
Technical Report Pattern Recognition and Image Processing Group
Institute of Visual Computing and Human-Centered Technology
TU Wien
Favoritenstrasse 9-11/193-03
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801 - 18661
Fax: +43 (1) 58801 - 18697
E-mail: jiri@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-154 April 13, 2022

Implicit unbounded n-Gmaps for images:
A membrane-centric encoding using bit-flips

Jǐŕı Hlad̊uvka, Florian Bogner, and Walter G. Kropatsch

Abstract

The practical use of generalized combinatorial maps (n-Gmaps) to represent nD-images is
limited by large memory requirements. Implicit representations, if well designed, can come
to the rescue. Unbounded n-Gmaps are surrounded by an infinite background region that
renders pixel-oriented implicit representation schemes inconvenient. The contribution of
this paper is twofold. First, we propose an implicit, membrane-centric (rather than pixel-
centric) arrangement of darts in unbounded n-Gmaps. Second, we introduce involutions
based on bit flips, which allow efficient iterations in membranes and have the potential to
speed up computations. We have validated our approach on a variety of 2D and 3D images,
including those whose memory requirements would far exceed the main memory.

Implicit unbounded n-Gmaps for images:
A membrane-centric encoding using bit-flips

Jǐŕı Hlad̊uvka, Florian Bogner, and Walter G. Kropatsch

Pattern Recognition and Image Processing Group
Vienna University of Technology
https://www.prip.tuwien.ac.at

Abstract. The practical use of generalized combinatorial maps (n-Gmaps)
to represent nD-images is limited by large memory requirements. Implicit
representations, if well designed, can come to the rescue. Unbounded n-
Gmaps are surrounded by an infinite background region that renders
pixel-oriented implicit representation schemes inconvenient. The contri-
bution of this paper is twofold. First, we propose an implicit, membrane-
centric (rather than pixel-centric) arrangement of darts in unbounded
n-Gmaps. Second, we introduce involutions based on bit flips, which al-
low efficient iterations in membranes and have the potential to speed
up computations. We have validated our approach on a variety of 2D
and 3D images, including those whose memory requirements would far
exceed the main memory.

Keywords: combinatorial maps · involutions · bitwise operations

1 Introduction

Image representation by region adjacency graph (RAG), dual graph, or a com-
binatorial map is the necessary step for a range of graph-based image processing
applications and methods based on irregular hierarchies. Combinatorial maps
and especially their generalized versions, i.e., the n-Gmaps [3], are currently
the most versatile data structure to represent the content of higher dimensional
images.

The main limitation of image representation by n-Gmaps, however, are both
huge storage and high computational demands. For example, a 3-Gmap repre-
senting a moderately-sized 5123 (10243) volume requires 192 GB (1.6 TB) of
information. This is first infeasible to store and second time-demanding to pro-
cess.

Thanks to their regular nature it is of a little surprise that nD images can
be described by n-Gmaps implicitly (darts and the involutions computed on the
fly) rather than explicitly (stored in the memory). Nevertheless it still remains
important that such an implicit representation is (1) computationally efficient
and (2) well-suited for a subsequent simplification.

This paper contributes in two ways. First, we develop concept for efficient
involutions that are based on bit operations and may potentially benefit from

2 J. Hlad̊uvka et al.

instruction sets of modern processors or graphics cards. Second, we design an
implicit encoding scheme for unbounded n-Gmaps which is membrane-centric
(rather than pixel-centric) and which utilizes the new involutions for efficient
iterations within membranes.

2 Definitions

Definition 1 (Involution). Involution (or involutary permutation) on a finite
set D is a permutation α : D → D such that ∀d ∈ D : α(α(d)) = d.

In this work we aim at highly efficient involutions. Lemma 1 states that, for
special sets of integers, they can be achieved by bit flipping.

Lemma 1 (Bit-flip involution). Let b ∈ N, Z2b = {0, . . . 2b − 1} be a set of
first 2b non-negative integers representable by b bits, d ∈ Z2b , and let 0 ≤ i, j < b.
Let φi flip the i-th bit of d: φi(d) = d ⊕ 2i, where ⊕ denotes the bitwise XOR.
Then:

– φi is an involution on Z2b , and
– φi ◦ φj is an involution on Z2b .

Proof. It is easy to see that flipping a bit (two different bits) within Z2b is a
bijection, hence a permutation. To prove the involutionary property it is helpful
to realize that flipping a bit (two different bits) twice does not change the num-
ber. Formally, we resort to the associativity of the XOR (⊕):
φi(φi(d)) = (d⊕ 2i)⊕ 2i = d⊕ (2i ⊕ 2i) = d⊕ 0 = d, and similarly
φi(φj(φi(φj(d)))) = (((d⊕2j)⊕2i)⊕2j)⊕2i = d⊕((2j⊕2i)⊕(2j⊕2i)) = d⊕0 = d.

ut

This work is centered around representations of images by means of n-Gmaps [3]:

Definition 2 (n-Gmap). An n-dimensional generalized map (n-Gmap) with
n ∈ N0, is an (n + 2)-tuple G = (D, α0, . . . , αn) where:

– D is a finite set (of darts d);
– ∀i ∈ {0, . . . , n} : αi is an involution on D;
– ∀i ∈ {0, . . . , n− 2},∀j ∈ {i+ 2, . . . , n} : αi ◦ αj is an involution.

Recognition algorithms centered around images often incorporate the surround-
ing background region, i.e., an infinite n-cell. In this paper we refer to the cor-
responding n-Gmaps as unbounded and focus on their representation.

Figure 1 shows an example of an unbounded 2-Gmap representing a 2D
image. Here, the apparent visual difference to bounded maps (w/o the back-
ground) is the extra layer of darts wrapped around the image which bounds the
background 2-cell. The extra layer of darts violates the otherwise pixel-centric
regularity of bounded maps and complicates the design of implicit representation
of unbounded maps.

Implicit unbounded n-Gmaps for images 3

?

x0

-
x1

 0 = 00000-0-00

00000 (002, 0002) (0, 0)

1 = 00000-0-01

 2 = 00000-0-10 3 = 00000-0-11
4

=
00

00
0-

1-
00

5
=

00
00

0-
1-

01

6
=

00
00

0-
1-

10
7

=
00

00
0-

1-
11

 8 = 00001-0-00

00001 (002, 0012) (0, 1)

9 = 00001-0-01

 10 = 00001-0-10 11 = 00001-0-11

12
 =

 0
00

01
-1

-0
0

13
 =

 0
00

01
-1

-0
1

14
 =

 0
00

01
-1

-1
0

15
 =

 0
00

01
-1

-1
1

 16 = 00010-0-00

00010 (012, 0002) (1, 0)

17 = 00010-0-01

 18 = 00010-0-10 19 = 00010-0-11

20
 =

 0
00

10
-1

-0
0

21
 =

 0
00

10
-1

-0
1

22
 =

 0
00

10
-1

-1
0

23
 =

 0
00

10
-1

-1
1

 24 = 00011-0-00

00011 (012, 0012) (1, 1)

25 = 00011-0-01

 26 = 00011-0-10 27 = 00011-0-11
28

 =
 0

00
11

-1
-0

0
29

 =
 0

00
11

-1
-0

1

30
 =

 0
00

11
-1

-1
0

31
 =

 0
00

11
-1

-1
1

 32 = 00100-0-00

00100 (002, 0102) (0, 2)

33 = 00100-0-01

 34 = 00100-0-10 35 = 00100-0-11

36
 =

 0
01

00
-1

-0
0

37
 =

 0
01

00
-1

-0
1

38
 =

 0
01

00
-1

-1
0

39
 =

 0
01

00
-1

-1
1

 40 = 00101-0-00

00101 (002, 0112) (0, 3)

41 = 00101-0-01

 42 = 00101-0-10 43 = 00101-0-11

44
 =

 0
01

01
-1

-0
0

45
 =

 0
01

01
-1

-0
1

46
 =

 0
01

01
-1

-1
0

47
 =

 0
01

01
-1

-1
1

 48 = 00110-0-00

00110 (012, 0102) (1, 2)

49 = 00110-0-01

 50 = 00110-0-10 51 = 00110-0-11

52
 =

 0
01

10
-1

-0
0

53
 =

 0
01

10
-1

-0
1

54
 =

 0
01

10
-1

-1
0

55
 =

 0
01

10
-1

-1
1

 56 = 00111-0-00

00111 (012, 0112) (1, 3)

57 = 00111-0-01

 58 = 00111-0-10 59 = 00111-0-11

60
 =

 0
01

11
-1

-0
0

61
 =

 0
01

11
-1

-0
1

62
 =

 0
01

11
-1

-1
0

63
 =

 0
01

11
-1

-1
1

 64 = 01000-0-00

01000 (102, 0002) (2, 0)

65 = 01000-0-01

 66 = 01000-0-10 67 = 01000-0-11

68
 =

 0
10

00
-1

-0
0

69
 =

 0
10

00
-1

-0
1

70
 =

 0
10

00
-1

-1
0

71
 =

 0
10

00
-1

-1
1

 72 = 01001-0-00

01001 (102, 0012) (2, 1)

73 = 01001-0-01

 74 = 01001-0-10 75 = 01001-0-11

76
 =

 0
10

01
-1

-0
0

77
 =

 0
10

01
-1

-0
1

78
 =

 0
10

01
-1

-1
0

79
 =

 0
10

01
-1

-1
1

 80 = 01010-0-00

01010 (112, 0002) (3, 0)

81 = 01010-0-01

 82 = 01010-0-10 83 = 01010-0-11

 88 = 01011-0-00

01011 (112, 0012) (3, 1)

89 = 01011-0-01

 90 = 01011-0-10 91 = 01011-0-11

 96 = 01100-0-00

01100 (102, 0102) (2, 2)

97 = 01100-0-01

 98 = 01100-0-10 99 = 01100-0-11
10

0
=

01
10

0-
1-

00
10

1
=

01
10

0-
1-

01

10
2

=
01

10
0-

1-
10

10
3

=
01

10
0-

1-
11

 104 = 01101-0-00

01101 (102, 0112) (2, 3)

105 = 01101-0-01

 106 = 01101-0-10 107 = 01101-0-11

10
8

=
01

10
1-

1-
00

10
9

=
01

10
1-

1-
01

11
0

=
01

10
1-

1-
10

11
1

=
01

10
1-

1-
11

 112 = 01110-0-00

01110 (112, 0102) (3, 2)

113 = 01110-0-01

 114 = 01110-0-10 115 = 01110-0-11

 120 = 01111-0-00

01111 (112, 0112) (3, 3)

121 = 01111-0-01

 122 = 01111-0-10 123 = 01111-0-11

 128 = 10000-0-00

10000 (002, 1002) (0, 4)

129 = 10000-0-01

 130 = 10000-0-10 131 = 10000-0-11

13
2

=
10

00
0-

1-
00

13
3

=
10

00
0-

1-
01

13
4

=
10

00
0-

1-
10

13
5

=
10

00
0-

1-
11

14
0

=
10

00
1-

1-
00

14
1

=
10

00
1-

1-
01

14
2

=
10

00
1-

1-
10

14
3

=
10

00
1-

1-
11

 144 = 10010-0-00

10010 (012, 1002) (1, 4)

145 = 10010-0-01

 146 = 10010-0-10 147 = 10010-0-11

14
8

=
10

01
0-

1-
00

14
9

=
10

01
0-

1-
01

15
0

=
10

01
0-

1-
10

15
1

=
10

01
0-

1-
11

15
6

=
10

01
1-

1-
00

15
7

=
10

01
1-

1-
01

15
8

=
10

01
1-

1-
10

15
9

=
10

01
1-

1-
11

 192 = 11000-0-00

11000 (102, 1002) (2, 4)

193 = 11000-0-01

 194 = 11000-0-10 195 = 11000-0-11

19
6

=
11

00
0-

1-
00

19
7

=
11

00
0-

1-
01

19
8

=
11

00
0-

1-
10

19
9

=
11

00
0-

1-
11

20
4

=
11

00
1-

1-
00

20
5

=
11

00
1-

1-
01

20
6

=
11

00
1-

1-
10

20
7

=
11

00
1-

1-
11

 208 = 11010-0-00

11010 (112, 1002) (3, 4)

209 = 11010-0-01

 210 = 11010-0-10 211 = 11010-0-11

Fig. 1. Example of dart numbering for an unbounded 2-Gmap representing a 3 × 5
image, where pixels follow the z-curve order (dotted line connecting points). Binary
numbers along and across edges demonstrate the flip-involutions φ0 and φ2 Binary
numbers next to anchor points show conversion between the z-code and coordinates.
Best viewed magnified and in color.

In a search for implicit representations we propose a membrane-centric (as
opposed to pixel-centric) approach. Such a membrane-centric approach may ad-
ditionally become beneficial in applications based on connected component la-
beling [1] or irregular n-D image pyramids [9] where membranes are iteratively
removed and simplified.

2.1 Membranes

In many applications (n− 1)-dimensional manifolds are considered as the inter-
faces of “exchange” between two adjacent n-dimensional cells [5]. These man-
ifolds will be referred to as membranes for short. In the context of n-Gmaps,
membranes are (n− 1)-cells and are defined with the help of orbits [3]:

Definition 3 (Orbit). Let G = (D, α0, . . . , αn) be an n-Gmap. Let S ⊆ {α0, . . . , αn}.
The orbit 〈S〉(d) of a dart d ∈ D is the set of all darts which can be reached,
starting from d, by applying any composition of (inverses of) permutations of S.

4 J. Hlad̊uvka et al.

Definition 4 (Membrane). Let 1 < n ∈ N, G = (D, α0, . . . , αn) be an n-
Gmap and d ∈ D. A membrane associated with dart d is an orbit M(d) =
〈α0, . . . , αn−2, αn〉(d).

In the context of images represented by unbounded n-Gmaps, all membranes are
(n− 1)-hypercubes and it can be easily shown they consists of |M | = 2n(n− 1)!
darts. Membranes for 2D (resp. 3D) images are displayed in Fig. 1 (resp. Fig. 2)
as differently coloured groups of 4 (resp. 16) darts.

In this paper we consider the membranes (rather than the n-dimensional
pixels) to be the basic building blocks of the unbounded n-Gmap. Involution
αn−1 will be used to sew the membranes together.

3 Membrane-centric dart numbering

While n-Gmap’s set of darts D can be any finite set of abstract objects we aim
at non-negative integer representation of darts. The main motivation for such a
representation is the utilizations of the introduced bit-flip involutions, as detailed
in section 4.

We first design each dart as an (n + 2) tuple (x0, . . . , xn−1, a, i) comprised
of n voxel coordinates ~x, axis index a, and in-membrane index i. Later we show
how to binary-encode such tuples to a subset of non-negative integers D ⊂ N0.

3.1 Darts as tuples

Each membrane is orthogonal to one of the n coordinate axes a ∈ {0 . . . n −
1} and, in an infinitely large lattice, would be incident to two n-cells. From
these two, we associate the membrane with the dominating n-cell, i.e, cell that
has one of its coordinates larger by one. We will refer to the coordinates ~x =
(x0, . . . , xn−1) of this cell as the anchor coordinates of the membrane.

This way n membranes will be anchored to every pixel center whereas only
single membrane will be anchored to out-of the image pixels bounding the scene
from the “dominant” side. This is illustrated in Figure 1 for n = 2. Here, two
membranes are anchored to each of the 3 × 5 pixels whereas one membrane is
anchored to each of 3 + 5 out-of-scene pixels found to the right and bottom of
the image.

The tuple (x0, . . . , xn−1, a) can be thought of as the unique membrane iden-
tifier. To identify darts withing membranes, this tuple can be naturally extended
by an in-membrane index i ∈ {0, . . . , |M | − 1}.

In summary, the (n+ 2) tuples ~d = (x0, . . . , xn−1, a, i) representing darts are
comprised of the following components:

1. n anchor coordinates ~x = (x0, . . . , xn−1) of the membrane,

2. axis number a ∈ {0, . . . , n− 1} the membrane is orthogonal to, and

3. in-membrane index i ∈ {0, . . . , |M | − 1} = {0, . . . , 2n(n− 1)!− 1}.

Implicit unbounded n-Gmaps for images 5

3.2 Darts as binary codes

There are numerous ways to bijectively1 map integer tuples ~d ∈ Nn+2
0 to non-

negative integers d ∈ D ⊂ N0. To do so using binary codes, it is sufficient to
reserve a fixed, sufficiently wide block of bits for each component of the tuple.
Darts of n-Gmaps representing an (m0 × m1 × . . . × mn−1) image require n
blocks to encode the n anchors, demanding respectively dlog2(mi + 1)e bits2,
followed by one dlog2 ne-bit block to encode the axis index, and one block of
dlog2(2n(n − 1)!)e = n + dlog2(n − 1)!e bits to encode the 2n(n − 1)! possible
in-membrane indices i. Table 1 shows examples of how many trailing bits are
needed for a and i for dimensions 2 to 6.

As an example consider a 2-Gmap representing a 3 × 5 image. The four
blocks of ~d need 2, 3, 1, and 2 bits, respectively. 3rd dart of 1st membrane
of pixel (0,2) is represented by a 4-tuple ~d = (0, 2, 1, 3) = (002, 0102, 12, 112)
which after concatenation yields dart code d = 00 010 1 112 = 23. While the

Table 1. How many trailing bits are needed?

n dimensions 2 3 4 5 6
dlog2 ne bits for axis index a 1 2 2 3 3

2n(n− 1)! |M | darts in each membrane 4 16 96 768 7680
dlog2(2n(n− 1)!)e bits for in-membrane index i 2 4 7 10 13

concept introduced above can be efficiently implemented by bit concatenation
it inevitably leads to a linear (e.g., column-by-column, row-by-row) ordering
of membranes (and thus of its darts). This may pose challenges in distributed
processing of huge images [2] as the different membranes of one voxel may get
largely distinct numbers. To overcome this, and to gain a better locality we resort
to space-filling curves. From a catalogue of choices (Hilbert, Pean, Morton [8]) we
choose the latests one, a.k.a the z-order curve [7], see Figure 1. The reason for this
curve ist that its indices can be computed implicitly (rather than recursively):
it is sufficient to replace bit-concatenation of the anchors by bit-interleaving:

2D Example Encoding the 3rd dart of 1st-axis membrane of pixel (0,2) = (002,
0102) in a 2-Gmap following the z-ordering of pixels (cf. Fig. 1) yields:

~d = (0, 2, 1, 3) d =
(membrane id︷ ︸︸ ︷

00100︸ ︷︷ ︸
(x0 x1)

1︸︷︷︸
a

11︸︷︷︸
i

)
2

= 39 (1)

1 To express the two representations of a dart are equivalent we put d ≡ ~d.
2 (mi + 1) is needed because of the extra dominant-side, out-of-image anchors.

6 J. Hlad̊uvka et al.

3D example Encoding the 14th dart of 2nd-axis membrane of voxel (7,5,3) =
(1112,1012,0112) in a 3-Gmap following the z-ordering of voxels yields:

~d = (7, 5, 3, 2, 14) d =
(membrane id︷ ︸︸ ︷

110101111︸ ︷︷ ︸
(x0 x1 x2)

10︸︷︷︸
a

1101︸︷︷︸
i

)
2

= 27629 (2)

Without loss of generality we assume two routines, encode anchor() and
decode anchor(), that bring the anchor coordinates to the corresponding bit
positions and back. Both the linear and the z-code alternatives can be imple-
mented using bit shifts and masking or, on modern processors, by leveraging the
pdep and pext instructions [8].

4 Involutions

In this section our aim is to show (1) how the membrane involutions can be effi-
ciently performed by bit operations and (2) how the membrane-sewing involution
can be efficiently performed by means of lookup tables.

4.1 Membrane-internal involutions α0, . . . , αn−2, αn

All membrane involutions α0, . . . , αn−2, αn are restricted to membrane darts of
a fixed anchor ~x, fixed axis a, and index i ∈ {0, . . . , |M | − 1}.

Since membranes in 2D (3D) images consist of |M | = 4 = 22 (|M | = 16 = 24)
darts (cf. Tab. 1), i ∈ Z4 (i ∈ Z16), and we may exploit the bit-flip involutions
φ of Lemma 1 in the design of membranes.

2D images : Referring to Fig. 1 one possibility is to put:

α0(d) ≡ α0(~d) = α0((~x, a, i)) = (~x, a, φ0(i)) = (~x, a, i⊕ 012) ≡ d⊕ 012 (3)

α2(d) ≡ α2(~d) = α2((~x, a, i)) = (~x, a, φ1(i)) = (~x, a, i⊕ 102) ≡ d⊕ 102 (4)

The third requirement of Definition 2 for 2-Gmaps, namely that α0 ◦ α2 is also
an involution follows from Lemma 1.

3D images : Similar to 2D, we choose φ0 for α0 and the leftmost flip φ3 for αn.
Letting φ1 for α1 would not, however, result in 2-hypercubes. Instead we need
to find a different (optimally bitwise3) involution α1 to sew the 1-cells (Fig.2):

α0(d) = φ0(d) = d⊕ 00012 (5)

α1(d) = d⊕ 01112 ⊕ (d� 1 & 01002)⊕ (d� 2 & 01002) (6)

α3(d) = φ3(d) = d⊕ 10002 (7)

Again, the requirements of Definition 2 for 3-Gmaps must be verified. α0 ◦α3 =
φ0 ◦ φ3 is an involution due to Lemma 1. Verification that both α1 and α1 ◦ α3

are involutions on Z16 can be done by enumeration ∀i ∈ Z16 = {0 . . . 15} and by
applying mechanism analogous to Equations (3) and (4).

3 “&” stands for “bitwise AND”; “�” stands for “left bit-shift”.

Implicit unbounded n-Gmaps for images 7

4.2 Membrane-sewing involution αn−1

In terms of mutual orientation there are many possible ways to embed the
membranes on the n-dimensional lattice while they are sewn. A natural re-
striction is to demand axis-wise consistency, meaning parallel membranes are
oriented in the same way. What remains is a specification of (n − 1) αn−1

sews to determine how the n orthogonal membranes anchored at the origin
(0, 0, ..., 0) are mutually αn−1-sewn. This choice, which is a free parameter,
then naturally propagates across the whole image and determines all remain-
ing membrane sews αn−1. In this paper our choice for 2D images is deter-
mined by α1(0, 0, 0, 0) = (0, 0, 1, 0) and for the 3D images (cf. Fig. 2, left) by
α2(0, 0, 0, 0, 0) = (0, 0, 0, 1, 7), α2(0, 0, 0, 1, 0) = (0, 0, 0, 2, 7).

In contrast to membranes where the orbit-involutions only change the in-
membrane index i (and thus only the rightmost bits), the membrane-sewing in-
volutions αn−1 become more involved: they additionally may change the axis in-
dex a (when sewing two orthogonal membranes) and may decrement/increment
anchor coordinates x (when sewing two membranes of different anchors).

Furthermore it turns out that three sewing scenarios s ∈ {0, 1, 2} are needed
in unbounded n-Gmaps to distinguish whether two αn−1-sewn darts belong to
one of the many bounded n-cells (s = 2, cf. Fig.2, right) or to the only infinite
(background) n-cell. Within the background cell it is furthermore necessary to
distinguish whether the two sewn membranes are parallel (s = 1, Fig.2, middle)
or orthogonal (s = 0, Fig.2, left).

Sewing scenarios : For dart ~d = (x0, . . . , xn−1, a, i) of a fixed axis a and
index i two nested anchor tests are needed to determine if it belongs to the
background cell and, if so, whether the sew is parallel or orthogonal. The first test
compares the a-th anchor coordinate xa to the bound 0 (resp. ma). The second
test compares an additional c-th coordinate (c 6= a) xc to 0 (resp. mc− 1). Both
c and its corresponding bound mc are uniquely determined once the size of the
image is known, and both the membrane-involutions, and the mutual membrane
orientations are fixed.

An efficient branchless (w/o if-then-else statements) pattern-matching to de-
termine s can be implemented using one coordinate-wise XOR followed by two
AND masking operations. Such masks can be precomputed and stored in lookup
table LUT_XOR and two lookup tables LUT_AND all indexed by [a, i].

As an example, consider the bottom-right vertical darts (∗, ∗, 12, 112) in Fig-
ure 1 representing an m0 × m1 = 3 × 5 image. Scenario (s = 0) must match
(2, 5, 12, 112) = (m0 − 1,m1, 12, 112). If this fails the edge scenario (s = 1) is
tested by matching (∗, 5, 12, 112) = (∗,m1, 12, 112). If this fails, too, the dart is
α1-sewn in the interior scenario s = 2.

αn−1 lookup tables Once the mutual orientations are fixed we pre-compute,
for efficiency reasons, lookup tables indexed by [a, i, s] that store, for each axis
a, in-membrane index i, and scenario s, (n + 2) entries to determine how αn−1

8 J. Hlad̊uvka et al.

updates dart’s anchor by n increments ∆xa and specifies both the new axis a∗

and the new in membrane index i∗. Such lookup tables are essentially tensors of
size n× |M | × 3× (n+ 2). To show them in this paper (cf. Tables 2 and 3) they
are reshaped to 2D tables of sizes n|M | × 3(n+ 2).

In the following we detail α1-LUT for 2-Gmaps and α2-LUT for 3-Gmaps.

α1-LUT for 2D images is precomputed in Table 2. For dart d in its tuple
notation ~d = (x0, x1, a, i), the scenario s is first identified (as explained later)
and update entries (∆x0, ∆x1, a

∗, i∗) are found in α1-LUT [a, i, s]. Then, the
membrane sewing α1 is computed as follows (cf. Algorithm 1, alpha 1()):

α1(~d) = α1((x0, x1, a, i)) = (x0 +∆x0, x1 +∆x1, a
∗, i∗) (8)

To be an involution, α1(α1(~d)) = ~d must hold. This can be verified by enumera-

tion for every a ∈ {0, 1}, i ∈ {0, 1, 2, 3}, and s ∈ {0, 1, 2}. Let α1(~d) = ~e and the
corresponding update entries of ~e are (∆x∗0, ∆x

∗
1, a

∗∗, i∗∗). Then, it is sufficient to
verify that the coordinate updates ∆xa

cancel out (∆x0+∆x∗0 = 0 = ∆x1+∆x∗1)
and that (a∗∗, i∗∗) = (a, i).

As an example consider the axis a = 0 index i = 3 = 112 sewn in scenario
s = 0: (x0, x1, 0, 112)

α1−→ (x0−1, x1+1, 1, 112)
α1−→ (x0−1+1, x1+1−1, 0, 112) =

(x0, x1, 0, 112).

α2 LUT for 3D images is precomputed in Table 3. For dart d in its tuple
notation ~d = (x0, x1, x2, a, i), the scenario s is first identified and update entries
(∆x0, ∆x1, ∆x2, a

∗, i∗) are found in α2-LUT [a, i, s]. Then, the membrane sewing
α2 is computed as follows (cf. Algorithm 2, alpha 2()):

α2(~d) = α2((x0, x1, x2, a, i)) = (x0 +∆x0, x1 +∆x1, x2 +∆x2, a
∗, i∗) (9)

To satisfy the definition of 3-Gmap, both α2 and α0 ◦ α2 must be involutions.

Referring to Table 3, proof by enumeration for α2 is an analogy to α1 in 2D
case: for fixed scenario s ∈ {0, 1, 2} we need to verify that coordinate updates
∆xa cancel out and that (a∗∗, i∗∗) = (a, i).

α0 ◦ α2: Neither scenario index s nor any of the ∆xi is affected by α0. It is
thus sufficient to verify by enumeration (∀a ∈ {0, 1, 2}, ∀i ∈ {0, . . . , 15}) that
∆xa under α0 ◦α2 cancel out, and that α0 ◦α2 restricted to the rightmost 6 bits
is an involution.

As an example consider axis a = 0 = 002 indices i = 7 = 01112 sewn
in interiors s = 2 (cf. Fig. 2, right), with causes increase/decrease of anchor’s

x0: (x0, x1, x2, 002, 7 = 01112)
α2−→ (x0 − 1, x1, x2, 102, 13 = 11012)

α0−→ (x0 −
1, x1, x2, 102, 12 = 11002)

α2−→ (x0−1+1, x1, x2, 002, 6 = 01102)
α0−→ (x0, x1, x2, 002, 7 =

01112) .

Implicit unbounded n-Gmaps for images 9

5 Summary and validation

As soon as the sizes (m0,m1) (resp. (m0,m1,m2)) of a 2D (resp. 3D) image are
known the scenario-mask tables (LUT XOR, LUT AND) are precomputed and
LUT A1 (resp. LUT A2) is loaded from Tab. 2 (resp Tab. 3).

Algorithm 1 (resp. Algorithm 2) summarizes4 the implicit, membrane-centric,
and branch-less involutions for 2D (resp. 3D) images. For dart d, lines 1–3, cor-
respond to Equations (3), (4) (resp. (5), (6), (7)). Line 6 computes a combined
index [a, i] to retrieve entries from lookup Tab. 2 (resp. Tab. 3). Lines 9,10 com-
pute the scenario index s. Line 12 first converts d to its anchor ~x and updates it
by the corresponding ∆ entries. Line 13 converts the anchor back and appends
the trailing part, i.e, the new a∗ and i∗, yielding αn−1(d), which is returned.

As a proof of concept we have successfully performed two tests for a multitude
of 2D and 3D images of random sizes (m0, . . . ,mn−1) restricted to 1 ≤ ma ≤
64. First test checked if functions alpha_i and their necessary compositions are
involutions consistent with Definition 2. Second test compared the numbers of
i-cells ∀i ∈ {0, ..., n} to the expected ground truths computed from image sizes.5

To prove the usefulness of implicit encoding we have successfully run both
tests for an additional 5123 3D image (for which generic approaches such as [4]
would require a storage of at least 192 GB) on a computer with only 32 GB of
RAM.

Table 2. α1 lookup table for 2-Gmaps

last 3 bits s = 0 : 270◦-sew, BG cell s = 1 : 180◦-sew, BG cell s = 2 : 90◦-sew, interior cell
a i ∆x0 ∆x1 a∗ i∗ ∆x0 ∆x1 a∗ i∗ ∆x0 ∆x1 a∗ i∗

0 = 0-002 4 = 1-002 – 1 = 0-012 – 7 = 1-112
1 = 0-012 + 6 = 1-102 + 0 = 0-002 – + 5 = 1-012
2 = 0-102 – 5 = 1-012 – 3 = 0-112 6 = 1-102
3 = 0-112 – + 7 = 1-112 + 2 = 0-102 + 4 = 1-002
4 = 1-002 0 = 0-002 – 5 = 1-012 – 3 = 0-112
5 = 1-012 + 2 = 0-102 + 4 = 1-002 + – 1 = 0-012
6 = 1-102 – 1 = 0-012 – 7 = 1-112 2 = 0-102
7 = 1-112 + – 3 = 0-112 + 6 = 1-102 + 0 = 0-002

6 Conclusions and future work

We proposed a membrane-centric approach to implicit representation of images
by means of unbounded n-Gmaps. For 2D and 3D images, we have proposed
sets of efficient involutions that are based on bit-flips and additional bit-tricks
(for membranes) and on precomputed lookup tables (for membrane sews). This
decimates the huge storage requirements needed in generic approaches such as
[4, 9].

4 Python is preferred over pseudocode to demonstrate the usage of bitwise operations.
Symbols &, |, ^, and << denote binary AND, OR, XOR, and left bit-shifts.

5 The number of n-cells including the background cell equals to 1 +
∏
ma.

10 J. Hlad̊uvka et al.

Table 3. α2 lookup table for 3-Gmaps

last 6 bits s = 0 : 270◦-sew, BG cell s = 1 : 180◦-sew, BG cell s = 2 : 90◦-sew, interior cell
a i ∆x0∆x1∆x2 a∗ i∗ ∆x0∆x1∆x2 a∗ i∗ ∆x0∆x1∆x2 a∗ i∗

0 = 00-00002 23 = 01-01112 – 5 = 00-01012 – 26 = 01-10102
1 = 00-00012 22 = 01-01102 – 4 = 00-01002 – 27 = 01-10112
2 = 00-00102 + 40 = 10-10002 + 7 = 00-01112 – + 37 = 10-01012
3 = 00-00112 + 41 = 10-10012 + 6 = 00-01102 – + 36 = 10-01002
4 = 00-01002 + 30 = 01-11102 + 1 = 00-00012 – + 19 = 01-00112
5 = 00-01012 + 31 = 01-11112 + 0 = 00-00002 – + 18 = 01-00102
6 = 00-01102 33 = 10-00012 – 3 = 00-00112 – 44 = 10-11002
7 = 00-01112 32 = 10-00002 – 2 = 00-00102 – 45 = 10-11012
8 = 00-10002 – 18 = 01-00102 – 13 = 00-11012 31 = 01-11112
9 = 00-10012 – 19 = 01-00112 – 12 = 00-11002 30 = 01-11102

10 = 00-10102 – + 45 = 10-11012 + 15 = 00-11112 + 32 = 10-00002
11 = 00-10112 – + 44 = 10-11002 + 14 = 00-11102 + 33 = 10-00012
12 = 00-11002 – + 27 = 01-10112 + 9 = 00-10012 + 22 = 01-01102
13 = 00-11012 – + 26 = 01-10102 + 8 = 00-10002 + 23 = 01-01112
14 = 00-11102 – 36 = 10-01002 – 11 = 00-10112 41 = 10-10012
15 = 00-11112 – 37 = 10-01012 – 10 = 00-10102 40 = 10-10002
16 = 01-00002 39 = 10-01112 – 21 = 01-01012 – 42 = 10-10102
17 = 01-00012 38 = 10-01102 – 20 = 01-01002 – 43 = 10-10112
18 = 01-00102 + 8 = 00-10002 + 23 = 01-01112 + – 5 = 00-01012
19 = 01-00112 + 9 = 00-10012 + 22 = 01-01102 + – 4 = 00-01002
20 = 01-01002 + 46 = 10-11102 + 17 = 01-00012 – + 35 = 10-00112
21 = 01-01012 + 47 = 10-11112 + 16 = 01-00002 – + 34 = 10-00102
22 = 01-01102 1 = 00-00012 – 19 = 01-00112 – 12 = 00-11002
23 = 01-01112 0 = 00-00002 – 18 = 01-00102 – 13 = 00-11012
24 = 01-10002 – 34 = 10-00102 – 29 = 01-11012 47 = 10-11112
25 = 01-10012 – 35 = 10-00112 – 28 = 01-11002 46 = 10-11102
26 = 01-10102 + – 13 = 00-11012 + 31 = 01-11112 + 0 = 00-00002
27 = 01-10112 + – 12 = 00-11002 + 30 = 01-11102 + 1 = 00-00012
28 = 01-11002 – + 43 = 10-10112 + 25 = 01-10012 + 38 = 10-01102
29 = 01-11012 – + 42 = 10-10102 + 24 = 01-10002 + 39 = 10-01112
30 = 01-11102 – 4 = 00-01002 – 27 = 01-10112 9 = 00-10012
31 = 01-11112 – 5 = 00-01012 – 26 = 01-10102 8 = 00-10002
32 = 10-00002 7 = 00-01112 – 37 = 10-01012 – 10 = 00-10102
33 = 10-00012 6 = 00-01102 – 36 = 10-01002 – 11 = 00-10112
34 = 10-00102 + 24 = 01-10002 + 39 = 10-01112 + – 21 = 01-01012
35 = 10-00112 + 25 = 01-10012 + 38 = 10-01102 + – 20 = 01-01002
36 = 10-01002 + 14 = 00-11102 + 33 = 10-00012 + – 3 = 00-00112
37 = 10-01012 + 15 = 00-11112 + 32 = 10-00002 + – 2 = 00-00102
38 = 10-01102 17 = 01-00012 – 35 = 10-00112 – 28 = 01-11002
39 = 10-01112 16 = 01-00002 – 34 = 10-00102 – 29 = 01-11012
40 = 10-10002 – 2 = 00-00102 – 45 = 10-11012 15 = 00-11112
41 = 10-10012 – 3 = 00-00112 – 44 = 10-11002 14 = 00-11102
42 = 10-10102 + – 29 = 01-11012 + 47 = 10-11112 + 16 = 01-00002
43 = 10-10112 + – 28 = 01-11002 + 46 = 10-11102 + 17 = 01-00012
44 = 10-11002 + – 11 = 00-10112 + 41 = 10-10012 + 6 = 00-01102
45 = 10-11012 + – 10 = 00-10102 + 40 = 10-10002 + 7 = 00-01112
46 = 10-11102 – 20 = 01-01002 – 43 = 10-10112 25 = 01-10012
47 = 10-11112 – 21 = 01-01012 – 42 = 10-10102 24 = 01-10002

Implicit unbounded n-Gmaps for images 11

6
7

5

4

0
1

2

3
4

5

0
1
2

34
5
6

7 0
1
2

34
5
6

7

0
1
2

34
5
6

7

0
1
2

34
5
6

7

0
1
2

34
5
6

7

0
1
2

34
5
6

712
13 10

11

x0
x1 x2

2
3

11

10

9
8

14

15

9

8

12

13

14
15

s = 0 s = 1 s = 2

Fig. 2. Sewing scenarios for 3-Gmaps: α2 maps darts (x0, x1, x2, 0, 7) of axis a = 0
and membrane index i = 7 differently in three sewing scenarios s to (x0, x1, x2, 2, 0),
(x0, x1, x2−1, 0, 2), and (x0−1, x1, x2, 2, 13), respectively. Compare to line 7 of Tab 3.

Algorithm 1 1D Membrane (α0, α2), and membrane-sewing (α1) involutions

1 def alpha_0 (d): return d ^ 0b01

2 def alpha_2 (d): return d ^ 0b10

3

4 def alpha_1 (d):

5 # mask out the axis a and the in-membrane index i. ai = 0...7

6 ai = d & 0b111

7

8 # scenario index

9 s = (d ^ LUT_XOR_2D [ai] & LUT_AND_2D [ai,0]) > 0

10 s += (d ^ LUT_XOR_2D [ai] & LUT_AND_2D [ai,1]) > 0

11

12 x0,x1 = decode_anchor_2D (d) + LUT_A1 [ai,s,:2] # coords update

13 return encode_anchor_2D (x0,x1) | LUT_A1 [ai,s, 2] # encode + new a,i

Algorithm 2 2D Membrane (α0, α1, α3), and membrane-sewing (α2) involutions

1 def alpha_0 (d): return d ^ 0b0001

2 def alpha_1 (d): return d ^ 0b0111 ^ (d << 1 & 0b0100) ^ (d << 2 & 0b0100)

3 def alpha_3 (d): return d ^ 0b1000

4 def alpha_2 (d):

5 # mask out the axis a and the in-membrane index i. ai = 0...47

6 ai = d & 0b111111

7

8 # scenario index

9 s = (d ^ LUT_XOR_3D [ai] & LUT_AND_3D [ai,0]) > 0

10 s += (d ^ LUT_XOR_3D [ai] & LUT_AND_3D [ai,1]) > 0

11

12 x0,x1,x2 = decode_anchor_3D (d) + LUT_A2 [ai,s,:3] # coords update

13 return encode_anchor_3D (x0,x1,x2) | LUT_A2 [ai,s, 3] # encode + new a,i

12 J. Hlad̊uvka et al.

The membrane centric concept can naturally be extended to dimensions be-
yond 3D. For an implementation, however, we will be confronted with several
currently unresolved issues. First, both in-membrane numbering and membrane-
sewing in this work is based on an ad-hoc design. Such an approach quickly finds
its limits in higher dimensions and we’ll need to resort to a more principled or-
ganization of darts in the (n − 1)-d membranes as well as to more principled
membrane sews. To this end we intend to find inspiration in Cartesian products
of n-Gmaps [6]. Also, for n > 3, the number of membrane darts |M | is not a
power of two (cf. Tab. 1) and Lemma 1 cannot be applied out of the box: flipping
the left-most membrane bit (as done in this paper for n = 2 and n = 3) would
break the permutation. We’ll need to carefully generalize the Lemma to identify
which bits in higher dimensional membranes can be securely flipped. Finally it
is currently unclear if bit tricks like the one used to define α1 in 3D can be
easily designed in higher dimensions or whether their replacement by additional
lookup tables would be a better alternative.

One result of this work is a set of algorithms which are currently in their
proof-of-concept state. For a fair time-performance comparisons with generic
implementation [4] we plan a C++ port.

It will be of interest to see how concepts introduced in this paper can be
applied when removing the membranes during connected component labeling or
construction of image pyramids. To maintain the dart set for instance, one bit of
information is required to mark absence/presence of all darts of one membrane.
We will also need to study which data structures are appropriate to maintain
membrane sews αn−1 wherever membranes are removed.

References

1. M. Banaeyan, D. Batavia, and W. G. Kropatsch. Removing redundancies in binary
images. In International Conference on Intelligent Systems and Patterns Recogni-
tion, 2022 (to appear).

2. G. Damiand, A. Gonzalez-Lorenzo, F. Zara, and F. Dupont. Distributed combina-
torial maps for parallel mesh processing. Algorithms, 11(7), August 2018.

3. G. Damiand and P. Lienhardt. Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press, 2014.

4. G. Damiand and M. Teillaud. A generic implementation of dD combinatorial maps
in CGAL. In International Meshing Roundtable, volume 82, pages 46–58, 2014.

5. B. Lane. Cell Complexes: The Structure of Space and the Mathematics of Modularity.
PhD thesis, University of Calgary, 2015.

6. P. Lienhardt, X. Skapin, and A. Bergey. Cartesian product of simplicial and cellu-
lar structures. International Journal of Computational Geometry & Applications,
14(03):115–159, 2004.

7. G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

8. M. Perdacher, C. Plant, and C. Böhm. Improved data locality using Morton-order
curve on the example of LU decomposition. In IEEE International Conference on
Big Data, pages 351–360, 2020.

9. F. Torres and W. G. Kropatsch. Canonical encoding of the combinatorial pyramid.
In Proceedings of the Computer Vision Winter Workshop, pages 118–125, 2014.

