
Technical Report Pattern Recognition and Image Processing Group
Institute of Visual Computing and Human-Centered Technology
TU Wien
Favoritenstrasse 9-11/193-03
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801 - 18661
Fax: +43 (1) 58801 - 18697
E-mail: e12133404@student.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-155 October 3, 2022

Learning-based Leaf Cell Instance Segmentation

Fabian Wolf
supervised by Jiří Hladůvka

Abstract

Due to climate change, variability of temperature and rainfall increases. Based on this,
understanding changes in leaf anatomy and function under those conditions is desirable.
We aim to advance the understanding of changes in leaf anatomy by investigating deep-
learning based instance segmentation of leaf cells. Accordingly, state-of-the-art (cell) in-
stance segmentation methods are discussed. Based on the discussion, we investigated 2D-
and 3D-Cellpose with and without additional semantic information. In general, we found
that Cellpose is not suited well for the task, but might be suited for segmenting roundish
(sponge and palisade) cells. We conclude that further research is required and propose to
investigate embedding-based approaches.

1 Introduction
Against the backdrop of climate change, increase in variability of tempera-
ture and rainfall seems inevitable. Globally, for many regions, this leads to
extreme environmental conditions beyond their previous capacity to adapt
[1]. Based on this, understanding changes in leaf anatomy under those condi-
tions and the resulting changes in function is desirable. Changes in anatomy
can be investigated by segmenting the individual leaf cells. Segmenting the
individual leaf cells allows to localize where the changes in volume, diameter,
length, etc. occur. Based on the location of the changes in the anatomy,
the biological function might be altered. Based on this, models to simulate
photosynthesis under these changes can be developed. This is part of the
Watergate research project 1. Furthermore, segmenting the individual leaf
cells is not just limited to this task. For example, segmenting the individual
leaf cells during growth periods can help to examine how anatomical struc-
tures are formed. Hence, investigating the segmentation of individual leaf
cells is expedient.

Our goal is to segment the individual cells of 3D-leaf-scans. Cell segmen-
tation, or more general instance segmentation, is done by pixel/voxel-wise
classification. Instance segmentation classifies such that pixels/voxels of the
same instance are assigned the same label. The assigned labels may be cho-
sen arbitrarily the only constraint is that pixels/voxels of the same instance
have the same label [2]. This creates an image/3D-scan like output which is
referred to as mask.

3D-scans are hard to visualize as a whole. Accordingly, in this work, a 3D-
scan is partially visualized by 2D-slices a long the x,y, or z-axis. An example
is shown in Figure 1: here the cells are cluttered, vary in shape and size, and
some are really small. Furthermore, the number of instances varies between
leafs.

Dense labeling 3D-scans is a labor intensive task. Therefore, we only got
one sparsely labeled Micro-CT scan. Our working group used the sparsely
labeled scan to create a densely labeled scan for instance segmentation. This
densely labeled scan for instance segmentation was obtained via a rule based
approach. Scans were taken at the Paul Scherrer Institute at Swiss Light

1Based on Correspondence with Guillaume Theroux Rancourt, Ph.D., Institute for
Botany Boku Vienna

1

Figure 1: 2D-slice of a leaf scan

2

Source using acquisition protocols similar to those published in Théroux-
Rancourt et al. [3]. Furthermore, our working group used the sparsely labeled
scan to create a densely labeled scan for semantic segmentation. This densely
labeled scan for semantic segmentation was obtained via a U-Net [4] based
approach. These densely labeled scans are used as our training data. It
is important to mention that these densely labeled scans are not a perfect
ground truth.

We restrict the scope of this work to deep-learning based approaches and
train them purely supervised on the data available to us. However, we do not
exclude pre-trained models. Time and resources are limited. For this reason,
we do not conduct a full architecture search, but focus on state-of-the-art
architectures. We conduct a review on the state of the art of 3D-instance
segmentation, especially cell instance segmentation. Based on the results of
the review, the state-of-the-art architectures are discussed in regard to our
task. Based on the discussion we select an architecture, i.e. Cellpose [5, 6].
We train this architecture and try different approaches based on the available
data.

In Section 2, the current state of the art of 3D-cell instance segmentation
is presented and discussed in regard to our task. Based on this discussion
a state-of-the-art architecture is chosen. In Section 3, the architecture and
overall approach is described. In Section 4, training and evaluation are de-
scribed and the results of the experiments are presented. In Section 5, the
results are discussed. Finally, in Section 6, we draw a concise conclusion and
give an outlook for future work.

2 Related Work
Bouget et al. [7] and Felfeliyan et al. [8] use Mask R-CNN based approaches.
Bouget et al. [7] segment lymph nodes from 3D-scans directly using 3D-
convolution. Felfeliyan et al. [8] use instance segmentation for objective as-
sessment of osteoarthritis based on magnetic resonance imaging. Instead of
predicting the instances directly from the 3D-scan, Felfeliyan et al. [8] split
the 3D-scan into 2D-slices, segment the 2D-slices, and reassemble the 3D-scan
from the segmented slices. Mask R-CNN based approaches predict bound-
ing boxes and segment inside the bounding boxes to predict the individual
instances. This way more bounding boxes are predicted than instances ex-

3

ist. Therefore, non-maximum suppression is used to remove excess bounding
boxes. In general, we found several Mask R-CNN based approaches for 2D
and 3D [9, 10, 11].

Similar approaches exist which use another shape representation instead of
the bounding box. Luo et al. [12] propose to predict bounding spheres, de-
termined by center and radius, instead of bounding boxes. Schmidt et al.
[13] propose Stardist, i.e. a U-Net [4] with a ResNet [14] backbone. Stardist
predicts a star-shaped, convex polygon for each pixel, here the pixel serves
as the center of the star-shaped, convex polygon. The star-convex polygon is
represented by a predefined number n of distances along evenly spaced prede-
fined radial directions. For non-max suppression, for each polygon an object
probability is predicted. The object probability is defined as the distance
between the center and the closest boundary. Upschulte et al. [15] propose
to predict contours instead of bounding boxes. The contours are given by a
set of n points in a Fourier descriptor along each dimensional axis.

Another approach is based on learning an embedding. The embedding ap-
proach embeds each pixel such that pixels/voxels belonging to the same in-
stance are in close proximity to each other in the embedding space. This way
instances can be constructed by clustering, e.g. mean-shift. The definition
of proximity differs between papers [16, 17, 18, 19, 20]. For example, Liu
and Furukawa [19] define distance by an affinity score. The affinity score
is the likelihood of two neighboring pixels/voxels belonging to the same in-
stance. Payer et al. [20] use a cosine embedding and define proximity via
the cosine distance of two embedding vectors. If the cosine distance between
two embedding vectors is below a predefined threshold, the corresponding
pixels/voxels are predicted to belong to the same instance.

Another approach is based on semantic segmentation and watershed algo-
rithm to get an instance segmentation. Eschweiler et al. [21] and Lin et al.
[22] segment into the classes cell centroids (utilized for seeding watershed),
cell membranes (cell shape info), and background. Caicedo et al. [23] use
a U-Net to segment into the classes object interior, object boundary, and
background.

Another approach is Cellpose [5, 6]. Cellpose represents instances by their
gradient flow. The gradient flow yields a gradient for each pixel/voxel of
an instance. The gradient points from the pixel/voxel to the center of the
instance.

4

Although some of these presented approaches are 2D, in general two methods
exists to apply these approaches to 3D-instance segmentation. One method
splits the 3D-scan into 2D-slices, segments the 2D-slices, and reassembles the
3D-scan from the segmented slices. The other method inputs the 3D-scan
directly and returns the 3D-segmentation [7, 8]. As stated in Section 1, the
cells, vary in shape a lot. Hence, approaches using a fixed representation
like bounding boxes or spheres do not suit the task. This leaves the con-
tour based approach to be explored, since it is able to represent complex
and varying shapes. However, in general, Mask R-CNN based approaches
do not work so well for cluttered instances [24]. As stated in Section 1,
cluttered instances are a challenge for our task. For the embedding-based
approaches the authors did not describe how they obtained the gradients for
training from the clustering algorithm and neither Tensorflow nor PyTorch
had a pre-implemented module for this. Reverse engineering their approach
is not possible with our limited time. For these reasons Mask R-CNN and
embedding-based approaches are not investigated in our work.

Since the approaches are rarely tested on the same datasets, performance is
complicated to compare. In the following, we will compare the approaches
evaluated on datasets which contain cluttered instances, since this ensures at
least some similarity to our data. The Mask R-CNN based approaches, in-
cluding the contour based approach and Stardist were evaluated on datasets
with cluttered instances. The contour based approach achieved slightly bet-
ter F1-Score , but also applied many auxiliaries [15]. Because the differences
in F1-Score between the approaches is small (i.e. 0.01-0.02), it is arguable
that a vanilla contour based approach might achieve the same F1-Score as
the other approaches. Depending on the datasets the segmentation based
approach, Cellpose, and Stardist beat each other in achieving higher mean
average precision (mAP) [22]. As a conclusion, no approach obviously out-
performs the other approaches. In general, Cellpose is tested on plant (in-
cluding leaf) cells. Consequently, Cellpose was tested on data that is the
most similar to our data. For these reasons we investigate Cellpose for our
task. However, we recognize that semantic segmentation and embedding-
based approaches are also worth investigating, but are not investigated due
to limited time and resources.

5

3 Methodology
Cellpose represents instances by their gradient flow. The gradient flow yields
a gradient for each pixel/voxel of an instance. The authors describe the
gradient map as heat diffusion from center of the instance to borders of the
instance. However, they simply compute the gradient ∇v = c − v for a
pixel/voxel by subtracting the position vector of the pixel/voxel v from the
position vector of the center c [6]. Thus, the gradient of a pixel/voxel can
be conceptualized as arrow pointing from the pixel/voxel to the center of the
corresponding instance. Based on this, the instances can be reconstructed
by grouping all pixels/voxels to an instance whose gradients flow roughly to
the same center [6]. Eschweiler et al. [5] find that the instances can also be
reconstructed by simply following the tanh of the gradient flow. Therefore,
Eschweiler et al. [5] simplify the problem by letting the model only predict
the tanh of the gradient flow. Accordingly, Cellpose is able to express a
variety of shapes. However, this does only consider pixels/voxels belonging
to an instance. Therefore, the model also needs to predict whether a pix-
el/voxel belongs to an instance or not. This is done via a binary foreground
segmentation mask. The resulting output for Cellpose consist of three or four
masks for 2D or 3D respectively. These masks are foreground segmentation
mask, gradient flow mask in x-direction, gradient flow mask in y-direction,
and gradient flow mask in z-direction (for 3D). To foster understanding, we
illustrate the output for the 2D-case in Figure 2. For the 3D-case, the output
comprises an extra gradient flow mask in z-direction.

The Cellpose architecture is based on U-Net [4]. ResNet [14] serves as the
backbone for the U-Net architecture of Cellpose. The backbone network is
the network used in the contracting path of U-Net. In the case of ResNet,
this basically means that the convolutional blocks of U-Net are implemented
as residual blocks. Using the 3D-scan as input directly leads to a massive
increase in parameters such that the GPU runs out of memory when training
the model. To ensure a reasonable batch size, the input shape is restricted
to 64× 64× 64 cuboids. Using 2D-slices as input the slices can be inputted
in whole. U-Net is composed of a contracting and an expansive path. The
contracting path consists of convolutional blocks each followed by a max
pooling layer. The expansive path consists of up-convolutions each followed
by a convolutional block. The paths are connected through a convolutional
block. The output layer is a convolution with c kernels of shape 1×1 followed

6

scan foreground y-flowsx-flows

flow legend:

Figure 2: Output of Cellpose

by an output activation. For Cellpose c = 3 or c = 4 for 2D or 3D respectively.
The activation function is the sigmoid activation for the binary foreground
segmentation mask and the tanh activation for the gradient flow masks in
x-, y-, and z-direction

A max pooling layer has a kernel shape of 2 × 2 and a stride of 2, leading
to downsampling. In each downsampling step, the spatial dimensions are
halved while the number of kernels is doubled. An up-convolution consists of
an upsampling layer followed by a convolution with a kernel shape of 2× 2.
The upsampling layer has a kernel shape of 2×2. In each upsampling step, the
spatial dimensions are doubled, while the number of kernels is halved by the
convolution. Consequently, for each convolutional block in the contracting
path exists a convolutional block in the expansive path with corresponding
number of kernels. The number of base kernels K is the number of kernels
in the first convolutional block [4].

The corresponding paths are connected via a skip-connection. If padding is
not applied for convolutions, the spatial dimensions are reduced with each
convolution. This leads to smaller feature maps in the expansive path, com-
pared to the corresponding feature maps in the contracting path. Thus, the

7

1 K K

2K 2K

4K 4K

8K 8K

16K 16K

8K 8K

4K 4K

2K 2K

K K 1

base kernelsK
3× 3 conv, ReLU
copy and crop
2× 2 max pool
2× 2 up-conv
1× 1 conv

Figure 3: Architecture of U-Net (based on [4])

skip-connection crops the output of a convolutional block to fit the input
of the corresponding convolutional block in the expansive path. The whole
architecture of U-Net [4] is illustrated in Figure 3. The skip connections are
usually implemented as concatenation, Cellpose implements them as sum-
mation in order to reduce the number of parameters [6].

ResNets address the degradation of accuracy of deep neural networks. In
general, a deeper network should at least achieve the same results as its shal-
lower counterpart, because an equivalent deeper network can be constructed
by considering the shallower counterpart and adding identity mappings on
top. Empirically, however, the deeper network and its shallower counterpart

8

+

Layer

...

Layer

+

Sk
ip

C
on

ne
ct
io
n

Figure 4: Residual Block

do not always converge in the same way. This indicates that not all networks
are similarly easy to optimize [14].

ResNets address the degradation problem by letting stacked layers learn the
residual function F(X) = H(X)−X instead of the desired function H(X).
Thus, the original desired function is transformed into F(X) + X. This is
based on the hypothesis that stacked layers can learn any function. Assuming
this hypothesis is true, we can derive that stacked layers can learn the residual
functions H(X) − X. Both approaches, with or without residual function,
should be able to learn the desired functions. The difficulty of learning may
vary [14]. He et al. [14] empirically show that, by using residual networks,
deeper neural networks can be learned.

F(X) + X is implemented by skip connections. Skip connections skip one
or more layers, by adding the input of the skip connection to the output
of the skipped layers. Adding can be implemented as element-wise sum or
concatenation. A stack of skipped layers is called residual block, see Figure
4. ResNets are comprised of residual blocks [14].

4 Experiments

9

4.1 Experimental Setup

The experiments were conducted using Google Colab and Vienna Scientific
Cluster. Google Colab provided 12GB RAM, 78 GB storage, and a GPU.
The provided GPU varied depending on availability. The following GPUs
may have been provided 12GB NVIDIA Tesla K80, 16 GB NVIDIA Tesla
T4, or 16 GB NVIDIA Tesla P100 [25]. Vienna Scientific Cluster provided
264 GB RAM, and 48 GB NVIDIA A40 GPU 2. The method was imple-
mented in Python 3.7.12 [26] using Tensorflow 2.7.0 [27] and the repository
of Stringer et al. [6] 3. As explained in Section 1, only one densely labeled
3D-scan of shape 256×256×256 was available. Thus, we cropped all possible
cuboids of shape 64× 64× 64, i.e. (256− 64) ∗ (256− 64) ∗ (256− 64), and
randomly sampled them for training. From those we split off 1000 cuboids
for validation and 7 slices for testing. For testing we split off slices to be
able to compare the two methods for 3D-segmentation, i.e. segmenting 2D-
slices and reassembling the 3D-scan or segmenting the 3D-scan directly. For
pre-processing we normalized the input. Cellpose was trained on the train-
ing dataset and its performance was monitored on the validation dataset.
Training was conducted by optimizing a custom loss function L. This loss
is constituted of a flow loss Lflow for each axis and a foreground segmenta-
tion loss Lfg. The flow loss is the mean squared error between the true and
predicted flow along the given axis for all pixels/voxels which are part of an
instance. This is done, because the flow is only well defined for pixels/vox-
els which are part of an instance. The foreground segmentation loss is the
mean absolute error between the true and predicted foreground segmenta-
tion loss. The total loss is shown in Equation (1). The flow losses and the
foreground segmentation loss are weighted by the hyperparameters α and β
respectively 4.

L = α · Lfg +
β

3
· (Lflowx + Lflowy + Lflowz) (1)

The loss was optimized using the Adam optimizer [28] with an initial learning
rate of 0.001 and a batch size of 64. The learning rate was reduced by a factor
of 0.1 each time the validation loss did not improve for 10 epochs. Cellpose
was trained until convergence. Training was completed if the validation loss

2https://vsc.ac.at
3https://github.com/MouseLand/cellpose
4Following Eschweiler et al. [5], we chose α = 1 and β = 1

10

https://vsc.ac.at
https://github.com/MouseLand/cellpose

did not improve for 25 epochs. We used the maximal possible batch size
given the available GPU memory.

4.2 Metrics

To evaluate different versions of Cellpose, we used mAP 5. mAP is the
area under the recall precision curve which arises from plotting recall against
precision over different Intersection over Union (IoU) thresholds tiou ∈ {0.1,
0.2, ..., 0.9}. Increasing tiou results in fewer detections, usually this increases
precision and decreases recall. Given the number of true positives TP , false
positives FP , and false negatives FN , precision Prec and recall Rec are
defined as follows:

Prec =
TP

TP + FP
(2)

Rec =
TP

TP + FN
(3)

As we can clearly see, Rec ∈ [0; 1] and Prec ∈ [0; 1], therefore followsmAP ∈
[0; 1]. An instance is counted as TP if IoU of predicted and true instance
is greater tiou. If several predicted instances score sufficient IoU in regard
to a true instance, only the one with the highest IoU is counted as TP .
A predicted instance is counted as FP if no true instance with sufficient
IoU exists. A true instance is counted as FN if no predicted instance with
sufficient IoU exists. IoU is used to measure similarity of sets. Considering
the pixels/voxels of an instance as sets, the intersection of the predicted set
ŷ and the ground truth set y can be interpreted as the overlapping region of
both instances. IoU is defined as :

IoU =
|y ∩ ŷ|
|y ∪ ŷ|

(4)

4.3 Results

We evaluated 3D-Cellpose trained on our data with and without semantic
information and 2D-Cellpose as trained by Stringer et al. [6]. Jain et al. [29]
have shown that semantic information can enhance performance. As stated
in Section 1, a semantic segmentation of our scan was available. Accordingly,

5The term mAP and AP are not used uniformly, some authors would use our definition
for AP

11

Model mAP

3D-Cellpose 0.0135

3D-Cellpose-Sem. 0.0298

2D-Cellpose 0.1652

Table 1: Test results

we investigated the impact of incorporating semantic information via the se-
mantic segmentation mask. We incorporated the semantic segmentation by
simply concatenating the input with the corresponding semantic segmen-
tation. The resulting model is called 3D-Cellpose-Sem. The test results
achieved by 3D-Cellpose, 3D-Cellpose-Sem, and 2D-Cellpose are displayed
in Table 1. To illustrate the results, Figure 5 and 6 display the test results
for the best performing model, i.e. 2D-Cellpose.

5 Discussion
We investigated 2D- and 3D-Cellpose with and without additional seman-
tic information to segment the individual cells of 3D-leaf-scans. In general,
we found that Cellpose is not suited well for the task. As shown in Table
1, 3D-Cellpose-Sem achieved slightly higher mAP than 3D-Cellpose, mean-
ing semantic information could have contributed to performance. However,
this statement must be questioned, since the improvement is minimal and
3D-Cellpose and 3D-Cellpose-Sem achieved especially low mAP in general.
The low mAP means they did not learn to segment the leaf cells well. This
could have several reasons. For difficult datasets many instance segmentation
methods do not perform well [15, 5]. Considering that the scan is 3D, the
cells are cluttered, vary in shape, vary in size, and some are really small, the
task might be a hard task in general. As explained in Section 3, processing
3D-input, e.g. via 3D-convolution, requires more parameters than process-
ing 2D-input. A model with more parameters might be harder to optimize
in general [14]. To reduce the number of parameters, 3D-Cellpose and 3D-
Cellpose-Sem used 64 × 64 × 64 cuboids as input. As a consequence, the
whole 3D-scan was processed using a tiling strategy [4]. Tiling without over-
lap creates hard borders. Flows could be susceptible to this, because flows

12

Scan Segmentation Ground Truth
Scan with

Segmentation

Figure 5: Test results

13

Scan Segmentation Ground Truth
Scan with

Segmentation

Figure 6: Test results (continued)

14

need continuity. Continuity is intercepted by hard borders. This might be
improved by utilizing an overlapping tile strategy [4]. However, this would
also increase the number of parameters or decrease the output shape. As
explained in Section 1, only one scan was available for training and the dense
label was created artificially and thus is not a perfect ground truth. Quan-
tity and quality of training data can significantly impact performance and
few training data can be easily overfitted [30]. As explained in Section 4, we
cropped all possible cuboids of shape 64 × 64 × 64, and randomly sampled
them for training. From those we split off 1000 cuboids for validation and
7 slices for testing. Accordingly, the 3D-Cellpose models have seen all parts
constituting the test slices. This is not best practice, but was the best way
to ensure comparability and training with our limited training data and the
general ranking of the models was not distorted by this, since 3D-Cellpose
and 3D-Cellpose-Sem performed worse than 2D-Cellpose anyway. Further-
more, the labeled slices were not yet available and planned when we trained
the model. Consequently, we expected 3D-Cellpose and 3D-Cellpose-Sem to
overfit the training and hence the testing data. However, as shown in Table
1, they did not overfit the testing data. Thus, we hypothesise, that the low
mAP is not (solely) due to the quantity and quality of training data.

Note that despite the mAP being low in general, as we can see in Figure
5, for some cells, especially the ones with only roundish shapes, 2D-Cellpose
produces promising results. However, for scans with a context of very long
stretched cells, as shown in the first and last example, the 2D-Cellpose is not
suited. Furthermore, we can see that 2D-Cellpose is not suited to predict
instances of epidermic cells, since almost all of those are neglected.

Finally, as explained in Section 2, to conduct 3D-instance segmentation using
2D-models, the 3D-scan is split into 2D-slices, the 2D-slices are segmented,
and reassembled to the 3D-instance segmentation mask. This does not en-
sure that corresponding instances in subsequent slices have the same label.
However, since 2D-Cellpose predicts the flows this is not a problem. For 3D-
instance segmentation 2D-Cellpose needs to predict the flows along the x-,
y-, and z-axis. This is implemented by processing slices along different axis.
The 3D-instance segmentation mask is reconstructed from the flows along
the x-, y-, and z-axis. This is implemented in the repository of Stringer et
al. [6].

15

6 Conclusion and Future Work
To conclude, we implemented and evaluated 2D- and 3D-Cellpose with and
without additional semantic information to segment the individual cells of
3D-leaf-scans. We found that Cellpose is not suited well for the task in
general. However, as discussed in Section 5, for cells with roundish shapes,
2D-Cellpose produces promising results. Accordingly, 2D-Cellpose might be
suitable to segment sponge cells and palisade cells from slices along the hor-
izontal z-axis.

For future work, we propose to investigate semantic segmentation and embed-
ding-based approaches. Furthermore, we propose to investigate fine-tuning
2D-Cellpose on target task data. For both proposes, data in higher quantity
and quality is recommended. Finally, we propose to investigate an evaluation
method that makes the comparison of 2D- and 3D-based models more fair.

16

References
[1] H.-O. Pörtner, D. C. Roberts, H. Adams, C. Adler, P. Aldunce, E.

Ali, R. A. Begum, R. Betts, R. B. Kerr, R. Biesbroek, et al., “Cli-
mate change 2022: Impacts, adaptation and vulnerability,” IPCC Sixth
Assessment Report, 2022.

[2] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: State
of the art,” International journal of multimedia information retrieval,
vol. 9, no. 3, pp. 171–189, 2020.

[3] G. Théroux-Rancourt, M. R. Jenkins, C. R. Brodersen, A. McElrone,
E. J. Forrestel, and J. M. Earles, “Digitally deconstructing leaves in 3d
using x-ray microcomputed tomography and machine learning,” Appli-
cations in plant sciences, vol. 8, no. 7, 2020.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Comput-
ing and Computer Assisted Interventions (MICCAI), 2015, pp. 234–
241.

[5] D. Eschweiler, R. S. Smith, and J. Stegmaier, “Robust 3d cell segmen-
tation: Extending the view of cellpose,” arXiv:2105.00794, 2021.

[6] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: A
generalist algorithm for cellular segmentation,” Nature methods, vol. 18,
no. 1, pp. 100–106, 2021.

[7] D. Bouget, A. Pedersen, J. Vanel, H. O. Leira, and T. Langø, “Mediasti-
nal lymph nodes segmentation using 3d convolutional neural network
ensembles and anatomical priors guiding,” arXiv:2102.06515, 2022.

[8] B. Felfeliyan, A. R. Hareendranathan, G. Kuntze, J. L. Jaremko, and
J. L. Ronsky, “Improved-mask R-CNN: Towards an accurate generic
msk mri instance segmentation platform (data from the osteoarthritis
initiative),” Computerized medical imaging and graphics, vol. 97, 2022.

[9] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmen-
tation of RGB-D scans,” in Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4416–4425.

[10] W. Wang, R. Feng, J. Chen, Y. Lu, T. Chen, H. Yu, D. Z. Chen, and
J. Wu, “Nodule-plus R-CNN and deep self-paced active learning for
3d instance segmentation of pulmonary nodules,” IEEE Access, vol. 7,
pp. 128 796–128 805, 2019.

[11] S. Wang, Y. Zhu, S. Lee, D. C. Elton, T. C. Shen, Y. Tang, Y. Peng, Z.
Lu, and R. M. Summers, “Global-local attention network with multi-

17

task uncertainty loss for abnormal lymph node detection in MR im-
ages,” Medical Image Analysis, vol. 77, 2022.

[12] X. Luo, T. Song, G. Wang, J. Chen, Y. Chen, K. Li, D. N. Metaxas, and
S. Zhang, “SCPM-Net: An anchor-free 3d lung nodule detection net-
work using sphere representation and center points matching,” Medical
Image Analysis, vol. 75, 2022.

[13] U. Schmidt, M. Weigert, C. Broaddus, and E. W. Myers, “Cell de-
tection with star-convex polygons,” in Medical Image Computing and
Computer Assisted Interventions (MICCAI), 2018.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[15] E. Upschulte, S. Harmeling, K. Amunts, and T. Dickscheid, “Contour
proposal networks for biomedical instance segmentation,” Medical Im-
age Analysis, vol. 77, 2022.

[16] W. Wang, R. Yu, Q. Huang, and U. Neumann, “Sgpn: Similarity group
proposal network for 3d point cloud instance segmentation,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 2569–2578.

[17] X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia, “Associatively segment-
ing instances and semantics in point clouds,” Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4091–4100, 2019.

[18] P. Hirsch, L. Mais, and D. Kainmueller, “Patchperpix for instance seg-
mentation,” in European Conference on Computer Vision (ECCV),
2020.

[19] C. Liu and Y. Furukawa, “Masc: Multi-scale affinity with sparse con-
volution for 3d instance segmentation,” arXiv:1902.04478, 2019.

[20] C. Payer, D. Štern, M. Feiner, H. Bischof, and M. Urschler, “Segmenting
and tracking cell instances with cosine embeddings and recurrent hour-
glass networks,” Medical Image Analysis, vol. 57, pp. 106–119, 2019.

[21] D. Eschweiler, T. V. Spina, R. C. Choudhury, E. Meyerowitz, A. Cunha,
and J. Stegmaier, “Cnn-based preprocessing to optimize watershed-
based cell segmentation in 3d confocal microscopy images,” in Interna-
tional Symposium on Biomedical Imaging (ISBI), IEEE, 2019, pp. 223–
227.

[22] Z. Lin, D. Wei, M. D. Petkova, Y. Wu, Z. Ahmed, S. Zou, N. Wendt,
J. Boulanger-Weill, X. Wang, N. Dhanyasi, et al., “Nucmm dataset: 3d
neuronal nuclei instance segmentation at sub-cubic millimeter scale,” in

18

International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, 2021, pp. 164–174.

[23] J. C. Caicedo, J. Roth, A. Goodman, T. Becker, K. W. Karhohs, M.
Broisin, C. Molnar, C. McQuin, S. Singh, F. J. Theis, et al., “Evalua-
tion of deep learning strategies for nucleus segmentation in fluorescence
images,” Cytometry Part A, vol. 95, no. 9, pp. 952–965, 2019.

[24] Z. Liang, M. Yang, H. Li, and C. Wang, “3d instance embedding learn-
ing with a structure-aware loss function for point cloud segmentation,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4915–4922,
2020.

[25] colab-billing@google.com. “Making the most of your colab subscrip-
tion.” (2018), [Online]. Available: https://colab.research.google.
com / notebooks / pro . ipynb # scrollTo = QMMqmdiYMkvi (visited on
01/26/2021).

[26] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. CreateS-
pace, 2009.

[27] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, M.
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng, TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, Software available from tensorflow.org, 2015. [Online]. Available:
https://www.tensorflow.org/.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

[29] J. Jain, A. Singh, N. Orlov, Z. Huang, J. Li, S. Walton, and H. Shi, “Se-
mask: Semantically masked transformers for semantic segmentation,”
arXiv:2112.12782, 2021.

[30] X. Ying, “An overview of overfitting and its solutions,” Journal of
Physics: Conference Series, 2019.

19

https://colab.research.google.com/notebooks/pro.ipynb#scrollTo=QMMqmdiYMkvi
https://colab.research.google.com/notebooks/pro.ipynb#scrollTo=QMMqmdiYMkvi
https://www.tensorflow.org/

	Introduction
	Related Work
	Methodology
	Experiments
	Experimental Setup
	Metrics
	Results

	Discussion
	Conclusion and Future Work

