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Distance transform of generalized maps
and applications to gas exchange analysis

Carmine Carratù

Abstract

The distance transform computes for every pixel of a binary image the distance from the
closest pixel in the background. The operator can be generalized to work with other data
structures like graphs or combinatorial maps. In this work we describe how to compute the
distance transform of a generalized map, and we propose two algorithms to compute re-
spectively the distance transform of unweighted and weighted generalized maps. Moreover,
we describe how such algorithms can be used for the ”Water’s gateway to heaven” project1

to compute the diffusion distance and Voronoi diagrams that can be used to study the gas
exchange process that occurs in plant leaves.
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1 Introduction and state of the art analysis

1.1 Generalized maps

We will give a brief introduction to generalized maps, introducing the
data structure and the basic operations needed to understand this work. A
detailed discussion on the topic can be found in [2], [3], [4]. The content of
this chapter, including the images, is mainly derived from the sources cited
above, especially from [2].

An n-Gmap is a combinatorial data structure allowing to describe an
n-dimensional orientable or non-orientable quasi-manifold with or without
boundaries. An n-Gmap is defined by a set of darts on which act n + 1 invo-
lutions, satisfying some composition constraints. This leads to the following
definition of n-Gmaps.

n-Gmap definition An n-dimensional generalized map, or n-Gmap, with
0 ≤ n is an (n+2)-tuple G = (D,α0, ..., αn) where:

1. D is a finite set of darts,

2. ∀i ∈ {0, ..., n} : αi is an involution on D

3. ∀i ∈ {0, ..., n− 2},∀j ∈ {i+ 2, ..., n} : αi ◦ αj is an involution.

Figure 1: Examples of (a) 1-Gmap, (b) 2-Gmap and (c) 3-Gmap
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A 0-Gmap (D,α0) represents the structure (the topology) of a set of
isolated vertices, or pairs of vertices (corresponding thus to 0-spheres); a 1-
Gmap (D,α0, α1) represents the structure of a set of polygonal curves with or
without boundaries Fig. 1 (a); a 2-Gmap (D,α0, α1, α2) represents the struc-
ture of a set of surfaces Fig. 1 (b); a 3-Gmap (D,α0, α1, α2, α3) represents
the structure of assemblies of volumes Fig. 1 (c) ...

As we said darts represent the basic elements of an n-Gmap. They are
linked each other by involutory functions. For example in Fig. 1 (b) α0(4) =
3;α1(4) = 5;α2(4) = 9. Moreover, since all the functions are involutions, it
means:

if αi(d) = αi(d
′) then αi(d′) = αi(d) ∀d ∈ D, ∀i ∈ {0, ..., n+ 1}

i-cell definition Let G = (D,α0, ..., αn) be an n-Gmap, d ∈ D, and i ∈
{0, ..., n}. The i-dimensional cell (or i-cell) containing d is:

ci(d) = ⟨α0, ..., αi−1, αi+1, ..., αn⟩(d) (1)

So for example in Fig. 1 (b) the set of darts {2, 3, 10, 11, 21, 20} represents
a 0-cell (vertex), the set {1, 2, 20, 19} represents a 1-cell (edge) and the set
{1, 2, 3, 4, 5, 6, 7, 8} represents a 2-cell (face).

n-Gmaps with attributes We can add attributes to an n-Gmap, to keep
for example the color of the represented object. Attributes can be associated
to darts or to cells. For instance if an image is represented by a 2-Gmap
and, we want to store the color, it could make sense to associate it to 2-cells
(faces).

Additional definitions In the next sections we will use for simplicity the
term gmap instead of the term generalized map or n-Gmap. We will use the
term gmap to refer also to a 2-Gmap since we will use mostly 2-Gmaps. The
term weighted gmap will be used to refer to a gmap with attributes where
a weight has been assigned to each 1-cell (edge). The weight represents an
estimate of the geometrical distance between the two incident vertices of each
edge. We will use the term unweighted gmap or simply gmap to refer to
a gmap without weights, or equivalently to a gmap with all the weights equal
to 1.
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1.1.1 Operations

Removal The removal operation consists in removing a given i-cell c while
merging the two (i + 1)-cells incident to c when they exist; when there is
only one (i + 1)-cell incident to c, no cells are merged. Two examples are
depicted in Fig. 2. Starting from the 2D object in Fig. 2 (a), first, the two
edges e1 and e2 are removed, producing the object given in Fig. 2 (b). The
two faces incident to edge e1 in the initial object are merged into one face
(this is similar for the two faces incident to edge e2). Then, the two vertices
v1 and v2 are removed, producing the object in Fig. 2 (c). The two edges
incident to vertex v1 are merged into one edge (as the two edges incident to
vertex v2).

Figure 2: Removal operation examples

Moreover, it is not possible to remove any i-cell: at most two (i + 1)-cells
are incident to c, in order to be able to merge these cells when removing c.
It is for example impossible to remove vertex v3 in Fig. 2 (c): v3 is incident
to three edges, which cannot be merged into one edge.

1.2 Distance transform

Definition The distance transform is a function usually applied to binary
images. It computes for each pixel in the foreground the minimum distance
from the background.

4



Propagation metrics Different metrics can be used to propagate the dis-
tance. In Fig. 3 the Manhattan distance1 has been used, so distance can’t
propagate through diagonals. As showed in the example, distance propagates
from the background, represented with zeros, to the foreground, represented
with ones.

Figure 3: Distance transform example

Generalization of the operator Distance transform can be generalized
in order to be applied to non-binary images and to other data structures like
graphs and combinatorial maps.

Distance transform of graphs The problem of computing the distance
transform of a graph is similar to the shortest path problem [6]. The
shortest path problem is the problem of computing the shortest path be-
tween two vertices in a graph, respectively the source and the destination,
where the distance of a path is measured by summing the weights of all the
edges that are in the path. For the distance transform problem we have mul-
tiple sources and multiple destinations, so we can call the problem multiple
sources and destinations shortest path problem. We can adapt the
existing algorithms that solve the shortest path problem in order to compute
the distance transform of a graph. For example for an unweighted graph
something similar to the breadth first search (BFS) algorithm can be
used to compute the distance transform in linear time. In Fig. 4 such algo-
rithm has been applied to a graph.

1Manhattan distance, https://xlinux.nist.gov/dads/HTML/manhattanDistance.
html, Accessed: 09-12-2021.
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Figure 4: Example of distance transform of a graph

Distance transform of gmaps The problem of computing the distance
transform of a gmap is similar to the problem of computing the distance
transform of a graph. In fact, we can build a graph from a gmap and then
apply an algorithm that solves the problem for a graph. In order to do that we
have to decide what are the vertices and the edges and then choose the seeds
to use to propagate distance. Multiple choices are possible. The easiest way
to do that is to build a graph where a vertex is associated to each dart of the
corresponding gmap and an edge exists between two vertices if an involution
exists between the two correspondent darts in the gmap. For example in Fig.
5 the dart 0 in the gmap on the left has been associated to the vertex 0 in the
graph on the right. Moreover, an edge exists between vertex 0 and vertices
1, 5 and 6 because in the corresponding gmap dart 0 is linked respectively
by α0, α1 and α2 to darts 1, 5 and 6. In this way we are using darts as the
basic units to propagate distance, and we are propagating distances to all
the directions. Other alternatives can be considered, for example, instead of
darts, 1-cell (vertices) in the gmap can be used as units as shown in Fig. 6.

After we build the graph an algorithm defined to compute the distance
transform of the graph can be applied to obtain the distance value for each
vertex.

Actually, we don’t need to explicitly build the graph from the gmap. We
can define algorithms that directly work for gmaps without explicitly perform
the initial transformation to a graph [6]. In Chapter 2 we will present two
algorithms that can be used to compute the distance transform of unweighted
and weighted gmaps that are based on the idea of the implicit transformation
to a graph that we have presented in this chapter.
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Figure 5: From gmap to graph 1

For simplicity, we will often use in the rest of the document the term DT
instead of distance transform.

1.3 Water’s gateway to heaven project

The Water’s gateway to heaven project is a research project bridging
plant biology, 2D-3D imaging, and computer science. It’s a collab-
oration between three universities of Vienna: plant eco-physiologists and
anatomists at the University of Natural Resources and Life Sciences, plant
cell biologists at the University of Vienna, and computer scientists expert in
pattern recognition and image analysis at the Vienna University of Technol-
ogy (TU Wien).

The project focuses on the stomata, tiny pores on the surface of plant
leaves. Stomata play a central role in global water and carbon cycles while
covering less than 5% of the leaf surface. Stomata open and close to pro-
vide CO2 for photosynthesis and to limit water loss, but this process varies
in speed and dynamism between different species and phenotypes, as well
as under fluctuating environmental conditions, like under changing light or
humidity. The speed at which stomata respond influences the productivity
and water use of both crops and natural ecosystems.

The main goal of the project is to answer long-standing questions about
stomatal movements and to generate basic knowledge on how to improve
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Figure 6: From gmap to graph 2

stomatal responses under dynamic environments in order to increase net
productivity and water-use efficiency. In order to do that new computer
methods will be used to study 2D and 3D images of leaves obtained combining
high-resolution X-ray microtomography and fluorescence microscopy.

More information on the project can be found at2 and3.

For simplicity the termWatergate will be used instead of Water’s gateway
to heaven in the rest of the document.

1.3.1 Gas exchange

As described in4 gas exchange is the physical process by which gases move
passively by diffusion across a surface.

Flowering plants exchange gases through their leaves through stomata.
Carbon dioxide flows from the environment to the inside of the leaf where

2Water’s gateway to heaven, https://waters-gateway.boku.ac.at/.
3Water’s gateway to heaven prip, https://www.prip.tuwien.ac.at/research/

current_projects/wgh/.
4Royal society of biology, Gas exchange, https://www.rsb.org.uk/images/12_Gas_

exchange.pdf, Accessed: 01/02/2022.
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it’s used for photosynthesis while oxygen, obtained from respiration, flows
from the inside to the outside. In light condition there is a net intake of
carbon dioxide while in dark condition there is a net intake of oxygen.

The rate of gas exchange is affected by multiple factors including:

• the area available for diffusion

• the concentration gradient across the gas exchange surface

• the speed with which molecules diffuse through membranes

• the distance over which diffusion occurs

Efficient gas exchange systems must:

• have a large surface area to volume ratio

• be thin

• have mechanisms for maintaining steep concentration gradients across
themselves

• be permeable to gases.

1.4 Goals and motivations

This work has two goals:

• to design and implement algorithms to compute the distance transform
of gmaps (unweighted and weighted).

• to apply such algorithms for the Watergate project to study the gas
exchange process.
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Design and implement algorithms to compute DT of gmaps As
described in Section 1.2 the DT operator is defined for binary images but
can be also defined for other data structures5, [6], [10]. Since we have not
found algorithms in the literature to compute the distance transform operator
other than the one proposed in [6], the first goal is to design and implement
such algorithms to make them available to the scientific world. In particular,
we want to implement two algorithms, one for unweighted gmaps and one
for weighted ones. Moreover, the algorithms should be enough general to be
applied to an n-dimensional gmap of an arbitrary n, and they should work
with or without obstacles. Finally, the algorithms should be enough efficient
to be applied to large generalized maps.

Study the gas exchange process In order to achieve the main goal of
the Watergate project described in Section 1.3 it’s important to study the
gas exchange process that occurs in plant leaves. Since the gas exchange
rate depends on the distance over which the diffusion occurs and on the area
available for diffusion6, we want to apply the algorithms that have to be de-
fined as first goal to compute such parameters. In fact the distance transform
operator can be used to compute the geodesic distance from stomata to cells
(where CO2 is used and O2 is produced) and to obtain Voronoi diagrams
that can be used to study the exchange area for each stomata. The DT will
be applied to gmaps that have been used to keep images of the leaves. A
gmap can be reduced applying the operation described in Section 1.1. This
is crucial since the size of the available data is huge and using the gmaps we
can reduce the size to keep only the sufficient amount of information needed.
For the computation of the diffusion distance we will analyze the trade-off
between speed and accuracy with different reduction factors.

In the following chapters we will use the term diffusion distance to refer
to the distance from stomata to cells.

5Distance transform, https://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm,
Accessed: 02/02/2022.

6Royal society of biology, Gas exchange, https://www.rsb.org.uk/images/12_Gas_
exchange.pdf, Accessed: 01/02/2022.

10

https://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm
https://www.rsb.org.uk/images/12_Gas_exchange.pdf
https://www.rsb.org.uk/images/12_Gas_exchange.pdf


2 Proposed solutions

In this section we will present all the algorithms. The implementation is
in Python (3.9) and all the code is available in a GitHub repository7.

2.1 Gmap implementation

We need an implementation of the gmap to define and test the algorithms.

The PRIP lab has provided an implementation in Python based on the
one described in [2]. It consists in a hierarchy of classes which have their
root in the nGmap class, that is an array based implementation of the
gmap, where a set of arrays is used to store the involutions (a dict based
implementation has been provided but for our application the array based is
better). The PixelMap class extends nGmap and specifically represents a
2-Gmap. LabelMap extends PixelMap and adds the possibility to build a
2-Gmap from a list of labels. For this work both PixelMap and LabelMap
are used.

The provided implementation has been modified in multiple parts. In
particular, we added attributes to keep additional information, like weights,
in order to distinguish between unweighted and weighted gmaps.

Moreover, the memory consumption has been reduced by a factor of 16.62,
allowing to perform experiments on big images even on a machine with a
limited amount of memory. In fact before the update a gmap built from a
1000x1000 image would have occupied 5.33 GB, while after the update it
occupies 328.13 MB.

2.2 DT algorithm for unweighted gmaps

2.2.1 Naive algorithm

A naive algorithm can be derived from [6] and by adapting the breadth-
first search (BFS) algorithm to gmaps. The easiest way to compute the DT
of a gmap is to use darts as units and propagate distance to every direction,
i.e. to every neighbor that can be reached applying all the involutions to the
current dart.

7C. Carratù, Distance transforms on gmaps, https://github.com/LordCatello/
distance-transforms-on-gmaps.
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More formally given a gmapG = (D,α0, ..., α1) and a set of seed darts S ⊂
D the algorithm propagates the distance starting from darts in S considering
as neighbors of a dart d:

N(d) = {αi(d) ∀ i from 0 to n} (2)

Figure 7: Example of how naive algorithm works

In Fig. 7 the algorithm has been used to compute the DT of the depicted
gmap. Only one seed has been chosen, and its distance has been initialized
to 0. At each step distance propagates (increasing by 1 unit) from each
non-visited dart to its neighbors. In the example at the first step distance
propagates from the seed s to its neighbors α0(s), α1(s) and α2(s). After 5
steps distance has been computed for all the darts.

Pseudocode We can analyze the pseudocode (python like) depicted by
Algorithm 1 to better understand how the algorithm works.

The function receives a gmap and a list of seeds as input and computes
the DT for each dart of the gmap. The distance value is saved in an array
where the indices identify the darts. The array is defined as an attribute of
the gmap class. The algorithm includes an initialization phase, from Line 2
to 10. First distances are initialized to -1. That value is used to mark a dart
as not visited. Then a queue is instantiated and all the seeds are added
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Algorithm 1 Naive algorithm

Input: gmap, seeds

1:

2: for dart in gmap.darts do ▷ Initialize distances to -1
3: gmap.distances[dart] = -1
4: end for
5:

6: queue = Queue()
7: for seed in seeds do ▷ Add seeds to queue
8: gmap.distances[seed] = 0
9: queue.put(seed)

10: end for
11:

12: while not queue.empty() do
13: dart = queue.get()
14: for i in range(gmap.n + 1) do ▷ Visit all the neighbours
15: neighbour = gmap.ai(i, dart)
16: if gmap.distances[neighbour] == -1 then ▷ If the neighbour has

not been visited yet
17: gmap.distances[neighbour] = gmap.distances[dart] + 1
18: queue.push(neighbour)
19: end if
20: end for
21: end while
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to it. Moreover, the distance of each seed is set to 0. From Line 12 starts
the main loop. At each iteration a dart is removed from the queue. All the
neighbors of the dart are visited and each of them, if not previously visited,
is added to queue, and its distance is set to the distance of the current dart
plus 1.

At the end of the main loop, at Line 21, all the darts have been visited,
and the DT has been computed for all of them. Since the algorithm is an
adaptation of BFS, darts are visited by level, increasing distance at each
level.

Complexity Worst case complexities are:

Time = O((n+ 2)|D|) (3)

Space = O(D) (4)

where |D| is the number of darts and n is the dimension of the gmap (1-
Gmap, 2-Gmap, ...).

2.2.2 Generalized algorithm

The Naive algorithm is very limited since only darts can be used
as units to propagate distance and, it can’t be used to compute
geodesic distance since it’s not possible to define an obstacle. We want to
solve both problems implementing a more generalized algorithm.

Use a generic i-cell to propagate distance For the first problem we
want to use an arbitrary cell as unit to propagate distance, e.g. we want to
use vertices or edges.

Figure 8: Distance is propagated using vertices as units

14



The Fig. 8 shows how the algorithm should work if vertices are used to
propagate distance. To solve the problem we decided to keep the implemen-
tation of the Naive algorithm that associates distance to each dart, but we
have defined a mechanism whereby distance does not increase for some
darts. In fact, since we are associating distance to darts, we want to achieve
that all darts of the same i-cell chosen as unit, must have the same
distance, so distance must increase only from darts of one i-cell to darts of
another i-cell.

Figure 9: All darts of the same vertex share the same distance value

In Fig. 9 is depicted how the algorithm should work: darts of the same
vertex must have the same distance. That behavior has been achieved in-
creasing the distance only if the current dart has been reached by a specific
involution. In particular, distance must increase only through αi if we want
to use icell has units. If we want to use vertices (0-cell) as units, we must
increase distance only if a dart is reached through α0. More precisely dis-
tance should be the same in the orbit of each the i-cell, where the
orbit of an i-cell is the set of all the darts of that cell. Fig. 10 shows that in
order to move from a vertex v to another it should be computed involution
α0 of darts inside v.

So we added the input accumulation directions to the algorithm. It’s
an array of boolean, where each element is True for the index i if distance
should increase for the involution i. In a 2-Gmap to use vertices as units the
array should be equal to [True, False, False] while to use edges it should be
equal to [False, True, False].

Manage obstacles To manage obstacles and compute geodesic distance
we have to define an obstacle. The simplest way to do that is to associate a
label to each dart and propagate distance only if the label of the current dart
is in a list of admitted labels. All darts with a different label are considered

15



Figure 10: The orbit of a vertex can be obtained applying α2 and α1 to a
random dart of the vertex

as obstacles and not visited. So we add a parameter to the algorithm whose
value is the set of permitted labels.

Figure 11: DT example with propagation labels

In Fig. 11 we applied the DT algorithm to the same gmap with the same
initialization of the example in Fig. 7 but marking as prohibited the dart
with the red cross. Due to the fact that distance cannot propagate to that
dart, we obtain that it propagates slowly to the bottom face.
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Complexity The generalized algorithm has the same worst case time and
space complexities as the Naive one.

2.3 DT algorithm for weighted gmaps

We need an algorithm to compute the DT of weighted gmaps. The algo-
rithm should be generalized as the one for unweighted gmaps. To do that we
can adopt the very same approach used for unweighted gmaps, i.e. we can
employ accumulation directions to use a generic i-cell and a set of permitted
labels to manage obstacles. Since we have already discussed the generaliza-
tion in Section 2.2.2 we will now describe only the differences between the
two approaches.

The algorithm is an adaptation of Dijkstra’s algorithm for graphs. We
decided to associate weights to i-cells. In particular, for the application to
study gas exchange, we associated weights to edges (1-cell). To do that a
weight has been associated to each dart but every dart of the same edge share
the same weight, as depicted in Fig. 12

Figure 12: Darts in the orbit of an edge share the same weight

Pseudocode The naive function (which does not manage obstacles and,
it’s not generalized for cells) described by Algorithm 2 receives a gmap and a
list of seeds as input. In the initialization phase, from Line 2 to 12 distances
are initialized to -1 and seeds are pushed to a heap. Moreover, a set is
instantiated. It will keep all darts already visited. From Line 14 starts the

17



Algorithm 2 Naive algorithm for weighted gmaps

Input: gmap, seeds

1:

2: for dart in gmap.darts do ▷ Initialize distances to -1
3: gmap.distances[dart] = -1
4: end for
5:

6: heap = Heap()
7: for seed in seeds do ▷ Add seeds to heap
8: gmap.distances[seed] = 0
9: heap.push(seed, gmap.distances[seed])

10: end for
11:

12: visited = Set() ▷ visited is used to keep track of all darts removed from
the heap

13:

14: while not heap.empty() do
15: dart, = heap.pop() ▷ Pop dart with minimum distance
16: visited.add(dart)
17: for i in range(gmap.n + 1) do ▷ Visit all the neighbours
18: neighbour = gmap.ai(i, dart)
19: if neighbour not in visited then
20: if gmap.distances[neighbour == -1] or gmap.distances[dart] +

gmap.weights[dart] < gmap.distances[neighbour] then
21: gmap.distances[neighbour] = gmap.distances[dart] +

gmap.weights[dart]
22: heap.update(neighbour, gmap.distances[neighbour]) ▷

Update entry with key neighbour if exists otherwise add a new entry
23: end if
24: end if
25: end for
26: end while
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main loop. At each iteration the dart with the smallest distance is
removed from the heap. Then the weight of each non visited neighbour
is updated and added to the heap (Line 21).

At the end of the main loop, at Line 26, all darts have been visited.

Complexity Worst case complexities are:

Time = O((n+ 1)|D|+ |D| logD) (5)

Space = O(D) (6)

where |D| is the number of darts and n is the dimension of the gmap (1-
Gmap, 2-Gmap, ...).

2.4 Algorithm to compute diffusion distance and Voronoi
diagrams

As mentioned in Section 1.4 we want to use the algorithms defined in
Section 2 to study the gas exchange process. In particular, we are interested
in computing the diffusion distance, that is the distance from stomata to
cells, and Voronoi diagrams that can be used to study the exchange are for
each stomata.

More precisely, we have in input a labeled 2D segmented image of a section
of a leaf as depicted in Fig. 13, and we want to compute:

• The diffusion distance, that is the average distance computed from
the borders of stomata (in light grey in the example) to the borders of
cells (in black in the example)

• A Voronoi diagram where a different propagation region has to be
identified for each stomata.

A pipeline has been implemented in order to achieve both goals. It is
described in the next subsections.

2.4.1 Reduce image size

In order to speed up the process the size of the image can be first
reduced using a median filter as depicted in Fig. 14. This is an optional
step that has been performed to speed up the experimentation phase. The
median filter works by choosing for each pixel in the output image the most
common pixel under the kernel in the input image.
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Figure 13: Example of a labeled 2D segmented image of a cross-section of a
leaf

2.4.2 Label connected components

To generate Voronoi diagrams we need each stoma to be uniquely iden-
tified by a distinct label, so that we can construct a distinct region for each
of them. Unfortunately, the labeled input images used in the experimental
phase have only 6 labels, identifying different parts of the cell, such as air or
veins, as described in Section 3.1. Since in these images all the stomata share
the same label, we decided to apply an algorithm to label the connected
components, precisely the one pass algorithm, to assign a unique label for
each stoma. In Fig. 15 is depicted an example where the algorithm has been
applied to an image. The output is an image of the same size of the original
one where the value of each pixel is an integer that identifies the connected
component to which the pixel belongs. It can be observed that now each
stoma is represented with a distinct color (randomly chosen), since each of
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Figure 14: Example of an original (1115x1350) and reduced (165x193) image
using a 7x7 median filter

them has a unique label.

Figure 15: The image on the right is obtained by applying the one pass
algorithm to the image on the left. Each color identifies a distinct connected
component

2.4.3 Build and reduce the gmap

After having labeled the connected components a 2-Gmap must be build
from the reduced image as depicted in Fig. 16. The labels obtained in the
previous step are saved as an attribute.

A gmap can be reduced applying the operation described in Section 1.1,
merging some regions with the same label as depicted in Fig. 17. This could
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Figure 16: The gmap on the right is obtained from the image on the left

Figure 17: A gmap can be reduced applying a set of removal operations

be useful since the computation of the distance transform will require less
time on a reduced gmap, so the goal of this step is to improve time perfor-
mance. On the other hand the computation will be less accurate, since we
are losing information merging regions with the same label, so we decided to
introduce a parameter, the (reduction factor), that can be used to specify
the number of edges to remove among those that can be removed. The pa-
rameter can be used to adjust the trade-off between speed and accuracy that
we have reducing the gmap, and we will analyze in Section 3 how performance
and accuracy change with different values of the reduction factors.
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Weights update During the reduction process weights have to be updated
as depicted in Fig. 18. Weights are associated to darts and each dart of the
same edge must have the same weight. Weights are updated when a vertex
removal occurs. The weight of the resulting edge must be equal to the weights
of the merging edges. The new weight can be computed as:

weight(d) + weight(α1(d)) (7)

where d is one of the darts to remove.

Figure 18: Example of weights update after some removal operations

Figure 19: Example of weights update after removing the vertex identified
by darts 0 and 7
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In the example depicted in Fig. 19, where dart identifiers are coloured
in blue and weights in black, the vertex identified by darts 0 and 7 has been
removed. The weight of the resulting edge, identified by darts 1 and 6 has
to be updated to weight(0) + weight(α1(0)) or equivalently to weight(7) +
weight(α1(7)), so it will be equal to 2. As you can see the value of the weight
of an edge is shared among the darts in the orbit of that edge, so for example,
in this particular case, darts 1 and 6 share the same weight that is equal to
2.

2.4.4 Compute DT

The DT has to be computed from stomata to the border of cells, using
intracellular space (in white in the labeled images) to propagate. A contour
plot (Fig. 20) can be generated to better analyze the result. Darker colors
are used for shorter smaller, while lighter colors are used for greater distances.

The DT can be computed using the algorithm for unweighted gmaps or
the one for weighted ones. If the gmap is reduced it would seem to make
more sense to use the algorithm that takes into account the weights since
some edges will have lengths greater than 1. Experiments show that this
is not always the case, so sometimes it’s better to use the algorithm for
unweighted gmaps even if the gmap is reduced. This is explored in detail in
the experiments section.

Figure 20: A contour plot can be generated to better analyze the result
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2.4.5 Compute diffusion distance

The diffusion distance is computed by taking the average of the distances
for borders of the cells. The value is multiplied by the image reduction factor
if the image has been previously reduced at the step described in Section 2.4.1

2.4.6 Generate Voronoi diagrams

To generate Voronoi diagrams we need to know for each dart from which
stomata it has been reached during the computation of the DT. So we need to
modify the algorithms used in Section 2.4.4 to save this information. Given
the label of stomata saved for each dart an image as the one depicted in Fig.
21 is generated.

Figure 21: Each region of the Voronoi diagram identifies the propagation
area of the correspondent stomata

These images can be used to understand which stomata contributes the
most to the propagation of gas.
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3 Experiments

Experiments have been performed to compute the diffusion distance and
generate Voronoi diagrams to provide information to biologists and to analyze
the trade-off between accuracy and speed when reducing the gmap.

3.1 Dataset

The dataset consists of 2D images of a leaf collected in July - October
2020. The images are slices of 3D data obtained by high-resolution X-ray
micro-tomography (µCT). There are in total 209 labeled images of 5 time
steps of 3 kinds:

• paradermal 1350x1119 slices

• cross-sect (cross) 1450x1152 slices

• long-sect (long) 1152x1119 slices

There are 6 different labels, identified by an uint8 value: cells (0), veins
(100), epidermis (152), stomata (170), background (202), air (255). The
images were labeled manually by experts. Segmentation algorithms are being
developed by other members of the team working on the project to speed up
the labeling process. In Figs. 22, 23, 24 are shown examples of, respectively,
paradermal, cross and long slices. In each figure, the image on the left is the
raw image, while the image on the right is the labeled one.

Figure 22: Paradermal slice

For our problem only cross and long slices can be used, since we need
vertical slices to compute the diffusion distance, while paradermal slices cut
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Figure 23: Cross slice

Figure 24: Long slice

the leaf horizontally. So we can use 140 images. Of those, only images with
stomata are effectively used (61 images).

3.2 Metrics

Results produced for each image have been combined to obtain an aggre-
gate report. The metrics in the report are:

• Gmap reduction factor - RF: the reduction factor used to reduce
the gmap. It is a float ranging from 0 to 1. If the value is 0 no reduction
is performed, otherwise when the value is 1 all the removable edges are
removed;

• Number of darts - ND: average number of survived darts after re-
ducing the AMAP. The speed of the algorithms depends directly on
the number of darts;
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• Use weights - UW: whether to use weight to compute the distance
transform. If False, the algorithm for unweighted gmaps is used, oth-
erwise it will be used the algorithm for weighted ones;

• Diffusion distance - DD: the average of the diffusion distance among
all experiments;

• Diffusion distance error - DDE: the average of the diffusion dis-
tance relative error. The value is equal to | base−current

base
|/n where base

is the diffusion distance value computed without reducing the gmap,
current is the actual value and n is the number of samples. The error
is presented in the form E ± 2SD where SD is the standard deviation;

• Time improvement factor - TIF: the average among all samples
of the time used to compute DT without removals (Gmap reduction
factor of 0) divided by the time used with the current reduction factor
( base
current

/n).

3.3 Results

As written in the previous section results produced for each image have
been combined to obtain an aggregate report. Since experiments have
been performed separately for cross and long slices two reports have been
generated. The images have been reduced with an image reduction factor
of 11 (see Section 2.4.1 for more details) before building the gmap to speed
up the computation.

RF ND UW DD DDE TIF

0 92496 False 394.93 0.00± 0.00 1.00
0.25 62584 False 352.19 0.10± 0.08 1.48
0.25 62584 True 414.86 0.05± 0.06 1.94
0.5 31566 False 347.84 0.12± 0.12 2.81
0.5 31566 True 505.76 0.29± 0.26 3.63
1 730 False 44.25 0.88± 0.08 123.98
1 730 True 1121.51 1.75± 1.90 172.18

Table 1: Aggregate report for cross slices

28



RF ND UW DD DDE TIF

0 76704 False 403.64 0.00± 0.00 1.00
0.25 52276 False 355.56 0.11± 0.08 1.46
0.25 52276 True 418.73 0.04± 0.06 1.93
0.5 26260 False 337.45 0.16± 0.16 2.81
0.5 26260 True 482.54 0.21± 0.22 3.67
1 518 False 34.84 0.91± 0.08 130.67
1 518 True 921.35 1.25± 1.54 198.38

Table 2: Aggregate report for long slices

3.3.1 Quantitative analysis

Experiments have been performed with different gmap reduction factors.
Each row of Tables 1 and 2 contains the results, averaged over the number
of images analyzed, obtained by reducing the gmap by the reduction factor
indicated in RF. For each value of the RF experiments have been performed
twice, using or without using weights. When the RF is equal to zero it’s not
necessary to repeat the experiment since all weights are equal to 1 and so
there is no difference in using them. Results obtained with the RF equal to
zero are used as baseline to compute the error and the time improvement
factor. Results obtained for cross and long images are similar, so we
will not distinguish in this analysis.

Analyzing the results, we can see that the error tends to increase as
the number of darts decreases, while the time taken to compute the DT
decreases. Moreover, the value of the standard deviation is very high.
This means that the error can vary considerably depending on the sample.

Use weights We observe that when weights are not used the diffusion
distance value is lower than the baseline. This is understandable since when
weights are not used the length of the edges is underestimated as it is always
equal to 1. On the contrary when weights are used we could expect more
precise results because the algorithm takes into account the length of the
arc. Instead, the diffusion distance value is overestimated, and the error
increases reducing the number of darts. The result is explained by the fact
that reducing the number of darts lengthens the distance between
vertices in the gmap, because the number of edges is reduced, as depicted
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in Fig. 25.

Figure 25: It could happen that the distance between two points increases
when reducing the gmap

It seems that up to the RF of 0.25 the weighted algorithm is more ac-
curate, then the error grows faster than the unweighted one. The weighted
algorithm is also faster, but this may be due to a more efficient implementa-
tion than the unweighted algorithm.

In conclusion, it can be seen that up to a value of 0.5 for the reduction
factor, acceptable estimates of the diffusion distance can be obtained. When
the value is 1 we obtain a huge speed boost, but the error increases drastically.
Further experimentation could be performed with reduction factor values
between 0.5 and 1.

3.3.2 Qualitative analysis

In this section we will analyze contour plots and Voronoi diagrams ob-
tained for two samples (one cross and one long).

Cross sample The labeled cross slice is depicted in Fig. 26. In Figs. 27
and 28 are depicted respectively the contour plot and the Voronoi diagram
obtained with RF equal to 0. These images are used as reference to compare
the results obtained with RF greater than 0.

Speaking about contour plots, images confirm that when using weight the
DT is overestimated, while when not using weights it’s underestimated, as
depicted for example in Fig. 30. When RF is equal to 1 there are too few
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darts to obtain an acceptable estimate as can be seen in Fig. 31: the DT
is completely different from the one obtained without reducing the gmap at
all. Speaking about Voronoi diagrams, there are no difference is using or not
using weights. This is due to the fact that in this image the propagation
areas of the two stomata are not adjacent. When RF is equal to 1, similarly
to what happens for the contour plots, Voronoi diagrams are very unreliable.

Figure 26: Labeled cross slice
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Figure 27: Contour plot with RF equal to 0 of cross slice

Figure 28: Voronoi diagram with RF equal to 0 of cross slice

32



Figure 29: Contour plot with RF equal to 0.25 of cross slice

Figure 30: Contour plot with RF equal to 0.5 of cross slice
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Figure 31: Contour plot with RF equal to 1 of cross slice

Figure 32: Voronoi diagram with RF equal to 0.25 of cross slice
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Figure 33: Voronoi diagram with RF equal to 0.5 of cross slice

Figure 34: Voronoi diagram with RF equal to 1 of cross slice
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Long sample The labeled long slice is depicted in Fig. 35. In Fig. 36
and 37 are depicted respectively the contour plot and the Voronoi diagram
obtained with RF equal to 0 and are used as reference.

Regarding the long slice, similar observations can be made to those al-
ready made for the cross slice. However, in this case the propagation areas
of the stomata are adjacent and the Voronoi diagram obtained using weights
is different from the one obtained without using them. The difference is
not relevant up to RF equal to 0.5 (the ownership of a small portion of the
propagation area changes between the two stomata if weights are used). The
difference is instead observable with RF equal to 1.

Figure 35: Labeled long slice
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Figure 36: Contour plot with RF equal to 0 of long slice

Figure 37: Voronoi diagram with RF equal to 0 of long slice
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Figure 38: Contour plot with RF equal to 0.25 of long slice

Figure 39: Contour plot with RF equal to 0.5 of long slice
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Figure 40: Contour plot with RF equal to 1 of long slice

Figure 41: Voronoi diagram with RF equal to 0.25 of long slice
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Figure 42: Voronoi diagram with RF equal to 0.5 of long slice

Figure 43: Voronoi diagram with RF equal to 1 of long slice
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4 Conclusions

In this work two algorithms to compute the DT of a gmap have been
designed and implemented. Moreover, such algorithms have been used to
compute the diffusion distance and Voronoi diagrams to study the gas ex-
change process that occurs in plant leaves.

First, the problem of computing the DT of a gmap has been exposed,
analyzing the theoretical background and the current state of the art. In
fact, we analyzed the definition of gmap and its operations. Then we defined
and described the DT operator, analyzed how it can be generalized to work
with graphs and gmaps. Finally, the gas exchange process and the Watergate
project have been described.

Subsequently, the two solutions implemented to compute the DT have been
described. The first one is an algorithm that can be used to compute the
DT of unweighted gmap, and it’s an adaptation of the BFS algorithm for
graphs. Then we defined the second algorithm, used for weighted gmaps,
that is based on Dijkstra’s algorithm. Both algorithms have been naively
defined and then generalized to work with an arbitrary unit to propagate
distance (darts, or an arbitrary i-cell) and to manage obstacles. Then the
two algorithms have been used in a pipeline to compute the diffusion distance
and Voronoi diagrams. The pipeline has 6 steps. First the size of the image
can be reduced, then connected components have to be labeled and a gmap
has to be built from the image. The gmap can be optionally reduced. At this
point the DT is obtained, and the diffusion distance value can be computed.
Finally, Voronoi diagrams can be generated.

Experiments have been made to analyze the trade-off between accuracy
and speed in computing the diffusion distance reducing the gmap varying
the reduction factor. Results show that up to a value of 0.5 for the reduction
factor, acceptable estimates of the diffusion distance can be obtained, while
if the RF is equal to 1 the speed increases considerably, but the error is too
high. We tested both weighted and unweighted algorithms, observing that
neither works better in every situation. By using weights the value of the
distance transform is overestimated, while by not using them the value is
underestimated.
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5 Future work

Algorithms parallelization It could be possible to parallelize the algo-
rithms to improve performance on parallel architectures. In particular, we
have analyzed methods to parallelize the algorithm to compute the DT of
unweighted gmaps. For example the very efficient Jump Flooding Algo-
rithm (JFA) [12], that is defined for images, exploits the GPU and has a
constant time complexity in the number of seeds and a logarithmic time com-
plexity in the length of the side of the image. Unfortunately the JFA doesn’t
work in the presence of obstacles, so we cannot use this approach to compute
the DT, but maybe it could be possible to derive a similar algorithm with the
same time complexity. Instead, parallel breadth-first search algorithms
defined for graphs like the ones presented in [13] and [14] could be adapted
to work also for gmaps to compute the DT.

Efficient gmap implementation As has been written in Section 1.1 the
gmap implementation has been improved to especially reduce memory con-
sumption. For very demanding applications it can be considered to further
improve the implementation. One way to do that is to re-implement the
entire data structure or at least its core part using a more efficient pro-
gramming language, like C or C++. In this way not only the memory
consumption can be reduced, but also the time performance can be greatly
improved. As suggested by Prof. Jǐŕı Hlad̊uvka of PRIP Lab a way to do
that could be to define the interface in python and then write C functions
for the core parts, that can be called using Python bindings8.

Improve segmentation To better study the gas exchange process, it could
be useful to improve the segmentation of the images before computing the
DT. In fact, as can be observed in Fig. 23 cells in the raw image are distinct
while in the segmented one, cells, in black, form unique huge regions. We
want to get an image with separated cells, to be able to compute the
distance from stomata to all of them. At present, the contiguous regions
act as obstacles and prevent the distance from propagating throughout the
leaf.

8Ctypes — a foreign function library for python, https://docs.python.org/3/
library/ctypes.html, Accessed: 03-02-2022.
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Propagation speed Bottlenecks and the size of stomata can be used
to retrieve information about the propagation speed, that is another impor-
tant parameter analyzed when studying the gas exchange process. The DT
operator can be used also in this case, to obtain for example infomation about
size and geometry of the bottlenecks.
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