometric information
about the input image. This would not be the case for higher levels of the
pyramid though, because the grid graph assumption might not always hold
and geometric information will not be usable. Thus, we have to resort to
navigating the graph and selecting vertices by moving on it like a knight’s
piece would on a real chessboard.

To navigate the combinatorial map we can use consecutive applications of
the involution α and the permutation σ on a starting dart ds. Let Σ = {α, σ}

22

Figure 2.5: Knight’s Move on a Combinatorial Map. The starting dart is d1.
In magenta are represented α applications, whilst in cyan σ applications.

be an alphabet where the symbols refer to their respective function, and let
ds be the starting dart. We can see a word w ∈ Σ∗ as the composition of the
functions associated to its symbols, applied to ds.

Example 2. If d1 is the starting dart and w = ασ, then the ending dart

d2 = α(σ(d1)).

With this approach, we can define a word for the knight’s move on the
graph. With respect to Fig. 2.5, let d1 be the starting dart and d2 be the
wanted ending dart for the knight’s move. It holds that

d2 = α
(
σ
(
α
(
σ2 (α (d1))

)))
.

Thus, the word that represents the chosen knight’s move is

ασασ2α.

If we can compose words with the alphabet Σ, it is possible to define a
grammar Γ such that each word w in the language L(Γ), applied to a starting
dart ds, results in and ending dart de such that I (de) is a vertex that respects
the pattern of the knight’s move.

One of the possible grammars is hereby defined as

Γ = ({α, σ} , {M,S} , S, P)

P =

{
M → ασασ2α,

S → SMσ∗ | ε

}
.

23

TheM production rule is used as a shorthand to the substitution of a knight’s
move. The S production rule (1) applies a rotation around the (sigma)-orbit
of the starting dart, (2) applies the knight’s move and (3) one can either
repeat the cycle by substituting S with the same production rule, or stop by
substituting S with ε.

The language L(Γ) is general enough that each word w represents a
possible walk on the graph that ends in a vertex that respects the pattern.
This grammar also produces different words w ∈ L(Γ) that result in visiting
the same vertices in the pattern with different walks.

For sequential computing, one might be interested in producing a single
word that reaches each vertex of the pattern on a given grid graph. On the
other hand, for parallel computing we are interested in a grammar that lets
us produce multiple words such that (1) L(Γ) covers all the vertices of the
pattern on the graph, and (2) ∃!w ∈ L(Γ) that results in the ending dart de

after application on the starting dart ds. We propose such grammar here

Γ =
(
{α, σ} ,

{
M,S,U ′, U ′′

}
, S, P

)

P =



M → ασασ2α,

S → U ′Mσ∗

subst. 1

| ε,

U ′ → U ′Mσ−1

subst. 2

| U ′′M
subst. 3

| ε,

U ′′ → U ′′Mσ−1

subst. 4

| ε


.

(2.1)

Production rule M is a shorthand for the knight’s move. Production rule
S starts the propagation with all the darts in σ∗ (ds) and applies the move on
each of them, and with the first option of production rule U ′ four branches
are generated that will reach the boundaries of the grid. From these four
branches, other secondary branches will be generated by using substitution 3
(production rule U ′), and with U ′′ we make sure that no more branches are
created from these secondary ones. An illustration of the coverage achieved
by this grammar can be seen in Fig. 2.6.

We will use this grammar to generate and apply all the words in parallel
by using computing approaches like jump flooding, described by Rong and
Tan in [16]. Further details are explained in Section 3.3.

24

Figure 2.6: Illustration of The Application of The Grammar. With respect
to (2.1): the starting dart ds is one of the darts incident to the vertex in the
center; crossed vertices are selected by language; edges in red represent the
walks generated by substitutions 1, 2 and 4, where substitution 1 happens
only around ds; in blue, the branching moves generated by substitution 3; in
magenta, edges covered by both red and blue walks.

25

Chapter 3

Implementation

In this chapter we propose a Connected Component to showcase the properties
of the knight’s move scheme, and we go over the logic of its functioning.

In Section 3.1 we describe the data structure that holds the combinatorial
pyramid. In Section 3.2 we go over the proposed algorithm in a general way,
and then in Section 3.3 we delve into the details of some of the choices that
have been made regarding the contraction kernel generation and how to deal
with some practical problems.

3.1 Combinatorial Pyramid Data Structure

In this implementation, the combinatorial pyramid is encoded following the
canonical representation described in [18]. On initialization, the grid graph
is represented with a combinatorial map where

• darts of an edge are numbered giving precedence to the upper or left
dart, on vertical and horizontal edges respectively;

• darts of an edge are numbered sequentially following the edges’ order,
vertical edges first, then horizontal ones, top to bottom, left to right;

• we refer to edges by the index of their odd dart;

• vertices are numbered top to bottom, left to right;

An example of the numbering system is shown in Fig. 3.1.
We also store and keep updated the inverse permutation σ−1 for conve-

nience.

26

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15 16

17 18

19 20

21 22

23 24

1

2

3

4

5

6

7

8

9

Figure 3.1: Example of Vertex and Dart Numbering.

h
h
h
h
h

h
h
h
h
h

h
h
h
h
h

h
h
h
h
h

h
h
h
h
hu

u
u
u

u
u
u

u
u
u

(a)

h

h
h
h

h
h
h

h
h
h@@

(b)

Figure 3.2: Boundary Contraction in a 5× 5 Image. (a) Contraction Kernel:
black vertices denote the set of surviving vertices S and thick lines denote
the set of non-surviving edges N . (b) Result.

3.2 Connected Component Labeling Algorithm

Here we propose an algorithm for Connected Component Labeling based
on the Knight’s Move approach on combinatorial maps. The pseudocode of
this algorithm is presented in Algorithm 1. This gets inspiration from the
Topology-preserving Irregular Image Pyramid (TIIP) algorithm presented
in [3], which is also used as fallback when no efficient contraction kernel is
found.

As the authors describe in [3], boundary should be contracted first. In
practice, all boundary edges with weight zero are selected for contraction
(see Fig. 3.2). This solves an issue in detecting empty self-loops in the graph
without resorting to the dual. With respect to Fig. 3.3, if subgraph A was
empty, it is easily proven that using Definition 6 makes the two configurations
indistinguishable. Still, the only case in which such a configuration is expected
is when the boundary of the image is a connected component, which reduces
to a non-empty self-loop. Definition 6 would categorize this self-loop as

27

Algorithm 1 Connected Component Labeling
procedure Reduce(P)

C ← Combinatorial map generated from P
C ← Contract all boundary edges eb of C such that c(eb) = 0
s← Central vertex of C
while edges in C can be contracted do
S ← Knight’s Move Grammar(C, s)
N ← {e | e ∈ I (S) ∧ c(e) = 0}
Remove edges from N with both endpoints ∈ S . incl. self-loops
if N is non-optimal then

if no new seed is available then
break

else
s← a new seed vertex
continue

end if
end if
K ← (S,N)
C ← Contract(C,K)
C ← Remove(C) . remove empty self-loops and redundant edges

end while
if edges in C can be contracted then

C ← TIIP(C)
end if
if boundary edges are empty self-loops then

remove these boundary edges from C
end if
return C

end procedure

28

(a) (b)

Figure 3.3: Self-loop Configurations Indistinguishable without Dual Graph
Representation. A and B are generic subgraphs, which can be empty.

empty. By contracting the boundary first and by ignoring boundary edges in
the function Remove, this self-loop will not be wrongly removed. In case
the image is a single connected component, in the end this self-loop would
become empty and should be removed.

3.3 Contraction Kernel Generation

In Algorithm 2 we explain how to implement the graph traversal grammar
described in Section 2.3. With this algorithm, we produce a set of surviving
vertices S on the combinatorial map. I(S) denotes the set of incident edges of
all vertices in S. The contraction kernel will be defined as seen in Section 2.1,
but we cannot assume that the whole graph will be a grid graph, and we
also cannot check that we are operating in a subgraph where this assumption
holds. Some edges will have to be filtered in order to deal with non-typical
cases.

We filter edges that have both endpoints in S, because we want all
vertices in S to survive. This procedure also happens to filter self-loops,
where both endpoints are the same vertex, which we cannot contract [8].
These will be removed by the Remove function if they are empty self-loops.
Another approach would have been to contract such edges all the same, which
means that some vertices in S might not survive. In this case, dealing with
dependencies would have become more complex, and this goes out of the
scope of our work.

3.3.1 Dealing with Boundary

After contraction of the boundary, a few high-degree boundary vertices will
remain, one for each connected component of the boundary. We want these
vertices to survive because they retain information of the boundary, which
is needed to distinguish the two self-loops of Fig. 3.3. This is a sane choice
because it does not lose topological information.

29

Algorithm 2 Knight’s Move Grammar with Jump Flooding [16]

function Knight’s Move Grammar(C, s)
Ve ← {s} . the set of reached vertices
Ds ← {d | I(d) = s} . the set of starting darts
Q1 ← Ds . prod. rule S
Q2, Q3 ← ∅
while Q1 6= ∅ ∨Q2 6= ∅ ∨Q3 6= ∅ do

for i = 1 . . . 3 do
Di ← Knight’s Move(C,Qi)
Di ← Di \ {d | d ∈ Di : d satisfies the stopping criterion}

end for
Q1 ← σ−1

C (D1) . 1st substitution of prod. rule U ′

Q2 ← D1 . 2nd substitution of prod. rule U ′

Q3 ← σ−1
C (D2 ∪D3) . prod. rule U ′′

Ve ← Ve ∪ I
(⋃3

i=1Di

)
end while
return Ve

end function

To let these vertices survive, we need to contract edges that are incident
to these separately. When such an edge is selected for contraction, it is so
because the grammar selected a surviving vertex which is the other endpoint,
therefore, we would have a double candidate for survival, i.e. the boundary
vertex and the selected one. Separating the two operations, means contracting
the “inside” edges first, letting the selected vertex survive, and then contract
the remaining edge in the other direction, merging the selected vertex into
the boundary vertex.

3.3.2 Selecting Independent Edges

When applying contraction in parallel, we need to make sure that we are
dealing with dependencies between edges in the right way. The permutation
σ needs to be consistent after every change, and contracting edges that are
linked by this function may result in the overwriting of the same variable
multiple times, generating inconsistency. This can be dealt with in two ways:
(1) by selecting a subset of independent edges to be contracted at once, then
dealing with the rest in the same way, or (2) by dealing with each special case
separately. In this work we prefer the first approach, because of its simplicity
and generality. For our intents and purposes, the assumption of the 2-step

30

contraction is enough, although by mixing both solutions we expect the best
outcome in terms of efficiency. Further research would be necessary.

The following method has been adapted from the one used in TIIP
algorithm [3]. Given a contraction kernel where N = {α∗(d1), . . . , α∗(dn)},
where darts (and edges) are numbered, we can compute a 5× n matrix of
dependent edges, in the form

D =


α∗(d1) · · · α∗(dn)

α∗(σ(d1)) · · · α∗(σ(dn))
α∗(σ(α(d1))) · · · α∗(σ(α(dn)))
α∗(σ−1(d1)) · · · α∗(σ−1(dn))

α∗(σ−1(α(d1))) · · · α∗(σ−1(α(dn)))

 .

A subset of independent non-surviving edges Nind ⊆ N is

Nind =
{
α∗(dj) ∈ N | α∗(dj) = min

i
{Dij}

}
with i = 1 . . . 5, j = 1 . . . n,

where Dij denotes the i-th row and j-th column element of D, and the mini-
mum operation is related to the edge numbering. Nind is thus composed of all
edges in N which have the lowest index between their group of dependencies,
namely the column of D in which they appear as first element. If two edges
were to be dependent, they would appear in each other’s column, but only
one of the two would be the minimum of its column, and thus selected.

Edges in Nind will be contracted in parallel, and then we apply the same
procedure on the edges that have not been selected. To make sure that the
procedure converges, namely that all edges in N get selected at some point,
we substitute ∞ in D in place of the index of edges that are not in N or that
have been selected in previous iterations.

In a general application, even when the assumptions of Proposition 1 do
not hold, this method will produce sets of independent edges to contract in
parallel. Under the assumptions of Proposition 2, by using the numbering
described in Section 3.1, one can easily see that this method produces a two-
step contraction that reflects the one described in Proposition 2. Although,
different numberings of edges can affect the optimality, determining cases that
are between the worst and the best. In the case in which these assumptions
do not hold, at least correctness is assured.

31

Chapter 4

Results

In this chapter we are examining the properties of the knight’s move scheme.
These are shown by the application of the connected component labeling
algorithm on plateau region images, which we describe in Section 4.1. In
Section 4.2 we also examine some issues of the proposed algorithm on more
generic inputs, namely with different objects in the same image. Finally, in
Section 4.3 we bring up some points to solve such issues and improve the
algorithm, possibly to a more generic approach for connected component
labeling.

4.1 Execution on Plateau Region

In Fig. 4.2 (Pages 38 to 41) we show an example of the execution of the
algorithm on an image with a single black component. One can clearly see
the rotating grid that we theorized in Section 2.2. Apart from few complex
subgraphs that remain on the corners of the image, where the graph traversal
algorithm does not reach, the adaptation of the pyramid scheme seems to
hold to the expectations. Further figures have not been added because they
would represent the application of the TIIP [3], which is not relevant to this
work.

Tables 4.1 to 4.5 (Pages 42 to 44) show that on the first levels where
the knight’s move is applied, the theorized 5:1 reduction seems to happen,
namely where ≈ 80% appears in the removed vertices and edges column. In
the following levels, this does not hold anymore due to the more complex
subgraphs near the corners, which make up for the higher number of remaining
edges and vertices in the graph. Thus, in percentage, with respect to the
total number of remaining edges and vertices, the knight’s move seems not

32

to be effective; but, considering the figures of the result, we are still seeing
the expected simplification of the central grid graph. The number of knight’s
moves also increases with the size of the plateau, as expected, apart from the
50× 50 and 100× 100 examples, where the number seems to be the same.
This might be due to the heuristic that we implemented to check whether we
should continue applying the knight’s move or not.

The complexities in proximity of the corners appear due to the grid graph
assumption and its consequences, that we described in Section 2.2. In this
case, the subgraph which retains the grid graph property shrinks at each level
due to the rotation of the grid itself, leaving residues after each application
of the knight’s move.

Note. The number of edges contracted during boundary contraction, shown in
Tables 4.1 to 4.5 in columns “Remaining Edges” and “Removed Edges”, takes
into account also the number of multiple edges that are removed afterwards.
In an m× n grid graph there are 2(m− 1) + 2(n− 1) boundary edges, and
the number of extra edges with respect to this quantity is the number of
these multiple edges. These tend to appear in the corners due to the fact
that in a grid graph there are two boundary vertices adjacent to the inner
vertex in the corners.

4.2 Problems with Objects

The algorithm that we proposed has a few issues when dealing with multiple
blobs inside an image. On the first level, the outcome is always the one we
expect. Examples of this are in Figs. 4.3a, 4.4a and 4.5a (Pages 45 to 48),
where we can notice some complex subgraphs on the boundaries between
objects. These complexities are expected, given that we are removing edges
from the contraction kernel if these have contrast c(e) 6= 0, which is the case
for edges on the boundary. In this case, the grid graph assumption holds
only inside the blobs.

Given that we traverse the graph by starting from a single seed, and given
that from there we try to reach the boundary of the image, the graph traversal
algorithm will behave in unexpected ways when “traversing” these complexities
on object boundaries. In these subgraphs, the grid graph assumption does
not hold, and the application of α and σ operations in the same order as with
grid graphs will not reach a vertex that respects the knight’s move pattern.

An example of this phenomenon can be seen in Figs. 4.3b to 4.3d, where
the pattern gets rotated outside the white square and cannot reach some
areas of the graph. Also, surviving vertices are selected in non-optimal ways

33

even inside the white square, probably because of some branches of the graph
traversal “turning back” inside. The latter phenomenon is clearer in Figs. 4.4
and 4.5, where vertices in the center are all selected for survival, deeming the
contraction kernel unusable.

4.3 Possible Solutions

Could we try to detect plateau regions and use the knight’s move just inside
those? This does not seem possible due to the fact that, in some way, we
would need to pre-compute the connected components or at least part of
such information, which would make the irregular image pyramid scheme
fruitless. Still, the limit of the single seed is clear. Could we expand from
multiple seeds? Without prior information on the shape and number of these
plateaus, we cannot place a seed for each one of them. We would need to
resort to random seeds. How many? In the best case, the algorithm would
detect a number of connected components equal to the number of seeds, less
in a worse case. A high number of seeds may solve this issue. But, we cannot
make sure that each of these falls inside one plateau. And, if this happens,
how do we merge two seeds inside the same plateau? Then, what about
optimality? These questions may have seemingly easy answers, but in this
work we could not explore these solutions with the needed attention.

Another approach, seemingly more robust and promising, is changing the
graph traversal algorithm. This new algorithm would start from the boundary
and expand to the inside. This search needs to both select surviving vertices
and find new seeds dynamically. A new seed candidate could be generated
each time an edge with weight greater than 0 is traversed. More research
should be done to unveil how these components have to behave to reach an
optimal and correct result.

4.3.1 Geometrical Vertex Selection

In this work geometrical information was discarded at first because we wanted
to take advantage of combinatorial maps’ properties. Instead, let us pave the
way to approaches that may take advantage of such information.

Let G be an m × n grid graph where the vertices are labeled by their
coordinates in terms of rows and columns, starting from the bottom-left
corner with coordinates (0, 0); let L denote the level of the pyramid, where
L = 0 is the base level. The set of surviving vertices of level L = 1 . . . H, SL,

34

l l l l l
0 1 2 3 4 -

y
0

1

2

3

4

6x

l l l l l
l l l l l
l l l l l
l l l l l

x

x

x

x

x

s

s

Figure 4.1: Geometrical Vertex Selection. In black, level 1 surviving vertices.
In red, level 2 surviving vertices.

is defined by the vertices with coordinatesx, (5L − sL

)
x mod 5L

offset of the row

+5Lk

 with x = 0 . . .m−1, k = 0 . . .
⌈ n

5L

⌉
−1

where sL is an offset that depends on the level, the values of which have been
deduced from the application of the criterion itself as to be

s =
[
2 7 57 182 2057 14557 · · ·

]
.

See Fig. 4.1 for an illustration. Further research is needed to find out whether
an algorithm exists to generate s for each level. Also, this formula could be
generalized to generate a pattern with seed different from (0, 0).

In principle, we may choose every incident edge to the surviving vertices
as the set of non surviving edges N . To preserve topology and to solve the
issues on the boundary of the image, we propose a few exceptions in the
selection of the contraction kernel. We shall not contract any edge that
connects an inner vertex to a boundary vertex or two regions with different
labels. This may cause some isolated vertices to be left along the boundary
(or border). It would be sufficient to integrate the remaining, isolated vertices
as survivors or non-survivors that are contracted by a few edges along the
boundary such that the overall boundary is preserved as much as possible.

There are only a few cases to be considered:

1. two successive survivors along one of the four (straight) boundary
segments;

35

2. two successive survivors around a corner at a distance of 4,3, and 2 to
the corner.

Let us discuss a few possible cases around the corners. These exceptions
have been theorized for level 1, and should be adapted for higher levels.

Adapting sides when the corner survives

Initially, selected survivors along the straight boundary have a distance of
5 edges. Two of the edges are already proposed to be contracted to the
survivor on the boundary. The remaining three edges along the boundary
are separated by two vertices. The edge between them can be contracted.

e e e ee e ee e e e
ee e ee e ee e ee e eu

u

u-
6

5

u-?
ee =⇒

e e e ee e ee e e ee ee e ee
e

e ee e eu
u

u

u
eu

The distance between two survivors along one side is 5. The red elements
are removed, the green ones added. The same corrections may be applied to
all four sides of the image. The distance of the survivor to the corner is 5.

Corner at vertical distance 4 to the survivor

e e e ee e ee e e ee ee e ee
e

e eu
u

u-

6

4

?

e
=⇒

e e e ee e ee e e ee ee e ee
e

e eu
u

u

u

The distance between two survivors around the corner is 6.

36

Corner at vertical distance 3 to the survivor

e e e eee e eee e e ee eee e ee u u
u

u-
6

3

?

e e
=⇒

e e e eee e eee e e ee eee ee u u
u

u

u u

The distance between two survivors around the corner is 7.

Corner at vertical distance 2 to the survivor

e e ee ee e eee u
u-

6
2
?

The distance between two survivors around the corner is 3. There is nothing
to change in this configuration, no isolated vertices are created between the
two surviving vertices and two of the edges are already proposed for being
contracted, the remaining edge survives along the boundary.

Borders between regions inside the image

Borders between regions with different labels can receive a similar strategy.
Edges connecting different region should not be contracted. The difficulty
there is that the borders may not be straight in general and need a few more
cases to be considered depending on the shapes of the borders. The goal is to
sub-sample the border such that the surviving vertices are not moved too far
away from the border and that the density in the surrounding of the border
corresponds to the remaining density.

37

(a) base level

(b) base level with boundary contracted

Figure 4.2: Execution of the Algorithm on a 50× 50 Black Image. Edges that
are incident to the single boundary vertex are not shown for better clarity.
On the left side, a zoom in the upper-left corner.

38

(c) contraction kernel on the base

(d) level 1

Figure 4.2: Execution of the Algorithm on a 50× 50 Black Image. Edges that
are incident to the single boundary vertex are not shown for better clarity.
On the left side, a zoom in the upper-left corner. Lozenge-shaped (�) vertices
are surviving vertices, and magenta edges are non-surviving edges.

39

(e) contraction kernel on level 1

(f) level 2

Figure 4.2: Execution of the Algorithm on a 50× 50 Black Image. Edges that
are incident to the single boundary vertex are not shown for better clarity.
Lozenge-shaped (�) vertices are surviving vertices, and magenta edges are
non-surviving edges.

40

(g) contraction kernel on level 2

(h) level 3

Figure 4.2: Execution of the Algorithm on a 50× 50 Black Image. Edges that
are incident to the single boundary vertex are not shown for better clarity.
Lozenge-shaped (�) vertices are surviving vertices, and magenta edges are
non-surviving edges.

41

Table 4.1: Execution of the Algorithm on a 50× 50 Black Image.

Remaining Removed % Removed
Level Operation Edges Vertices Edges Vertices Edges Vertices

0 base 4900 2500
0 boundary contr. 4701 2305 199 195 4.06% 7.80%
1 knight’s move 941 462 3761 1843 79.98% 79.96%
2 knight’s move 256 120 685 342 72.79% 74.03%
3 knight’s move 172 78 84 42 32.81% 35.00%
4 knight’s move 116 51 56 27 32.56% 34.62%
5 TIIP 66 29 50 22 43.10% 43.14%
6 TIIP 60 26 6 3 9.09% 10.34%
7 TIIP 40 18 20 8 33.33% 30.77%
8 TIIP 34 15 6 3 15.00% 16.67%
9 TIIP 16 7 18 8 52.94% 53.33%
10 TIIP 11 5 5 2 31.25% 28.57%
11 TIIP 5 3 6 2 54.55% 40.00%
12 TIIP 1 1 4 2 80.00% 66.67%
13 empty self-loop 0 1 1 0 100.00% 0.00%

Table 4.2: Execution of the Algorithm on a 100× 100 Black Image.

Remaining Removed % Removed
Level Operation Edges Vertices Edges Vertices Edges Vertices

0 base 19800 10000
0 boundary contr. 19401 9605 399 395 2.02% 3.95%
1 knight’s move 3881 1922 15521 7683 80.00% 79.99%
2 knight’s move 953 458 2928 1464 75.44% 76.17%
3 knight’s move 386 176 567 282 59.50% 61.57%
4 knight’s move 232 102 154 74 39.90% 42.05%
5 TIIP 130 57 102 45 43.97% 44.12%
6 TIIP 83 36 47 21 36.15% 36.84%
7 TIIP 47 21 36 15 43.37% 41.67%
8 TIIP 24 10 23 11 48.94% 52.38%
9 TIIP 12 6 12 4 50.00% 40.00%
10 TIIP 2 2 10 4 83.33% 66.67%
11 TIIP 1 1 1 1 50.00% 50.00%
12 empty self-loop 0 1 1 0 100.00% 0.00%

42

Table 4.3: Execution of the Algorithm on a 150× 150 Black Image.

Remaining Removed % Removed
Level Operation Edges Vertices Edges Vertices Edges Vertices

0 base 44700 22500
0 boundary contr. 44101 21905 599 595 1.34% 2.64%
1 knight’s move 8821 4382 35281 17523 80.00% 80.00%
2 knight’s move 2045 994 6776 3388 76.82% 77.32%
3 knight’s move 772 360 1273 634 62.25% 63.78%
4 knight’s move 499 226 273 134 35.36% 37.22%
5 knight’s move 396 177 103 49 20.64% 21.68%
6 knight’s move 351 153 45 24 11.36% 13.56%
7 knight’s move 303 129 48 24 13.68% 15.69%
8 knight’s move 261 107 42 22 13.86% 17.05%
9 TIIP 85 34 176 73 67.43% 68.22%
10 TIIP 31 13 54 21 63.53% 61.76%
11 TIIP 10 5 21 8 67.74% 61.54%
12 TIIP 2 2 8 3 80.00% 60.00%
13 TIIP 1 1 1 1 50.00% 50.00%
14 empty self-loop 0 1 1 0 100.00% 0.00%

Table 4.4: Execution of the Algorithm on a 200× 200 Black Image.

Remaining Removed % Removed
Level Operation Edges Vertices Edges Vertices Edges Vertices

0 base 79600 40000
0 boundary contr. 78801 39205 799 795 1.00% 1.99%
1 knight’s move 15761 7842 63041 31363 80.00% 80.00%
2 knight’s move 3565 1744 12196 6098 77.38% 77.76%
3 knight’s move 1348 638 2217 1106 62.19% 63.42%
4 knight’s move 850 392 498 246 36.94% 38.56%
5 knight’s move 767 352 83 40 9.76% 10.20%
6 knight’s move 687 312 80 40 10.43% 11.36%
7 knight’s move 633 285 54 27 7.86% 8.65%
8 knight’s move 552 245 81 40 12.80% 14.04%
9 knight’s move 491 215 61 30 11.05% 12.24%
10 knight’s move 432 186 59 29 12.02% 13.49%
11 knight’s move 385 162 47 24 10.88% 12.90%
12 TIIP 141 58 244 104 63.38% 64.20%
13 TIIP 60 24 81 34 57.45% 58.62%
14 TIIP 7 4 53 20 88.33% 83.33%
15 TIIP 1 1 6 3 85.71% 75.00%
16 empty self-loop 0 1 1 0 100.00% 0.00%

43

Table 4.5: Execution of the Algorithm on a 250× 250 Black Image.

Remaining Removed % Removed
Level Operation Edges Vertices Edges Vertices Edges Vertices

0 base 124500 62500
0 boundary cntr. 123501 61505 999 995 0.80% 1.59%
1 knight’s move 24701 12302 98801 49203 80.00% 80.00%
2 knight’s move 5609 2756 19092 9546 77.29% 77.60%
3 knight’s move 2003 956 3606 1800 64.29% 65.31%
4 knight’s move 1172 544 831 412 41.49% 43.10%
5 knight’s move 960 435 212 109 18.09% 20.04%
6 knight’s move 886 398 74 37 7.71% 8.51%
7 knight’s move 825 366 61 32 6.88% 8.04%
8 knight’s move 771 339 54 27 6.55% 7.38%
9 knight’s move 709 306 62 33 8.04% 9.73%
10 knight’s move 639 269 70 37 9.87% 12.09%
11 knight’s move 580 241 59 28 9.23% 10.41%
12 knight’s move 534 218 46 23 7.93% 9.54%
13 knight’s move 485 196 49 22 9.18% 10.09%
14 TIIP 460 181 25 15 5.15% 7.65%
15 TIIP 448 174 12 7 2.61% 3.87%
16 TIIP 134 52 314 122 70.09% 70.11%
17 TIIP 126 49 8 3 5.97% 5.77%
18 TIIP 52 22 74 27 58.73% 55.10%
19 TIIP 30 13 22 9 42.31% 40.91%
20 TIIP 23 10 7 3 23.33% 23.08%
21 TIIP 17 7 6 3 26.09% 30.00%
22 TIIP 2 2 15 5 88.24% 71.43%
23 TIIP 1 1 1 1 50.00% 50.00%
24 empty self-loop 0 1 1 0 100.00% 0.00%

44

(a) level 1

(b) contraction kernel on lv. 1

Figure 4.3: Knight’s Move Rotation Around the Boundary of Objects.
Edges that are incident to a border vertex are not shown for better clarity.
Lozenge-shaped (�) vertices are surviving vertices, and magenta edges are
non-surviving edges.

45

(c) level 2

(d) contraction kernel on lv. 2

Figure 4.3: Knight’s Move Rotation Around the Boundary of Objects.
Edges that are incident to a border vertex are not shown for better clarity.
Lozenge-shaped (�) vertices are surviving vertices, and magenta edges are
non-surviving edges.

46

(a) level 1

(b) contraction kernel on lv. 1

Figure 4.4: Knight’s Move Excessive Vertex Selection. Edges that are incident
to a border vertex are not shown for better clarity. Lozenge-shaped (�)
vertices are surviving vertices, and magenta edges are non-surviving edges.

47

(a) level 1

(b) contraction kernel on lv. 1

Figure 4.5: Knight’s Move Excessive Vertex Selection. Edges that are incident
to a border vertex are not shown for better clarity. Lozenge-shaped (�)
vertices are surviving vertices, and magenta edges are non-surviving edges.

48

Conclusions

In this work we proposed a novel method for contraction kernel generation in
binary and multi-label images. We adapted a scheme for regular image pyra-
mids to irregular image pyramids, based on combinatorial map representation
of graphs.

The knight’s move scheme generates contraction kernels that can be
applied in two steps, thanks to the peculiar pattern of vertices selection that
guarantees independent sets of edges.

The defined rules with which we choose surviving vertices makes the
outcome predictable, and, thanks to the rotating grid, the pattern can be
applied at each level, until the assumption of the grid graph does not hold
anymore. This also means that vertices are not chosen arbitrarily inside the
plateau regions.

We proposed an algorithm for Connected Component Labeling that takes
advantage of the knight’s move scheme to showcase these properties. Through
execution on benchmark images, we showed that the theorized properties
actually hold on a practical example, although with some caveats. Our
algorithm is not optimal on images with different objects, and we propose
a new algorithm design to solve these problems. Still, we showed that,
on plateau regions, the pattern achieves properties similar to its regular
pyramid’s counterpart, namely its reduction factor and the resulting pyramid
height.

Further Developments

We propose the design and the implementation of the Connected Component
Algorithm proposed in Section 4.3, which should dynamically find separate
plateau regions where to apply the pattern, or, alternatively, we propose to
further investigate the usage of geometrical information.

The knight’s move scheme is defined for regular image pyramids, and

49

we adapted it to 2-dimensional combinatorial maps. 3-dimensional and n-
dimensional combinatorial map representations could benefit of a similar
scheme, so that we could define irregular pyramids also for 3-dimensional
images and n-dimensional data structures. We could also shift the attention
to n-dimensional generalized maps (n-Gmaps) which are generalizations of the
combinatorial map data structure, and on which similarly defined reduction
schemes are applied.

It is possible to apply the combinatorial pyramid for tasks of pattern
recognition for segmented images by means of comparisons between graphs.
We propose to investigate such scenarios, like object tracking and scene
detection, where topological information and relationships between segmented
objects might improve prediction results of current systems.

Finally, we propose to investigate lossy and lossless compression of combi-
natorial pyramids by means of level approximation. For lossless compression,
it is possible to compare the expected grid graph of the knight’s move to
the actual outcome of the algorithm. We expect that storing the difference
between the two is more efficient. For lossy compression, some level’s in-
formation might be outright deleted from the data structure, and it could
be accessed through some level prediction algorithm. This is only possible
thanks to the predictability of the scheme.

50

Bibliography

[1] Edward H. Adelson, Charles H. Anderson, James R. Bergen, Peter J.
Burt, and Joan M. Ogden. “Pyramid methods in image processing”. In:
RCA Engineer 29.6 (Nov./Dec. 1984), pp. 33–41.

[2] Darshan Batavia, Rocio Gonzalez-Diaz, and Walter G. Kropatsch.
“A Step Towards Learning Contraction Kernels for Irregular Pyra-
mids”. In: Proceedings of the 11th International Conference on Pat-
tern Recognition Applications and Methods - ICPRAM. Vol. 1. IN-
STICC. SciTePress, Feb. 2022, pp. 60–70. isbn: 978-989-758-549-4. doi:
10.5220/0010840900003122.

[3] Darshan Batavia, Rocio Gonzalez-Diaz, and Walter G. Kropatsch. “Im-
age = structure + few colors”. In: Joint IAPR International Workshops
on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Ed. by Antonio Robles-Kelly.
Springer International, Jan. 2021, pp. 365–375.

[4] Michel Bister, Jan Cornelis, and Azriel Rosenfeld. “A critical view of
pyramid segmentation algorithms”. In: Pattern Recognition Letters 11.9
(1990), pp. 605–617.

[5] Luca Boccia. “Novel strategies for contraction kernel generation in
combinatorial maps”. MA thesis. Università degli Studi di Salerno, Feb.
2022.

[6] Luc Brun and Walter G. Kropatsch. “Dual contraction of combinatorial
maps”. In: 2nd IAPR-TC-15 Workshop on Graph-based Representation.
Ed. by Walter G. Kropatsch and Jean Michel Jolion. Österreichische
Computer Gesellschaft. OCG-Schriftenreihe, 1999, pp. 145–154.

[7] Luc Brun and Walter G. Kropatsch. “Introduction to combinatorial
pyramids”. In: Digital and image geometry. Ed. by Gilles Bertrand,
Atsushi Imiya, and Reinhard Klette. Vol. 2243. Heidelberg: Springer
Berlin, 2001, pp. 108–128.

51

https://doi.org/10.5220/0010840900003122

[8] Luc Brun and Walter G. Kropatsch. “Irregular Pyramids with Com-
binatorial Maps”. In: Advances in Pattern Recognition, Joint IAPR
International Workshops on SSPR’2000 and SPR’2000. Ed. by Francesc
J. Ferri, José M. Iñesta, Adnan Amin, and Pavel Pudil. Vol. 1876. Ali-
cante, Spain: Springer Berlin Heidelberg, Aug. 2000, pp. 256–265. isbn:
978-3-540-44522-7.

[9] Peter J. Burt and Edward H. Adelson. “The Laplacian Pyramid as a
Compact Image Code”. In: Readings in Computer Vision. Ed. by Martin
A. Fischler and Oscar Firschein. San Francisco (CA): Morgan Kaufmann,
1987, pp. 671–679. isbn: 978-0-08-051581-6. doi: 10.1016/B978-0-
08-051581-6.50065-9. url: https://www.sciencedirect.com/
science/article/pii/B9780080515816500659.

[10] Peter J. Burt, Tsai-Hong Hong, and Azriel Rosenfeld. “Segmentation
and estimation of image region properties through cooperative hier-
archial computation”. In: IEEE Transactions on Systems, Man, and
Cybernetics 11.12 (1981), pp. 802–809.

[11] Martin Cerman. Structurally Correct Image Segmentation using Local
Binary Patterns and the Combinatorial Pyramid. Tech. rep. PRIP-TR-
133. PRIP, TU Wien, 2015. url: https://www.prip.tuwien.ac.at/
pripfiles/trs/tr133.pdf.

[12] John Robert Jr Edmonds. “A combinatorial representation for oriented
polyhedral surfaces”. PhD thesis. University of Maryland, 1960. doi:
10.13016/daw5-mvla. url: http://hdl.handle.net/1903/24820.

[13] Walter G. Kropatsch. “From equivalent weighting functions to equiva-
lent contraction kernels”. In: Czech Pattern Recognition Workshop ’97.
Czech Pattern Recognition Society. Milovy, Feb. 1997, pp. 1–13.

[14] Peter Linz. An introduction to formal languages and automata. 6. Jones
& Bartlett Learning, 2017, p. 450. isbn: 9781284077247.

[15] Annick Montanvert, Peter Meer, and Azriel Rosenfeld. “Hierarchical
image analysis using irregular tessellations”. In: European Conference
on Computer Vision. Springer. 1990, pp. 28–32.

[16] Guodong Rong and Tiow-Seng Tan. “Jump Flooding in GPU with Ap-
plications to Voronoi Diagram and Distance Transform”. In: Proceedings
of the 2006 Symposium on Interactive 3D Graphics and Games. I3D ’06.
Redwood City, California: Association for Computing Machinery, 2006,
pp. 109–116. isbn: 978-1-59593-295-2. doi: 10.1145/1111411.1111431.

52

https://doi.org/10.1016/B978-0-08-051581-6.50065-9
https://doi.org/10.1016/B978-0-08-051581-6.50065-9
https://www.sciencedirect.com/science/article/pii/B9780080515816500659
https://www.sciencedirect.com/science/article/pii/B9780080515816500659
https://www.prip.tuwien.ac.at/pripfiles/trs/tr133.pdf
https://www.prip.tuwien.ac.at/pripfiles/trs/tr133.pdf
https://doi.org/10.13016/daw5-mvla
http://hdl.handle.net/1903/24820
https://doi.org/10.1145/1111411.1111431

[17] Azriel Rosenfeld. Multiresolution image processing and analysis. Vol. 12.
Springer Series in Information Sciences. Springer Science & Business
Media, 2013. isbn: 978-3-642-51592-7. doi: 10.1007/978- 3- 642-
51590-3.

[18] Fuensanta Torres and Walter G. Kropatsch. “Canonical Encoding of
the Combinatorial Pyramid”. In: Proceedings of the 19th Computer
Vision Winter Workshop 2014. Ed. by Zuzana Kúleková and Jan Heller.
Krtiny, CZ, Feb. 2014, pp. 118–125. isbn: 978-80-260-5641-6.

53

https://doi.org/10.1007/978-3-642-51590-3
https://doi.org/10.1007/978-3-642-51590-3

	Acknowledgements
	Introduction
	Images, Graphs and Formal Grammars
	Graph Representation of Images
	Combinatorial Maps
	Image Pyramids
	Regular Pyramid Schemes
	Irregular Pyramids

	Combinatorial Pyramids
	Formal Grammars

	Knight's Move Grammar
	Adapting the Scheme
	Properties of the Scheme
	Vertex Selection on Combinatorial Maps

	Implementation
	Combinatorial Pyramid Data Structure
	Connected Component Labeling Algorithm
	Contraction Kernel Generation
	Dealing with Boundary
	Selecting Independent Edges

	Results
	Execution on Plateau Region
	Problems with Objects
	Possible Solutions
	Geometrical Vertex Selection

	Conclusions
	Bibliography

